
Undirected Graph Exploration with Θ(log log n) Pebbles∗

Yann Disser† Jan Hackfeld† Max Klimm†

Abstract
We consider the fundamental problem of exploring an undi-
rected and initially unknown graph by an agent with lit-
tle memory. The vertices of the graph are unlabeled, and
the edges incident to a vertex have locally distinct labels.
In this setting, it is known that Θ(logn) bits of memory
are necessary and sufficient to explore any graph with at
most n vertices. We show that this memory requirement
can be decreased significantly by making a part of the mem-
ory distributable in the form of pebbles. A pebble is a device
that can be dropped to mark a vertex and can be collected
when the agent returns to the vertex. We show that for an
agent O(log logn) distinguishable pebbles and bits of mem-
ory are sufficient to explore any bounded-degree graph with
at most n vertices. We match this result with a lower bound
exhibiting that for any agent with sub-logarithmic memory,
Ω(log logn) distinguishable pebbles are necessary for explo-
ration.

1 Introduction
The exploration of large graphs is a central challenge
in many applications ranging from robot navigation in
unknown environments [1, 4] to Web crawling [23] and
image recognition [6, 8, 27]. In this paper, we are in-
terested in the problem of deterministically visiting all
vertices of an initially unknown undirected graph by a
single agent. To account for the fact that, in many inter-
esting scenarios, the size of the graph exceeds the agent’s
internal memory by orders of magnitude, we study the
exploration problem from the viewpoint of space com-
plexity. It is known that an agent needs Θ(log n) bits of
memory to explore any graph with at most n vertices.
In fact, already the subproblem of deciding whether two
given vertices s and t are connected in an undirected
graph is complete for SL, the class of problems solvable
by symmetric non-deterministic log-space computations
[24].

To break this logarithmic barrier, we allow for
distributable memory in the form of pebbles. Pebbles
are distinguishable devices that can be dropped to mark

∗This research was supported by the DFG Priority Programme
1736 “Algorithms for Big Data”.
†TU Berlin, Institute of Mathematics, MA 5-2, Str. des

17. Juni 136, 10623 Berlin, Germany

a vertex and that can be retrieved when revisiting it.
Since the memory required to store a unique vertex
identifier exceeds the internal memory of the agent, it is
reasonable to assume that the agent has no direct means
of distinguishing vertices, other than pebbles. To allow
sensible navigation of the agent in the absence of vertex
identifiers, we assume that the edges incident to each
vertex have locally unique labels.

Our results and significance. We show that for
any agent with sub-logarithmic memory, Θ(log log n)
distinguishable pebbles are both necessary and sufficient
to explore any graph with n vertices. In fact, already
O(log log n) bits of memory and O(log log n) pebbles are
sufficient for the exploration.

Our proof of this upper bound is constructive, i.e.,
we devise an algorithm that explores any graph with
n vertices using O(log log n) pebbles and O(log logn)
memory. Our algorithm does not require n to be
known, terminates after nO(log logn) steps and returns
to the starting location. In terms of the s-t-connectivity
problem, this implies that the space complexity of
Θ(log n) [15, 24] can be significantly reduced if we allow
memory to be distributable in the form of pebbles.

To prove the lower bound, we construct a family of
graphs with O(s8

p+1

) vertices that trap any agent with
s states and p pebbles. The previously best bounds
are for a more general setting where each pebble is an
autonomous agent with constant memory. The traps
of Rollik [26] are of order Õ(s ↑↑ (2p + 1)), where
a ↑↑ b := aa

.. a

with b levels in the exponent. This bound
was improved by Fraigniaud et al. [16] to Õ(s ↑↑ (p+1)).
Our construction exhibits that dramatically smaller
traps with only a doubly exponential number of vertices
are possible when pebbles cannot move autonomously.
As a consequence of our trap, we are able to show that,
for any constant ε > 0, any agent withO((log n)1−ε) bits
of memory needs at least Ω(log log n) distinguishable
pebbles for the exploration task.

Further related work. A cornerstone of the
graph exploration literature is the work of Aleliunas et
al. [2], who showed that a random walk in an undirected
graph visits all vertices in a polynomial number of steps.
This insight gives rise to a randomized constant-space
perpetual exploration algorithm, i.e., an algorithm that
runs forever and, eventually, visits all vertices of the

graph. If an upper bound on the number of vertices
of the graph is known, the random walk can be turned
into a randomized log-space exploration algorithm that
terminates after having explored the graph (with high
probability) by adding a counter that keeps track of the
numbers of steps taken.

In this context, deterministic exploration algo-
rithms, as considered in this work, can be seen as ways
to derandomize random walks. A famous result in this
direction is due to Reingold [24] who gave a log-space de-
terministic exploration algorithm for undirected graphs.
This algorithm is perpetual, but can be modified to ter-
minate if an upper bound on the number of vertices is
known. The space complexity of Reingold’s algorithm is
best possible, since perpetual exploration of undirected
graphs requires Ω(log n) space, as shown by Fraigniaud
et al. [15].

The results above can be also be phrased in terms
of traversal and exploration sequences. These are se-
quences of local edge labels that govern the walk of
the agent in the graph. A sequence is universal for a
class of graphs, if any graph in the class is explored by
it. Aleliunas et al. showed that random sequences of
length O(∆2n3 log n) are universal traversal sequences
for all undirected ∆-regular graphs with high proba-
bility. The explicit construction of universal traversal
sequences of polynomial length seems to be more chal-
lenging and only for restrictive graph classes, such as
cycles and expander graphs, such constructions were
given [18, 19, 21]. Koucky [20] introduced exploration
sequences that, in contrast to traversal sequences, allow
for backtracking, and showed that this framework facil-
itates explicit constructions of sequences of polynomial
length for special classes of graphs. Reingold’s algo-
rithm constructs a universal exploration sequence for
all undirected graphs in logarithmic space and, hence,
of polynomial length. In subsequent work, Reingold
et al. [25] extended this construction and obtained log-
space constructable universal traversal sequences for all
regular directed graphs with a restricted type of label-
ing.

For trees with maximum degree ∆, Diks et al. [12]
gave a perpetual exploration algorithm that uses
O(log ∆) space, i.e., asymptotically not more than the
space needed to store a single edge label. They showed
that Ω(log log log n) bits of memory are needed if the al-
gorithm has to eventually terminate. If, in addition, the
algorithm is required to terminate at the same vertex
where it started, Ω(log n) bits of memory are needed.
A matching upper bound for the latter was given by
Ambuhl et al. [3].

Regarding the exploration time, Dudek et al. [13]
showed that an agent provided with a pebble can map

an undirected graph in time O(n2∆). In a similar vein,
Chalopin et al. [11] showed that if the starting node can
be recognised by the agent, the agent can explore the
graph in time O(n3∆) using O(n∆ log n) memory.

Exploration becomes considerably more difficult for
directed graphs, where random walks may need expo-
nential time to visit all vertices. Without any con-
straints on memory, Bender et al. [5] gave an O(n8∆2)-
time algorithm that uses one pebble and explores (and
maps) a directed graph with maximum degree ∆, when
an upper bound on the number n of vertices is known.
For the case that such an upper bound is not available,
they proved that Θ(log log n) pebbles are both necessary
and sufficient.

Concerning the space complexity of directed graph
exploration, Fraigniaud and Ilcinkas [14] showed that
Ω(n log ∆) bits of memory are necessary to explore any
directed graph with n vertices and maximum degree ∆,
even with a linear number of pebbles. They provided
an O(n∆ log n)-space algorithm for terminating explo-
ration with an exponential running time using a sin-
gle pebble. They also gave an O(n2∆ log n)-space algo-
rithm running in polynomial time and usingO(log log n)
indistinguishable pebbles. According to Bender et al. [5]
at least Ω(log log n) pebbles are necessary in this setting.

Further related is the problem of exploring geomet-
ric structures in the plane, see, e.g., [7, 17, 27] for the
exploration of labyrinths, and [9, 10] for the the explo-
ration of simple polygons.

2 Terminology and model
We consider an agent that is initially located at some
vertex of a connected, undirected graph G = (V,E)
without any knowledge of the overall graph topology.
The goal of the agent is to explore the graph, i.e., to
systematically visit all of its vertices. We assume that
the graph is anonymous, i.e., the vertices of the graph
are unlabeled and therefore cannot be identified by the
agent. However, for the agent to be able to navigate
locally, we assume that the edges incident to a vertex v
have distinct labels 0, . . . , dv− 1, where dv is the degree
of v. This way every edge {u, v} has two labels called
port numbers, one at u and one at v. In each step, the
agent observes the degree of the current vertex and the
port number of the edge by which it entered the vertex.
It can then select a port number of any of the incident
edges and traverse the corresponding edge to the other
endpoint. Note that we assume no relation between the
two port numbers of an edge in this model.

We further extend the model by equipping the agent
with a set of p distinguishable pebbles, which can be
thought of as bits of memory that can be distributed
as markers or bookmarks. The agent can carry the

pebbles, place any of the pebbles on a vertex, observe
which pebbles are placed on the current location, and it
can pick up pebbles encountered at its location. Thus,
the pebbles give the agent the ability to distinguish
and recognize vertices and therefore provide additional
information for choosing the next edges to traverse. We
refer to the two types of models for the agent as an agent
without pebbles or an agent with pebbles, respectively.
Generally, we are interested in exploring graphs with as
few pebbles as possible.

Formally, we model the agent as a Turing machine
with a finite tape that determines the traversal of the
agent in the graph. We call this model a (s, p,m)-
pebble machine, where s is the number of states, p is
the number of pebbles and m is the tape length of the
Turing machine. In every step, the agent observes the
local environment at the current vertex in the graph G
according to a function δin, then it does an arbitrary
number of computation steps on its tape according to a
transition function δ until it reaches a final state, and
afterwards it performs actions according to a function
δout. More precisely, a (s, p,m)-pebble machine M is
a tuple (Q,F, P,m, δ, δin, δout, q0), where Q is the set of
states of M, q0 is the starting state, F ⊆ Q the set of
final states and P is the set of pebbles. The pebble
machine has a tape of length m with tape alphabet
{0, 1} and does computations according to a function

δ : (Q \ F)× {0, 1} → Q× {0, 1} × {L,R},

which is the same as for a regular Turing machine. That
is, if the pebble machine is in state q, reads symbol
a ∈ {0, 1} on the tape and δ(q, a) = (q′, a′, d), then it
changes to state q′, writes a′ to the tape and moves left
if d = L and right if d = R. For all pebble machines
that we consider, we assume that the computation
terminates in a final state q ∈ F after a finite number
of transitions according to δ.

The pebble machineM observes the local environ-
ment at the current vertex of an undirected graph G
with maximum degree ∆ according to the function

δin : Q× 2P × 2P × {0, . . . ,∆− 1}2 → Q,

in the following way. If δin(q, P1, P2, d, l) = q′, thenM
transitions to state q′, provided that the current state
is q, the agent carries the set of pebbles P1, observes
the set of pebbles P2 at the current location, that the
degree of the current vertex is d and that it has entered
the current vertex via the edge labeled l. Initially,M is
in some vertex v0 in G in state q0, observes the degree of
v0 and we assume l = 0, P1 = P , P2 = ∅. Note that δin
is a partial function, as it is only defined for P1∩P2 = ∅,
since a pebble cannot both be carried by the agent and
placed on the current vertex.

The actions performed byM are determined by the
function

δout : Q→ 2P × 2P × {0, . . . ,∆− 1}.

If δout(q) = (P1, P2, l) and the agent is in state q, it
performs the following sequence of actions. It places
all pebbles that are carried and contained in P1 on the
current vertex, it picks up all pebbles that are placed on
the current vertex and contained in P2, and after that
traverses the edge labeled l. Naturally, we demand the
overall set of pebbles carried or placed on a vertex to
remain unchanged before and after executing the actions
according to δout, i.e., P1∪P2 = P ′1∪P ′2 with P ′1∩P ′2 = ∅
if δin(q, P1, P2, d, l) = q′ and δout(q

′) = (P ′1, P
′
2, l
′).

A configuration of a pebble machine is determined
by the current state of the pebble machine, the current
head position and the content of the tape. Thus, a
(s, p,m)-pebble machine has at most sm2m possible
configurations.

Note that we model the agent as a pebble machine
instead of an automaton as we need a certain “locality”
of the transitions. An automaton can change from any
state to an arbitrary other state, whereas the tape of
the pebble machine only changes at the current head
position. This allows us in the next section to simulate
the tape of a pebble machine by pebbles placed on
vertices in the graph and to simulate the computations
of the pebble machine by moving these pebbles.

3 An exploration algorithm using pebbles
The main result in this section is an algorithm that ex-
plores any bounded-degree graph on at most n vertices
with O(log log n) pebbles and memory.

For our algorithm, we use the concept of exploration
sequences introduced by Koucký [20]. An exploration
sequence is a sequence of integers e0, e1, e2, . . . that
guides the walk of an agent through a graph G as
follows. Assume the agent starts in a vertex v0 of G
and let l0 = 0. Let vi denote the agent’s location
in step i and li the label of the edge at vi leading
back to the previous location. Then, the agent follows
the exploration sequence if, in each step i, it traverses
the edge with port number (li + ei) mod dvi at vi
to the next vertex vi+1, where dvi is the degree of
vi. An exploration sequence is universal for a class
of undirected, connected, locally edge-labeled graphs
G if an agent following it explores every graph G ∈
G for any starting vertex in G. If an exploration
sequence becomes periodic at some point, we write it as
e0, . . . , ei−1(ei . . . , ej)

∗ for suitable i, j ∈ N with i < j.
This notation means that the part ei . . . , ej is repeated
infinitely often after ei−1.

The following result of Reingold is one of the main

building blocks of our exploration algorithm.

Theorem 3.1. ([24], Corollary 5.5) There is an
O(log n)-space algorithm producing a universal explo-
ration sequence for any regular graph on n vertices.

The general idea of our exploration algorithm is
as follows. We use a constant amount of memory to
execute a modified version of Reingold’s algorithm that
brings the agent back to the starting vertex. The
resulting closed walk ω is guaranteed to contain a
number of distinct vertices n′ that is exponential in the
memory used. Now, we simulate additional memory
(of larger size than our original memory) by using a
constant number of our pebbles: The position of each
pebble along the closed walk ω encodes one digit of our
memory in base n′. A technical challenge is to show
how to manage the transition between memory states
and, in particular, how to deal with vertices that appear
multiple times along ω.

In order to use the additional memory for an
exploration algorithm, we need to be able to operate
on ω after each step of the exploration. This means
that the agent needs a way of “carrying ω along” after
each move. We show that it is possible to find a new
closed walk ω′ after each step and move the pebbles one
by one from ω to ω′ while preserving the content of the
memory.

Finally, we use the additional memory to execute
the modified version of Reingold’s algorithm again, this
time yielding a walk with n′′ > n′ distinct vertices. We
again use this new walk as memory and continue recur-
sively, until we get a walk with n distinct vertices. At
this point, the graph is explored. Note that pebbles are
distinguishable and we need not worry about confusing
pebbles used in different levels of the recursion.

We show how to implement this general procedure
with O(log log n) pebbles and O(log log n) bits of mem-
ory. As a first step, we show in Theorem 3.2 how to
modify Reingold’s algorithm to yield a closed walk con-
taining an exponential number of vertices in terms of
the memory used. Afterwards, in the proof of Theo-
rem 3.3, we explain how to place pebbles on the closed
walk and use them as additional memory.

Theorem 3.2. There exists a (O(1), 0,O(log n))-
pebble machine that moves along a closed walk and
either explores the graph or visits at least n distinct
vertices, for any graph with bounded degree.

For proving Theorem 3.2, we first establish that
following a periodic exploration sequence yields a closed
walk.

Lemma 3.1. An agent following an exploration se-
quence of the form (e0, . . . , ek−1)∗ in an undirected
graph moves along a closed walk.

Proof. Let A be an agent following an exploration
sequence (e0, . . . , ek−1)∗ starting at a vertex v0 of some
graph G. The walk of A in G translates to a walk in
a directed graph G′ which is defined as follows: The
vertices in G′ are tuples (v, l, i), where v ∈ V (G), l is
the port number at v of the edge by which the agent
entered v and i ∈ {0, . . . , k − 1} is the index of the
next element in the exploration sequence. Moreover,
there is an edge from (v, l, i) to (v′, l′, i′) in G′ if i′ =
i + 1 mod k, there is an edge {v, v′} in G with port
number l′ at v′ and l+ ei mod dv at v, where dv is the
degree of v. Note that if v0, v1, . . . is the sequence of
vertices visited by A and every vertex vj is entered via
the edge with port number lj , then (v0, l0, 0), (v1, l1, 1
mod k), (v2, l2, 2 mod k), . . . is a walk in the graph G′.

We show that any vertex (v, l, i) in G′ has exactly
one outgoing edge and at most one incoming edge. The
first is obvious. For the second, assume that there is an
edge from both (v′, l′, i′) and (v′′, l′′, i′′) to (v, l, i). This
means that both from v′ and v′′ the agent entered v
via the edge with port number l at v implying v′ = v′′.
Moreover, i′ = i′′ = i − 1 mod k holds, and we have
l′ + ei′ mod dv′ = l′′ + ei′′ mod dv′′ , where dv′ is the
degree of v′. Thus l′ = l′′ holds, since the labels are
both in {0, . . . , dv′}.

As each vertex has exactly one outgoing edge and
at most one incoming edge, following the unique walk
starting from (v0, l0, 0) must eventually lead back to this
vertex because G′ is finite. Thus, (v0, l0, 0) lies on a
circle in G′ and the projection of the walk on this circle
onto the first component yields the walk of A in G. This
implies that the starting vertex v0 is visited infinitely
often. �

We now adapt the algorithm from Theorem 3.1 to
work for 3-regular graphs with up to (rather than ex-
actly) n vertices and to produce a universal exploration
sequence of the form (e0, . . . , ek−1)∗, i.e., an exploration
sequence yielding a closed walk.

Lemma 3.2. There exists an O(log n)-space algo-
rithm producing a universal exploration sequence
(e0, . . . , ek−1)∗ for any 3-regular graph with at most n
vertices.

Proof. Note that all 3-regular graphs have an even num-
ber of vertices and it therefore suffices to show the claim
for even n. Let M be the Turing machine of Theo-
rem 3.1, producing a universal exploration sequence for
any 3-regular graph on exactly n vertices. We first show

that the exploration sequence is actually universal for
any 3-regular graph on at most n vertices and then mod-
ifyM so that is produces an exploration sequence of the
form (e0, . . . , ek−1)∗.

For the sake of contradiction, let G0 be a 3-regular
graph with the maximum number of vertices n0 ≤ n
such that an agent A following the exploration sequence
produced by M does not explore for some starting
vertex v0. Then n0 < n by the choice of M and n0
is even because G0 is 3-regular. Let v be a vertex not
visited by A and w1, w2, w3 be its neighbors. We replace
v by a clique of three vertices v1, v2, v3 and add the
edges {vi, wi} for i = 1, 2, 3 to G0 with suitable labels.
We obtain a 3-regular graph G1 with n1 := n0 + 2
vertices. As the remaining graph is unchanged, G1 is
also not explored by A when starting in v0. This is a
contradiction to the maximality of n0.

We want to modify M so that it produces an
exploration sequence of the form (e0, . . . , ek−1)∗, which
is still universal for any 3-regular graph on at most n
vertices. Let c be the number of configurations of M
and k := 3n · c. Further, letM′ be the Turing machine
that runs M for k steps and then restarts. Note that
M′ can be realized by adding an additional counter to
M that counts up to k. By construction,M′ produces
an exploration sequence (e0, . . . , ek−1)∗. Moreover,M′
still needs O(log n) space as counting up to k can be
done in O(log n) space.

What is left to show is thatM′ produces a universal
exploration sequence for any 3-regular graph on at most
n vertices. For the sake of contradiction, assume there
exists some 3-regular graph G on at most n vertices so
that an agentA′ starting in a vertex v0 and following the
exploration sequence produced byM′ does not explore
G. Then A′ only explores a strict subset V ′ of the
vertices V of G. The first k numbers in the exploration
sequence ofM andM′ are the same and thus an agent
A following the exploration sequence produced by M
also only visits vertices in V ′ in the first k steps. In
these first k steps A visits |V ′| < n vertices, each of
which it can enter via one of 3 possible edges. The
next edge is uniquely determined by one of c possible
configurations of the Turing machineM. Therefore, in
the first k steps A will twice enter the same vertex via
the same edge withM being in the same configuration.
This means that A will continue in a closed walk visiting
only vertices in V ′. This contradicts the universality of
the exploration sequence produced byM. �

We are now ready to give the proof of Theorem 3.2.

Proof. Given a graph G with the maximum degree
bounded by a constant ∆, we use the following construc-
tion taken from [22, Theorem 87] to transform G to a

(v, 0)

2

(v, 1)

2

(v, 2) 2

(v, 3)

2

(v, 4)

2

(v, 5)2

0

1

0
1

0
1

0

1

0
1

0
1

Figure 1: Example for the transformation of a graph
G to a 3-regular graph Greg. A vertex v of degree 2 is
transformed to the following circle containing 6 vertices.

3-regular graph Greg. We replace every vertex v of de-
gree dv by a circle of 3dv vertices (v, 0), . . . , (v, 3dv−1),
where the edge {(v, i), (v, i + 1 mod 3dv)} has port
number 0 at (v, i) and 1 at (v, i + 1 mod 3dv). An
example is given in Figure 1. For any edge {v, w}
in G with port number i at v and j at w, we add
the three edges {(v, i), (w, j)}, {(v, i+ dv), (w, j + dw)},
{(v, i+ 2dv), (w, j+ 2dw)} with port numbers 2 at both
endpoints to Greg. The idea now is to apply Lemma 3.2
for the 3-regular graph Greg and transform this walk
back to the original graph G.

By Lemma 3.2, there exists a Turing machine
with O(1) states using a tape of length O(log n) and
producing an exploration sequence (e0, e1, . . . , ek−1)∗

for any 3-regular graph on at most 3∆n2 vertices. We
construct a pebble machineM that internally runs this
algorithm and transforms the simulated walk on Greg
to the corresponding traversal of G. The simulated
walk of M in Greg starts in (v0, 0) and the walk in G
is the projection of the simulated walk onto the first
component. Note thatM only needs to store the second
component of the current vertex (v, i) in Greg. The first
component remains unchanged when choosing an edge
with label 0 or 1 in Greg. Furthermore, when choosing
an edge with label 2 in Greg, then M has to take the
edge labeled i mod dv at v to a distinct vertex w. If j
is the label of the edge at w, then (w, j) is the current
vertex in Greg and it suffices to store j. Overall, O(1)
states are sufficient for reading the degree of the current
vertex and port number of the last edge according to
δin and traversing edges according to δout, because the
maximum degree is bounded by the constant ∆. Thus,
M can be implemented as a (O(1), 0,O(log n))-pebble
machine.

Furthermore, by Lemma 3.1, M visits (v0, 0) in-
finitely often along the simulated walk on Greg and
therefore it visits v0 infinitely often in the walk on G.
This shows thatM does a closed walk.

What is left to show is thatM explores G or visits

at least n vertices. Assume neither is the case. Let
G′ be the induced subgraph of G containing all vertices
visited byM and all neighbors of these vertices. Then
G′ contains at most n + (∆ − 1) · n ≤ n2 vertices.
Moreover, the walk of M on G′ starting in v0 exactly
corresponds to the walk of M on G. In particular, M
does not explore G′. Let G′reg be the transformation of
G′ to a 3-regular graph according to [22, Theorem 87].
ThenG′reg contains at most 3∆n2 vertices. However, the
walk ofM on G′ corresponds to the walk on G′reg given
by a universal exploration sequence (e0, e1, . . . , ek−1)∗

for any 3-regular graph of on at most 3∆n2 vertices.
But this means M is guaranteed to explore G′, a
contradiction. �

Using Theorem 3.2, we show how to boost our
memory using a subset of our pebbles.

Theorem 3.3. There is a constant c ∈ N, such that for
any graph G with bounded degree and any (s, p, 2m)-
pebble machine M, there exists a (cs, p + c,m)-pebble
machine M′ that simulates the walk of M or explores
G.

Proof. Let Q be the set of states of M. We define the
set of states of M′ to be Q × Q′ for a set Q′, i.e., any
state of M′ is a tuple (q, q′), where q corresponds to
the state ofM in the current step of the traversal. The
pebble machineM′ observes the input according to δin
and performs actions according to δout just asM, while
only changing the first component of the current state.
M′ uses p pebbles in the same way asM and possesses
a set {pstart, ptemp, pnext, p0, p1, . . . , pc−4} of additional
pebbles. The pebble pstart is dropped byM′ right after
observing the input according to δin in order to mark the
current location ofM during the traversal. The purpose
of the pebbles ptemp and pnext will be explained later.
The other pebbles {p0, p1, . . . , pc−4} are placed along a
closed walk ω to simulate the memory ofM, while the
states Q′ and the tape of M′ are used to manage this
memory.

To this end, we divide the tape of M′ into a
constant number c0 of blocks of size m/c0 each. In the
course of the proof, we will introduce a constant number
of variables to manage the simulation of the memory of
M with pebbles. Each of these variables is stored in a
constant number of blocks. The constant c0 is chosen
large enough to accommodate all variables on the tape
of M′. By Theorem 3.2, there is a constant c1 and
a (c1, 0, c1k)-pebble machine that moves along a closed
walk and visits at least 2k distinct vertices in any graph
of containing at least 2k vertices. Let m1 := bm/(c0c1)c
and let m0 ∈ N be such that for all m′ ∈ N with
m′ ≥ m0 we have c1 ≤ 2m

′/c0 and 2m
′/c0 > 2m′.

0 1 2 3

45

67

p0

p1

p2

p3
pstart

p0 p1 p2 p3

0 0 0 0 0 01 1 1 1 1 1

Figure 2: Example of a closed walk, where c − 3 = 4
pebbles are used to encode the configuration of a tape
of length 2m = 12. Directed edges indicate the order
of the vertices along ω. The position of each pebble
encodes m1 = 3 bits.

In the following, we show how the simulated mem-
ory is managed by providing algorithms in pseudocode
(see algorithms 1 to 4). These can be implemented on a
Turing machine with a constant number of states cAlg.
Let c = max

{
22m0 , 2c0c1 + 3, cAlg

}
. Note that c only

depends on the constants c0, c1 and cAlg, but not on m
or p. It is without loss of generality to assume m ≥ m0,
because, for m < m0, we can store the configuration of
the tape ofM in the states Q′ ofM′, since c ≥ 22m0 .

We proceed to show that the computations on
the tape of length 2m performed by M according to
the transition function δ can be simulated using the
pebbles {pstart, ptemp, p0, p1, . . . , pc−4}. The proof of
this result proceeds along the following key claims.

1. We can find a closed walk ω containing 2m1 distinct
vertices so that c−3 pebbles placed along this walk
can encode all configurations of the tape ofM.

2. We can move along ω while keeping track of the
number of steps and counting the number of dis-
tinct vertices until we have seen 2m1 distinct ver-
tices.

3. We can read from and write to the memory encoded
by the placement of the pebbles along ω.

4. If the closed walk ω starts at vertex v andM moves
from vertex v to vertex v′, we can move all pebbles
to a closed walk ω′ starting in v′ while preserving
the content of the memory.

1. Finding a closed walk ω. Theorem 3.2 yields
a (c1, 0,m/c0)-pebble machine Mwalk moving along a
closed walk ω. We use a variable Twalk of size m/c0

Algorithms 1 Auxiliary functions for moving along the
closed walk ω.
function Step()

traverse edge according toMwalk
Tsteps ← Tsteps + 1

function FindPebble(pi)
while not observe(pi) do

Step()

function Restart()
FindPebble(pstart)
Tsteps ← 0
Tid ← 0
Twalk ← 0

Algorithm 2 Moving along the closed walk ω while
updating Tsteps and Tid.
function NextDistinctVertex()

if Tid ≡ 2m1 − 1
Restart()
return

Tid ← Tid + 1
T ′steps ← Tsteps
repeat

Step()
T ′steps ← T ′steps + 1
drop(ptemp)
T ′walk ← Twalk

Restart()
FindPebble(ptemp)
pickup(ptemp)
Twalk ← T ′walk

until Tsteps = T ′steps

for the memory ofMwalk, which is initially assumed to
have all bits set to 0. IfMwalk explores G, we are done.
Otherwise, ω must contain at least 2m1 distinct vertices.
We need to show that c−3 pebbles placed along the walk
ω can be used to encode any of the 22m configurations
of the tape of M. Figure 2 shows how each pebble
encodes a certain part of the tape of M. The idea is
that each pebble can be placed on one of 2m1 different
vertices, thus encoding exactly m1 bits. We divide the
tape of length 2m into 2m/m1 = 2c0c1 parts of size m1

each, such that the position of pebble pi encodes the
bits {im1, . . . , (i+ 1)m1− 1}, where we assume the bits
of the tape of M to be numbered 0, 1 . . . , 2m − 1. As
c ≥ 2c0c1 + 3, we have enough pebbles to encode the
configuration of the tape ofM.

2. Navigating ω. Let Tsteps be a variable counting
the number of steps along ω and Tid be a variable for
counting the number of unique vertices visited along ω

after starting in the vertex marked by pstart. Note that
Tid gives a way of associating a unique identifier to the
first 2m1 distinct vertices along ω. As m1 ≤ m/c0
holds, m/c0 tape cells suffice for counting the first 2m1

distinct vertices along ω. The number of steps along
the closed walk may be arbitrary large, as we do not
impose any restrictions on the number of vertices of G
and vertices may be visited multiple times. For our
purposes it suffices to ensure that Tsteps contains the
correct count, as long as we have not seen more than 2m1

distinct vertices. Let g be the number of configurations
ofMwalk. Then g ≤ c1 ·m/c0 ·2m/c0 because there are c1
possible states, m/c0 possible head positions and 2m/c0

possible configurations of the tape. After g2m1 steps we
must have visited at least 2m1 vertices, as otherwise we
would be in the same vertex in the same configuration
twice and therefore loop while visiting less than 2m1

vertices. It is thus sufficient to count up to g2m1 . We
have

g2m1 ≤ c1 ·m/c0 · 2m/c0 · 2m1 ≤
(
2m/c0

)4
,

where we used that m ≥ m0 and therefore c1 ≤ 2m/c0 .
Thus, 4m/c0 tape cells are sufficient for the variable
Tsteps to count up to g2m1 .

It remains to show that we can move along the
closed walk ω while updating Tsteps and Tid, such that,
starting from the vertex marked by pstart, the vari-
able Tsteps contains the number of steps taken and
Tid contains the number of distinct vertices visited.
Let drop(pi) denote the operation of dropping peb-
ble pi at the current location, pickup(pi) the opera-
tion of picking up pi at the current location if possi-
ble, and let observe(pi) be “true” if pebble pi is lo-
cated at the current position. Consider Algorithms 1.
The function Step() moves one step along ω and up-
dates Tsteps accordingly. The function FindPebble(pi)
moves along ω until it finds pebble pi. The function
Restart() goes back to the starting vertex marked by
pstart, sets both variables Tsteps and Tid to 0, and restarts
Mwalk by setting the variable Twalk to 0. Finally, the
function NextDistinctVertex() in Algorithm 2 does
the following: If the number of distinct vertices visited
is already 2m1 , then we go back to the start. Other-
wise, we continue along ω until we encounter a vertex
we have not visited before. We repeatedly traverse an
edge, drop the pebble ptemp, store the number of steps
until reaching that vertex, then we restart from the be-
ginning and check if we can reach that vertex with fewer
steps. If not, we found a new distinct vertex. Note that
we use the auxiliary variables T ′steps and T ′walk, which
both need a constant number of blocks of size m0/c0.

3. Reading from and writing to simulated memory.
We show how we can simulate the changes to the

Algorithms 3 Reading and changing positions of peb-
bles.
function GetPebbleId(pi)

Restart()
while not observe(pi) do

NextDistinctVertex()
return Tid

function PutPebbleAtId(pi,id)
FindPebble(pi)
pickup(pi)
Restart()
while id>0 do

id← id− 1
NextDistinctVertex()

drop(pi)

Algorithms 4 Reading and writing one bit for the
simulated memory.
function ReadBit()

i← bThead/m1c
j ← Thead −m1 · i
id← GetPebbleId(pi)
return bit j of id

function WriteBit(b)
i← bThead/m1c
j ← Thead −m1 · i
id← GetPebbleId(pi)
if b = 1 and ReadBit() = 0

id← id + 2j

else if b = 0 and ReadBit() = 1
id← id− 2j

PutPebbleAtId(pi,id)

tape of M by changing the positions of the pebbles
along ω. The transition function δ ofM determines how
M does computations on its tape and, in particular,
how M changes its head position. We use a variable
Thead of size m/c0 to store the head position. By
assumption, m ≥ m0 and therefore 2m/c0 > 2m, i.e.,
the size of Thead is sufficient to store the head position.
In order to simulate one transition of M according
to δ, we need to read the bit at the current head
position and then write to the simulated memory and
change the head position accordingly. Reading from the
simulated memory is done by the function ReadBit()
and writing of a bit b to the simulated memory by the
function WriteBit(b) (cf. Algorithms 4). First, let us
consider the two auxiliary functions GetPebbleId(pi)
and PutPebbleAtId(pi, id) (cf. Algorithms 3). As the
name suggests, the function GetPebbleId(pi) returns
the unique identifier associated to the vertex marked

by pi. Given an identifier id, we can use the function
PutPebbleAtId(pi, id) for placing pebble pi at the
unique vertex corresponding to id. By the choice of our
encoding, if Thead = i ·m1 + j with j ∈ {0, . . . ,m1− 1},
then bit j of the position of pebble pi encodes the
contents of the tape cell specified by Thead. Thus, for
reading from the simulated memory, we have to compute
i and j and determine the position of the corresponding
pebble in the function ReadBit(). For the function
WriteBit(b), we also compute i and j. Then, we move
the pebble pi by 2j unique vertices forward if the bit flips
to 1 or by 2j unique vertices backward if the bit flips
to 0.

4. Relocating ω. When M moves from a vertex
v to another vertex v′, the walk ω and the pebbles
on it need to be relocated. Recall that M′ marked
the current vertex v with the pebble pstart. After
having computed the label of the edge to v′,M′ drops
the pebble pnext at v′. Then M′ moves the pebbles
placed along the walk ω to the corresponding positions
along a new walk ω′ starting at v′ in the following
way. We iterate over all c − 3 pebbles and for each
pebble pi we start in v, determine the identifier id
of the vertex marked by pi via GetPebbleId(pi),
pick up pi, move to pnext and place pi on ω′ using
the function PutPebbleAtId(pi, id). In this call
of PutPebbleAtId(pi, id) all occurrences of pstart
are replaced by pnext. This way, we can carry the
memory simulated by the pebbles along during the
graph traversal.

Overall, we have shown that M′ can simulate the
traversal of M in G while using a tape with half
the length, but c additional pebbles and a factor of c
additional states. �

Finally, we show that our recursive construction
explores any graph on at most n vertices while using
O(log log n) pebbles.

Theorem 3.4. Any bounded-degree graph on at most n
vertices can be explored using O(log log n) pebbles and
memory.

Proof. By Theorem 3.2, there are a constant c ∈ N
and a (c, 0, c log n)-pebble machine M exploring any
bounded-degree graph on at most n vertices. Further,
let c be larger than the constant from Theorem 3.3. We
start with a (clog logn, c·log log n, c) pebble machineM′.
Note that M′ uses O(log log n) space and O(log logn)
pebbles. Applying Theorem 3.3 exactly log log n times
yields thatM′ can simulate any (c, 0, c·2log logn)-pebble
machine. As c · 2log logn = c · log n, we can in particular
simulate M. Therefore, M′ can explore any bounded-
degree graph on at most n vertices. �

Corollary 3.1. Our exploration algorithm can be
adapted to eventually return to the starting vertex and
terminate after nO(log logn) steps, without additional
memory or pebbles, even if the number of vertices of
the graph is not known a priori.

Proof (Sketch). The bound in Theorem 3.4 is attained
by using log log n levels of recursion which each require
constant memory and a constant number of pebbles.
Each level i of the recursion uses a closed walk with ni
distinct vertices to simulate additional memory. We
know that we have visited all vertices once ni does not
increase any more, even if we do not know n a priori.
We can thus safely terminate and return to the starting
location by returning to the pebble pstart in every level
of the recursion.

Let M be the adapted (clog logn, c log log n, c) peb-
ble machine that explores any graph on at most n ver-
tices, as described in Theorem 3.4, and additionally ter-
minates and returns to the starting vertex. During the
traversal, the position of the O(log log n) pebbles and
the position and configuration ofM cannot be twice the
same, becauseM would be in a loop otherwise. There
are nO(log logn) possible positions of the pebbles, n for
each pebble, and O(clog logn) configurations of the peb-
ble machine M. This means M must terminate after
at most nO(log logn) steps to not repeat its configuration
and the position of the pebbles. �

4 Lower bounds for agents with pebbles
The goal in this section is to obtain a lower bound on
the number of pebbles needed for exploring any graph
on at most n vertices if the agent has less than O(log n)
bits of memory available. For our construction it will be
convenient to think of an agent with p pebbles as a finite
state automaton instead of a pebble machine. Given an
(s′, p,m)-pebble machine M, we can construct a finite
state automaton A with s = s′m2m states, one state for
each of the s′m2m possible configurations of M, with
the same behavior. After observing the environment
according to δin, the automaton directly transitions to
the state corresponding to the configuration resulting
from the computation ofM. We will call A an s-state
agent with p pebbles.

In this section, we will build a trap for an arbitrary
agent, i.e., a graph that the agent does not explore. The
number of vertices of this trap yield a lower bound for
the number of pebbles required for exploration, given
that the agent has at most O((log n)1−ε) bits of memory
for some constant ε > 0. The graphs involved in our
construction are 3-regular and allow a labeling such that
the two port numbers at both endpoints of any edge
coincide. We therefore speak of the label of an edge and

B

v′

v

u′

u

00 BG

v′u′

vu

0

0

0

0

Figure 3: The r-barrier B on the left with two distin-
guished edges {u, u′}, {v, v′} can be connected to an
arbitrary graph G, as shown on the right.

assume the set of labels to be {0, 1, 2}.
Moreover, we call the sequence of labels l0, l1, l2, . . .

of the edges traversed by an agent in a 3-regular graph G
starting at a vertex v0 a traversal sequence and say that
the agent follows the traversal sequence l0, l1, l2, . . . in
G starting in v0. Note that traversal sequences specify
absolute labels to follow, whereas exploration sequences
give offsets to the previous label in each step.

The most important building block for our construc-
tion are barriers. Intuitively, a barrier is a subgraph that
cannot be crossed by an agent with too few pebbles. To
define barriers formally, we need to describe how to con-
nect two 3-regular graphs. Let B be a 3-regular graph
with two distinguished edges {u, u′} and {v, v′} both la-
beled 0, as shown in Figure 3. An arbitrary 3-regular
graph G with at least two edges labeled 0 can be con-
nected to B as follows: We remove the edges {u, u′}
and {v, v′} from B and two edges labeled 0 from G. We
then connect each vertex of degree 2 in G with a vertex
of degree 2 in B via an edge labeled 0.

Definition 4.1. For r ≤ p, the graph B is an r-barrier
for an agent A with p pebbles if, in the above setting,
the following holds for all graphs G and every pair (a, b)
in {v, v′}×{u, u′}: If A starts in an arbitrary vertex in
G, then it never traverses B from a to b or vice versa
with a set of at most r pebbles carried by the agent,
observed or placed on vertices of B during the traversal.
We equivalently say that A cannot traverse B from a to
b or vice versa while using at most r pebbles.

A p-barrier immediately yields a trap for the agent.

Lemma 4.1. Given a p-barrier with m vertices, we can
construct a trap with 2m+ 4 vertices.

Proof. Let H1 and H2 be two copies of a p-barrier for
agent A. We connect the two graphs and four additional

v0

1

2 2

1

H2

H1

v2

v′2

u2

u′2

v1

v′1

u1

u′1

00

0

0

0

0

Figure 4: Constructing a trap given p-barrier B.

H H ′

v1

v2

v3

v4

v′1

v′2

v′3

v′4

l

l

0 0

Figure 5: Graph B with the property that A never visits
v′1 or v′2 when starting in any state in v1 or v2 and vice
versa.

vertices, as shown in Figure 4. If the agents start in
vertex v0, then it cannot reach v1 or v′1 via the p-barrier
H1 or via the p-barrier H2. Thus A does not explore
the graph. The constructed trap for A contains 2m+ 4
vertices. �

Our goal for the remaining section is to construct
a p-barrier for a given agent A and give a good upper
bound on the number of vertices it contains, because
this will give an upper bound for the number of vertices
of a trap for A by Lemma 4.1. The construction of the
p-barrier is recursive. We start with a 0-barrier which
builds on the following useful result stating that, for
any set of q agents without pebbles, there is a graph
containing an edge which is not traversed by any of
them.

Theorem 4.1. ([16, Theorem 4]) For any q non-
cooperative s-state agents without pebbles, there exists
a 3-regular graph G on O(qs) vertices with the follow-
ing property: There are two edges {v1, v2} and {v3, v4}
in G, the first labeled 0, such that any of the q agents
starting in v1 or v2 does not traverse the edge {v3, v4}.

Lemma 4.2. For every s-state agent with p pebbles A
there exists a 0-barrier with O(s2) vertices, which is
independent of the starting state of A.

Proof. Let Q be the set of states of the agent A and
q0 its starting state. For all q ∈ Q, we define the
agent without pebbles Aq to be the agent with the
same behavior as A, but without pebbles and starting
in state q instead of q0. That is, Aq has the same
set of states as A and it transitions according to the
functions δin and δout of A, while the set of pebbles
carried and observed is always empty. Moreover, let
S := {Aq | q ∈ Q}.

Theorem 4.1 yields a graph H with an edge {v1, v2}
labeled 0 and an edge {v3, v4} labeled l ∈ {0, 1, 2} so
that any agent Aq that starts in v1 or v2 does not
traverse the edge {v3, v4}. Let the graph B consist of
two connected copies of H, as illustrated in Figure 5.
The edges {v3, v4} and {v′3, v′4} are replaced by {v3, v′3}
and {v4, v′4}, which are also labeled l. We claim that B
is a 0-barrier for A.

For the sake of contradiction, assume that there is
a graph G that can be connected to B so that starting
in G in any state, the agent A would without loss of
generality walk from v1 to v′1 in B without using any
pebbles. Then A starts this walk in a state q in v1 and
the traversal sequence of A is the same as that of Aq
starting in v1. This would mean that Aq traverses the
edge {v3, v3}, which contradicts Theorem 4.1. �

The proof of Theorem 4.1 uses the fact that the
next state of an agent without pebbles only depends
on the previous state when traversing a regular graph.
Thus, after at most s steps, the state of the agent
and therefore also the next label chosen need to repeat
with a period of length at most s. For an agent with
pebbles, however, the next state and label that are
chosen may also depend on the sets of pebbles the agent
observes and carries. Hence, different relative positions
of the pebbles around it can eventually lead to different
states when they are encountered. We therefore need
to account for the positions of all pebbles when forcing
the agent into a periodic behavior. This motivates the
following definition.

Definition 4.2. The configuration of an s-state agent
A with p pebbles in a vertex v is a (p + 1)-tuple
(q, P1, P2, . . . , Pp), where q is the current state of A,
and Pi is the position of the i-th pebble relative to the
agent. Formally, we can define Pi to be the shortest
traversal sequence leading from the location of the agent
to the i-th pebble. If there is more than one, we choose
the lexicographically smallest traversal sequence. We set
Pi = ∅ if the pebble is at v and Pi = (−1), if the pebble
is carried by A.

In order to limit the number of possible configura-
tions, we force the agent to keep all p pebbles close by.

B

u

u′

v

v′

a0

0

0

1

2 1

2
0

b0

0

0

1

21

2
0

a b
l l

Figure 6: An edge {a, b} labeled l is replaced with the
gadget B(l) containing an r-barrier B. Only the dotted
edges incident to a0 and b0 that are not labeled l are
part of the gadget. Consequently, the gadget contains
two vertices of degree 2. The vertices a and b are macro
vertices of a graph G(B).

Intuitively, we can achieve this for any graph G by re-
placing all edges with (p − 1)-barriers. This way, the
agent cannot move between neighboring vertices of the
original graph G without taking all p pebbles along. To
formalize this, we first need to explain how edges of a
graph can be replaced by barriers. Since our construc-
tion may not be 3-regular, we need a way to extend it
to a 3-regular graph.

Definition 4.3. Given a graph G, with vertices of
degrees 2 and 3, we define the 3-regular extension G
as the graph resulting from copying G and connecting
every vertex v of degree 2 to its copy v′. As the edges
incident to v and v′ have the same labels, it is possible
to label the new edge {v, v′} with a locally unique label
in {0, 1, 2}.

Note that the 3-regular extension only increases the
number of vertices of the graph by a factor of 2. Given
a 3-regular graph G and an r-barrier B for an agent
A with p ≥ r pebbles, we replace edges of G using
the following construction. First, we replace every edge
{a, b} labeled l with the gadget B(l) shown in Figure 6,
and we call the resulting graph G1(B). By construction,
the labels of the edges incident to the same vertex in
G1(B) are distinct. However, certain vertices only have
degree 2. We take the 3-regular extension of G1(B) and
define the resulting graph as G(B) := G1(B).

The graph G(B) contains two copies of G1(B). To
simplify exposition, we identify each vertex v with its
copy v′ in G(B). Then, there is a canonical bijection
between the vertices in G and the vertices in G(B)
which are not part of a gadget B(l). These vertices
can be thought of as the original vertices of G, and we
call them macro vertices.

We now establish that the agent has to keep all
pebbles close by.

Lemma 4.3. Let B be a (p− 1)-barrier for an agent A
with p pebbles. Then, the following hold for any graph
of the form G(B).

1. A cannot get from a macro vertex v to a distinct
macro vertex v′ while using less than p pebbles.

2. At any time, there is some macro vertex v such
that A and each pebble are at v or in one of the
surrounding gadgets B(0), B(1) and B(2).

Proof. For the sake of contradiction, assume that A
walks from a macro vertex v to a distinct macro vertex v′
with less than p pebbles. The graph G(B) contains two
copies of G1(B), but all vertices in the (p− 1)-barriers
within G1(B) have degree 3. Thus, A must have walked
through some (p−1)-barrier B with less than p pebbles.
This contradicts that B is a (p− 1)-barrier. Therefore,
A needs to use all pebbles to get from a macro vertex v
to a distinct macro vertex v′.

For the second part of the claim, consider the
positions of the pebbles andA after an arbitrary number
of steps and let v be the macro vertex last visited
by A. By the first part of the claim, all pebbles are
either carried by A, located at v, or at any of the three
surrounding gadgets. �

Let B be a (p − 1)-barrier for an agent A with
p pebbles and A start in some macro vertex v0 of
G(B). Iteratively, define t0 = 0 and ti to be the first
point in time after ti−1, when A visits a macro vertex
vi distinct from vi−1 (and its copy v′i−1). Then, the
sequence v0, v1, . . . corresponds to a path in G. This
sequence of neighboring vertices in G yields a unique
sequence of labels l0, l1, . . . of the edges between the
neighboring vertices in G, which we call the macro
traversal sequence of A starting in vertex v0 in G(B).
Note that the macro traversal sequence may be finite.

Consider the traversal sequence l0, l1, . . . of an agent
without pebbles in a 3-regular graph G and the traversal
sequence l′0, l′1, . . . in another 3-regular graph G′. If the
state of the agent in G after i steps is the same as the
state in G′ after j steps, then the traversal sequences
coincide from that point on, i.e., li+k = l′j+k holds for all
k ∈ N. The reason is that every vertex looks exactly the
same and thus the next state of the agent only depends
on the previous one. We want to obtain a similar result
for agents with pebbles. However, in general it is not
true that if the configuration of an agent in a graph G
after i steps is the same as after j steps in G′, then the
next configurations and chosen labels coincide. This is
because the pebbles give the agent the ability to detect
differences in the graphs G and G′. The agent could, for
example, drop a pebble and walk in a loop that is only
part of one of the graphs and this may lead to different

v B(0)

B(1)

B(2)

Figure 7: A macro vertex v in a graph G(B) surrounded
by the three gadgets B(1), B(2) and B(3).

configurations. That is why we consider graphs of the
form G(B). In these graphs, all macro vertices look
the same, as they are surrounded by the same gadgets,
and the pebbles are always close to the agent, making
it impossible for the agent to detect a loop that is part
of one of the graphs, but not the other. This intuition
is formally expressed in the next lemma.

Lemma 4.4. Let B be a (p− 1)-barrier for an agent A,
G and G′ be two 3-regular graphs, v0, v1, . . . the sequence
of macro vertices visited by A in G(B) and l0, l1, . . . be
the corresponding macro traversal sequence. Similarly,
let v′0, v′1, . . . be the sequence of macro vertices visited
by A in G′(B) and l′0, l′1, . . . be the corresponding macro
traversal sequence. If at some point the configuration of
A in vi is the same as the configuration of A in v′j, then
li+k = l′j+k holds for all k ∈ N.

Proof. Let ti and t′j be such that the configuration of
A after ti steps in vi is the same as after t′j steps in v′j .
Iteratively, define ta for a > i to be the first time after
ta−1 that the agent visits va and analogously t′b for b > j
the first time after t′b−1 that the agent visits v′b.

By induction, we show that for k ∈ N we have
li+k = l′j+k and the configuration of A after ti+k steps
in vi+k is the same as the configuration of A after
t′j+k steps in v′j+k. Intuitively, this means that the
agent will first reach the macro vertex vi+k in the same
configuration as it reaches v′j+k. The idea of the proof
is that in between visits to macro vertices, the agent
behaves the same in the two graphs and, in particular,
it traverses the same gadget B(l) in both cases so that
li+k = l′j+k.

For k = 0 the claim holds by assumption. Now,
assume that it holds for some k ∈ N. The graphs G(B)
and G′(B) locally look the same to the agent in vi+k and
v′j+k, as both macro vertices are surrounded by the same
gadgets, as shown in Figure 7. Formally, this means

that there is a canonical graph isomorphism γ from
the induced subgraph of G(B) containing vi+k and all
surrounding gadgets to the induced subgraph of G′(B)
containing v′j+k and all surrounding gadgets. Moreover,
γ respects the labeling and maps vi+k to v′j+k. As the
configuration of A after ti+k steps in vi+k is the same
as the configuration of A after t′j+k steps in v′j+k, the
isomorphism also respects the position of the pebbles.
As vi+k+1 is the first macro vertex visited after vi+k, all
pebbles are at vi+k or any of the surrounding gadgets
until A reaches vi+k+1 by Lemma 4.3. The same holds
for v′j+k and v′j+k+1. Iteratively, for t = 0, 1, . . . the
following holds until the agent reaches the next macro
vertex vi+k+1 or v′j+k+1.

1. The state of A after ti+k + t steps in G(B) is the
same as the state of A after t′j+k+t steps in G′(B).

2. The isomorphism γ maps the position of each
pebble i after ti+k+ t steps in G(B) to the position
of the pebble i after t′j+k + t in G′(B).

3. The isomorphism γ maps the position of A after
ti+k + t steps in G(B) to the position of A after
t′j+k + t in G′(B).

This implies that vi+k and vi+k+1 are connected with
the same gadget as v′j+k and v′j+k+1, i.e., li+k+1 =

l′j+k+1. Furthermore, there is t such that ti+k+1 =

ti+k + t and t′j+k+1 = t′j+k + t. Moreover, the con-
figuration of A in vi+k+1 after ti+k+1 steps is the same
as in v′j+k+1 after t′j+k+1 steps. �

For constructing an r-barrier B′ for an agent A with
p pebbles given an (r−1)-barrier B, we need to examine
the behavior ofA, when only using a subset of r pebbles.
There are

(
p
r

)
subsets of size r of the pebbles and A

may behave differently depending on which subset it
is using. We denote these

(
p
r

)
subsets of r pebbles

with M (1)
r , . . . ,M

(p
r)
r and further let A(k)

r denote the s-
state automaton with the same behaviour as A when
only equipped with the set of r pebbles M (k)

r . That is,
A(k)
r has the same set of states as A and it transitions

according to the functions δin and δout of A, while the
set of pebbles carried and observed is always a subset
of M (k)

r .
Furthermore, let αB be the maximum number of

possible configurations of A(k)
r in a macro vertex in

a graph of the form G(B). Note that this definition
is independent of k and G, because B is an (r −
1)-barrier and all pebbles are either carried by the
agent, placed on the current macro vertex or in any of
the surrounding gadgets B(0), B(1), B(2) in any graph
G(B) by Lemma 4.3.

H1u′u
0

0

0

H2
H(p

r) v v′
0

0

00

0

0

0

0

0

Figure 8: Connecting the graphs H1, H2, . . . ,H(p
r+1)

to
a graph H, yields the (r + 1)-barrier H(B).

Br−1

Br−2

v

Figure 9: Recursive structure of an r-barrier.

We can now present the construction of an r-barrier
given an (r − 1)-barrier.

Theorem 4.2. Given an (r − 1)-barrier B with m
vertices for an agent A with p ≥ r pebbles, we can
construct an r-barrier B′ with O(

(
p
r

)
·m · α2

B) vertices
for A.

Proof. For k ∈ {1, 2, . . . ,
(
p
r

)
}, the possible configura-

tions of A(k)
r in macro vertex of a graph of the form

G(B) can be enumerated x1, . . . , xαB
. By Lemma 4.4,

the configuration of A(k)
r uniquely determines the next

label in the macro label sequence of A(k)
r independently

of the underlying graph G. We can therefore define the
following agent B(k) without pebbles: The set of states
of B(k) is {q1, . . . , qαB

}. Moreover, in state qi the agent
B(k) traverses the edge labeled l and transitions to qj ,
if A(k)

r in configuration xi will traverse the gadget Br(l)
(i.e. l is the next label in the macro label sequence of
A(k)
r in configuration xi). The starting state of B(k) is

the configuration xi, where A(k)
r carries the whole set

of pebbles M (k)
r . Note that this is well-defined because

of Lemma 4.4 and, in particular, the macro traversal
sequence of A(k)

r in G(B) is exactly the same as the
traversal sequence of B(k) in G independently of the
graph G.

By Lemma 4.2, there is a 0-barrier Hk with O(α2
B)

vertices that cannot be traversed by B(k) for any starting
state. We connect the graphs H1, H2, . . . ,H(p

r+1)
, as

shown in Figure 8, and let H be the resulting graph.
The claim is that B′ := H(B) is an r-barrier for A.

For the sake of contradiction, assume that there is a
subset of r pebbles Mk and some graph G connected to

H(B) such that A can traverse H(B) from u to v using
the set of pebblesMk. This means that A traversed the
induced subgraph Hk(B) using the set of pebbles Mk.
But then A(k)

r can traverse Hk(B) for a suitable starting
configuration implying that B(k) can traverse Hk for a
suitable starting state. This is a contradiction.

Finally, each Hk contains O(α2
B) vertices and there-

fore H has at most O(
(
p
r

)
α2
B) vertices. As B has m ver-

tices, the number of vertices of B′ = H(B) is at most
O(
(
p
r

)
·m · α2

B), where we use that H is 3-regular and
therefore the number of edges is 3/2 times the number
of vertices. �

We now fix an agent A with p pebbles and let
B0 be the 0-barrier given by Lemma 4.2 and Br for
0 < r ≤ p be the r-barrier constructed recursively using
Theorem 4.2. Moreover, we let mr be the number of
vertices of Br and αr := αBr−1 be the maximum number
of possible configurations of A(k)

r in a macro vertex in a
graph of the form G(Br−1).

We want to bound the number of vertices mp of Bp
and thus, according to Lemma 4.1, also the number of
vertices of the trap for A. By Theorem 4.2, there is a
constant c ∈ N such that mr ≤ c

(
p
r

)
·mr−1 ·α2

r. In order
to bound mr, we therefore need to bound the number
of configurations αr. We can obtain a bound from
Lemma 4.3, since the pebbles are never far from the
agent’s location. For a tight bound in our main result,
however, we need a careful analysis of the recursive
structure of our construction. The idea is that there
cannot be a set of i pebbles which is separated by an
(r− i)-barrier from the agent’s location. This yields the
following bound on αr.

Lemma 4.5. The maximum number of possible config-
urations αr of A(k)

r in a macro vertex in a graph of the
form G(Br−1) can be bounded by s · r!

∏r
i=1(23i ·mr−i+

23i+1).

Proof. If we consider a macro vertex v in a graph
G(Br−1) and look into the recursive structure of the
barrier Br−1, as shown in Figure 9, we note that it
contains barriers Br−2, which, in turn, contain barriers
Br−3 and so on.

For i < r, we call a vertex w i-adjacent to v if there
is a path from v to w that does not traverse an i-barrier
Bi. As a convention, v itself is i-adjacent to v. Note that
a vertex w contained in an i-barrier may be i-adjacent
if there is a path from v to w that does not traverse a
distinct i-barrier.

First, we bound the number of vertices that are i-
adjacent to v for all i ∈ {0, 1, . . . , r − 1}. Observe that
the distance from v to any i-adjacent vertex, which
is not contained in a barrier Bi, is at most 3(r − i).

This observation is clear for i = r − 1 and follows for
r − 2, r − 3, . . . by examining the recursive structure
given in Figure 9. As G(Br−1) is 3-regular, there are
at most 23(r−i)+1 − 1 such vertices. Moreover, any i-
barrier Bi containing vertices that are i-adjacent to v,
in particular contains a vertex with a distance of exactly
3(r − i) to v. As G(Br−1) is 3-regular, there are at
most 23(r−i) vertices of distance exactly 3(r− i) from v
and therefore at most 23(r−i) different i-barriers with
mi vertices containing i-adjacent vertices. Thus, there
are at most 23(r−i) · mi vertices that are i-adjacent to
v and contained in a barrier Bi. Overall, there are at
most 23(r−i) ·mi+ 23(r−i)+1−1 vertices i-adjacent to v.

When the agent is currently at the macro vertex
v, we know that all pebbles are carried by the agent or
placed on an (r−1)-adjacent vertex by Lemma 4.3. But
we can show the following stronger statement: For all
i ∈ {0, . . . , r − 1}, at least i + 1 pebbles are carried or
placed on a vertex that is i-adjacent to v.

The claim for i = r − 1 follows from Lemma 4.3.
We show the claim for i = r−2. The proof is analogous
for any other value of i. For the sake of contradiction,
assume that there are two pebbles which are placed on
vertices which are not (r− 2)-adjacent. Then the agent
at v and the remaining set of at most r− 2 pebbles are
separated by barriers Br−2 from the two pebbles. But
this is a contradiction, as A could not have crossed Br−2
with at most r − 2 pebbles.

As a vertex that is i-adjacent is also (i+1)-adjacent,
we have shown that there exists an enumeration of the
pebbles a0, . . . , ar−1 such that pebble ai is placed on
a vertex that is i-adjacent to v for i ∈ {0, . . . , r − 1}.
We already showed that the number of vertices that are
i-adjacent to v is at most 23(r−i) · mi + 23(r−i)+1 − 1.
Pebble ai is either carried by the agent or placed on an
i-adjacent vertex and thus there are at most 23(r−i) ·
mi + 23(r−i)+1 possibilities for ai. Overall, there are r!
possible enumerations of pebbles, s possible states of the
agent and therefore the number of configurations of A in
a macro vertex v can be bounded by s · r!

∏r−1
i=0 (23(r−i) ·

mi + 23(r−i)+1). A change of index yields the claim. �

Using the bound on αr from Lemma 4.5, we can
bound the number of vertices of the barriers.

Theorem 4.3. For r ≤ p and s ≥ 2p, the number of
vertices of the r-barrier Br for the s-state agent A with
p pebbles is bounded by O(s8

r+1

).

Proof. The existence of an r-barrier follows from
Lemma 4.2 and Theorem 4.2. Therefore, we only need
to bound the number of vertices of the barriers. Us-
ing r! ≤ rr ≤ sr for r > 0 and (23i · mr−i + 23i+1) ≤
23i+1mr−i as mr−i ≥ 2, we can simplify the bound from

Lemma 4.5 to αr ≤ sr+12
∑r

i=1(3i+1)
∏r−1
i=0 mi. We have∑r

i=1(3i+1) = 3/2(r2+r)+r ≤ 2r2+3r and 2r ≤ 2p ≤ s
and obtain

αr ≤ sr+122r
2+3r

r−1∏
i=0

mi ≤ s3r+4
r−1∏
i=0

mi.

Moreover, by Lemma 4.2 and Theorem 4.2, there is a
constant c ∈ N such that

m0 ≤ cs2 and mr ≤ c
(
p

r

)
·mr−1 · α2

r.

For the asymptotic bound, we may assume s ≥ c. We
have

(
p
r

)
≤ 2p ≤ s and plugging in the bound for αr,

the above inequalities yield m0 ≤ s3 and

mr ≤ s2mr−1

(
s3r+4

r−1∏
i=0

mi

)2

= s6r+10mr−1

r−1∏
i=0

m2
i .

It remains to show that mr ≤ s8
r+1

for all r ≤ p by
induction on r. We have m0 ≤ s3 ≤ s8. Now, assume
mr−1 ≤ s8

r

holds. From the above inequality we obtain

mr ≤ s6r+10 · s8
r
r−1∏
i=0

s2·8
i+1

= s6r+10+8r+2·
∑r

i=1 8i .

Thus, we only need to bound the exponent. We have
6r + 10 ≤ 2 · 8r for r ≥ 1 and further 2 ·

∑r
i=1 8i ≤

2/7 · 8r+1 ≤ 3 · 8r. Overall, the exponent can therefore
be bounded by 8r+1, as desired. �

The bound on the number of vertices of a trap for
an agent with pebbles follows directly from Theorem 4.3
and Lemma 4.1.

Theorem 4.4. For any s-state agent with p pebbles,
with s ≥ 2p, there exists a trap with at most O(s8

p+1

)
vertices.

Finally, we derive a bound on the number of pebbles
needed for exploration if the agent has less thanO(log n)
bits of memory available. Note that this bound also
holds for indistinguishable pebbles as these are less
powerful.

Theorem 4.5. For any constant ε > 0, an agent
with at most O((log n)1−ε) bits of memory needs at
least Ω(log log n) distinguishable pebbles for exploring all
graphs on at most n vertices.

Proof. Let ε > 0 be constant and A an agent with p
pebbles and O((log n)1−ε) bits of memory that explores
any graph on at most n vertices. By otherwise adding
some unused memory, we may assume that 0 < ε <

1 and that there is a constant c ∈ N such that
A has s := 2c·(logn)

1−ε

states. If s < 2p, then the
agent already asymptotically uses at least Ω(log log n)
distinguishable pebbles and we are done. Otherwise,
we can apply Theorem 4.4 and obtain a trap for A
containing O(s8

p+1

) vertices. As A explores any graph
on at most n vertices, we have n ≤ O(1)s8

p+1

. By taking
logarithms on both sides of this inequality, we obtain

log n ≤ O(1) + 8p+1 log s = O(1) + 8p+1c(log n)1−ε.

Multiplication by (log n)ε−1 on both sides and taking
logarithms again yields the claim. �

Acknowledgement
We would like to thank the anonymous reviewers for
their careful reading and many useful comments, in par-
ticular for pointing out how to strengthen Theorem 4.5.

References
[1] S. Albers and M. R. Henzinger. Exploring unknown

environments. SIAM J. Comput., 29(4):1164–1188,
2000.

[2] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz,
and C. Rackoff. Random walks, universal traversal
sequences, and the complexity of maze problems. In
Proc. 20th Annu. IEEE Symp. Found. Comput. Sci.
(FOCS), pages 218–223, 1979.

[3] C. Ambühl, L. Gąsieniec, A. Pelc, T. Radzik, and
X. Zhang. Tree exploration with logarithmic memory.
ACM Trans. Algorithms, 7(2):1–21, 2011.

[4] B. Awerbuch, M. Betke, R. L. Rivest, and M. Singh.
Piecemeal graph exploration by a mobile robot. In-
form. and Comput., 152(2):155–172, 1999.

[5] M. A. Bender, A. Fernández, D. Ron, A. Sahai, and
S. Vadhan. The Power of a Pebble: Exploring and
Mapping Directed Graphs. Information and Computa-
tion, 176(1):1 – 21, 2002.

[6] M. Blum and C. Hewitt. Automata on a 2-dimensional
tape. In Proc. 8th Annu. Symp. Switching and Au-
tomata Theory (FOCS), pages 155–160, 1967.

[7] M. Blum and D. Kozen. On the power of the compass
(or, why mazes are easier to search than graphs). In
Proc. 19th Annu. IEEE Symp. Found. Comput. Sci.
(FOCS), pages 132–142, 1978.

[8] M. Blum and W. J. Sakoda. On the capability of
finite automata in 2 and 3 dimensional space. In Proc.
18th Annu. IEEE Symp. Found. Comput. Sci. (FOCS),
pages 147–161, 1977.

[9] J. Chalopin, S. Das, Y. Disser, M. Mihalák, and
P. Widmayer. Mapping simple polygons: How robots
benefit from looking back. Algorithmica, 65(1):43–59,
2013.

[10] J. Chalopin, S. Das, Y. Disser, M. Mihalák, and
P. Widmayer. Mapping simple polygons: The power
of telling convex from reflex. ACM Trans. Algorithms,
11(4):1–16, 2015.

[11] J. Chalopin, S. Das, and A. Kosowski. Constructing
a map of an anonymous graph: Applications of uni-
versal sequences. In Proc. 14th Int. Conf. Principles
Distributed Systems (OPODIS), pages 119–134, 2010.

[12] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree
exploration with little memory. J. Algorithms, 51(1):38
– 63, 2004.

[13] G. Dudek, M. Jenkin, E. E. Milios, and D. Wilkes.
Robotic exploration as graph construction. IEEE
Trans. Robotics Automation, 7(6):859–865, 1991.

[14] P. Fraigniaud and D. Ilcinkas. Digraphs exploration
with little memory. In Proc. 21st Annu. Sympos.
Theoretical Aspects Comput. Sci. (STACS), pages 246–
257, 2004.

[15] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and
D. Peleg. Graph exploration by a finite automaton.
Theoret. Comput. Sci., 345(2–3):331–344, 2005.

[16] P. Fraigniaud, D. Ilcinkas, S. Rajsbaum, and S. Tixeuil.
The reduced automata technique for graph exploration
space lower bounds. Theoretical Computer Science.
Essays in Memory of Shimon Even, pages 1–26, 2006.

[17] F. Hoffmann. One pebble does not suffice to search
plane labyrinths. In Proc. 3rd Int. Symp. Fundamen-
tals of Computation Theory (FCT), pages 433–444,
1981.

[18] S. Hoory and A. Wigderson. Universal traversal
sequences for expander graphs. Inform. Process. Lett.,
46(2):67–69, 1993.

[19] S. Istrail. Polynomial universal traversing sequences
for cycles are constructible. In Proc. 20th Annu.
ACM Symp. Theory Computing (STOC), pages 491–
503, 1988.

[20] M. Koucký. Universal traversal sequences with back-
tracking. J. Comput. System Sci., 65(4):717–726, 2002.

[21] M. Koucký. Log-space constructible universal traversal
sequences for cycles of length O(n4.03). Theoret.
Comput. Sci., 296(1):117–144, 2003.

[22] M. Koucký. On Traversal Sequences, Exploration
Sequences and Completeness of Kolmogorov Random
Strings. PhD thesis, Rutgers, The State University of
New Jersey, 2003.

[23] S. M. Mirtaheri, M. E. Dinçktürk, S. Hooshmand,
G. V. Bochmann, G.-V. Jourdan, and I. V. Onut.
A brief history of web crawlers. arXiv preprint
arXiv:1405.0749, 2014.

[24] O. Reingold. Undirected connectivity in log-space. J.
ACM, 55(4):17, 2008.

[25] O. Reingold, L. Trevisan, and S. P. Vadhan. Pseu-
dorandom walks on regular digraphs and the RL vs.
L problem. In Proc. 38th Annu. ACM Symp. Theory
Computing (STOC), pages 457–466, 2006.

[26] H. Rollik. Automaten in planaren Graphen. Acta
Inform., 13:287–298, 1980.

[27] A. N. Shah. Pebble automata on arrays. Comput.
Vision Graph., 3(3):236–246, 1974.

	Introduction
	Terminology and model
	An exploration algorithm using pebbles
	Lower bounds for agents with pebbles

