
40

Tight Bounds for Undirected Graph Exploration

with Pebbles and Multiple Agents

YANN DISSER, TU Darmstadt, Germany

JAN HACKFELD and MAX KLIMM, HU Berlin, Germany

We study the problem of deterministically exploring an undirected and initially unknown graph with n ver-

tices either by a single agent equipped with a set of pebbles or by a set of collaborating agents. The vertices

of the graph are unlabeled and cannot be distinguished by the agents, but the edges incident to a vertex have

locally distinct labels. The graph is explored when all vertices have been visited by at least one agent. In

this setting, it is known that for a single agent without pebbles Θ(logn) bits of memory are necessary and

sufficient to explore any graph with at most n vertices. We are interested in how the memory requirement

decreases as the agent may mark vertices by dropping and retrieving distinguishable pebbles or when multi-

ple agents jointly explore the graph. We give tight results for both questions showing that for a single agent

with constant memory Θ(log logn) pebbles are necessary and sufficient for exploration. We further prove

that using collaborating agents instead of pebbles does not help as Θ(log logn) agents with constant memory

each are necessary and sufficient for exploration.

For the upper bounds, we devise an algorithm for a single agent with constant memory that explores any

n-vertex graph using O (log logn) pebbles, even when n is not known a priori. The algorithm terminates

after polynomial time and returns to the starting vertex. We further show that the algorithm can be realized

with additional constant-memory agents rather than pebbles, implying that O (log logn) agents with constant

memory can explore any n-vertex graph. For the lower bound, we show that the number of agents needed

for exploring any graph with at most n vertices is already Ω(log logn) when we allow each agent to have

at most O ((logn)1−ε) bits of memory for any ε > 0. Our argument also implies that a single agent with

sublogarithmic memory needs Θ(log logn) pebbles to explore any n-vertex graph.

CCS Concepts: • Mathematics of computing → Graph algorithms; • Theory of computation → Graph

algorithms analysis; • Computing methodologies → Distributed algorithms;

Additional Key Words and Phrases: Graph exploration, pebbles, space efficiency, multi-agent system

ACM Reference format:

Yann Disser, Jan Hackfeld, and Max Klimm. 2019. Tight Bounds for Undirected Graph Exploration with Peb-

bles and Multiple Agents. J. ACM 66, 6, Article 40 (October 2019), 41 pages.

https://doi.org/10.1145/3356883

Results concerning exploration with pebbles appeared in preliminary form in Reference [17].

Authors’ addresses: Y. Disser, TU Darmstadt, Graduate School CE, Dolivostraße 15, 64293, Darmstadt, Germany; email:

disser@mathematik.tu-darmstadt.de; J. Hackfeld and M. Klimm, HU Berlin, School of Business and Economics, Spandauer

Straße 1, 10178, Berlin, Germany; emails: {jan.hackfeld, max.klimm}@hu-berlin.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0004-5411/2019/10-ART40 $15.00

https://doi.org/10.1145/3356883

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

https://doi.org/10.1145/3356883
mailto:permissions@acm.org
https://doi.org/10.1145/3356883

40:2 Y. Disser et al.

1 INTRODUCTION

The exploration of unknown graphs subject to space or time bounds is a fundamental problem
with applications to robot navigation, Internet crawling, and image recognition. Its pivotal role
within the theory of computation stems from the fact that it is a natural abstraction of a process
of computing where nodes correspond to states, edges correspond to possible state transitions,
and the goal is to find an accepting state when starting in a given initial state. Single agent explo-
ration then corresponds to computing with a single processing unit while exploration with mul-
tiple agents corresponds to parallel computing. In this context, graph exploration and traversal
problems have proven to be useful to study the relationship between probabilistic and determin-
istic space-bounded algorithms [36].

The time and space complexity of undirected graph exploration by a single agent is fairly well
understood. Aleliunas et al. [2] showed that a random walk of length n5 logn visits all vertices of
any n-vertex graph with high probability. When n is known, it is thus possible to use a counter that
keeps track of the number of steps taken to obtain a probabilistic algorithm that explores any graph
of size n in polynomial time and O (logn) space with high probability. In a breakthrough result,
Reingold [33] showed that the same time and space complexity can be achieved by a deterministic

algorithm. Both the randomized algorithm of Aleliunas et al. and the deterministic algorithm of
Reingold work for anonymous graphs where vertices are indistinguishable. Logarithmic memory
is in fact necessary to explore all anonymous graphs with n vertices; see Fraigniaud et al. [22].

Already the early literature on graph exploration problems is rich with examples where explo-
ration is made feasible or the time or space complexity of exploration by a single agent can be
decreased substantially by either allowing the agent to mark vertices with pebbles or by cooperat-
ing with other agents. For instance, two-dimensional mazes can be explored by a single agent with
finite memory using two pebbles [7, 8, 37] or by two cooperating agents with finite memory [7],
while a single agent with finite memory (and even a single agent with finite memory and a single
pebble) does not suffice [9, 25]. Directed anonymous graphs can be explored in polynomial time
by two cooperating agents [5] or by a single agent with Θ(log logn) indistinguishable pebbles and
O (n2Δ logn) bits of memory [4, 21], where Δ is the maximum out-degree in the graph. Note that
a single agent needs at least Ω(n log Δ) bits of memory in this setting, even if it is equipped with
a linear number of indistinguishable pebbles [21], and it needs exponential time for exploration if
it only has a constant number of pebbles and no upper bound on the number of vertices is known
[4].

Less is known regarding the complexity of general undirected graph exploration by more than
one agent or an agent equipped with pebbles. Rollik [34] showed that there are finite graphs,
henceforth called traps, that a finite set of k agents each with a finite number s of states cannot
explore. Fraigniaud et al. [24] revisited Rollik’s construction and observed that the traps have

Õ (s ↑↑ (2k + 1)) vertices, where a ↑↑ b := aa
.. a

with b levels in the exponent and Õ suppresses

lower order terms. Fraigniaud et al. also gave an improved upper bound of Õ (s ↑↑ (k + 1)). Cook
and Rackoff [13] showed that even in a stronger model with a constant number of agents that have
full knowledge of their states even when they do not share a location, and can in one step jump to
the location of any other agent, there are graphs that cannot be explored.

While it is plausible that an agent with s states and p pebbles is less powerful than a set of p + 1
agents with s states each, no better bounds for a single agent with pebbles were known. Even more
striking is the lack of any non-trivial upper bounds for the exploration with several agents or the
single agent exploration with pebbles for undirected graphs. Specifically, there was no algorithm
known that explores an undirected graph with sublogarithmic space when more than one agent
and/or pebbles are allowed.

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:3

1.1 Our Results

We give tight bounds for both the space complexity of undirected graph exploration by a single
agent with pebbles, as well as by a set of cooperating agents.

1.1.1 Results for Exploration with Pebbles. For the exploration of a graph by a single agent with
constant memory, we show that Θ(log logn) distinguishable pebbles are necessary and sufficient
to explore all undirected anonymous graphs with at most n vertices.

Our proof of the upper bound is constructive, i.e., we devise an algorithm that explores any
graph with n vertices using O (log logn) pebbles (Corollary 3.7). Our algorithm terminates after
having explored the graph and returns to the starting vertex with all pebbles. We further show
that the exploration time, i.e., the number of edge traversals of the agent, is polynomial in the size
of the graph. Our algorithm does not require n to be known and gradually increases the number
of used pebbles during the course of the algorithm such that for any n-vertex graph at most f (n)
pebbles are used where f (n) ∈ O (log logn).

For a lower bound, we show that a single agent with sublogarithmic memory (more precisely
O ((logn)1−ϵ) bits of memory for an arbitrary constant ϵ > 0) already needs Ω(log logn) pebbles
for exploring every graph withn vertices (Corollary 4.15). Our results fully characterize the tradeoff
between the memory and the number of pebbles of an agent needed for exploration. It turns out
that this tradeoff is governed by two thresholds. When the agent has Ω(logn) bits of memory, no
pebbles are needed at all. But as soon as the memory is O ((logn)1−ϵ) already Ω(log logn) pebbles
are needed to explore all n-vertex graphs. However, with Ω(log logn) pebbles already a constant
number of bits of memory are sufficient for exploration.

1.1.2 Results for Multi-agent Exploration. For collaborative graph exploration, we show that
Θ(log logn) agents with constant memory are necessary and sufficient to explore all undirected
anonymous graphs with at most n vertices.

To this end, we first show that a set of 2p + 2 agents, with a constant set of states each, can repro-
duce the exploration by a single agent with a constant number of states and p pebbles (Lemma 2.3).
This result allows us to rephrase our single agent exploration algorithm with O (log logn) pebbles
as a multi-agent exploration algorithm withO (log logn) agents and constant memory each (Corol-
lary 3.8). As a perhaps surprising result, we show that this is optimal in terms of the asymptotic
number of agents. To prove this lower bound, we construct a family of graphs with O (s25k

) vertices
that trap any set of k agents with s states each (Theorem 4.13). Our construction exhibits dramati-
cally smaller traps with only a doubly exponential number of vertices compared to the traps of size

Õ (s ↑↑ (2k + 1)) and Õ (s ↑↑ (k + 1)) due to Rollik [34] and Fraigniaud et al. [24], respectively. As
a consequence of our improved bound on the size of the trap, we are able to show that, even if we
allow O ((logn)1−ϵ) bits of memory for an arbitrary constant ϵ > 0 for every agent, the number of
agents needed for exploration is at least Ω(log logn) (Theorem 4.14). This construction also yields
the lower bound for a single agent with pebbles, as p + 1 agents with O ((logn)1−ϵ) bits of mem-
ory each are more powerful than one agent with O ((logn)1−ϵ) bits of memory and p pebbles. Our
results again allow to fully describe the tradeoff between the number of agents and the memory of
each agent. When agents have Ω(logn) memory, a single agent explores all n-vertex graphs. For
agents with O ((logn)1−ϵ) memory, Ω(log logn) agents are needed. However, when Ω(log logn)
agents are available it is sufficient that each of them has only constant memory.

1.2 Related Work

Exploration of mazes. Exploration algorithms were first designed for mazes, which are finite,
connected, and anonymous subgraphs of the two-dimensional grid where edges are labeled with

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:4 Y. Disser et al.

their cardinal direction. Shannon [38] constructed an actual physical device—Shannon’s mouse—
that explores a 5 × 5 grid and uses constant memory per vertex. Budach [9] gave a proof that for
every agent with finite memory there is a maze that the agent cannot explore. Shah [37] showed
that an agent with finite memory and five pebbles can explore all mazes. Subsequently, the number
of pebbles needed for the exploration of all mazes has been reduced to four by Blum and Sakoda [8]
and to two by Blum and Kozen [7]. Hoffmann [25] proved that for any finite memory agent with
one pebble there is a maze that the agent cannot explore, implying that two is the minimum number
of pebbles for a finite agent to explore all finite mazes. Blum and Kozen [7] also showed that all
mazes can be explored by two agents with finite memory.

Exploration of undirected graphs. Blum and Kozen [7] studied a generalization of the maze ex-
ploration problem to arbitrary finite, undirected, and planar graphs with constant maximal degree.
To allow for sensible decisions of the agents, they assume that for each vertex the outgoing edges
have a locally unique outgoing port number and the agents transition based on this information.
They showed that three finite memory agents cannot explore all such graphs when their transi-
tion depends on the last edge taken, the states of all agents that took the same edge, and the set of
edges at the current vertex. Rollik [34] strengthened this result showing that for any finite set of
agents with finite memory there is a planar graph—a so-called trap—that cannot be explored. For k

agents, the trap is of order Õ (s ↑↑ (2k + 1)), where a ↑↑ b := aa
.. a

with b levels in the exponent.
This bound was improved by Fraigniaud et al. [24] to Õ (s ↑↑ (k + 1)), and is further improved in
this article (see Section 1.1.2).

Aleliunas et al. [2] showed that a random walk of length n5 logn explores any n-vertex graph
with high probability. By the probabilistic method, this implies the existence of a universal tra-
versal sequence (UTS) of polynomial length for regular graphs. A (n,d)-UTS is a sequence of port
numbers in {0, . . . ,d − 1} such that an agent starting in an arbitrary vertex and following the
port numbers of the sequence explores every d-regular graph with n vertices. Using a counter
for the number of steps, this yields a log-space randomized algorithm constructing a UTS when
the number of vertices is known. Using Nisan’s derandomization technique [32], this yields a de-
terministic algorithm with O (log2 n) memory. The length of the sequence, however, increases to
2O (log2 n) = O (nlog n). Explicit constructions of UTS are only known for cycles (Istrail [26]) and to
date it remains open whether a UTS of polynomial length can be constructed deterministically in
log-space for general graphs.

As a remedy for the perceived difficulty of constructing a UTS, Koucký [28] introduced the
related concept of universal exploration sequences (UXS) where the next port number depends
on the port number of the edge to the previously visited vertex. Reingold [33] showed that an
(n,d)-UXS can be constructed deterministically in O (logn) space when n is known. A slight mod-
ification of his algorithm allows us to explore any (not necessarily) regular graph, thus, solving
the undirected s-t connectivity problem in log-space. Fraigniaud et al. [22] showed that Ω(logn)
memory is necessary to explore all anonymous undirected graphs with up to n vertices. The set
of graphs Gk that can be explored by an agent with k states is increasing in the sense that there is
polynomial h : N → N such that Gh (i) is strictly included in Gi ; see Fraigniaud et al. [23].

Koucký [28] noted that 12n is a UXS for trees. As remarked by Diks et al. [16], this gives rise
to a perpetual tree exploration algorithm that runs forever, and eventually visits all vertices of
the tree. For the case that the exploration algorithm is required to terminate they showed that
Ω(log log logn) bits of memory are needed. If the algorithm is even required to terminate at the
same vertex where it started, then Ω(logn) bits of memory are needed. A matching upper bound
for the latter problem was given by Ambühl et al. [3].

There are further results on the exploration of undirected anonymous edge-labeled graphs by
agents with unconstrained memory. Dudek et al. [18] showed that an agent provided with a pebble

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:5

can explore (and even map) an undirected graph in time O (mn), wherem is the number of edges.
Chalopin et al. [12] showed that if the starting node can be recognized by the agent, the agent
can explore the graph in time O (n3Δ) using O (nΔ logn) memory. Exploration with the objective
of minimizing the exploration time also has been studied in terms of competitive analysis. In this
context an exploration algorithm for an edge weighted graph is called c-competitive if the sum of
the weights of the edges traversed by the algorithm is at most c times that of an optimal offline
walk. If the task is to visit all vertices of a vertex-labeled weighted graph and an agent learns
about all neighbors when arriving at a node, then a nearest neighbor greedy approach is Θ(logn)-
competitive [35], and there is a Θ(logn)-competitive hierarchical-DFS approach [30]. Algorithms
with constant competitive ratios are known for unweighted graphs and cycles [31], as well as
graphs with bounded genus [27, 30].

Exploration of directed graphs. Exploration is considerably more difficult for directed graphs,
e.g., random walks may need exponential time to visit all vertices. Without any constraints on
memory, Bender et al. [4] gave an O (n8Δ2)-time algorithm that uses one pebble and explores
(and maps) an unlabeled directed graph with maximum degree Δ, when an upper bound on the
number n of vertices is known. For the case that such an upper bound is not available, they proved
that Θ(log logn) pebbles are both necessary and sufficient. Concerning the space complexity of
directed graph exploration, Fraigniaud and Ilcinkas [21] showed that Ω(n log Δ) bits of memory are
necessary to explore any directed graph with n vertices and maximum degree Δ, even with a linear
number of pebbles. They provided an O (nΔ logn)-space algorithm for terminating exploration
with an exponential running time using a single pebble. They also gave an O (n2Δ logn)-space
algorithm running in polynomial time and using O (log logn) indistinguishable pebbles. According
to Bender et al. [4] at least Ω(log logn) pebbles are necessary in this setting. For the exploration
time of labeled directed graphs, where the task is to traverse all edges, the competitive ratios
achievable by online algorithms are closely related to the deficiency of the graph [1, 15, 19]. If,
however, the agent learns about all neighbors when arriving at a node and has to visit all vertices
of the graph, then the best possible competitive ratio is Θ(n), even for Euclidean planar graphs
[20].

Further exploration results. Further related is the problem of exploring geometric structures in
the plane; see, e.g., References [10, 11] for the exploration of simple polygons and References [6,
14] for the exploration of other geometric terrains.

1.3 Techniques and Outline of the Paper

In Section 2, we fix notation and introduce the agent models considered in this article. We show
that for undirected graph exploration a pebble is more powerful than a bit of memory (Lemma 2.1).
We further show that under some additional assumptions two additional agents are more powerful
than a pebble (Lemma 2.3).

Our main positive result is presented in Section 3, where we give a single agent exploration algo-
rithm that explores any n-vertex graph with O (log logn) pebbles and O (log logn) bits of memory.
In light of the lemmas presented in Section 2, we obtain as direct corollaries that (a) a single agent
with O (log logn) pebbles and constant memory can explore any n-vertex graph and (b) a set of
O (log logn) agents with constant memory each can explore any n-vertex graph.

For the algorithm, we use the concept of universal exploration sequences due to Koucký [28].
One of our main building blocks is the algorithm of Reingold [33] that takes n and d as input
and deterministically constructs an exploration sequence universal for all d-regular graphs using
O (logn) bits of memory. The general idea of our algorithm is to run Reingold’s algorithm with

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:6 Y. Disser et al.

a smaller amount of seed memory a. As the seed memory is substantially less than O (logn), the
algorithm will, in general, fail to explore the whole graph. We show, however, that the algorithm

will visit 2Ω(a) distinct vertices (Lemma 3.3). Reinvoking Reingold’s algorithm allows us to deter-

ministically walk along these vertices in the order of exploration of Reingold’s algorithm. Using
this traversal, we encode additional memory by placing a subset of pebbles on the vertices along
the walk. Having boosted our memory this way, we again run Reingold’s algorithm, this time with
more memory, and recurse. At some recursion depth, running Reingold’s algorithm with a∗ bits

of memory will visit less than 2Ω(a∗) distinct vertices. We show that this can only happen when
the graph is fully explored, which allows us to terminate the algorithm when this event occurs.
Unwrapping all levels of recursion then also allows us to return to the starting vertex. The ability
of our algorithm to terminate and return to the starting vertex after successful exploration, stands
in contrast to Reingold’s algorithm that is only able to terminate when being given the number n
of vertices as input.

There are a couple of technical difficulties to make these ideas work. The main challenge is that
the memory generated by placing pebbles along a walk in the graph is implicit and can only be
accessed and altered locally. To still make use of the memory, we do not work with Reingold’s
algorithm directly but consider an implementation of Reingold’s algorithm on a Turing machine
with logarithmically bounded working tape. We show that the tape operations on the working tape
can be reproduced by the agent by placing and retrieving the pebbles on the walk. This allows us to
use the memory encoded by the pebble positions for further runs of Reingold’s algorithm. In each
recursion, we only need a constant number of pebbles and additional states. We further show that
O (log logn) recursive calls are necessary to explore an n-vertex graph so that the total number of
pebbles needed is O (log logn).

A second challenge is that Reingold’s algorithm produces a UXS for regular graphs, which
our graph need not be. A natural approach to circumvent this issue is to apply the technique of
Koucký [29] that allows us to locally view vertices with degree d as cycles of 3d subvertices with
degree 3 each. Unfortunately, this approach requires Θ(logd) bits of memory if we keep track of
the current subvertex, which may exceed the memory of our agent. To circumvent this issue, we
store the current subvertex only implicitly and navigate the graph in terms of subvertex index
offsets instead of the actual subvertex indices.

Our general lower bound is presented in Section 4. Specifically, we show that for a set of coop-
erative agents with sublogarithmic memory of O ((logn)1−ε) for some constant ε > 0, Ω(log logn)
agents are needed to explore any undirected graph with n vertices. The same lower bound con-
struction shows that an agent with sublogarithmic memory needs Ω(log logn) pebbles to explore
any n-vertex graph.

To prove the lower bound, we use the concept of an r -barrier. Informally, an r -barrier is a graph
with two special entry points such that any subset of up to r agents with s states cannot reach one
entry point when starting from the other. Moreover, a set of r + 1 agents can explore an r -barrier,
but the agents can only leave the barrier via the same entry point. We recursively construct an
r -barrier by replacing edges by (r − 1)-barriers. A set of r agents traversing this graph needs to
stay close to each other to be able to traverse the barriers and make progress. However, if the
agents stay close to each other, the states and relative positions of the agents become periodic
relatively quickly, and we can use this fact to build an r -barrier. By carefully bounding the size of

the r -barriers in our recursive construction, we obtain a trap of size O (s25k

) for any given set of k
agents with at most s states each. The size of the trap directly implies that the number of agents
with at most O ((logn)1−ε) bits of memory needed for exploring any graph of size n is at least
Ω(log logn).

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:7

2 TERMINOLOGY AND MODEL

2.1 The Graph

LetG = (V ,E) be an undirected graph with n vertices to be explored by a single agent or a group of
agents. All agents start at the same vertexv0 ∈ V . We say thatG is explored when each vertex ofG
has been visited by at least one agent. Every graph considered in this article is assumed to be con-
nected as otherwise exploration is not possible. We further assume that the graph is anonymous,
i.e., the vertices of the graph are unlabeled and therefore cannot be identified or distinguished
by the agents. To enable sensible navigation, the edges incident to a vertex v have distinct labels
0, . . . ,dv − 1, where dv is the degree of v . This way every edge {u,v} has two—not necessarily
identical—labels called port numbers, one at u and one at v .

2.2 The Agents

We model an agent as a tupleA = (Σ, Σ̄,δ ,σ ∗),where Σ is its set of states, Σ̄ ⊆ Σ is its set of halting
states, σ ∗ ∈ Σ is its starting state, and δ is its transition function. The transition function governs
the actions of the agent and its transitions between states based on its local observations. Its exact
specifics depend on the problem considered, i.e., whether we consider a single agent or a group
of agents and whether we allow the agents to use pebbles. Exploration terminates when a halting
state is reached by all agents.

2.2.1 A Single Agent Without Pebbles. The most basic model is that of a single agent A without
any pebbles. In each step, the agent observes its current state σ ∈ Σ, the degree dv of the current
vertex v and the port number l at v of the edge from which v was entered. The port number l is
also referred to as incoming port number. We let l = ⊥ at the start of the exploration or when the
agent stayed at v in the last transition. The transition function δ then specifies a new state σ ′ ∈ Σ
of the agent and an outgoing port number l ′ ∈ {0, . . . ,dv − 1} ∪ {⊥}. If l ′ ∈ {0, . . . ,dv − 1}, then the
agent enters the edge with the local port number l ′, whereas for l ′ = ⊥ it stays at v . Formally, the
transition function is a partial function:

δ : Σ ×N × (N ∪ {⊥}) → Σ × (N ∪ {⊥}),
(σ ,dv , l)
→ (σ ′, l ′).

Note that the transition function only needs to be defined for l with l < dv and degrees dv that
actually appear in the class of graphs considered. It is standard to define the space requirement of
an an agent with states Σ as log |Σ| as this is the number of bits needed to encode every state; see,
e.g., Cook and Rackoff [13].

2.2.2 A Single Agent with Pebbles. We may equip the agentAwith a set P = {1, . . . ,p} of unique
and distinguishable pebbles. At the start of the exploration the agent is carrying all of its pebbles.
As before, the agent observes in each step the degree dv of the current vertex v and the port
number l from which v was entered, allowing for l = ⊥ in case the agent did not move during the
previous transition. In addition, the agent has the ability to observe the set of pebbles PA that it
carries and the set of pebbles Pv present at the current vertex v . The transition function δ then
specifies the new state σ ′ ∈ Σ of the agent, and a move l ′ ∈ {0, . . . ,dv − 1} ∪ {⊥} as before. In
addition, the agent may drop any subset Pdrop ⊆ PA of carried pebbles and pick up any subset of
pebbles Ppick ⊆ Pv that were located at v , so that after the transition the set of carried pebbles is
P ′A = (PA \ Pdrop) ∪ Ppick and the set of pebbles present at v is P ′v = (Pv \ Ppick) ∪ Pdrop. Formally,

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:8 Y. Disser et al.

we have

δ : Σ ×N × (N ∪ {⊥}) × 2P × 2P → Σ × (N ∪ {⊥}) × 2P × 2P ,

(σ ,dv , l , PA, Pv)
→ (σ ′, l ′, P ′A, P
′
v).

The transition function δ is partial as it is only defined for PA ∩ Pv = ∅. We assume that the pebbles
are actual physical devices dropped at the vertices so that no space is needed to manage the pebbles.
Thus, the space requirement of the agent is again log |Σ|.

2.2.3 A Set of Agents without Pebbles. Consider a set of k cooperative agents A1 =

(Σ1, Σ̄1,δ1,σ
∗
1), . . . ,Ak = (Σk , Σ̄k ,δk ,σ

∗
k

) jointly exploring the graph. We assume that all agents
start at the same vertexv0. In each step, all agents synchronously determine the set of agents they
share a location with, as well as the states of these agents. Then, all agents move and alter their
states synchronously according to their transition functions δ1, . . . ,δk . The transition function of
agent i determines a new state σ ′ and a move l ′ as before. Formally, let

Σ−i = (Σ1 ∪ {⊥}) × · · · × (Σi−1 ∪ {⊥}) × (Σi+1 ∪ {⊥}) × · · · × (Σk ∪ {⊥})
denote the states of all agents potentially visible to agent Ai where a ⊥ at position j (or (j − 1) if
j ≥ i) stands for the event that agent Ai and agent Aj are located at different vertices. Then, the
transition function δi of agent Ai is a partial function:

δi : Σi × Σ−i ×N × (N ∪ {⊥}) → Σi × (N ∪ {⊥}),
(σi ,σ−i ,dv , l)
→ (σ ′i , l

′
i).

The overall memory requirement is
∑k

i=1 log |Σi |.

2.3 Relationship between Agent Models

To compare the capability of an agent A with s states and p pebbles to another agent A′ with s ′

states and p ′ pebbles or a set of agents A, we use the following notion: We say that the walk of
an agent A is reproduced by an agent A′ in a graph G, if the sequence of edges traversed by A is
a subsequence of the edges visited by A′ in G, and agent A′ reaches a halting state if and only if
agent A reaches a halting state. Put differently, A traverses the same edges as A′ in the same order,
but for every edge traversal of A the agent A′ can do an arbitrary number of intermediate edge
traversals. Similarly, we say that a set of agentsA reproduces the walk of an agent A inG, if there
is an agent A′ ∈ A such that A′ reproduces the walk of A in G. We further require that if agent A
reaches a halting state then all agents A′ ∈ A reach a halting state.

We first formally show the intuitive fact that pebbles are more powerful than memory bits.

Lemma 2.1. Let A be an agent with s states and p pebbles exploring a set of graphs G. Then there

is an agent A′ with five states and p + �log s� pebbles that reproduces the walk of A in every G ∈ G
and performs at most three edge traversals for every edge traversal of A.

Proof. As the set of graphs G that can be explored by an agent with s states and p pebbles is
non-decreasing in s , it suffices to show the claimed result for the case that s is an integer power
of two. Let A = (Σ, Σ̄,δ ,σ ∗) be an agent with a set of p pebbles P and s = |Σ| = 2r , r ∈ N states
exploring all graphs G ∈ G. In the following, we construct an agent A′ = (Σ′, Σ̄′,δ ′,σ ∗′) with five
states Σ′ = {σ ∗′,σcomp, σ̄halt,σback−1,σback−2}, one halting state Σ̄′ = {σ̄halt}, and a set P ′ of |P ′ | =
p + r pebbles. The general idea is to let A′ store the state of A by dropping and retrieving the
additional r pebbles. To this end, we identify p of the pebbles of A′ with the p pebbles of A and
call the additional set of r pebbles P ′Σ, i.e., P ′ = P ∪ P ′Σ with |P | = p and |P ′Σ | = r , respectively. Since
|P ′Σ | = r and |Σ| = s = 2r , there is a canonical bijection f : Σ→ 2P ′Σ . The construction ensures that

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:9

the following invariant holds during the traversal: If agent A reaches a vertex v in a state σ , then
agent A′ reaches v in its computation state σcomp while carrying the set of pebbles f (σ) plus the
additional pebbles that A is carrying and all pebbles in P ′Σ \ f (σ) are located at v . We need the
additional states σback−1 and σback−2 to move all pebbles in P ′Σ encoding the state of A to the next
vertex in some intermediate steps.

For every PA′ ⊆ P ′, Pv ⊆ P ′ with PA′ ∩ Pv = ∅, dv ∈ N , l ∈ N ∪ {⊥} and σ ∈ Σ, let

δ (σ ,dv , l , PA′ ∩ P , Pv ∩ P) = (σ ′, l ′, P ′A, P
′
v) (1)

be the transition of agent A with σ ′ ∈ Σ, l ′ ∈ N ∪ {⊥} and P ′A, P
′
v ∈ 2P . Then, we define

δ ′(σA′,dv , l , PA′ , Pv) =
⎧⎪⎪⎨⎪⎪⎩

(σcomp, l ′, P ′A ∪ f (σ ′), P ′v ∪ (P ′Σ \ f (σ ′)) if l ′ = ⊥ and σ ′ � Σ̄,
(σback−1, l

′, P ′A ∪ (P ′Σ \ f (σ ′)), P ′v ∪ f (σ ′)) if l ′ � ⊥ and σ ′ � Σ̄,
(σ̄halt, l ′, P ′A ∪ f (σ ′), P ′v ∪ (P ′Σ \ f (σ ′)) else,

(2)

for σA′ ∈ {σ ∗′,σcomp}. If agent A traverses an edge without entering a halting state (second case in
transition function δ ′ above), then we also need to fetch the set of remaining pebbles f (σ ′) from
the previous vertex to be able to encode the state of A in the future. To this end, A′ switches to
the state σback−1. When in state σback−1, the fetching will be done in two steps: First, A′ drops all
pebbles in P ′Σ \ f (σ ′), moves to the previous vertex and changes its state to σback−2. Formally, this
means

δ ′(σback−1,dv , l , PA′, Pv) =
(
σback−2, l , PA′ \ P ′Σ, Pv ∪

(
P ′Σ ∩ PA′

))
for all dv ∈ N , l ∈ N ∪ {⊥} and PA′, Pv ∈ 2P ′ with PA′ ∩ Pv = ∅. Then it picks up the pebbles in
f (σ ′), returns to the current vertex of A and changes its state to σcomp, i.e.,

δ ′(σback−2,dv , l , PA′ , Pv) =
(
σcomp, l , PA′ ∪

(
P ′Σ ∩ Pv

)
, Pv \ P ′Σ

)

for all dv ∈ N , l ∈ N ∪ {⊥} and PA′, Pv ∈ 2P ′ with PA′ ∩ Pv = ∅. After these two transitions, the
state of agentA′ is σcomp, all pebbles in P ′Σ are at the current vertex or carried byA′ and PA′ ∩ P ′Σ =
f (σ ′) encodes the current state σ ′ of agent A.

A simple inductive proof establishes that the state σ of A in every step of the exploration of a
graph G ∈ G corresponds to the set of pebbles in P ′Σ carried by A′ in its computation state σcomp,

i.e., σ = f −1 (PA′ ∩ P ′Σ). Moreover, if agent A in state σ traverses an edge {v,w } from a vertex v
to a vertex w and does not move to a halting state, then A′ will traverse the edge {v,w } three
times and afterwards again the set of pebbles carried by A will correspond to PA′ ∩ P and the state
of A to σ = f −1 (PA′ ∩ P ′Σ). If A remains at the same vertex or moves to a halting state, then this
transition is mirrored by a single transition of agent A′. In particular, agent A′ visits exactly the
same vertices asA in every graphG ∈ G while performing at most three times the number of edge
traversals. �

We proceed to show a similar reduction between exploration with additional agents and explo-
ration by a single agent with pebbles. Intuitively, it would seem that an additional agent is at least
as powerful as a pebble, since an agent may simply simulate the behavior of a pebble. However,
there are several subtleties in the different behavior of agents and pebbles that prevent us from
showing such a general result. While a pebble is passive and its movement is entirely determined
by the agent, an additional agent moves on its own and has to compute where to go next. In ad-
dition, after termination of the exploration, pebbles may remain distributed in the graph while
agents that mimic pebbles need to be informed about the fact that the exploration terminated to
switch into a halting state.

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:10 Y. Disser et al.

We resolve these issues in the following way. First, we restrict ourselves to agents with pebbles
that have the additional property that they carry all pebbles when they terminate. Second, we re-
quire that the agent with pebbles satisfies the following pickup invariant. Our algorithm presented
in Section 3 will satisfy both properties.

Definition 2.2. Let A be an agent with a set of p pebbles P . We say that A satisfies the pickup

invariant, if every time A drops a pebble p0 ∈ P at a vertex v with current incoming edge label l ,
then p0 is only picked up again if A is at v with the same incoming edge label l .

For illustration of the general proof idea assume for a moment that agents are able to recall their
last incoming port number even when they stay at a vertex for multiple rounds. Then, an agent A
with p pebbles satisfying the pickup invariant can be simulated by a set of p + 1 agents as follows.
There is one master agent reproducing the walk of A while all other agents behave and move as
pebbles. When a pebble agent remains at a vertex it does not move until the master agent visits
the vertex again. Using the pickup invariant and the fact that the pebble agent can recall the last
incoming port number, the pebble agent can do the same computations as the master agent and
can synchronously move as the master agent in case the outcome of the computation is that the
corresponding pebble is picked up by agent A.

For this to work, we need a way to circumvent the fact that the incoming port number of an
agent becomes ⊥ whenever they remain at a vertex. Instead of remaining at the vertex v where
the agent with pebbles would drop a pebble, we let the corresponding pebble agents move back
and forth betweenv and the vertexv ′ last visited by the agent before enteringv . This ensures that
in every other step, the pebble agent is where it is supposed to be. Since the master agent may be
using cycles of odd length, we need to ensure that the agent knows of the position of the pebbles
when a pebble agent is not at the vertex where the pebble was dropped. To this end, we double the
number of agents and do two (largely independent) explorations of the graph such that the second
exploration is always one step behind the first exploration. That is, there are two master agents
each with a set of p pebble agents. The master agents do not distinguish between their pebble
agents and the pebble agents of the other master agent. Since the explorations are shifted by one
step, the two pebble agents of the two master agents simulating the same pebble will not be at the
same vertex so that the agent not picked up by one master agent will be picked up by the other.
Formally, we show the following result.

Lemma 2.3. Let A be an agent with s states and p pebbles that explores a set G of graphs, satisfies

the pickup invariant and terminates carrying all pebbles. Then there is a set A of 2(p + 1 + �log s�)
agents with a constant number of states each that reproduce the walk of A in every graphG ∈ G. If A
never remains at a vertex before halting, then for every edge traversal of A, each agent inA performs

at most one edge traversal.

Proof. For an agent with pebbles, there is no benefit in remaining at a vertex so that there is
no loss of generality when assuming for the following arguments that A never remains at a vertex
before halting.

Let A = (Σ, Σ̄,δ ,σ ∗) be an agent with s = |Σ| and a set P = {1, . . . ,p} of p pebbles exploring all
graphs G ∈ G. We first explain the construction for the case that s is constant and describe at the
end of the proof how to use a construction similar to the proof of Lemma 2.1 when s is not constant.
We construct a set A = {A1,0, . . . ,A1,p ,A2,0, . . . ,A2,p } of 2p + 2 agents Aj,i = (Σj,i , Σ̄j,i ,δ j,i ,σ

∗
j,i),

i ∈ {0, . . . ,p}, j ∈ {1, 2} that reproduces the walk of A on all graphs G ∈ G. In this construction,
there are two explorations by the groups of agents A1,0, . . . ,A1,p and A2,0, . . . ,A2,p , where in each
group j ∈ {1, 2} the master agent Aj,0 represents the original agent A while every agent Aj,i for

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:11

i > 0 represents a pebble. In the course of the exploration, the assignment of pebble agents to the
two explorations may change, however.

For the first master agentA1,0, we set Σ1,0 = Σ, Σ̄1,0 = Σ̄, and σ ∗1,0 = σ ∗. The second master agent
has one additional state σstart that allows it to wait at the start of the exploration for one step, i.e.,
we set Σ2,0 = Σ ∪ {σstart}, Σ̄2,0 = Σ̄ and σ ∗2,0 = σstart. Waiting for one time unit is implemented via
the transition

δ2,0 (σstart,σ−2,0,dv ,⊥) = (σ ∗,⊥)

for all dv ∈ N and σ−2,0 ∈ Σ−2,0. Throughout the construction, we will ensure that the exploration
by master agent A2,0 is always one step behind the exploration of master agent A1,0. In addition,
master agent A1,0 explores all graphs in the same way as the agent with pebbles A would. Since
we assumed thatA never remains at a vertex, this implies in particular thatA1,0 andA2,0 are never
at the same vertex (except for the start and the end of the exploration).

For every agentAj,i with i ∈ P and j ∈ {1, 2}, we set Σj,i = {c j,i ,dj,i ,d
′
j,i , h̄j,i }, Σ̄j,i = {h̄j,i }. Intu-

itively, the state c j,i simulates that pebble i is carried, dj,i simulates that the pebble is dropped and
at the correct vertex, d ′j,i simulates that the pebble is dropped but at a neighbor of the correct ver-

tex, and h̄i, j is the halting state. We let pebble agents of the first group start being carried and the
pebble agents of the second group start in the incorrect dropped state, i.e., σ ∗1,i = c1,i and σ ∗2,i = d

′
2,i

for all i ∈ P . For i, i ′ ∈ {0, . . . ,p} and j, j ′ ∈ {1, 2}, let σj′,i′:j,i denote the state of agent Aj′,i′ visible
to agent Aj,i , i.e., σj′,i′:j,i = σj,i if Aj′,i′ and Aj,i share the same vertex and σj′,i′:j,i = ⊥ otherwise.
To define the transition functions δ j,i (σj,i ,σ−j,i ,dv , l) for i ∈ {0, . . . ,p}, σj,i ∈ Σj,i , σ−j,i ∈ Σ−j,i

and dv ∈ N , l ∈ N ∪ {⊥}, we compute for all j ∈ {1, 2} the corresponding transitions of the pebble
agent A, i.e.,

δ (σj,0,dv , l ,C (σ−j,0),D (σ−j,0)) = (σ ′j,0, l
′
j , P
′
j,A, P

′
j,v),

with σ ′j,0 ∈ Σ, l ′j ∈ N , and P ′j,A, P
′
j,v ∈ 2P , where the set

C (σ−j,0) := {i ∈ P : σ1,i :j,0 = c1,i } ∪ {i ∈ P : σ2,i :j,0 = c2,i }
is the set of pebbles that are simulated by a pebble agent (of the first or the second group) who is
at the same vertex as the master agent Aj,0 and in its carried state. Similarly, the set

D (σ−j,0) := {i ∈ P : σ1,i :j,0 = d1,i } ∪ {i ∈ P : σ2,i :j,0 = d2,i }
is the set of pebbles that are simulated by a pebble agent (of the first or the second group) who is
at the same vertex as the master agent Aj,0 and in its correct dropped state d1,i or d2,i . We then
let the master agents A1,0 and A2,0 transition as agent A when observing the corresponding sets
of carried and dropped pebbles, i.e.,

δ j,0 (σj,0,σ−j,0,dv , l) = (σ ′j,0, l
′
j)

for all j ∈ {1, 2}. Pebble agents that are in their carried state move as the master agent that carries
them. Except for the start of the exploration, there is at most one master agent at a vertex (and
pebble agents of the second group start dropped) so that the assignment to master agents is well-
defined. Pebble agentsAj,i that are in their correct dropped statedj,i or the carried state c j,i observe
whether there is a master agent at the same vertex. If this is the case, then they do the same
computation as the master agent. If the outcome of this computation is that the corresponding
pebble is picked up, then they move as the master agent and transition into their carried state. If
the outcome of this computation is that the pebble should remain dropped, then they move to the
last incoming port number and transition into the incorrect dropped state d ′j,i . Pebble agents that

are in the incorrect dropped state dj,i move to the last incoming port number and transition into
the correct dropped state dj,i . There is a further small corner case of pebble agents of the second

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:12 Y. Disser et al.

group that transition from dropped to carried at the start of the exploration. Summarizing, we
obtain

δ j,i (σj,i ,σ−j,i ,dv , l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(dj,i , l) if σj,i = d
′
j,i and σ2,0:j,i � σstart,

(c j,i ,⊥) if σj,i = d
′
j,i and σ2,0:j,i = σstart,

(d ′j,i , l) if σj,i = dj,i and σ1,0:j,i = σ2,0:j,i = ⊥,
(c j,i , l

′
1) if σj,i ∈ {c j,i ,dj,i }, σ1,0:j,i � ⊥, σ ′1,0 � Σ̄1,0, and j ∈ P ′1,A,

(d ′j,i , l) if σj,i ∈ {c j,i ,dj,i }, σ1,0:j,i � ⊥, σ ′1,0 � Σ̄1,0, and j ∈ P ′1,v ,
(h̄j,i , l

′
1) if σj,i ∈ {c j,i ,dj,i }, σ1,0:j,i � ⊥, and σ ′1,0 ∈ Σ̄1,0,

(c j,i , l
′
2) if σj,i ∈ {c j,i ,dj,i }, σ2,0:j,i � {⊥,σstart}, σ ′2,0 � Σ̄2,0, and j ∈ P ′2,A,

(d ′j,i , l) if σj,i ∈ {c j,i ,dj,i }, σ2,0:j,i � {⊥,σstart}, σ ′2,0 � Σ̄2,0, and j ∈ P ′2,v ,
(h̄j,i , l

′
2) if σj,i ∈ {c j,i ,dj,i }, σ2,0:j,i � {⊥,σstart}, and σ ′2,0 ∈ Σ̄2,0,

for all i ∈ P and j ∈ {1, 2}.
To finish the proof, fix a graph G ∈ G and consider the transitions of agent A and the set of

agents A in G. An inductive proof shows that after k transitions, the state and position of agent
A equals the state and position of the master agent A1,0, and the state and position of the master
agentA2,0 equals the state and position ofA after k − 1 transitions. In addition, there is exactly one
pebble agent Ai ∈ {A1,i ,A2,i } that is in state c j,i with j ∈ {1, 2} at the same vertex as master agent
A1,0 if and only if agent A is carrying pebble i . For the dropped pebbles one can show that there
is exactly one pebble agent Ai ∈ {A1,i ,A2,i } that is in state dj,i with j ∈ {1, 2} at some vertex v if
and only if in the exploration with pebbles agent A has dropped (and not yet retrieved) pebble i
at vertex v an even number of steps ago. So when master agent A1,0 returns to a vertex where A
dropped a pebble it either sees the pebble agent that it caused to go into dropped state (if since that
an even number of steps have passed), or the pebble agent that the other master agent A2,0 caused
to go into dropped state (if an odd number of steps have passed). In any way, the two explorations
by the master agents A1,0 and A2,0 are never at the same vertex at any point in time, and the
dropped pebbles seen by the one are invisible to the other, so that the claim follows. Finally, note
that as agent A carries all pebbles at the end of the exploration, all pebbles agents are at the same
vertex as a master agent when they switch to a halting state. Thus, also all pebble agents reach a
halting state when the exploration is terminated.

Finally, when s is not constant, we introduce 2k = 2�log s� additional agents A1,p+1, . . . ,A1,p+k

and A2,p+1, . . . ,A2,p+k with states Σj,i = {0, 1, h̄} and halting states Σ̄ = {h̄} for all j ∈ {1, 2} and
i ∈ {p + 1,p + k }. The general idea is that the additional agentsA′1 = {A1,i : i ∈ {p + 1, . . . ,p + k }}
always move synchronously with master agent A1,0 and the additional agents A′2 = {A2,i : i ∈
{p + 1, . . . ,p + k }} always move synchronously with master agentA2,0. As an effect, the additional
agents A′j always have the same incoming port number as the corresponding master agent Aj,0.

The states 0 and 1 of the additional agents can be used to store the state of agentA so that a constant
number of states of the master agent suffice. When the master agent Aj,0 reaches a halting state

the additional agents in A′j also switch to their halting state h̄ so that they also terminate when

the exploration is finished. �

We note that both the pickup invariant and the doubling of the number of agents are unneces-
sary in a slightly stronger model of cooperative exploration where the transition function of one
agent may also depend on the incoming labels of other agents at the same vertex. In that case,
pebble agents may simply remain at the vertex where they were dropped and resume computa-
tion when the master agent returns to the vertex. It is further worth noting that our lower bound
construction of Section 4 also remains valid for this slightly stronger model.

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:13

3 EXPLORATION ALGORITHMS

In this section, we devise an agent exploring any graph on at most n vertices with O (log logn)
pebbles and O (log logn) memory that maintains the pickup invariant and terminates while carry-
ing all pebbles. By the reductions between the agents’ models given in Section 2 this implies that
(a) an agent with O (log logn) pebbles and constant memory can explore any n-vertex graph and
(b) that a set of O (log logn) agents with constant memory each can explore any n-vertex graph.

For our algorithm, we use the concept of exploration sequences (Koucký [28]). An exploration
sequence is a sequence of integers e0, e1, e2, . . . that guides the walk of an agent through a graphG
as follows: Assume an agent starts in a vertex v0 of G and let l0 = ⊥. Let vi denote the agent’s
location in step i and li the port number of the edge at vi leading back to the previous location.
Then, the agent follows the exploration sequence e0, e1, e2, . . . if, in each step i , it traverses the edge
with port number (li + ei) mod dvi

at vi to the next vertex vi+1, where dvi
is the degree of vi (for

the first step, port number e0 mod dv0 is chosen instead). An exploration sequence is universal for
a class of undirected, connected, locally edge-labeled graphs G if an agent following it explores
every graph G ∈ G for any starting vertex in G, i.e., for any starting vertex it visits all vertices
of G. For a set S , we further use the notation S+ :=

⋃∞
i=1 S

i to denote the set of finite sequences
with elements in S . The following fundamental result of Reingold [33] establishes that universal
exploration sequences can be constructed in logarithmic space.

Theorem 3.1 ([33], Corollary 5.5). There exists an algorithm taking n and d as input and pro-

ducing in O (logn) space a finite exploration sequence universal for all connected d-regular graphs on

n vertices.

Reingold’s result implies in particular that there is an agent without pebbles and O (nc) states for
some constant c that explores any d-regular graph with n vertices when both n and d are known.
We further note that Reingold’s algorithm can be implemented on a Turing machine that has a
read/write tape of length O (logn) as work tape and writes the exploration sequence to a write-
only output tape, see Reference [33, Section 5] for details. For formal reasons the Turing machine
in [33] additionally has a read-only input tape from which it reads the values of n and d encoded
in unary so that the space complexity of the algorithm is actually logarithmic in the input length.
For our setting, it is sufficient to assume that n and d are given as binary encoded numbers on
the working tape of length O (logn), as we care only about the space complexity of exploration in
terms of the number of vertices n.

As a first step, we show in Lemma 3.2 how to modify Reingold’s algorithm for 3-regular graphs
to yield a closed walk containing an exponential number of vertices in terms of the memory used.
Afterwards, we extend this result to general graphs in Lemma 3.3.

Lemma 3.2. For any z ∈ N , there exists an O (logz)-space algorithm producing an exploration

sequence w ∈ {0, 1, 2}+ such that for all connected 3-regular graphs G with n vertices the following

hold:

(1) An agent following w in G explores at least min{z,n} distinct vertices.

(2) An agent that starts in a vertexv0 with incoming port number l0 returns tov0 with incoming

port number l0 after following w . In particular, w yields a closed walk in G.

(3) The length of w is bounded by zO (1) .

Proof. By Theorem 3.1, there is a Turing machine M0 with a tape of length O (logz) producing
a finite universal exploration sequence e0, e1, . . . , ea−1 of length a ∈ N for any 3-regular graph on
exactly 4z vertices.

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:14 Y. Disser et al.

The Turing machine M producing an exploration sequence w with the desired properties is
given in Algorithm 1. By construction, the sequence w produced by M is

e0, e1, . . . , ea−1, 0, (−ea−1 mod 3), (−ea−2 mod 3), . . . , (−e1 mod 3), (−e0 mod 3), 0.

We first show the second property. Let an agentA start at a vertexv0 with incoming port number l0
in some 3-regular graphG. Let furtherA follow the exploration sequencew , and, for i ∈ {0, . . . ,a −
1}, let vi+1 be the vertex reached after following w up to ei . Then the offset 0 takes the agent back
fromva tova−1 and afterwards −ei mod 3 takes agentA fromvi tovi−1. This means that the offset
−e1 mod 3 takesA back tov0 with incoming port number l0 + e0. Hence, after the offsets−e0 mod 3
and 0, agent A has returned to v0 with incoming port number l0. This yields the second property.

Moreover, the length a of the exploration sequence of M0 is bounded by the number of configu-
rations of M0, i.e., the number of possible combinations of state, head position, and tape contents.
The working tape has length O (logz). Therefore, the number of configurations of M0 and hence

also a is bounded by zO (1) , which yields the third property. As the auxiliary variable t ranges from 1
to 2a + 2 and running the Turing machine M0 for t steps can be implemented in O (logz) space,
the Turing machine M can be implemented to run in O (logz) space.

It is left to show that an agent followingw in an arbitrary connected 3-regular graph with n ver-
tices explores at least min{z,n} vertices. For the sake of contradiction, assume there exists some
3-regular graph G on n vertices so that an agent A starting in a vertex v0 and following the ex-
ploration sequence w produced by M only visits a set of vertices V0 with |V0 | < min{z,n}. Let G0

be the subgraph of G induced by V0. Note that, since |V0 | < n by assumption, at least one vertex
in G0 has degree less than 3. We now extend G0 to a connected 3-regular graph with 4z vertices
as follows. First, we let G1 be the graph G0 after adding an isolated vertex if |V0 | is odd, and we
letV1 be the vertex set ofG1. We further letG2 be a cycle of length 4z − |V1 | with opposite vertices
connected by an edge. Note that 4z and |V1 | are even and G2 is 3-regular. As long as G1 contains
at least one vertex of degree less than 3, we delete an edge {w,w ′} connecting opposite vertices
in the cycle in G2 and for w and then w ′ add an edge from this vertex to a vertex of degree less
than 3 inG1 (possibly the same). This procedure terminates when all vertices inG1 have degree 3,
since G2 contains 4z − |V1 | ≥ 3z ≥ 3|V1 | vertices and there cannot be a single vertex of degree 2
left in G1, as this would mean that the sum of all vertex degrees in G1 is odd. The labels in {0, 1, 2}
at both endpoints of every edge not in G0 are chosen arbitrarily. Let H be the resulting 3-regular
graph with 4z vertices containing G0 as induced subgraph.

By construction, the walk of an agent A starting in H at v0 and following w is the same as the
walk in G starting in v0 and following w . In particular, the agent A only visits the vertices V0 and
does not explore H . This contradicts that the sequence e0, e1, . . . , ea−1, which corresponds to the
first a elements of the exploration sequencew , is a universal exploration sequence for all connected
3-regular graph on 4z vertices by assumption. �

ALGORITHM 1: Turing machine M computing exploration sequence for 3-regular graphs.

for t ∈ {1, . . . , 2a + 2} do

if t ≤ a
run M0 for t steps to obtain element et−1 of the exploration sequence generated by M0

output et−1

else if t = a + 1 or t = 2a + 2

output 0

else if a + 2 ≤ t ≤ 2a + 1

run M0 for 2a + 1 − t steps to obtain element e2a+2−t of exploration sequence of M0

output −e2a+1−t mod 3

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:15

Fig. 1. Example for the transformation of a graph G to a 3-regular graph Greg. A vertex v of degree 2 is

transformed to a cycle containing six vertices and for the edge {v,w }, three edges are added to the graph.

We proceed to give a similar result for non-regular graphs.

Lemma 3.3. For any z ∈ N , there exists a O (logz)-space algorithm producing an exploration se-

quence w ∈ {−1, 0, 1}+ such that for all connected graphs G with n vertices the following hold:

(1) An agent following w in G explores at least min{z,n} distinct vertices.

(2) An agent that starts in a vertexv0 with incoming port number l0 returns tov0 with incoming

port number l0 after following w . In particular, w yields a closed walk in G.

(3) The length of w is bounded by zO (1) .

Proof. Let Mreg be the Turing machine of Lemma 3.2 with a tape of length bounded by O (logz)
producing a universal exploration sequence wreg ∈ {0, 1, 2}+ such that an agent following wreg in

some 3-regular graph with n vertices visits at least min{3z2,n} distinct vertices.
To prove the statement, we transform this universal exploration sequence for 3-regular graphs

to a universal exploration sequence universal for general graphs by using a construction taken
from Koucký [29, Theorem 87]. In this construction, an arbitrary graphG with n vertices is trans-
formed into a 3-regular graph Greд as follows: We replace every vertex v of degree dv by a circle
of 3dv vertices (v, 0), . . . , (v, 3dv − 1), where the edge {(v, i), (v, i + 1 mod 3dv)} has port num-
ber 0 at (v, i) and port number 1 at (v, i + 1 mod 3dv), see also Figure 1 for an example of this
construction. For any edge {v,w } in G with port number i at v and j at w , we add the three
edges {(v, i), (w, j)}, {(v, i + dv), (w, j + dw)}, {(v, i + 2dv), (w, j + 2dw)} with port numbers 2 at
both endpoints to Greg.

Observe that there are only two labelings of edges in Greg, edges with port number 2 at both
endpoints and edges with port numbers 0 and 1. In particular, one port number of an edge can be
deduced from the other port number. As a consequence, given the initial incoming port number and
the edge offsets from the exploration sequence wreg produced by Mreg, all outgoing port numbers
can be computed without knowing the incoming port number at every vertex. In other words,
we can transform the sequence of edge label offsets given by wreg to a traversal sequence, i.e., a
sequence of absolute edge labels l0, l1, . . . of Greg.

We proceed to define the Turing machine M producing an exploration sequencew ∈ {−1, 0, 1}+
with the desired properties as shown in Algorithm 2. We assume that the initial incoming port
number is 0 and hence l0 = wreg (0). First, note that the next outgoing port number li in Greg can
be computed from the last outgoing port number in Greg and the offset wreg (i) in constant space

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:16 Y. Disser et al.

ALGORITHM 2: Turing machine M computing exploration sequence for arbitrary graphs.

1: output 0,0

2: i ← 0

3: while Mreg has not terminated do

4: obtain next offset wreg (i) from Mreg

5: compute edge label li in Greg

6: if li = 0

7: output 1,0

8: else if li = 1

9: output −1, 0

10: else if li = 2

11: output 0

12: i ← i + 1

(line 5 of Algorithm 1). Thus, M can be implemented in O (logz) space. By assumption, the length

of the exploration sequence produced by Mreg is bounded by zO (1) . Hence, also the length of the

exploration sequence produced by M is bounded by zO (1) .
What is left to show is the first and second property. LetA be an agent following the exploration

sequence w produced by M in G and starting at a vertex v0 with incoming port number a0. Let
further Areg be an agent following wreg in Greg and starting at vertex (v0,a0) with incoming port
number 0. We first establish the following invariants that hold after every iteration i of the while-
loop in Algorithm 2:

(1) If agent Areg is at vertex (vi ,ai) in Greg after i steps, then after following the exploration
sequence output by M up to the end of iteration i agent A is at vi in G and ai mod dvi

is
the current incoming port number.

(2) If (vi ,ai) is visited by Areg inGreg, then inG bothvi and the neighbor incident to the edge
with label (ai mod dvi

) are visited by A.

We show the invariants by induction. Note that at the beginning the Turing machine M outputs
0,0 so that in G agent A visits the neighbor of v0 incident to the edge with port number a0 and
then returns to v0. Thus, both invariants hold before the first iteration of the while-loop.

Now assume that before iteration i both invariants hold. We show that then they also hold after
iteration i . If agentAreg is at the vertex (v,a) and the edge traversed byAreg in step i has label 0, i.e.,
li = 0, then Areg moves to vertex (v, (a + 1) mod 3dv) by the definition of Greg, see also Figure 1.
By assumption, agent A is at vertex v in G and the incoming port number is a mod dv . Thus, if
agent A follows the exploration sequence 1,0 output by M in iteration i (line 7 of Algorithm 2),
then it first traverses the edge labeled (a + 1) mod dv and then returns to v . This means that after
iteration i , the current vertex of A in G is v and the incoming port number is (a + 1) mod dv =

((a + 1) mod 3dv) mod dv . Moreover, agent A visited both v and the neighbor of v incident to the
edge with label (a + 1) mod dv . Thus, both invariants hold after iteration i in this case.

The case that li = 1 is analogous except that edges with label li = 1 in Greg lead from a vertex
(v,a) to a vertex (v, (a − 1) mod 3dv). The equivalent movement of A in G is achieved by the
sequence −1, 0 (line 9 in Algorithm 1).

So assume that agent Areg in step i traverses an edge with label li = 2 from a vertex (v,a) to a
vertex (v ′,a′). This means that there is an edge {v,v ′} in G with port number a mod dv at v and
port number a′ mod dv ′ at v ′. By assumption, at the beginning of iteration i agent A is at v and
a mod dv is the label of the edge to the previous vertex. So if A follows the exploration sequence 0

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:17

output in iteration i (line 11 of Algorithm 2), then it moves to v ′. Now the label to the previous
vertex at v ′ is a′ mod dv ′ and A visited both v and v ′ so that both invariants hold again.

Finally, for the second property in the lemma, we know that after following the exploration
sequence wreg agent Areg returns to (v0,a0) in Greg by Lemma 3.2. Thus, after following w agent
A returns to v0 and a0 is the incoming port number by the first invariant.

What is left to show is thatA visits at least min{z,n} distinct vertices inG. IfGreg has at most 3z2

vertices, then Areg visits all vertices in Greg by assumption and thus A also visits all vertices in G
by the second invariant. Otherwise, we know that Areg visits at least 3z2 distinct vertices in Greg.
Note that this implies z < n as Greg contains at most 3n(n − 1) vertices.

Assume, for the sake of contradiction, that A visits less than z vertices in G. Let V̄reg be the set

of vertices visited by Areg in Greg. As |V̄reg | ≥ 3z2 by assumption, at least one of the two following
cases occurs:

(1) The cardinality of V̄ := { v | (v, j) ∈ V̄reg for some j } is at least z.

(2) There is a vertex v̄ in G such that Mv̄ := { j | (v̄, j) ∈ V̄reg } has cardinality ≥ 3z.

We show that both cases lead to a contradiction.
Note that by the second invariant agent A visits all vertices in V̄ . Thus, if |V̄ | ≥ z, then A visits

at least z distinct vertices in G, a contradiction.
Assume the second case occurs and let v̄ in G be a vertex such that |Mv̄ | ≥ 3z. Then, we have
|{j mod dv̄ | j ∈ Mv̄ | ≥ z implying that agent A visits at least z neighbors of v̄ inG by the second
invariant. This again is a contradiction. �

To make the results above usable for our agents with pebbles, we need more structure regarding
the memory usage of the agent. To this end, we formally define a walking Turing machine with
access to pebbles, which we will refer to as a pebble machine. Formally, we can view such a walking
Turing machine as a weaker agent model than the general agent model with pebbles described in
Section 2.2.2, where the states of the agent correspond to the state of the working tape, the position
of the head, and the state of the Turing machine. Specifically, this model is weaker, since it separates
computations on its tape from state transitions that depend on pebble locations and incoming port
number, and since it demands δTM to be computable.

Definition 3.4. Let s,p,m ∈ N . An (s,p,m)-pebble machine T = (Q, Q̄, P ,m,δin,δTM,δout,q
∗) is

an agent A = (Σ, Σ̄,δ ,σ ∗) with a set P = {1, . . . ,p} of p pebbles and the following properties:

(1) The set of states is Σ = Q × {0, 1}m × {0, . . . ,m − 1}, where |Q | = s . This means that each
agent state consists of a Turing state, the state of the working tape of lengthm, and a head
position on the tape.

(2) In the initial state σ ∗ the Turing state is q∗, the head position is 0, and the tape has 0 at
every position.

(3) The agent’s transition function δ : Σ ×N × (N ∪ {⊥}) × 2P × 2P → Σ × (N ∪ {⊥}) ×
2P × 2P is computed as follows:
(a) The agent first observes its local environment according to the function δin : Q ×N ×

(N ∪ {⊥}) × 2P × 2P → Q that maps a vector (q,dv , l , PA, Pv) consisting of the current
Turing state, the degree dv of the current vertex, the label l of the edge leading back to
the vertex last visited, the set PA of carried pebbles and the set Pv of pebbles located
at the current vertex to a new Turing state q′.

(b) The agent does computations on the working tape like a regular Turing machine ac-
cording to the function δTM : Q × {0, 1} → Q × {0, 1} × {left, right} that maps the tu-
ple consisting of the current Turing state and the symbol at the current head position
(q,a) to a tuple (q′,a′,d) meaning that the machine transitions to the new state q′,

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:18 Y. Disser et al.

writes a′ at the current position of the head and moves the head in direction d ; this
process is repeated until a halting state q̄ ∈ Q̄ is reached (note that we only consider
Turing machines that eventually halt).

(c) It performs actions according to the function δout : Q̄ ×N × (N ∪ {⊥}) × 2P × 2P →
2P × 2P × (N ∪ {⊥}) that maps a tuple (q,dv , l , PA, Pv) containing the current Turing
state q, the degree dv of the current vertex, the label l of the edge leading back to the
vertex last visited, the set of carried pebbles PA and the set of pebbles Pv at the current
vertex v to a tuple (P ′A, P

′
v , l
′). This means that the agent drops and retrieves pebbles

such that it carries P ′A, leaves P ′v at v and traverses the edge with local edge label l ′.

When considering a pebble machine T = (Q, Q̄, P ,m,δin,δTM,δout,q
∗), we call the Turing

states Q simply states, and we call the set of states Σ of the underlying agent model configura-

tions. As the configuration of a pebble machine is fully described by the (Turing) state q ∈ Q , the
head position, and the state of the working tape, it has sm2m configurations. We further call a
transition of the agent according to the transition function δTM a computation step.

Note that an agent remains at the same vertex and only changes its configuration when per-
forming a computation step.

We assume that a pebble machine does not forget the incoming port number when remaining
at a vertex, i.e., the incoming port number does not become ⊥ in this case. Note that for any
pebble machine T there is an agent A with pebbles that never waits at a vertex and combines
multiple intermediate transitions of the pebble machine (of which only the last one results in an
edge traversal) into one transition with edge traversal. Then the agent A always has access to the
incoming port number, so we may make this assumption for the sake of simplicity and without
strengthening the agent model.

In the following theorem, we explain how to place pebbles on a closed walk and use them as
additional memory.

Theorem 3.5. There are constants c, c ′ ∈ N such that the following holds: Let T be a (s,p, 2m)-
pebble machine that performs a closed walk in any graph following an exploration sequence

in {−1, 0, 1}+ and terminates with allp pebbles at the starting vertex. Then there exists a (cs,p + c,m)-
pebble machine T ′ that follows an exploration sequence in {−1, 0, 1}+ and terminates at the starting

vertex carrying all p + c pebbles. Moreover, the following properties hold:

(1) For every graph G with n < 2m/c ′ vertices, the pebble machine T ′ explores G. The overall

number of edge traversals and computation steps needed by the pebble machineT ′ is bounded

by 2O (m) .

(2) For every graph G with n ≥ 2m/c ′ vertices, T ′ reproduces the walk of T in G. For the initial-

ization, T ′ needs 2O (m) edge traversals and computations steps. Afterwards, the number of

edge traversals and computation steps needed by the pebble machineT ′ to reproduce one edge

traversal or computation step of T is bounded by 2O (m) .

(3) If T satisfies the pickup invariant, then so does T ′.

Proof. The general idea of the proof is thatT ′ places the constant number of additional pebbles
on a closed walkω to encode the tape content of the pebble machineT . Using these pebbles,T ′ can
also count the number of distinct vertices on the closed walkω. If the closed walk is too short, then
T ′ already explored the graph and the first case occurs. Otherwise, the closed walk is long enough
to allow for a sufficient number of distinct positions of the pebble, and we are in the second case
of the statement of the theorem.

Let Q be the set of states of T . We define the set of states of T ′ to be Q ×Q ′ for a set Q ′, i.e.,
every state of T ′ is a tuple (q,q′), where q corresponds to the state of T in the current step of the

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:19

traversal. The pebble machine T ′ observes the input according to δin, performs actions according
to δout, and uses p pebbles in the same way asT . Thus, after the transitions that correspond to the
transitions of pebble machineT , the first component of the state ofT ′ corresponds to the state ofT .
Moreover, the positions of the p pebbles that T ′ and T have in common is the same. Additionally,
the pebble machineT ′makes many intermediate transitions to simulate the computations ofT and
to carry the additional pebbles {p0,p1, . . . ,pc−2,ptemp} along. For reproducing a step of the pebble
machineT , the pebbles {p0,p1, . . . ,pc−2} are placed along a closed walk ω to simulate the memory
of T , while the states Q ′ and the tape of T ′ are used to manage this memory. The purpose of the
pebble ptemp will be explained later.

We divide the tape of T ′ into a constant number c0 of blocks of size m/c0 each. In the course
of the proof, we will introduce a constant number of variables to manage the simulation of the
memory of T with pebbles. Each of these variables is stored in a constant number of blocks. The
constant c0 is chosen large enough to accommodate all variables on the tape ofT ′. By Lemma 3.3,
there is a constant c1 such that for any r ∈ N there is a Turing machine M with at most c1 states
and a tape of length c1 · r outputting an exploration sequence that gives a closed walk of length at
most 2c1 ·r visiting at least min{2r ,n} vertices in any graph with n vertices. Letm1 :=m/(c0c1) and

letm0 ∈ N be such that for allm′ ∈ N withm′ ≥ m0, we have c1 ≤ 2m′/c0 and 2m′/c0 > 2m′.
In the following, we show how the simulated memory is managed by providing algorithms

in pseudocode (see Algorithms 3 to 6). These can be implemented on a Turing machine with a
constant number of states cAlg. Let c = max{22m0 , 2c0c1 + 1, cAlg} and c ′ := c0c1. Note that c only
depends on the constants c0, c1 and cAlg, but not onm orp. It is without loss of generality to assume
m ≥ m0, because form < m0, we can store the configuration of the tape ofT in the states Q ′ ofT ′,
since c ≥ 22m0 .

We proceed to show that the computations on the tape of length 2m performed by T according
to the transition function δTM can be simulated using the pebbles {p0,p1, . . . ,pc−2,ptemp}. The proof
of this result proceeds along the following key claims.

(1) We can find a closed walk ω that starts at the current vertex v and contains 2m1 distinct
vertices so that c − 1 pebbles placed along this walk can encode all configurations of the
tape of T .

(2) We can move alongω while keeping track of the number of steps and counting the number
of distinct vertices until we have seen 2m1 distinct vertices.

(3) We can read from and write to the memory encoded by the placement of the pebbles
along ω.

(4) If T moves from vertex v to vertex v ′, then we can move all pebbles to a closed walk ω ′

starting in v ′ while preserving the content of the memory.

1. Finding a closed walk ω. Lemma 3.3 yields a Turing machine Mwalk with c1 states and a tape of
lengthm/c0 that produces an exploration sequence corresponding to a closed walkω that contains
at least min{n, 2m1 } distinct vertices and has length at most 2c1m1 = 2m/c0 . We use a variable Rwalk

of sizem/c0 for the memory of Mwalk, which is initially assumed to have all bits set to 0. If 2m1 > n,
then the exploration sequence produced by Mwalk is a walk exploring G. Note that by definition
m/c ′ =m1 so this happens exactly when the first case in the theorem occurs. Below, we will show
how to count the number of unique vertices on the closed walk of Mwalk. Hence, the pebble ma-
chineT ′ can initially walk along the closed walkω counting the number of distinct vertices. If this
number is smaller than 2m1 , then we know that we have visited all vertices of G. In this case, all
pebbles used can be picked up while once walking along the closed walk ω. We show at the end

of the proof that this takes at most 2O (m) edge traversals and computation steps.

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:20 Y. Disser et al.

Fig. 2. Memory encoding by pebbles on a closed walk. The state of the tape of length 2m = 12 in (a) is

encoded by the position of the c − 1 = 4 pebbles in (b). The number of the vertices corresponds to the order

of first traversal by the closed walk ω starting in 0. The position of each pebble encodes m1 = 3 bits.

ALGORITHM 3: Auxiliary functions for moving along the closed walk ω.

function Step()

traverse edge according to value of exploration sequence output by Mwalk

Rsteps ← Rsteps + 1

function FindPebble(pi)
while not observe(pi) do

Step()

function Restart()
while Mwalk has not terminated do

Step()

Rsteps ← 0
Rid ← 0
Rwalk ← 0

From now on, we can therefore assume thatω contains at least 2m1 distinct vertices. We need to
show that c − 1 pebbles placed along the walkω can be used to encode all of the 22m configurations
of the tape of T . Figure 2 shows how each pebble encodes a certain part of the tape of T . The idea
is that each pebble can be placed on one of 2m1 different vertices, thus encoding exactly m1 bits.
We divide the tape of length 2m into 2m/m1 = 2c0c1 parts of sizem1 each, such that the position of
pebble pi encodes the bits {im1, . . . , (i + 1)m1 − 1}, where we assume the bits of the tape ofT to be
numbered 0, 1 . . . , 2m − 1. As c ≥ 2c0c1 + 1, we have enough pebbles to encode the configuration
of the tape of T .

2. Navigatingω. LetRsteps be a variable counting the number of steps alongω andRid be a variable
for counting the number of unique vertices visited along ω starting inv . Note that Rid gives a way
of associating a unique identifier to the first 2m1 distinct vertices alongω. Asm1 ≤ m/c0 holds,m/c0

tape cells suffice for counting the first 2m1 distinct vertices along ω. The overall number of steps
along the closed walk is bounded by 2m/c0 and therefore m/c0 tape cells also suffice for counting
the steps along ω.

It remains to show that we can move along the closed walk ω while updating Rsteps and Rid,
such that, starting from the vertex v , the variable Rsteps contains the number of steps taken and
Rid contains the number of distinct vertices visited. Let drop(pi) denote the operation of dropping
pebble pi at the current location, pickup(pi) the operation of picking up pi at the current location

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:21

ALGORITHM 4: Moving along the closed walk ω while updating Rsteps and Rid.

function NextDistinctVertex()

if Rid = 2m1 − 1

Restart()

return

Rid ← Rid + 1

while True do

Step()

drop(ptemp)

R′steps ← Rsteps

Restart()

FindPebble(ptemp)

if Rsteps = R′steps

pickup(ptemp)

break

while Rsteps < R′steps do

Step()

pickup(ptemp)

if possible, and let observe(pi) be “true” if and only if pebble pi is located at the current posi-
tion. Consider the auxiliary functions shown in Algorithms 3. The function Step() moves one step
along ω and updates Rsteps accordingly. The function FindPebble(pi) moves along ω until it finds
pebble pi . The function Restart() follows the exploration sequence output by Mwalk until Mwalk

terminates. After Mwalk terminates, the pebble machineT has returned to the starting vertexv and
the incoming edge label is again the same as at the beginning of the closed walk ω by Lemma 3.3.
The variables Rsteps and Rid are then set to 0, and Mwalk is restarted by setting the variable Rwalk

to 0. Finally, the function NextDistinctVertex() in Algorithm 4 does the following: If the num-
ber of distinct vertices visited along ω is already 2m1 , then the pebble machine T ′ returns to the
start. Otherwise, it continues along ω until it encounters a vertex that it has not visited before.
It repeatedly traverses an edge, drops the pebble ptemp, stores the number of steps until reaching
that vertex, then restarts from the beginning and checks if it can reach the vertex containing peb-
ble ptemp with fewer steps. If not, then the while-loop can be exited as T ′ found a new distinct
vertex. Note that we use the auxiliary variable R′steps, which needs a constant number of blocks of

sizem0/c0.
3. Reading from and writing to simulated memory. We show how to simulate the changes to the

tape ofT by changing the positions of the pebbles alongω. The transition function δTM ofT deter-
mines howT does computations on its tape and, in particular, howT changes its head position. We
use a variable Rhead of size m/c0 to store the head position. By assumption, m ≥ m0 and therefore
2m/c0 > 2m, i.e., the size of Rhead is sufficient to store the head position. To simulate one transition
of T according to δTM, we need to read the bit at the current head position and then write to the
simulated memory and change the head position accordingly. Reading from the simulated memory
is done by the function ReadBit() and writing of a bit b to the simulated memory by the function
WriteBit(b) (cf. Algorithms 6).

First, let us consider the two auxiliary functions GetPebbleId(pi) and PutPebbleAtId(pi , id)
(cf. Algorithms 5). As the name suggests, the function GetPebbleId(pi) returns the unique identi-
fier associated to the vertex marked by pi . Recall that vertices are indistinguishable. Here, unique
identifier refers to the number of distinct vertices on the walkω before reaching the vertex marked
with pi for the first time. Given an identifier id, we can use the function PutPebbleAtId(pi , id)

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:22 Y. Disser et al.

ALGORITHM 5: Reading and changing positions of pebbles.

function GetPebbleId(pi)

Restart()

while not observe(pi) do

NextDistinctVertex()
return Rid

function PutPebbleAtId(pi ,id)
Restart()
FindPebble(pi)
pickup(pi)
Restart()
while id>0 do

id← id − 1
NextDistinctVertex()

drop(pi)

ALGORITHM 6: Reading and writing one bit for the simulated memory.

function ReadBit()

i ← �Rhead/m1�
j ← Rhead −m1 · i
id← GetPebbleId(pi)
return j-th bit of id (in binary)

function WriteBit(b)
i ← �Rhead/m1�
j ← Rhead −m1 · i
id← GetPebbleId(pi)
if b = 1 and ReadBit() = 0

id← id + 2j

else if b = 0 and ReadBit() = 1
id← id − 2j

PutPebbleAtId(pi ,id)

for placing pebble pi at the unique vertex corresponding to id. By the choice of our encoding, if
Rhead = i ·m1 + j with j ∈ {0, . . . ,m1 − 1}, then the j-bit of the binary encoding of the position of
pebble pi encodes the contents of the tape cell specified by Rhead. Thus, for reading from the simu-
lated memory, we have to compute i and j and determine the position of the corresponding pebble
in the function ReadBit(). For the function WriteBit(b), we also compute i and j. Then, we move
the pebble pi by 2j unique vertices forward if the bit flips to 1 or by 2j unique vertices backward
if the bit flips to 0.

4. Relocating ω. Assume T is at vertex v with current incoming edge label l and it moves to
another vertex v ′. By assumption,T follows an exploration sequence in {−1, 0, 1}+ such that there
is an offset l0 ∈ {−1, 0, 1} and T traverses the edge with port number l1 := l + l0 mod dv at v . We
further let l ′ be the incoming port number at v ′. Due to Lemma 3.3, after every traversal of the
closed walk ω, pebble machineT ′ returns to v with incoming edge label l . After having computed
the label l1 of the edge tov ′,T ′ can move between vertexv with incoming edge label l and vertexv ′

with incoming edge label l ′ using constant memory and without the need to recompute l1: The
offset l0 ∈ {−1, 0, 1} takes T ′ from vertex v and incoming edge label l to vertex v ′ with incoming

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:23

edge label l ′. Moreover, the sequence of offsets 0,−l0, 0 takesT ′ from vertexv ′ and incoming edge
label l ′ back to vertex v with incoming edge label l .

Hence, T ′ can move the pebbles placed along the walk ω to the corresponding positions along
a new walk ω ′ starting at v ′ with incoming edge label l ′ in the following way: We iterate over
all c − 1 pebbles and for each pebble pi , we start in v , determine the identifier id of the vertex
marked by pi via GetPebbleId(pi), pick up pi , move to v ′ and place pi on ω ′ using the function
PutPebbleAtId(pi , id). This way, we can carry the memory simulated by the pebbles along during
the graph traversal. Note that as soon as pebble machine T terminates at a vertex v , the pebble
machine T ′ can simply move once along the closed walk ω, pick up all pebbles, return to v and
terminate. By assumption, all p pebbles of T are at v when T terminates and by construction also
the additional c pebbles are at v when T ′ terminates.

Thus, we have shown that in the second case T ′ can reproduce the traversal of T in G while
using a tape with half the length, but c additional pebbles and a factor of c additional states.

We now bound the number of edge traversals and computation steps in both cases. First, we
bound the number of edge traversals that T ′ needs for simulating one computation step of T .
Recall that T ′ needs at most 2m/c0 ≤ 2m edge traversals for moving once along the whole closed
walk ω. A call of the function Step() corresponds to one edge traversal, a call of FindPebble(pi)
thus corresponds to at most 2m edge traversals and also a call of Restart() corresponds to at most
2m edge traversals. Moreover, one iteration of the loop in NextDistinctVertex() accounts for at
most 2m + 1 edge traversals and therefore executing the whole function results in at most (2m + 1) ·
2m = 2O (m) edge traversals. This means that one call of GetPebbleId(pi) or PutPebbleAtId(pi ,id)

incur at most 2O (m) edge traversals and this also holds for ReadBit() and WriteBit(b). Hence,
for every computation step performed by T according to δTM, the pebble machine T ′ performs

actions according to ReadBit() and WriteBit(b) and overall does at most 2O (m) edge traversals.

The above argument also shows that at most 2O (m) edge traversals are necessary to count the
number of distinct vertices on the closed walk ω at the beginning.

Next, let us bound the number of edge traversals thatT ′ needs for reproducing one edge traversal
of T . This means that we need to count how many edge traversals are necessary to relocate all
pebbles placed along the walkω to the new walkω ′. For every pebble pi , we call GetPebbleId(pi),

which results in at most 2O (m) edge traversals, we pick up pi and move to v ′, which again needs

at most 2O (m) edge traversals, and place pi on ω ′ using the function PutPebbleAtId(pi , id), which

also needs 2O (m) edge traversals. Overall, this procedure is done for a constant number of pebbles

and hence requires at most 2O (m) edge traversals.
We now bound the number of computation steps of T ′ by using the bounds on the number

of edge traversals. Recall that the state of T ′ is a tuple (q,q′), where q corresponds to the state
of T . In the computation only the second component of the state of T ′ changes and therefore
there are only at most c possible states. The tape length and number of possible head positions
of the Turing machine is m. Since we may assume without loss of generality that m ≥ 2, we can

bound the number of distinct configurations of T ′ in each computation by 2O (m) . Hence, after

every edge traversal T ′ does at most 2O (m) computation steps. This implies that in the first case

of the statement of the theorem, the number of computation steps is bounded by 2O (m) , because

the number of edge traversals is bounded by 2O (m) as shown above. Similarly, in the second case

of the statement of the theorem the total number of computation steps after 2O (m) edge traversals

is bounded by 2O (m) . Since m ≥ 2 this means that also the sum of computation steps and edge

traversals can be bounded by 2O (m) both for one computation step and one edge traversal of T .
Finally, we need to show that the pickup invariant is maintained. By assumption,T satisfies this

property. As pebble machine T ′ drops and picks up the p common pebbles at the same vertices

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:24 Y. Disser et al.

with the same incoming labels, we need to only show this property for the c additional pebbles.
For any vertex u on the closed walk ω, let lu be the incoming edge label when T ′ first visits u
on the closed walk. If u is the current vertex after a call of the function NextDistinctVertex()
and Rsteps is the current number of steps from the starting vertex on the closed walk ω, then we
know that u cannot be reached with less than Rsteps steps. In particular, the incoming edge label
must be lu . Hence, every timeT ′ drops a pebble pi for i ∈ {0, 1, . . . c − 2} at vertex u, the incoming
edge label is lu and the same holds every time a pebble pi is picked up from u. Furthermore, the
function NextDistinctVertex() ensures that if pebble ptemp is dropped after R′steps steps on the

closed walk, then it is also picked up again after R′steps steps on the closed walk. Thus, the pickup

invariant also holds for the pebble ptemp. �

Finally, we show that by recursively simulating a pebble machine by another pebble machine
with half the memory but a constant number of additional pebbles we can explore any graph with
at most n vertices while using O (log logn) pebbles and only O (log logn) bits of memory.

Theorem 3.6. Any connected undirected graph on at most n vertices can be explored by an agent in

a polynomial number of steps using O (log logn) pebbles and O (log logn) bits of memory. The agent

does not require n as input and terminates at the starting vertex with all pebbles after exploring the

graph. The agent further maintains the pickup invariant.

Proof. Let c, c ′ ∈ N be the constants of Theorem 3.5. Let r ∈ N be arbitrary and consider a
(c, 0, c ′2r+1)-pebble machine T (r) that simply terminates without making a computation step or

edge traversal. Applying Theorem 3.5 for the pebble machine T (r) gives a (c2, c, c ′2r)-pebble ma-
chineT (r)

r that follows an exploration sequence in {−1, 0, 1}+ and terminates with all pebbles at the
starting vertex. Moreover, if n < 22r

holds, thenT (r)
r explores the graph and returns to the starting

vertex. If, however, n ≥ 22r

, then T (r)
r reproduces the walk of T (r) (which in this case is of course

trivial). Note that these properties hold even though the number n of vertices is unknown and, in
particular, not given as input to T (r)

r .
Applying Theorem 3.5 iteratively, we obtain a (cr+2−i , (r + 1 − i)c, c ′2i)-pebble machine T (r)

i

that follows an exploration sequence in {−1, 0, 1}+ and terminates with all pebbles at the starting
vertex. For a graph G with n < 22r

, T (r)
r explores G. Thus, for such a graph G it does not matter

which case occurs when applying Theorem 3.5, as in both cases, we can conclude thatT (r)
i for i ∈

{0, . . . , r − 1} explores the graph G. If we have n ≥ 22r

, then n ≥ 22i

holds for all i ∈ {0, . . . , r − 1}
and in particular T (r)

0 reproduces the walk of T (r) in G.
The desired pebble machineT exploring any graphG with O (log logn) pebbles and O (log logn)

bits of memory works as follows: We have a counter r , which is initially 1 and is increased by one
after each iteration until the given graph G is explored. In iteration r , pebble machine T does

the same as the (cr+2, (r + 1)c, c ′)-pebble machine T (r)
0 until it terminates. The pebble machine T

terminates as soon as for some r ∈ N the pebble machineT (r)
0 recognizes that it explored the whole

graph. This happens when r =
⌈
log logn

⌉
+ 1. Hence, T uses at most O (log logn) pebbles.

Concerning the memory requirement of T , note that T needs to store the state of T (r)
0 , the

tape content of T (r)
0 and the current value of r . There are cr+2 states of the pebble machine

T (r)
0 , its tape length is c ′ and r ≤ ⌈

log logn
⌉
+ 1 in every iteration, so that T can be implemented

with O (log logn) bits of memory.
It is left to show is that the number of edge traversals of T in the exploration of a given

graph G with n vertices is polynomial in n. To this end, we first show that the number of edge

traversals of the pebble machine T (r)
0 is bounded by nO (1) for all r ∈ {1, . . . , �log logn� + 1}. Let

r ∈ {1, . . . , �log logn� + 1} be arbitrary and let ti denote the sum of the number of edge traversals
and computation steps of T (r)

i in the given graph G. The pebble machine T (r)
r has a tape of length

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:25

m = c ′2r . Applying Theorem 3.5, we get that either T (r)
r explores G and uses at most 2O (m) edge

traversals and computation steps or T (r)
r simulates the walk of a pebble machine that does not

make a single edge transition and uses at most 2O (m) edges traversals and computation steps. In
both cases, we obtain

tr ≤ 2O (2r) ≤ 2O (2log log n) = 2O (log n) = nO (1) .

This shows the desired bound for tr . Furthermore, one computation step or one edge traversal
of T (r)

i leads to at most 2O (c ′ ·2i) = 2O (1)2i

edge traversals and computation steps of T (r)
i−1 by Theo-

rem 3.5. Hence, we obtain

ti−1 ≤ 2O (1)2i

ti ∀ i ∈ {1, . . . , �log logn� + 1}. (3)

By iterative application of Inequality Equation (3), we obtain

t0 ≤ 2O (1)2i

t1 ≤ · · · ≤ 2O (1)
∑�log log n�+1

i=1 2i · t �log log n �+1 ≤ 2O (1)2�log log n� · nO (1) ≤ nO (1) .

Thus, the number of edge traversals t0 ofT (r)
0 is polynomial in n. AsT performs at most nO (1) edge

traversals according to T (r)
0 for at most

⌈
log logn

⌉
+ 1 distinct values of r , the overall number of

edge traversals of T is also bounded by nO (1) .

The pebble machineT (r) satisfies the pickup invariant and, hence, by Theorem 3.5 also the pebble

machine T (r)
0 satisfies the pickup invariant. For every value of r , the pebble machine T (r)

0 returns
to the starting vertex carrying all (r + 1)c pebbles. Therefore, the constructed pebble machine T
picks up all pebbles in the same level of recursion as it drops them and, thus, also satisfies the
pickup invariant. �

Since an additional pebble is more powerful than a bit of memory (Lemma 2.1), we obtain the
following direct corollary of Theorem 3.6.

Corollary 3.7. Any connected undirected graph on at most n vertices can be explored by an agent

in a polynomial number of steps using O (log logn) pebbles and constant memory. The agent does not

require n as input and terminates at the starting vertex with all pebbles after exploring the graph.

As the pickup invariant is satisfied by the agent in Theorem 3.6, we can apply Lemma 2.3 and
obtain the following corollary.

Corollary 3.8. Any connected undirected graph on at most n vertices can be explored in polyno-

mial time by a set of O (log logn) agents with constant memory each. The agents do not require n as

input and terminate at the starting vertex after exploring the graph.

Remark 1. The agent in Theorem 3.6 requires O (log logn) bits of memory and the agents in
Corollaries 3.7 and 3.8 only O (1) bits of memory. An interesting question is how much memory is
necessary to fully encode the transition function,

δ : Σ ×N × (N ∪ {⊥}) × 2P × 2P → Σ × (N ∪ {⊥}) × 2P × 2P ,

of an agent (see Section 2.2.2). Naively encoding it as a table with a row for every possible state,
vertex degree, previous edge label and possible combination of O (log logn) pebbles/agents at the

current vertex takes nO (1) bits of memory.
However, we can obtain a much more compact encoding by exploiting the specific structure

of our algorithm: First, we never explicitly use the degree of the current vertex. Moreover, the
Turing machine from Lemma 3.3 that we internally use produces an exploration sequence of the
form {−1, 0, 1}+. This means that our transition function can be expressed more concisely if we
would allow in our model to specify transitions relative to the label of the previous edge.

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:26 Y. Disser et al.

Fig. 3. The r -barrierB on the left with two distinguished edges {u,v}, {u ′,v ′} can be connected to an arbitrary

graph G, as shown on the right.

Furthermore, our algorithm only interacts with a constant number of pebbles in every level
of the recursion (cf. Theorem 3.5). We can express the state of T in the proof of Theorem 3.6 as
a vector, where each component encodes the state in a different level of the recursion. In every
transition, only two consecutive entries of this vector can change, as one level of recursion only
interacts with the level of recursion below to access the simulated memory.

Since there are only a constant number of states per recursive level, and only a constant number
of pebbles involved, all transitions regarding two consecutive levels can be encoded in constant
memory. If we therefore explicitly encode allO (log logn) levels of recursion and additionally allow
to only give the edge label offset in the transition function, then the entire transition function can
be encoded with O (log logn) bits of memory.

4 LOWER BOUND FOR COLLABORATING AGENTS

The goal in this section is to obtain a lower bound on the number k of s-state agents needed for
exploring any graph on at most n vertices. To this end, we will construct a trap for a given set
of agents, i.e., a graph that the agents are unable to explore. The number of vertices of this trap
yields a lower bound on the number of agents required for exploration. The graphs involved in our
construction are 3-regular and allow a labeling such that the two port numbers at both endpoints
of any edge coincide. We therefore speak of the label of an edge and assume the set of labels to be
{0, 1, 2}.

Moreover, we call the sequence of labels l0, l1, l2, . . . of the edges traversed by an agent in a
3-regular graph G starting at a vertex v0 a traversal sequence and say that the agent follows the
traversal sequence l0, l1, l2, . . . in G starting in v0. Note that traversal sequences specify absolute
labels to follow, whereas exploration sequences give offsets to the previous label in each step.

The most important building block for our construction are barriers. Intuitively, a barrier is a
subgraph that cannot be crossed by a subset of the given set of agents. To define barriers formally,
we need to describe how to connect two 3-regular graphs. Let B be a 3-regular graph with two
distinguished edges {u,v} and {u ′,v ′} both labeled 0, as shown in Figure 3. An arbitrary 3-regular
graph G with at least two edges labeled 0 can be connected to B as follows: We remove the edges
{u,v} and {u ′,v ′} from B and two edges labeled 0 from G. We then connect each vertex of degree
2 inG with a vertex of degree 2 in B via an edge labeled 0. The verticesu,v,u ′,v ′ are referred to as
boundary vertices of B, whereas all other vertices of B are called interior vertices. Any edge e with
e � {u,v} and e � {u ′,v ′} is referred to as interior edge.

Definition 4.1 (r -barrier). For 1 ≤ r ≤ k , the graph B with distinguished edges {u,v}, {u ′,v ′} is
an r -barrier for a set of k s-state agentsA if for all graphsG connected to B as above, the following
two properties hold:

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:27

Fig. 4. Constructing a trap given two k-barriers H1 and H2.

(1) For all subsets of agents A′ ⊆ A with |A′| ≤ r and every pair (a,b) in {u,v} × {u ′,v ′}
the following holds: If initially all agents A are at vertices of G, then no agent in the set
A′ can traverse B from a to b or vice versa when only agents inA′ enter the subgraph B
at any time during the traversal. We equivalently say that no subset of at most r agents
can traverse B from a to b or vice versa.

(2) For all subsets of agents A′ ⊆ A with |A′| = r + 1, if initially all agents in A are at ver-
tices ofG and agents inA′ only enter B either viau andv , or viau ′ andv ′, then all agents
in A′ leave B either via u and v or via u ′ and v ′ if no other agents visit B during this
traversal. In other words, if the setA′ of agents enters B via the same distinguished edge,
then it cannot split up such that a part of the agents leaves B via u or v and the other part
via u ′ or v ′.

A k-barrier immediately yields a trap for a set of agents.

Lemma 4.2. Given a k-barrier with n vertices for a set of k agentsA, we can construct a trap with

2n + 4 vertices for A.

Proof. Let H1 and H2 be two copies of a k-barrier for the set of agents A with distinguished
edges {ui ,vi }, {u ′i ,v ′i } of Hi . We connect the two graphs and four additional vertices, as shown in
Figure 4. If the agents start in the vertex v0, then none of the agents can reach u ′1 or v ′1 via the
k-barrier H1 or via the k-barrier H2. Thus the agentsA do not explore the graph. The constructed
trap for the set of agents A contains 2n + 4 vertices. �

Our goal for the remainder of the section is to construct a k-barrier for a given set of k agents
A and to give a good upper bound on the number of vertices it contains. This will give an upper
bound on the number of vertices of a trap by Lemma 4.2. The construction of the k-barrier is
recursive. We start with a 1-barrier, which builds on the following useful result by Fraigniaud
et al. [24] stating that, for any set of non-cooperative agents, there is a graph containing an edge
that is not traversed by any of them. A set of agents is non-cooperative if the transition function δi

of every agent Ai is completely independent of the state and location of the other agents, i.e., δi is
independent of σ−i , see Section 2.2.3.

Theorem 4.3 ([24, Theorem 4]). For any k non-cooperative s-state agents, there exists a 3-regular

graphG on O (ks) vertices with the following property: There are two edges {v1,v2} and {v3,v4} inG,

the former labeled 0, such that none of the k agents traverses the edge {v3,v4} when starting in v1

or v2.

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:28 Y. Disser et al.

Fig. 5. A 1-barrier B for A for the case that l ∈ {1, 2}.

We proceed to generalize this construction for arbitrary starting states and collaborating agents.

Lemma 4.4. For every set of k collaborating s-state agents A = {A1, . . . ,Ak }, there exists a 1-

barrier B with O (ks2) vertices. Moreover, B remains a 1-barrier even if for all i ∈ {1, . . . ,k } agent Ai

with the set of states Σi starts in an arbitrary state σ ∈ Σi instead of the starting state σ ∗i .

Proof. Let A = {A1, . . . ,Ak }, let Σi be the set of states of Ai and let σ ∗i be its starting state.
For all i ∈ {1, . . . ,k } and all σ ∈ Σi , we define agent A(σ)

i to be the agent with the same behavior
as Ai , but starting in state σ instead of σ ∗i . That is, A(σ)

i has the same set of states Σi as Ai and it
transitions according to the function δi of Ai . Moreover, let S := {A(σ)

i | i ∈ {1, . . . ,k }, σ ∈ Σi }.
Applying Theorem 4.3 for the set of agents S yields a graphH with an edge {v1,v2} labeled 0 and

an edge {v3,v4} labeled l ∈ {0, 1, 2} so that any agentA(σ)
i that starts inv1 orv2 does not traverse the

edge {v3,v4}. Let B be the graph consisting of two connected copies of H and 8 additional vertices,
as illustrated in Figure 5. The edges {v1,v2} and {v ′1,v ′2} are replaced by {v1,v

′
1} and {v2,v

′
2}, which

are also labeled 0. The edges {v3,v4} and {v ′3,v ′4}with label l are deleted andv3 andv4 are connected
each to one of the two two-degree vertices of a diamond graph by an edge with label l . The same
connection to a diamond graph is added for v ′3 and v ′4 as shown in Figure 5. The edge labels of
the two diamond graphs are arbitrary. Since each diamond graph has two vertices of degree three,
each diamond graph has at least one edge with label 0. We choose one edge with label 0 and call
the end vertices u and v (resp. u ′,v ′). Note that in Figure 5, we have l ∈ {1, 2}; for the case that
l = 0 the edge {u,v} is the unique edge between the two vertices that are not adjacent to v3 or v4.

We claim that B is a 1-barrier forA with the distinguished edges {u,v} and {u ′,v ′}. Assume for
the sake of contradiction, that the first property does not hold, i.e., there is a graph G that can be
connected to B via the pairs of vertices {u,v} and {u ′,v ′} so that if the agents A start in G in an
arbitrary state, there is an agent Aj that walks (without loss of generality) from u to u ′ in B while
there are no other agents in B. Then, Aj in particular walks from v ′1 or v ′2 to v ′3 or v ′4 in H ′ and
starts this walk in a state σ ∈ Σj . But the traversal sequence of Aj in H ′ is the same as that of A(σ)

j

that starts at v ′1 or v ′2. This would imply that A(σ)
i traverses the edge {v3,v4} in the original graph

H when starting in v1 or v2, which contradicts Theorem 4.3.
To prove the second property of a 1-barrier, assume that there is a set of two agents, such that

both enter B via the same distinguished edge without the other agents entering B and one of them
exits B via u or v and the other via u ′ or v ′. But then again one of the agents must have traversed
H alone starting in v1 or v2 in a state σ and finally traversed the edge with label l incident to v3

or v4 or similarly in H ′ with v ′1,v
′
2,v
′
3,v
′
4. This leads to the same contradiction as above.

The whole proof does not use the specific starting states of the agentsA and, in particular, the
definition of S is independent of the starting states of the agents. Consequently, B is a 1-barrier for
A even if we change the starting states of the agents.

Since every agent has s states, we obtain that the cardinality of S is bounded by O (ks) and,
hence, the graph B has O (ks2) vertices by Theorem 4.3. �

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:29

Fig. 6. An edge {a,b} labeled l is replaced with the gadget B (l) containing an r -barrier B. Only the dotted

edges incident to a0 and b0 that are not labeled l are part of the gadget. Consequently, the gadget contains

two vertices of degree 2. The vertices a and b are macro vertices of the graph G (B).

The proof of Theorem 4.3 in Reference [24] uses the fact that when traversing a 3-regular graph
the next state of an s-state agent only depends on the previous state and the label l ∈ {0, 1, 2} of
the edge leading back to the previous vertex. Thus, after at most 3s steps, the state of the agent
and therefore also the next label chosen need to repeat with a period of length at most 3s . For
cooperative agents, however, the next state and label that are chosen may also depend on the
positions and states of the other agents. We therefore need to account for the positions of all agents
when forcing them into a periodic behavior. To this end, we will consider the relative positions of
the agents with respect to a given vertex v . For our purposes, it is sufficient to define the relative
position of an agent Ai by the shortest traversal sequence leading from v to the location of Ai .
This motivates the following definition.

Definition 4.5. The configuration of a set of k agentsA = {A1, . . . ,Ak } in a graphG with respect

to a vertexv is a (3k)-tuple (σ1, l1, r1,σ2, l2, r2, . . . ,σk , lk , rk), where σi is the current state ofAi , li is
the label of the edge leading back to the previous vertex visited byAi and ri is the shortest traversal
sequence from v to Ai , where ties are broken in favor of lexicographically smaller sequences and
where we set ri = ⊥ if the location of Ai is v .

To limit the number of possible configurations, we will force the agents to stay close together.
Intuitively, we can achieve this for any graph G by replacing all edges with (k − 1)-barriers. This
way, only all agents together can move between neighboring vertices of the original graph G. To
formalize this, we first need to explain how edges of a graph can be replaced by barriers. Since our
construction may not be 3-regular, we need a way to extend it to a 3-regular graph.

Definition 4.6. Given a graph G, with vertices of degrees 2 and 3, we define the 3-regular ex-

tension G as the graph resulting from copying G and connecting every vertex v of degree 2 to its
copyv ′. As the edges incident tov andv ′ have the same labels, it is possible to label the new edge
{v,v ′} with a locally unique label in {0, 1, 2}.

Note that the 3-regular extension only increases the number of vertices of the graph by a factor
of 2. Given a 3-regular graph G with distinguished edges e1, e2 labeled 0 and an r -barrier B for a
set of k agents A with k ≥ r , we replace all edges of G except for e1 and e2 using the following
construction. First, for every l ∈ {0, 1, 2}, we replace every edge {a,b} labeled l (except for the
distinguished edges e1 and e2) with the gadget B (l) shown in Figure 6, and we call the resulting
graph G0 (B). By construction, the labels of the edges incident to the same vertex in G0 (B) are
distinct. However, certain vertices only have degree 2. We take the 3-regular extension of G0 (B)

and define the resulting graph as G (B) := G0 (B).
The graphG (B) contains two copies ofG0 (B). To simplify exposition, we identify each vertex v

with its copy v ′ in G (B). Then, there is a canonical bijection between the vertices in G and the

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:30 Y. Disser et al.

vertices in G (B), which are not part of a gadget B (l). These vertices can be thought of as the
original vertices of G, and we call them macro vertices.

We further connect a graphG (B) to an arbitrary 3-regular graphG ′ as follows: Let e1 = {u1,v1}
and e2 = {u2,v2} be the two distinguished edges ofG with label 0. We remove the edges e1, e2 from
G (B) and also two edges of G ′ with label 0. Then, we connect each of the vertices u1,v1,u2,v2

with one vertex of G ′ of degree 2. We will use this construction in the recursive construction of
barriers, because, as shown later, for a suitable graph G, the graph G (B) is an (r + 1)-barrier with
distinguished edges e1, e2.

In the following, we show several results about graphs of the form G (B) connected to an arbi-
trary 3-regular graphG ′ as outlined above. We sometimes omit specifying the exact distinguished
edges ofG if these can be chosen arbitrarily. Moreover, we say that a group of agentsA is moving

in the interior of G (B) if all agents only visit interior vertices of G (B), i.e., they do not visit any
of the boundary vertices {u1,v1,u2,v2}. The vertices of G (B) corresponding to vertices of G other
than {u1,v1,u2,v2} are called the interior macro vertices, whereas {u1,v1,u2,v2} are referred to as
boundary macro vertices. Recall that we call any edge e inG with e � e1 and e � e2 an interior edge.

We now establish that the agents always stay close to each other in the graph G (B).

Lemma 4.7. Let G,G ′ be two connected 3-regular graphs and let B be a (k − 1)-barrier for a set

of k agents A with s states each. If the agents A start at arbitrary vertices of G ′ and then traverse

the graph resulting from connecting G (B) to G ′, then the following statements hold:

(1) For all interior edges {v,v ′} in G, no strict subset A′ � A of the agents can get from macro

vertexv to macro vertexv ′ inG (B) by traversing the gadget B (l) connectingv andv ′ (where

l ∈ {0, 1, 2}) without all other agents also entering this gadget.

(2) If the macro vertex v in G (B) most recently visited by an agent in A is an interior vertex,

then all agents are at v or in the surrounding gadgets B (0), B (1), and B (2).

Proof. For the sake of contradiction, assume that there is a strict subset of agentsA′ � A that
walks from a macro vertex v in G (B) via the gadget B (l) (where l ∈ {0, 1, 2}) to a distinct macro
vertexv ′ without all other agents also entering this gadget connectingv andv ′ at any time during
the traversal. The graph G (B) contains two copies of G0 (B), but all vertices in the (k − 1)-barriers
within G0 (B) have degree 3. Thus, A′ must have traversed some (k − 1)-barrier B while only
agents in A′ enter B at any time of the traversal. This is a contradiction, as |A′| ≤ k − 1 and B is
a (k − 1)-barrier. Thus, for any agent in A to get from the macro vertex v to the distinct macro
vertex v ′ via the gadget B (l) connecting v and v ′, all k agents A need to enter the gadget B (l)
during the traversal. This shows the first claim.

For the second part of the claim, note that because of Property 2 for the barrier B the agents
cannot split up into two groups such that after the traversal of the gadget connectingv andv ′ one
group is at v (or one of the vertices at distance at most 4 from v that are not part of the barrier B)
and the other group is at v ′ (or one of the vertices at distance 4 from v ′ that are not part of the
barrier B). By the first part of the proof, all agents have to enter a gadget B (l) with l ∈ {0, 1, 2} to
reach an interior macro vertex of G (B) after starting in G ′. By Property 2, the agents A cannot
split up while only visiting interior vertices ofG (B). Hence, if v is the macro vertex last visited by
an agent inA and v is an interior macro vertex (this means that, in particular, none of the agents
visited a vertex of G ′ after visiting v), then all agents must be located at v or in the surrounding
gadgets. �

Let B be a (k − 1)-barrier for a set of k cooperative s-state agents A = {A1, . . . ,Ak }. We will
frequently consider the configuration ofA with respect to some macro vertex v in a graph of the

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:31

form G (B). Recall from the definition that the graph G (B) contains two copies of the graph G0 (B)
and actually there exists a macro vertexv and a copyv ′. Thus, when we talk about configurations
ofA inG (B) with respect to some macro vertexv , we mean that we consistently choose one of the
copies G0 (B) and consider the configuration of A with respect to the macro vertex in this copy.

The behavior of a single agent A in a 3-regular graph is rather simple. If after t1 steps in a
3-regular graph G1 the state of A and incoming port number is the same as after t2 steps in a 3-
regular graphG2, then, in both cases, the agent does the same state transition and chooses the edge
with the same label. This means that, first of all, in one 3-regular graph (i.e.,G1 = G2) the behavior
of the agent quickly becomes periodic, and secondly, the agent has exactly the same behavior in
every 3-regular graph. In particular, the traversal sequence of one agent A is the same in every
3-regular graph. The intuitive reason is that the agent can gain no new information while travers-
ing a 3-regular graph, because these graphs locally look the same.

We want to obtain a similar result for a set of agents. However, in general, it is not true that if
the configuration of a set of agents in a graph G1 with respect to a vertex v1 after t1 steps is the
same as after t2 steps in G2 with respect to a vertex v2, then the next configurations and chosen
labels of each agent coincide. This is because an agent can be used to mark a particular vertex
and this can be used to detect differences in two 3-regular graphs G1 and G2 (or differences in the
local neighborhood of v1 and v2 for G1 = G2). For instance, one agent could remain at a certain
vertex while the other one walks in a loop that is only part of one of the graphs, but not the other.
This may then lead to different configurations. That is why we consider graphs of the form G (B).
In these graphs, all interior macro vertices look the same, as they are surrounded by the same
gadgets, and the agents have to stay close together, making it impossible for the agents to detect
a loop that is part of one of the graphs, but not the other. This intuition is formally expressed in
the following technical lemma.

Lemma 4.8. Let B be a (k − 1)-barrier for a set of k s-state agents A, and let G1, G2, G ′1 and G ′2
be 3-regular graphs. Assume that, for i ∈ {1, 2}, the graph Gi (B) is connected to G ′i and the agents

A start at arbitrary vertices of G ′i . Further, consider the configuration of A after ti exploration steps

where the last macro vertex vi visited is an interior macro vertex of Gi (B). If the configuration after

t1 steps with respect to v1 is the same as after t2 with respect to v2, then one of the following claims

holds:

• For i ∈ {1, 2}, the agents only visit the last macro vertexvi or vertices of the surrounding gadgets

for the remainder of the exploration of the respective graph.

• There is l ∈ {0, 1, 2} such that in both graphs the agents traverse the gadget B (l) to the next

macro vertexwi inGi (B). Moreover, the configuration of the agentsA with respect tow1 when

the first agent visitsw1 is the same as the configuration with respect tow2 when the first agent

visits w2.

Proof. The graphs G1 (B) and G2 (B) locally look the same to the agents, since the macro ver-
tices v1 and v2 are surrounded by the same gadgets, as shown in Figure 7. Formally, this means
that there is a canonical graph isomorphism γ from the induced subgraph of G1 (B) containing v1,
all surrounding gadgets and the neighboring macro vertices to the induced subgraph ofG2 (B) con-
taining v2, all surrounding gadgets and the neighboring macro vertices. Moreover, γ respects the
labeling and mapsv1 tov2. Note that it is important that bothv1 andv2 are interior macro vertices
for the isomorphism to exist.

As the configuration ofA after t1 steps with respect tov1 is the same as the configuration ofA
after t2 steps with respect to v2, the isomorphism also respects the positions of all the agents. By
Lemma 4.7, we further know for i ∈ {1, 2} that, as long asvi inGi (B) is the last macro vertex visited

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:32 Y. Disser et al.

Fig. 7. An interior macro vertex v in a graph G (B) surrounded by the three gadgets B (0),B (1) and B (2).

by the agents A, all agents are at vi or the surrounding gadgets. Iteratively, for h = 0, 1, . . . the
following holds until the agents reach a macro vertex distinct from vi in Gi (B):

(1) For every agent A ∈ A, the state of A and the incoming port number after t1 + h steps
in G1 (B) is the same as the state of A and the incoming port number after t2 + h steps
in G2 (B).

(2) The isomorphism γ maps the position of every agent A ∈ A after t1 + h steps in G1 (B) to
the position of A after t2 + h steps in G2 (B).

In particular, this means that if the agents in G1 (B) never visit a macro vertex distinct from
v1 after step t1, then also the agents never visit a macro vertex distinct from v2 after step t2 in
G2 (B). However, if after t1 + h̄ steps for some h̄ ∈ N one agentA ∈ A first visits the distinct macro
vertex w1 in G1 (B), then after t2 + h̄ steps in G2 (B) agent A also visits the distinct macro vertex
w2 for the first time. At this moment, the configuration of A with respect to v1 is the same as the
configuration of A with respect to v2. This implies that v1 and w1 are connected with the same
gadget B (l) as v2 and w2. Furthermore, also the configuration of A with respect to w1 after t1 + h̄
steps must be the same as the configuration of A with respect to w2 after t2 + h̄ steps. �

Let G, G ′ be two 3-regular graphs and B be a (k − 1)-barrier for a set of k agents A with s
states each. While traversing the graphG (B) connected toG ′, assume that the agentsA in step t0
first visit an interior macro vertex v0 distinct from the previous macro vertex visited by any agent
in A. Further, let x0 be the configuration of A in step t0 with respect to v0. Iteratively, for i > 0,
define ti to be the first point in time after ti−1, when one of the agents in A visits an interior
macro vertex vi distinct from vi−1. We also say that A arrives at vi at this exploration step. Note
that as soon as A visit a boundary vertex of G (B), we abort and the sequence ends. The vertex
vi is a neighbor of vi−1 in G and, by Lemma 4.7, all agents are at vi or the surrounding gadgets.
The sequence of macro verticesv0,v1, . . ., which is a sequence of neighboring vertices inG, yields
a unique sequence of labels l0, l1, . . . of the edges between the neighboring vertices in G, which
we call the macro traversal sequence of A starting in vertex v0 of G (B) in configuration x0. Note
that the macro traversal sequence may be finite if the agents visit a boundary macro vertex or
stop exploring distinct macro vertices. From Lemma 4.8, we obtain that the configuration x0 in
step t0 completely determines all labels of the macro label sequence independent of the underlying
graphG (the graphG may, however, influence when the macro label sequence terminates, because
the agents A visit a boundary vertex).

Before we can present the recursive construction of barriers, we need to introduce an additional
definition. Let k, r ∈ N be such that 2 ≤ r ≤ k . To construct an r -barrier B′ for a set A of k
cooperative s-state agents given an (r − 1)-barrier B, we need to examine the behavior of all

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:33

subsets of r agents. There are (k
r

) subsets of r agents and the behavior of two different subsets of r

agents may be completely different. We denote these (k
r

) subsets of r agents by A (r)
1 , . . . ,A

(r)

(k
r)

.

Assume that we have an (r − 1)-barrier B for a set of k agentsA and let G, G ′ be two 3-regular
graphs such that G (B) is connected to G ′. We assume that the agents A start at arbitrary ver-

tices of G ′. For 1 ≤ j ≤ (k
r

), consider the situation that only the subset of agents A (r)
j enters

the subgraph G (B) and let v be the last interior macro vertex visited by the agents A (r)
j . Until

these agents visit a distinct macro vertex w , all agents inA (r)
j are located at v or the surrounding

gadgets B (0),B (1),B (2) by Lemma 4.7. Thus, the number of possible locations of the agents can
be bounded in terms of the size of the gadgets B (0), B (1), and B (2). In addition, every agent has
at most s states. Therefore the number of configurations of A (r)

j with respect to the macro ver-
tex v last visited is finite and can be bounded in terms of s and the size of the gadgets. We define
αB to be the number of possible configurations of A (r)

j with respect to an interior macro vertex
v ofG (B) in the exploration step when the agentsA (r)

j arrive atv , i.e., some agent inA (r)
j first visits

v . Note thatαB is a bound on the number of possible configurations and hence is independent of the
specific subset of agents A (r)

j . As the local neighborhood of v , i.e., the three gadgets surrounding
v , does not depend on the graph G, the definition also does not depend on the 3-regular graph G.

Given the definition of αB , we are now in a position to present the construction of an r -barrier
given an (r − 1)-barrier. We will later bound αB and, thus, the size of the r -barrier in Lemma 4.11.

Theorem 4.9. Given an (r − 1)-barrier B with n vertices for a setA of k agents with s states each,

we can construct an r -barrier B′ for A with the following properties:

(1) We have B′ = H (B) for a suitable 3-regular graph H with distinguished edges e1 = {u1,v1}
and e2 = {u2,v2} labeled 0.

(2) Any path from u1 or v1 to u2 or v2 in B′ contains at least 3 distinct barriers B.

(3) The r -barrier B′ contains at most O ((k
r

) · n · α2
B) vertices.

Proof. Let G, G ′ be two arbitrary 3-regular graphs and e , e ′ be two distinguished edges in
G with label 0 such that G (B) is connected to G ′ via the vertices incident to the distinguished

edges. For j ∈ {1, 2, . . . , (k
r

)}, consider the subset of r agents A (r)
j starting at arbitrary vertices of

G ′. By definition and Lemma 4.7, there are at most αB possible configurations of the agents A (r)
j

whenever one of the agents in αB first visits a new distinct interior macro vertex in G (B). We can
hence denote these possible configurations by x1, . . . ,xαB

.
Assume that after t exploration steps an agent in A (r)

j first visits an interior macro vertex v
in G (B) distinct from the previous macro vertex visited by any agent in A (r)

j . Moreover, let xh

for h ∈ {1, . . . ,αB } be the configuration of A (r)
j with respect to v at this time. By Lemma 4.8, the

following holds: Either the agents A (r)
j do not visit any macro vertex distinct from v after step

t or xh uniquely determines l ∈ {0, 1, 2} such that the agents traverse the gadget B (l) to the next
macro vertex v ′ visited in G (B) (this means that l only depends on xh , A (r)

j and B, but not on G).
We can therefore define a single agent Āj as follows: The set of states of Āj is {σ1, . . . ,σαB

}.
Moreover, in state σh the agent Āj traverses the edge labeled l and transitions to σh′ if the set

of agents A (r)
j in configuration xh at a time t traverses the gadget B (l) to the next macro vertex

v ′. Here the configuration of Āj with respect to v ′ when the first agent visits v ′ is xh′ . If the
agents Āj do not visit any macro vertex after visiting v in step t , then Āj terminates in state σh .
The starting state of Āj corresponds to the configuration with respect to a vertex v , where all the
agents inA (r)

j are in their starting states and located at vertexv . Note that the transition function δ̄
of Āj described above is well-defined, because, by Lemma 4.8, the label l only depends on the
configuration ofA (r)

j at t and is independent of the underlying graph G. By construction, there is

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:34 Y. Disser et al.

Fig. 8. Connecting the graphs H1,H2, . . . ,H(k
r) to a graph H , yields the r -barrier H (B).

a one-to-one correspondence between the macro traversal sequence ofA (r)
j starting inG (B) in an

interior macro vertexv in a configuration xh and the traversal sequence of agent Āj starting in the
corresponding vertexv inG in stateσh (as long asA (r)

j does not visit any boundary vertex inG (B)).
Applying Lemma 4.4 for the single agent Āj yields a 1-barrierHj withO (α2

B) vertices that cannot

be traversed by Āj , irrespective of its starting state. We now connect the graphs H1, . . . ,H(k
r) as

shown in Figure 8, and we letH denote the resulting graph. We first show that the graphB′ := H (B)
resulting from replacing all edges except for e1 = {u1,v1} and e2 = {u2,v2} by the barrier B is an r -
barrier for A. Afterwards, we show the three additional properties in the claim.

For the first property of an r -barrier, assume, for the sake of contradiction, that there is a
subset of r agents A (r)

j and some 3-regular graph G connected to H (B) such that without loss
of generality the agents A (r)

j can traverse H (B) from u1 to u2. Then there must be a consecutive
subsequence w0,w1, . . . ,wh of the macro vertex sequence of A (r)

j during the traversal of H (B)
with the following properties: The vertices w1, . . . ,wh−1 are contained in Hj (B), w0 and wh are
not contained in Hj (B), w1 and wh−1 (as vertices in the 1-barrier Hj) are incident to different dis-

tinguished edges (i.e., {u,v} or {u ′,v ′} in Figure 5) of the 1-barrier Hj . Thus, the set of agentsA (r)
j

starting inw0 or the surrounding gadgets in a suitable configuration xi with respect tow0 traverses
the graph Hj (B) from w1 to wh−1. This means that for a suitable graph G ′ connected to Hj and
starting state σi the agent Āj can traverse Hj . But this is a contradiction, as we constructed Hj as
a 1-barrier for Āj using Lemma 4.4 and the 1-barrier Hj is independent of the starting state of Āj .

For the second property of an r -barrier, letA′ ⊆ A be a set of agents with |A′| = r + 1. Assume,
for the sake of contradiction, that there is some graph G connected to H (B) such that after the
agentsA′ (and no other agents) enter H (B) via u1 and v1, or via u2 and v2, a subset ∅ � A′1 � A′
leaves H (B) via u1 or v1 and the other agents A′2 := A′ \ A′1 via u2 or v2. Since B is an (r − 1)-
barrier, no set of at most r − 1 agents can get from an interior macro vertex to a distinct interior
macro vertex in H (B). Thus, we must have |A′1 | ≥ r or |A′2 | ≥ r . Without loss of generality, we
assume that the first case occurs, which implies |A′1 | = r and |A′2 | = 1. For the single agent inA′2
to leaveH (B) viau2 orv2 at least r − 1 agents fromA′1 must be in a gadget adjacent tou2 orv2. But
all these r − 1 agents afterwards leave H (B) via u1 or v1 and they need the remaining agent inA′1
to even get to a distinct macro vertex. But then the set of r agentsA′1 traverses the subgraphsHj (B)

for all j ∈ {1, . . . , (k
r

)}, which again leads to a contradiction as in the proof for the first property
(for j such that A′1 = A

(r)
j).

Finally, we obviously have B′ = H (B) for a 3-regular graph H by construction and the second
additional property follows from the fact that any path from u1 orv1 to u2 orv2 in H has length at

least 3. Further, each Hj contains O (α2
B) vertices and therefore H has at most O ((k

r
) · α2

B) vertices.
Since B has n vertices, the number of vertices of B′ = H (B) is at most O ((k

r
) · n · α2

B), where we
use that H is 3-regular and therefore the number of edges of H that are replaced by a copy of B
is 3/2 times the number of its vertices. �

We now fix a set of k agentsA with s states each and let B1 be the 1-barrier given by Lemma 4.4
and Br for 1 < r ≤ k be the r -barrier constructed recursively using Theorem 4.9. Moreover, we

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:35

Fig. 9. Recursive structure of B (l) containing i-barriers for i ∈ {1, . . . , r − 1}.

let nr be the number of vertices of Br and αr := αBr−1 be the maximum number of possible config-
urations of a set of r agents with respect to an interior macro vertex in a graph of the formG (Br−1).

We want to bound the number of vertices nk of Bk and thus, according to Lemma 4.2, also
the number of vertices of the trap for A. By Theorem 4.9, there is a constant c ∈ N such that

nr ≤ c (k
r

)nr−1α
2
r . To bound nr , we therefore need to bound αr .

One possible way to obtain an upper bound on αr is to use Lemma 4.7 stating that there always
is a macro vertex v such that all agents are located at v or the surrounding gadgets. Counting
the number of possible positions within these three gadgets and states of the agents then gives
an upper bound on αr . For the tight bound in our main result, however, we need a more careful
analysis of the recursive structure of our construction and also need to consider the configurations
of the agents at specific times. We start with the following definition and a technical lemma.

For j ∈ {1, . . . , r − 1}, we say that a vertex w ′ is j-adjacent to some other vertex w if there is a
path P fromw tow ′ that does not traverse a j-barrier Bj , i.e., P does not contain a subpath leading
from one vertex of the distinguished edge {u,v} to a vertex of the other distinguished edge {u ′,v ′}
in Bj . As a convention, every vertex w is j-adjacent to itself for all j ∈ {1, . . . , r − 1}. Note that a
vertex w ′ that is part of a j-barrier may be j-adjacent to some vertex w outside the barrier if there
is a path from w to w ′ that does not traverse a distinct j-barrier.

Lemma 4.10. Let G, G ′ be two 3-regular graphs such that G (Br−1) is connected to G ′. If v is an

interior macro vertex inG (Br−1), then for j ∈ {1, . . . , r − 1} the number of vertices that are j-adjacent

to v is bounded by 24(r−j)nj .

Proof. To bound the number of j-adjacent vertices, we examine the recursive structure of one of
the gadgets B (l) incident tov , as shown in Figure 9. By Theorem 4.9, an (r − 1)-barrier B′ for r ≥ 3
is constructed from a 3-regular graph H and an (r − 2)-barrier B such that B′ = H (B). Hence, the
gadget B (l), which contains the barrier Br−1, also contains many copies of the barrier Br−2, which
again contain many copies of the barrier Br−3 (if r ≥ 4) and so on.

We first show that the distance fromv to any j-adjacent vertex, which is not part of a barrier Bj

and hence, in particular, not a boundary vertex of Bj , is at most 4(r − j). For j = r − 1, consider
Figure 6 showing how for l ∈ {0, 1, 2} every interior edge {a,b} with label l in G is replaced by
the gadget Br−1 (l) containing Br−1. Note that actually G (Br−1) contains a copy a′ of a as well as a
copy b ′ of b and there is one such gadget between a and b and another gadget between a′ and b ′.
However, all vertices in both gadget, which are (r − 1)-adjacent, but not in Br−1, are at distance
at most 4 from a for all l ∈ {0, 1, 2} (the copy a′0 of a0 is at distance 2 from a and every vertex in
the copy is at distance at most 2 from a′0). For j = r − 2, r − 3, . . . the claim follows by the same
argument, since edges between two macro vertices in Br−1 are replaced by a barrier Br−2 and so
on. See also the recursive structure given in Figure 9.

AsG (Br−1) is 3-regular, the number of vertices at distance at most 4(r − j) fromv can be bounded

by 3 · 24(r−j)−1. Hence there are at most 3 · 24(r−j)−1 vertices, which are j-adjacent but not part of a

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:36 Y. Disser et al.

barrier Bj . Moreover, any j-barrier Bj containing vertices that are j-adjacent tov , in particular con-
tains two vertices with a distance of at most 4(r − j) tov . This follows from the same analysis of the
recursive structure of the barriers as above. As G (Br−1) is 3-regular, there are at most 3 · 24(r−j)−1

vertices of distance at most 4(r − j) fromv and therefore at most 3/2 · 24(r−j)−1 different j-barriers,
with nj vertices each, containing j-adjacent vertices. Thus, there are at most 3/2 · 24(r−j)−1nj ver-
tices that are j-adjacent to v and part of a barrier Bj . Overall, the number of j-adjacent vertices
to v can therefore be bounded by

3/2 · 24(r−j)−1 · nj + 3 · 24(r−j)−1 ≤ 24(r−j) · nj ,

where we used nj ≥ 6 and j ≤ r − 1. �

The idea now is to consider the configuration of the agents with respect to a macro vertex vi

exactly at the time t when at least �r/2� + 1 agents are �r/2�-adjacent to vi . We then further use
the fact that it is not possible to partition the agents A into two groups A′ and A′′ with at most
i ≥ �r/2� agents each that are separated on any path by at least two i-barriers. This yields the
following bound on αr .

Lemma 4.11. Let A be a set of k agents, s ≥ 2 and r ∈ {2, . . . ,k }. We then have

αr ≤ s7r 2 · n �r /2�
�r /2� · nr−1 ·

r−1∏
j= �r /2�+1

nj .

Proof. LetA (r) ⊆ A be an arbitrary subset of r agents andG,G ′ be two 3-regular graphs such
that G (Br−1) is connected to G ′. Let further v be an interior macro vertex of G (Br−1). We want
to bound αr , i.e., the number of configurations of A (r) in the exploration step t when the agents

arrive at v . Let v ′ be the last macro vertex ofG (Br−1) that was visited by one of the agents inA (r)

before.
Because of the recursive structure of the barriers, see Figure 9, every macro vertex is surrounded

by �r/2�-barriers and any path between the two macro vertices v ′ and v contains at least one
barrier B �r /2� (note that r ≥ 2 by assumption). To reach the vertex v after visiting v ′, at least

�r/2� + 1 agents from A (r) are necessary to traverse such an �r/2�-barrier. Thus, at some step t0
before the agents arrive at v at step t at least �r/2� + 1 agents must be at a vertex that is �r/2�-
adjacent tov , as otherwise the agents would not be able to reachv . The crucial observation at this
point is that the number of possible configurations in step t0 also bounds the number αr of possible
configurations in step t , because, by Lemma 4.8, the configurations in step t must coincide if they
already coincided in step t0.

Let A1 denote the set of agents that are at a vertex that is �r/2�-adjacent to v at time t0 and

let A2 := A (r) \ A1. By the argument above, we have |A1 | ≥ �r/2� + 1. We claim the following:

For j ∈ {1, . . . , |A2 |}, there are at least (r − j) agents inA (r) that are located at a vertex that is (r −
j)-adjacent to v .

For j = |A2 |, we have r − j = |A1 | > �r/2�. Thus, the claim holds by definition ofA1, since there
are r − j agents, namely the set of agentsA1, which are located at vertices that are �r/2�-adjacent
to v and thus also (r − j)-adjacent to v , because r − j > �r/2�.

Now, assume for the sake of contradiction that the claim holds for j, but not for j − 1. This means
that there is a subset of agentsA′ ⊂ A (r) with |A′| = r − j such that all agents inA′ are located
at vertices that are (r − j)-adjacent to v . But for j − 1 the claim does not hold, which implies that

all other agents A′′ := A (r) \ A′ are at vertices that are not (r − j + 1)-adjacent: If there was an
agent A ∈ A′′ at a vertex that is (r − j + 1)-adjacent, then A′ ∪ {A} would be a set of (r − j + 1)
agents that are all at (r − j + 1)-adjacent vertices, which is a contradiction to the choice of j.

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:37

Fig. 10. Vertex a is (r − j)-adjacent to v , while b is not (r − j + 1)-adjacent to v .

But the path between any pair of vertices (a,b), such that a is (r − j)-adjacent to v and b is
not (r − j + 1)-adjacent to v , contains at least two (r − j)-barriers, see also Figure 10. The reason
is that r − j + 1 > �r/2� ≥ 1 and, by Theorem 4.9, any path from u or v to u ′ or v ′ contains at
least three (r − j) barriers. Thus the set of agentsA′ andA′′ are separated by at least two (r − j)-
barriers on any path and |A′| ≤ r − j as well as |A′′| = j < r − j, since j ≤ �r/2� − 1. But then a
set of at most r − j agents must have traversed a barrier Br−j or a set of at most r − j − 1 agents
must have traversed the gadget between two macro vertices in Br−j , which both is a contradiction.

By the claim above, we can enumerate the agents in A (r) as A1,A2, . . . ,Ar , so that:

(1) For j ∈ {1, . . . , |A1 |}, Aj ∈ A1 and the location of Aj is �r/2�-adjacent to v .
(2) For j ∈ {|A1 | + 1, . . . , r − 1}, Aj ∈ A2 and the location of Aj is j-adjacent to v .
(3) Agent Ar ∈ A2 is at v or one of the surrounding gadgets by Lemma 4.7.

We first bound the number of possible locations of the agents and afterwards consider the num-
ber of possible states and possible edge labels to the previous vertex.

There are r ! possible permutations of the agents. Moreover, using Lemma 4.10, we can bound the
number of possible locations at time t0 of the agents in A1 by (24(r−�r /2�)n �r /2�)

|A1 | , the number

of possible locations of the agents {A |A1 |+1, . . . ,Ar−1} by
∏r−1

j= |A1 |+1 24(r−j)nj and the number of

possible locations of Ar by 24nr−1. Overall, we can thus bound the number of possible locations of

the agents A (r) at t0 with respect to v by

r ! ·
(
24(r−�r /2�)n �r /2�

) |A1 | ��
�

r−1∏
j= |A1 |+1

24(r−j)nj
	

�

24nr−1

≤ r ! · (24r)r · n |A1 |
�r /2� · nr−1 ·

r−1∏
j= |A1 |+1

nj ≤ 25r 2 · n �r /2�
�r /2� · nr−1 ·

r−1∏
j= �r /2�+1

nj ,

where we used r ! ≤ r r ≤ 2r 2
and nj−1 ≤ nj for all j ∈ {2, . . . , r − 1}.

To bound the number of configurations of the agentsA (r) note that there are sr possible states
of the agents and for each agent 3 possible edge labels to the previous vertex. Combining these
bounds with the above bound on the number of locations of the agents, we obtain the following

bound on the number of configurations of A (r) at t0 with respect to v :

sr · 3r · 25r 2 · n �r /2�
�r /2� · nr−1 ·

r−1∏
j= �r /2�+1

nj ≤ s7r 2 · n �r /2�
�r /2� · nr−1 ·

r−1∏
j= �r /2�+1

nj .

Here, we used s ≥ 2 and r ≥ 2. By the observation at the beginning of the proof, the number of

possible configurations of A (r) at t0 with respect to v also bounds αr . �

Using the bound on αr from Lemma 4.11, we can bound the number of vertices of the barriers.

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:38 Y. Disser et al.

Theorem 4.12. For every set of k agentsA with s states each and every r ≤ k , there is an r -barrier

with at most O (sk ·24·r
) vertices.

Proof. The existence of an r -barrier follows from Lemma 4.4 and Theorem 4.9, and we further
have the following bound on the number of verticesnr of Br for a sufficiently large constant c ∈ N:

n1 ≤ cks2 and nr ≤ c

(
k

r

)
nr−1α

2
r .

It is without loss of generality to assume s ≥ 2, since otherwise a trap of constant size can trivially
be found. Hence, we can plug in the bound on αr from Lemma 4.11. For the asymptotic bound, we

may assume c ≤ sk , and we further have
(

k
r

)
≤ 2k . We therefore get

nr ≤ sk · 2k · nr−1 ·
(
s7·r 2)2

·
(
n �r /2�
�r /2�

)2
· n2

r−1

r−1∏
j= �r /2�+1

n2
j

≤ s2k+14r 2 · n(r+1)
�r /2� · n

3
r−1

r−1∏
j= �r /2�+1

n2
j . (4)

We proceed to show inductively thatnr ≤ sk ·24·r
holds for all r ∈ {1, . . . ,k }. For r = 1, we haven1 ≤

cks2 ≤ s4k ≤ sk ·24
. Let us assume the claim holds for 1, . . . , r − 1. From Inequality Equation (4), we

obtain

nr ≤ s2k+14r 2 ·
(
sk ·24·�r /2�)r+1

·
(
sk ·24(r−1)

)3

·
r−1∏

j= �r /2�+1

(
sk ·24·j)2

= s2k+14r 2+k ·(r+1) ·24·�r /2�+3·k ·24(r−1)+2k
∑r−1

j=�r /2�+1 24·j
.

Thus, it is sufficient to bound the exponent. As r ≥ 2, we have
∑r−1

i=0 24·i = (24r − 1)/(24 − 1) ≤
2 · 24(r−1) as well as (r + 1) · 24 �r /2� ≤ 4 · 24(r−1) and 2k + 14r 2 ≤ 2 · k · 24(r−1) . Hence, we obtain

2k + 14r 2 + k · (r + 1) · 24· �r /2� + 3 · k · 24(r−1) + 2k
r−1∑

j= �r /2�+1

24·j

≤ k ·
(
2 · 24(r−1) + 4 · 24(r−1) + 3 · 24(r−1) + 4 · 24(r−1)

)
≤ k · 24·r .

This shows nr ≤ sk ·24r

, as desired. �

The bound for the barriers above immediately yields the bound for the trap for k agents.

Theorem 4.13. For any set A of k agents with at most s states each, there is a trap with at

most O (s25k

) vertices.

Proof. We can always add additional unreachable states to all agents so that all of them have s

states. Theorem 4.12 yields a k-barrier for a given set of k agents A with O (sk ·24·k
) vertices. The

claim follows from the fact that k · 24·k ≤ 25·k and that a k-barrier with n vertices yields a trap
with O (n) vertices for A by Lemma 4.2. �

Finally, we derive a bound on the number of agents k that are needed for exploring every graph
on at most n vertices.

Theorem 4.14. The number of agents needed to explore every graph on at most n vertices is at

least Ω(log logn), if we allow O ((logn)1−ε) bits of memory for an arbitrary constant ε > 0 for every

agent.

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:39

Proof. Let A be a set of k agents with O ((logn)1−ε) bits of memory that explores any graph
on at most n vertices. By otherwise adding some unused memory, we may assume that 0 < ε < 1
and that there is a constant c ∈ N such that all agents in A have s := 2c ·(log n)1−ε

states. We apply

Theorem 4.13 and obtain a trap forA containing O (s25·k
) vertices. As the set of agentsA explore

any graph on at most n vertices, we have n ≤ O (1)s25·k
. By taking logarithms on both sides of this

inequality, we obtain

logn ≤ O (1) + 25k log s = O (1) + 25k · c · (logn)1−ε .

Multiplication by (logn)ε−1 on both sides and taking logarithms yields the claim. �

Observe that the entire argument eventually leading to Theorem 4.14 relies on bounding the
number of different configurations of the system (in the sense of Lemma 4.11), and, in particular,
on the number of steps until a configuration repeats (cf. Lemma 4.8 and Theorem 4.9). Clearly, the
number of configurations is only smaller for a single agent with pebbles, since pebbles do not have
a state or an incoming edge label associated with them. Our proof therefore carries over to this
setting (for an explicit proof in this setting, we refer to Reference [17]).

Corollary 4.15. An agent with O ((logn)1−ε) bits of memory for an arbitrary constant ε > 0
needs Ω(log logn) pebbles to explore every graph with at most n vertices.

5 OUTLOOK

We have established a tight bound of Θ(log logn) for the number of pebbles required by a sin-
gle agent with constant memory for exploring any undirected graph with n vertices. We further
showed that also Θ(log logn) agents with constant memory each are necessary and sufficient
for the same task, implying that in this setting collaborating agents are not more powerful than
pebbles.

An interesting question for future research is to explore to what extent these results are robust
to natural variations of the model. For our algorithm, it is essential that the pebbles are distinguish-

able. A simple way to simulate p distinguishable pebbles by indistinguishable pebbles is to identify
pebble i ∈ {1, . . . ,p} with a set of 2i indistinguishable pebbles. However, we then need 2p indistin-
guishable pebbles to simulate p distinguishable pebbles, and we would obtain an algorithm for the
exploration of an undirected graph for a single agent with constant memory and O (logn) indis-
tinguishable pebbles. While this construction shows that indistinguishable pebbles are at least as
powerful as bits of memory, more work is needed to determine whether this exponential overhead
for indistinguishable pebbles is necessary.

Another direction for future research would be to allow for more powerful pebbles that can, for
instance, be used as bookmarks that the agent may teleport back to at any time, or more powerful
agent models, e.g., with global communication between the agents, as in the jumping automaton
model for graphs by Cook and Rackoff [13]. Our lower bound construction requires that commu-
nication and movements are local and cannot easily be adapted to these more powerful models.

Finally, our results built on the algorithm of Reingold [33] and, thus, concern undirected graphs
only. Directed graph exploration is much harder, since an agent needs Ω(n logd) bits of memory
for exploring a directed graph with n vertices and maximum out-degree d , even when the agent
has a linear number of pebbles [21]. The best-known upper bound is an agent with O (nd logn) bits
and a single pebble [21], but the corresponding algorithm requires exponential time. It would be
interesting to see whether the memory requirement in this setting can be reduced at the expense
of a larger number of pebbles as well.

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

40:40 Y. Disser et al.

REFERENCES

[1] Susanne Albers and Monika R. Henzinger. 2000. Exploring unknown environments. SIAM J. Comput. 29, 4 (2000),

1164–1188.

[2] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, Laszlo Lovasz, and Charles Rackoff. 1979. Random walks, uni-

versal traversal sequences, and the complexity of maze problems. In Proceedings of the 20th Annual IEEE Symposium

on Foundations of Computer Science (FOCS’79). 218–223.

[3] Christoph Ambühl, Leszek Gąsieniec, Andrzej Pelc, Tomasz Radzik, and Xiaohui Zhang. 2011. Tree exploration with

logarithmic memory. ACM Trans. Algor. 7, 2 (2011), 1–21.

[4] Michael A. Bender, Antonio Fernández, Dana Ron, Amit Sahai, and Salil Vadhan. 2002. The power of a pebble: Ex-

ploring and mapping directed graphs. Inform. Comput. 176, 1 (2002), 1–21.

[5] Michael A. Bender and Donna K. Slonim. 1994. The power of team exploration: Two robots can learn unlabeled

directed graphs. In Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS’94).

75–85.

[6] Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. 1997. Navigating in unfamiliar geometric terrain. SIAM J.

Comput. 26, 1 (1997), 110–137.

[7] Manuel Blum and Dexter Kozen. 1978. On the power of the compass (or, why mazes are easier to search than graphs).

In Proceedings of the 19th Annual IEEE Symposium on Foundations of Computer Science (FOCS). 132–142.

[8] Manuel Blum and William J. Sakoda. 1977. On the capability of finite automata in 2 and 3 dimensional space. In

Proceedings of the 18th Annual IEEE Symposium on Foundations of Computer Science (FOCS). 147–161.

[9] Lothar Budach. 1978. Automata and labyrinths. Math. Nachrichten 86 (1978), 195–282.

[10] Jérémie Chalopin, Shantanu Das, Yann Disser, Matúš Mihalák, and Peter Widmayer. 2013. Mapping simple polygons:

How robots benefit from looking back. Algorithmica 65, 1 (2013), 43–59.

[11] Jérémie Chalopin, Shantanu Das, Yann Disser, Matúš Mihalák, and Peter Widmayer. 2015. Mapping simple polygons:

The power of telling convex from reflex. ACM Trans. Algor. 11, 4 (2015), 1–16.

[12] Jérémie Chalopin, Shantanu Das, and Adrian Kosowski. 2010. Constructing a map of an anonymous graph: Applica-

tions of universal sequences. In Proceedings of the 14th International Conference on Principles of Distributed Systems

(OPODIS’10). 119–134.

[13] Stephen A. Cook and Charles W. Rackoff. 1980. Space lower bounds for maze threadability on restricted machines.

SIAM J. Comput. 9, 3 (1980), 636–652.

[14] Xiaotie Deng, Tiko Kameda, and Christos H. Papadimitriou. 1998. How to learn an unknown environment. I: The

rectilinear case. J. ACM 45, 2 (1998), 215–245.

[15] Xiaotie Deng and Christos H. Papadimitriou. 1999. Exploring an unknown graph. J. Graph Theory 32, 3 (1999), 265–

297.

[16] Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej Pelc. 2004. Tree exploration with little memory.

J. Algor. 51, 1 (2004), 38–63. DOI:https://doi.org/10.1016/j.jalgor.2003.10.002

[17] Yann Disser, Jan Hackfeld, and Max Klimm. 2015. Undirected graph exploration with Θ(log log n) pebbles. In Pro-

ceedinbgs of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 25–39.

[18] Gregory Dudek, Michael Jenkin, Evangelos E. Milios, and David Wilkes. 1991. Robotic exploration as graph construc-

tion. IEEE Trans. Robot. Autom. 7, 6 (1991), 859–865.

[19] Rudolf Fleischer and Gerhard Trippen. 2005. Exploring an unknown graph efficiently. In Proceedings of the 13th

Annual European Symposium on Algorithms (ESA’05) (LNCS), G. Brodal and S. Leonardi (Eds.), Vol. 3669. 11–22.

[20] Klaus-Tycho Foerster and Roger Wattenhofer. 2016. Lower and upper competitive bounds for online directed graph

exploration. Theoret. Comput. Sci. 655 (2016), 15–29.

[21] Pierre Fraigniaud and David Ilcinkas. 2004. Digraphs exploration with little memory. In Proceedings of the 21st Annual

Symposium on Theoretical Aspects of Computer Science (STACS’04). 246–257.

[22] Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. 2005. Graph exploration by a finite au-

tomaton. Theoret. Comput. Sci. 345, 2–3 (2005), 331–344.

[23] Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. 2008. Impact of memory size on graph exploration capability.

Discrete Appl. Math. 156, 12 (2008), 2310–2319.

[24] Pierre Fraigniaud, David Ilcinkas, Sergio Rajsbaum, and Sébastien Tixeuil. 2006. The reduced automata technique

for graph exploration space lower bounds. In Theoretical Computer Science, O. Goldreich, A. L. Rosenberg, and A. L.

Selman. Lecture Notes in Computer Science, Vol. 3895. Springer, Berlin, Heidelberg.

[25] Frank Hoffmann. 1981. One pebble does not suffice to search plane labyrinths. In Proceedings of the 3rd International

Symposium on Fundamentals of Computation Theory (FCT’81). 433–444.

[26] Sorin Istrail. 1988. Polynomial universal traversing sequences for cycles are constructible. In Proceedings of the 20th

Annual ACM Symposium on Theory Computing (STOC’88). 491–503.

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

https://doi.org/10.1016/j.jalgor.2003.10.002

Tight Bounds for Undirected Graph Exploration with Pebbles and Multiple Agents 40:41

[27] Bala Kalyanasundaram and Kirk Pruhs. 1994. Constructing competitive tours from local information. Theoret. Comput.

Sci. 130, 1 (1994), 125–138.

[28] Michal Koucký. 2002. Universal traversal sequences with backtracking. J. Comput. Syst. Sci. 65, 4 (2002), 717–726.

[29] Michal Koucký. 2003. On Traversal Sequences, Exploration Sequences and Completeness of Kolmogorov Random Strings.

Ph.D. Dissertation. Rutgers, The State University of New Jersey.

[30] Nicole Megow, Kurt Mehlhorn, and Pascal Schweitzer. 2012. Online graph exploration: New results on old and new

algorithms. Theoret. Comput. Sci. 463 (2012), 62–72.

[31] Shuichi Miyazaki, Naoyuki Morimoto, and Yasuo Okabe. 2009. The online graph exploration problem on restricted

graphs. IEICE Trans. Info. Syst. E92-D, 9 (2009), 1620–1627.

[32] Noam Nisan. 1992. Pseudorandom generators for space-bounded computation. Combinatorica 12, 4 (1992), 449–461.

[33] Omer Reingold. 2008. Undirected connectivity in log-space. J. ACM 55, 4 (2008), 17.

[34] Hans-Anton Rollik. 1980. Automaten in planaren Graphen. Acta Inform. 13 (1980), 287–298.

[35] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis, II. 1977. An analysis of several heuristics for the

traveling salesman problem. SIAM J. Comput. 6, 3 (1977), 563–581.

[36] Walter J. Savitch. 1973. Maze recognizing automata and nondeterministic tape complexity. J. Comput. Syst. Sci. 7

(1973), 389–403.

[37] Anupam N. Shah. 1974. Pebble automata on arrays. Comput. Vision Graph. 3, 3 (1974), 236–246.

[38] Claude A. Shannon. 1951. Presentation of a maze-solving machine. In Proceedings of the 8th Conference on Cybernetics.

173–180.

Received April 2018; revised July 2019; accepted July 2019

Journal of the ACM, Vol. 66, No. 6, Article 40. Publication date: October 2019.

