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Abstract. We consider the problem of maximizing a fractionally subadditive function under
an increasing knapsack constraint. An incremental solution to this problem is given by an order in
which to include the elements of the ground set, and the competitive ratio of an incremental solution
is defined by the worst ratio over all capacities relative to an optimum solution of the corresponding
capacity. We present an algorithm that finds an incremental solution of competitive ratio at most
max{3.293

√
M, 2M}, under the assumption that the values of singleton sets are in the range [1,M ],

and we give a lower bound of max{2.618,M} on the attainable competitive ratio. In addition, we
establish that our framework captures potential-based flows between two vertices, and we give a
lower bound of max{2,M} and an upper bound of 2M for the incremental maximization of classical
flows with capacities in [1,M ] which is tight for the unit capacity case.

Key words. incremental optimization, competitive analysis, fractional subadditivity, flow

MSC codes. 68W27, 68W40, 90C17

1. Introduction. The decisions involved in large-scale infrastructure projects or
in scheduling expensive investments usually have an impact over a prolonged period of
time. This paper examines the question how investment or construction decisions can
be made over time as the total budget grows, in such a way that the resulting solution
is good at every point in time. This is a natural question for long-term infrastructure
projects such as the construction of road networks, public transport systems, and
energy networks. In addition, it is relevant for the investment decisions of businesses
in manufacturing or distribution infrastructure.

Mathematically, we model the above settings in terms of the incremental opti-
mization problem. Formally, we are given a ground set E of elements that can be
invested in. Each element e ∈ E has a weight w(e) that models the time or money
that has to be spent on realizing the element. In the following, for a set S ⊆ E, we
write w(S) :=

∑
e∈S w(e). The value of having realized a subset S ⊆ E of elements

is given by a monotone objective function f : 2E → R≥0. Given a capacity bound
C ∈ R≥0, the maximum value that can be obtained with elements up to this total size
is given by an optimum solution to the following mathematical optimization problem:

(P) f∗(C) := max
{
f(S)

∣∣ S ⊆ E,w(S) ≤ C
}
.

Given C ∈ R≥0, we denote the optimal value of this optimization problem by f∗(C)
and a set S ⊆ E for which the optimum is attained by S∗(C), where for the later we
break ties in an arbitrary but fixed manner in order to obtain a unique set S∗(C).

We are interested in obtaining an incremental solution to the optimization prob-
lem (P) that yields a good value for all capacity bounds C ∈ R≥0. Formally, an
(incremental) solution is an ordering π =

(
eπ(1), eπ(2), . . . , eπ(m)

)
of the elements of
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Figure 1.1. Two examples of the incremental flow problem where no ρ-competitive solution
with ρ < k exists. In the left example, we have unit weights, i.e., w(a) = w(b) = w(c) = 1.

the ground set E with m = |E|. For capacity C ∈ R≥0, let π(C) be the items
contained in the maximal prefix of π that fits into the capacity C, i.e.,

π(C) =
{
eπ(1), eπ(2), . . . , eπ(k)

}
for some k ∈ N such that

∑k
i=1 w(eπ(i)) ≤ C and either k = m or

∑k+1
i=1 w(eπ(i)) > C.

We say that the incremental solution π is ρ-competitive for some ρ ≥ 1 if

f∗(C) ≤ ρ f(π(C)) for all C ∈ R≥0.

We call π competitive if it is ρ-competitive for some constant ρ ≥ 1.
As an example, let us consider the special case of the incremental maximum flow

problem. Here, the ground set E corresponds to the set of edges of an undirected graph
G = (V,E) with two designated vertices s, t ∈ V . Each edge has a weight w(e) ∈ R≥0

and a capacity u(e) ∈ R≥0. The value f(S) of a subset S ⊆ E is defined as the
maximum value of an s-t-flow in GS = (V, S). Even in this special case, a competitive
solution may fail to exist. For illustration, consider the graph in Figure 1.1a. Every
solution π has to put edge a first in order to be competitive for C = 1. On the other
hand, every solution that puts edge a first is not better than k-competitive for C = 2.
Likewise, for the graph in Figure 1.1b, every competitive solution has to put edge a
first in order to be competitive for C = 1, and every solution that puts edge a first is
not better than k-competitive for C = k.

A closer inspection of these two examples reveals that there are (at least) two
effects that prevent the existence of competitive solutions. The first is the comple-
mentarity of elements. In the graph in Figure 1.1a, edges b and c are complementary
in the sense that both edges together support a flow of k while a single one of these
edges alone cannot support any flow. For the graph in Figure 1.1b, no two edges
are complementary since the total flow supported by a subset of edges is here simply
equal to the sum of the capacities of the edges. In this example, the non-existence
of a competitive solution is caused by the fact that the edges are too heterogenous.
More specifically, we have f({a}) = 1, but f({b}) = k, i.e., there are two singleton
sets whose value differs by a factor of k.

As we will show, these are essentially the only two effects that prevent the exis-
tence of competitive solutions. More specifically, we will make two assumptions that
exclude the two effects shown in Figure 1.1a and Figure 1.1b. First, to avoid comple-
mentarities between elements, we assume that f is fractionally subadditive. Formally,
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a function f : 2E → R≥0 is called fractionally subadditive if

f(A) ≤
k∑

i=1

αif(Bi) for all A,B1, . . . , Bk ∈ 2E and all α1, . . . , αk ∈ R≥0

such that
∑

i∈{1,...,k}:e∈Bi

αi ≥ 1 for all e ∈ A.

Observe that fractional subadditivity implies regular subadditivity, i.e., we have
f(A ∪ B) ≤ f(A) + f(B), but not vice-versa. Second, to avoid that there exist
singleton sets that differ too much in their values, we assume that there is a constant
M ∈ R≥0, M ≥ 1 such that f({e}) ∈ [1,M ] for all e ∈ E. We call such valuations
M -bounded.

Summarizing the discussion, this paper considers incremental solutions to (P)
under the following assumptions.

Assumption 1.1. The function f : 2E → R≥0 has the following properties:

f is monotone, i.e., f(A) ≥ f(B) for A ⊇ B,(MO)
f is M -bounded, i.e., f(e) ∈ [1,M ] for all e ∈ E,(MB)
f is fractionally subadditive.(FS)

Before stating our results, we illustrate the applicability of our framework to different
settings.

Example 1.2 (Submodular objective). A function f : 2E → R≥0 is called sub-
modular if f(A ∩ B) + f(A ∪ B) ≤ f(A) + f(B) for all A,B ∈ 2E . It was shown
by Lehmann et al. [22] that every monotone submodular function is also fractionally
subadditive.

As a consequence our framework captures, e.g., the maximum coverage problem,
where we are given a weighted family of sets E ⊆ 2U over a universe U . Every
element of U has a value v : U → R≥0 associated with it, and f(S) = v

(⋃
X∈S X

)
for all S ⊆ E where we write v(X) :=

∑
x∈X v(x) for a set X ∈ 2U . In this context,

the M -boundedness condition demands that v(X) ∈ [1,M ] for all X ∈ E. Further
examples include maximization versions of clustering and location problems.

Example 1.3 (XOS objective). An objective function f : 2E → R is called XOS
if it can be written as the pointwise maximum of modular functions, i.e., there are
k ∈ N and values ve,i ∈ R for all e ∈ E and i ∈ {1, . . . , k} such that

f(S) = max

{∑
e∈S

ve,i

∣∣∣∣∣ i ∈ {1, . . . , k}

}
for all S ⊆ E.

As shown by Feige [11], the set of fractionally subadditive functions and the set of
XOS functions coincide. XOS functions are a popular way to encode the valuations of
buyers in combinatorial auctions since they often give rise to a succinct representation
(cf. Nisan [30] and Lehman et al. [22]).

Example 1.4 (Weighted rank function of an independence system). An indepen-
dence system is a tuple (E, I), where ∅ ∈ I and I ⊆2E is closed under taking subsets,
i.e., A ∈ I whenever A ⊆ B and B ∈ I. For a given weight function v : E → R≥0,
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the weighted rank function of (E, I) is given by

f(S) = max

{∑
e∈I

v(e)

∣∣∣∣∣ I ∈ I ∩ 2S

}
for all S ⊆ E.

As shown by Amanatidis et al. [1], the weighted rank function of an independence
system is fractionally subadditive.

This setting captures well-known problems such as weighted d-dimensional mat-
ching for any d ∈ N. Here, we are given sets V1, . . . , Vd such that E ⊆ V1 × · · · × Vd
and a function v : E → R≥0. The objective f : 2E → R≥0 maps a set S ⊆ E to the
maximum weight of a d-dimensional matching in S, i.e,

f(S) = max

{∑
e∈M

v(e)

∣∣∣∣∣M ⊆ S such that vi ̸= v′i for all i ∈ {1, . . . , d}

for all e=(v1, . . . , vd), e
′=(v′1, . . . , v

′
d) ∈M with e ̸= e′

}
.

In a similar vein, this setting also includes weighted set packing and weighted
maximum independent set.

Example 1.5 (Potential-based flows). Consider a variant of the incremental flow
problem on parallel edges as in Figure 1.1b. As before, every edge e has a capacity
u(e) ∈ R≥0. In addition, we are given a continuous and strictly increasing potential-
loss function ψ : R → R with limx→∞ ψ(x) = ∞ that describes the physical properties
of the network. Every edge e has a resistance β(e) ∈ R≥0. A vector x ∈ RE

≥0 is a flow
if xe ≤ u(e) for all e ∈ E, and it is called a potential-based flow if there are vertex
potentials ps, pt ∈ R≥0 such that

ps − pt = β(e)ψ(xe) for all e ∈ E.

The potentials correspond to physical properties at the nodes such as pressures or
voltages; different choices of ψ allow to model gas flows, water flows, and electrical
flows, see Groß et al. [13]. In our incremental framework, w : E → R≥0 are interpreted
as construction costs of pipes or cables and the objective is to maximize the flow from s
to t in terms of the objective f : 2E → R≥0 that maps a set S ⊆ E to the value

f(S) = max

{∑
e∈T

ψ−1

(
p

β(e)

) ∣∣∣∣∣T ⊆ S, p ∈ R≥0 withψ−1

(
p

β(e)

)
≤u(e) for all e ∈ T

}
,

where p := ps − pt. The value of the objective is the maximum value of a feasible
potential-based s-t-flow where we allow turning off edges in S \ T in order to make f
monotone. The M -boundedness condition corresponds to the assumption that u(e) ∈
[1,M ]. As we will show in Proposition 4.1, this objective is fractionally subadditive.

1.1. Our results. Our main results are bounds on the best possible competi-
tive ratio for incremental solutions to (P) for objectives satisfying (MO), (MB), and
(FS). In other words, we bound the loss in solution quality that we have to accept
when asking for incremental solutions that optimize for all capacities simultaneously.
Note that, as customary in online optimization, we do not impose restrictions on the
computational complexity of finding incremental solutions. To state our result, we
denote by φ = 1

2 (1 +
√
5) ≈ 1.618 the golden ratio.
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Theorem 1.6. For monotone, M -bounded, and fractionally subadditive objec-
tives, the best possible ρ for which the optimization problem (P) admits a ρ-competitive
solution satisfies ρ ∈

[
max

{
φ+ 1,M

}
,max

{
3.293

√
M, 2M

}]
.

In particular, for M ≥ 2.71, the best possible competitive ratio is between M
and 2M , while the bounds for 1-bounded objectives simplify as follows.

Corollary 1.7. For monotone, 1-bounded, and fractionally subadditive objec-
tives, the best ρ for which the optimization problem (P) admits a ρ-competitive solution
satisfies ρ ∈

[
φ+ 1, 3.293

]
.

Our upper bounds are shown by an algorithm that uses a simultaneous capacity-
and value-scaling approach. In each phase, we increase our capacity and value thresh-
olds and pick the smallest capacity for which the optimum solution exceeds our thresh-
olds. This solution is then assembled by adding one element at a time in a specific
order. The order is chosen based on a primal-dual LP formulation that relies on
fractional subadditivity.

For the definition of the algorithm, we need access to two oracles. On the one
hand, we need oracle access to the optimal solution of a given capacity; on the other
hand, we need access to an XOS oracle. More information on this can be found in
Remark 2.1.

In Section 2, we describe our algorithmic approach in detail and give a proof of the
upper bound. In Section 3, we complement our result with two lower bounds. As an
additional motivation, in Section 4, we show that our framework captures potential-
based flows as described in Example 1.5. In this context, a 1-bounded objective
corresponds to unit capacities. As a contrast, we also show that classical s-t-flows
with capacities in [1,M ] admit 2M -competitive incremental solutions, and this is
best-possible for the unit capacity case.

1.2. Related Work. Bernstein et al. [4] considered a closely related framework
for incremental maximization. Their framework assumes a growing cardinality con-
straint, which is a special case of our problem in (P) when all elements e ∈ E have unit
weight w(e) = 1. A natural incremental approach for a growing cardinality constraint
is the greedy algorithm that includes in each step the element that increases the ob-
jective the most. This algorithm is well known to yield a e/(e− 1) approximation for
submodular objectives [29]. Several generalizations of this result to broader classes
of functions are known. Recently, Disser and Weckbecker [7] unified these results by
giving a tight bound for the approximation ratio of the greedy algorithm for γ-α-
augmentable functions1, which interpolates between known results for weighted rank
functions of independence systems of bounded rank quotient, functions of bounded
submodularity ratio, and α-augmentable functions. Sviridenko [33] showed that for
a submodular function under a knapsack constraint, the greedy algorithm yields a
(1− 1/e)-approximation when combined with a partial enumeration procedure. This
approximation guarantee is best possible as shown by Feige [10]. Yoshida [35] gener-
alized the result of Sviridenko to submodular functions of bounded curvature.

Another closely related setting is the robust maximization of a modular function
under a knapsack constraint. Here, the capacity of the knapsack is revealed in an
online fashion while packing, and we ask for a packing order that guarantees a good
solution for every capacity. Megow and Mestre [26] considered this setting under
the assumption that we have to stop packing once an item exceeds the knapsack

1A function is called γ-α-augmentable if, for all sets X,Y ⊆ E, there exists y ∈ Y with f(X ∪
{y})− f(X) ≥ (γf(X ∪ Y )− αf(X))/|Y |.
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objective f setting lower bound upper bound

additive ∞ [26]
additive with discarding 2 [5] 2 [5]
additive with discarding, f = w φ [5] φ [5]
additive C ≥ maxw(e) 2 [28] 2 [28]
additive C ≥ maxw(e), f = w φ [28] 1.756 [28]

submodular with discarding 2 [5] 2.794 [20]

frac. subadditive f({e}) = 1 φ+ 1 3.293

accountable w(e) = 1 2.183 [4] φ+ 1 [4]

Figure 1.2. Competitive ratios for deterministic incremental maximization of a monotone
objective under a knapsack constraint in different settings where φ = 1

2
(1+

√
5) ≈ 1.617 is the golden

ratio. Note that additivity implies fractional subadditivity (XOS), which implies accountability.

capacity and presented a polynomial time algorithm that has an instance-sensitive
near-optimal competitive ratio. Navarra and Pinotti [28] added the mild assumption
that all items fit in the knapsack and devised competitive solutions for this model.
Disser et al. [5] allowed to discard items that do not fit and showed tight competitive
ratios for this case. Kawase et al. [19] studied a generalization of this model in
which the objective is submodular and devised a randomized competitive algorithm
for this case. Klimm and Knaack [20] gave a deterministic competitive algorithm
with improved competitive ratio for this case. Since the models in [5, 19, 20] allow
to discard items, these competitive ratios do not translate to our model. Kobayashi
and Takazawa [21] studied randomized strategies for cardinality robustness in the
knapsack problem. Other online versions of the knapsack problem assume that items
are revealed over time, e.g., see Matchetti-Spaccamela and Vercellis [24]. Thielen et
al. [34] combined both settings and assumed that items appear over time while the
capacity grows. An overview over a selection of the aforementioned results can be
found in Figure 1.2.

In terms of incremental minimization, Lin et al. [23] introduced a general frame-
work, based on a problem-specific augmentation routine, that subsumes several earlier
results. A maximization problem with growing cardinality constraint that received
particular attention is the so-called robust matching problem introduced by Hassin
and Rubinstein [15]. Here, we ask for a weighted matching such that the heaviest k
edges of the matching approximate a maximum weight matching of cardinality k, for
all cardinalities k. Hassin and Rubinstein [15] gave tight bounds on the determinis-
tic competitive ratio of this problem, and Matuschke et al. [25] gave bounds on the
randomized competitive ratio. Fujita et al. [12] and Kakimura et al. [16] considered
extensions of this problem to independence systems. A similar variant of the knapsack
problem where the k most valuable items are compared to an optimum solution of
cardinality k was studied by Kakimura et al. [17].

Incremental optimization has also been considered from an offline perspective,
i.e., without uncertainty in items or capacities. Kalinowski et al. [18] and Hartline
and Sharp [14] considered incremental flow problems where the average flow over
time needs to be maximized (in contrast to the worst flow over time). Anari et al. [2]
and Orlin et al. [31] considered general robust submodular maximization problems.
For maximization of (fractionally) subadditive objectives the approximation ratio is
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known to be |E|−1/2 in the value oracle setting due to Dobzinski et al. [8], Singer [32],
and Mirrokni et al. [27], and 2+ϵ in the demand oracle setting due to Badanidiyuru [3].

The class of fractionally subadditive valuations was introduced by Nisan [30] and
Lehman et al. [22] under the name of XOS-valuations as a compact way to represent
the utilities of bidders in combinatorial auctions. In a combinatorial auction, a set
of elements E is auctioned off to a set of n bidders who each have a private utility
function fi : 2

E → R≥0. In this context, a natural question is to maximize social
welfare, i.e., to partition E into sets E1, E2, . . . , En with the objective to maximize∑n

i=1 fi(Ei). Dobzinski and Schapira [9] gave a (1 − 1/e)-approximation for this
problem.

2. Upper bound. In the following, we fix a ground set E, a monotone,
M -bounded and fractionally subadditive objective f : 2E → R≥0, and weights
w : E → R≥0. We present a refined variant of the incremental algorithm introduced
in [4]. On a high level, the idea is to consider optimum solutions of increasing sizes,
and to add all elements in these optimum solutions one solution at a time. By care-
fully choosing the order in which we add elements of a single solution, we ensure that
elements contributing the most to the objective are added first. In this way, we can
guarantee that either the solution we have assembled most recently, or the solution
we are currently assembling provides sufficient value to stay competitive. While the
algorithm of [4] only scales the capacity, our algorithm Algscale simultaneously scales
capacities and solution values. In addition, we use a more sophisticated order in which
we assemble solutions, based on a primal-dual LP formulation. We now describe our
approach in detail.

Let λ ≈ 3.2924 be the unique real root of the equation

0 = λ7 − 2λ6 − 3λ5 − 3λ4 − 3λ3 − 2λ2 − λ− 1.

This yields

(2.1)
(
1

λ
+

1

λ2

)
λ3

λ2 + 1
=

λ2

λ+ 1
− 1− λ2 + 1

λ3
.

Furthermore, let δ := λ3

λ2+1 ≈ 3.0143 and

ρ := max
{
λ
√
M, 2M

}
.(2.2)

Algorithm Algscale operates in phases of increasing capacities C1, . . . , CN ∈ R≥0 with

C1 := min
e∈E

w(e),

Ci := min
{
C ≥ δCi−1

∣∣ f∗(C) ≥ ρf∗(Ci−1)
}

for all i ∈ N,

where we set min ∅ =
∑

e∈E w(e). Let N ∈ N be the minimal index such that
CN =

∑
e∈E w(e). In phase i ∈ {1, . . . , N}, Algscale adds the elements of the set

S∗(Ci) one at a time. Recall that S∗(C) is the optimum solution to (P) for capacity C.
We may assume that previously added elements are added again (without any benefit),
since this only hurts the algorithm.

To specify the order in which the elements of S∗(Ci) are added, consider the
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following linear program (LPX) parameterized by X ⊆ E (cf. [11]):

min
∑
B⊆E

αBf(B)

s.t.
∑

B⊆E:e∈B

αB ≥ 1, for all e ∈ X,

αB ≥ 0, for all B ⊆ E,

and its dual

max
∑
e∈X

γe

s.t.
∑
e∈B

γe ≤ f(B), for all B ⊆ E,

γe ≥ 0, for all e ∈ X.

Fractional subadditivity of f translates to f(X) ≤
∑

B⊆E αBf(B) for all α ∈ R2E

feasible for (LPX). The solution α∗ ∈ R2E with α∗
X = 1 and α∗

B = 0 for X ̸= B ⊆ E
is feasible and satisfies f(X) =

∑
B⊆E α

∗
Bf(B). Together this implies that α∗ is an

optimum solution to (LPX). By strong duality, there exists an optimum dual solution
γ∗(X) ∈ RE with

(2.3) f(X) =
∑
e∈X

γ∗(X)e.

In phase 1, the algorithm Algscale adds the single element in S∗(C1). In phase 2,
Algscale adds an element e ∈ S∗(C2) first that maximizes γ∗(S∗(C2))e and the other
elements in an arbitrary order. In phase i ∈ {3, 4, . . . , N}, Algscale adds the elements
of S∗(Ci) in an order (e1, . . . , e|S∗(Ci)|) such that, for all j ∈ {1, . . . , |S∗(Ci)| − 1},

(2.4)
γ∗(S∗(Ci))ej

w(ej)
≥
γ∗(S∗(Ci))ej+1

w(ej+1)
.

The reason why we do not use (2.4) in phase 2 is that so early on we want to increase
the objective value as fast as possible which is not necessarily guaranteed by choosing
the order of elements in S∗(C2) according to (2.4).

By πA, we refer to the the permutation of E that represents the order in which the
algorithm Algscale adds the elements of E. Let 0 ≤ C ≤ C ′ ≤ w(E), k := |S∗(C ′)|,
and let (e1, . . . , ek) be an ordering of all elements in S∗(C ′) such that (2.4) holds for
all j ∈ {1, . . . k − 1}. With j := max{j ∈ {1, . . . k} | w({e1, . . . , ej}) ≤ C}, we let
S∗(C ′, C) := {e1, . . . , ej} denote the largest prefix of the optimum solution S∗(C ′)
with capacity at most C.

Roughly, we show that this algorithm is competitive as follows: In the first phase
Algscale obviously performs optimally. In all other phases, the solution added in the
previous phase is large enough to be competitive until the solution added currently
has a larger value. From this point until the end of the phase, the current solution is
competitive.

Remark 2.1. In the construction of our algorithm, we assume to have oracle access
to an optimum solution S∗(C) of a given capacity C ∈ R≥0. Finding such a solution
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may not be possible in polynomial time. Badanidiyuru et al. [3], give a (2 + ε)-
approximation algorithm and show that no polynomial time algorithm can have an
approximation ratio of less than 2, unless P = NP. Our algorithm Algscale can use
an α-approximation oracle instead of an oracle for the optimum solution, for a loss
of factor α in its competitive ratio. Furthermore, we assume to have access to an
XOS oracle. For a given set X ⊆ E and x ∈ X, an XOS oracle gives the value of x
within the set X, which corresponds to the solution of the dual LP mentioned above.
Instead of an XOS oracle, our algorithm can use an β-approximation oracle for a loss
of factor β in its competitive ratio.

For all X ⊆ E, the dual variables γ∗(X) are a feasible solution for the dual of
(LPX). Thus, for all Y ⊆ E, we have

∑
e∈Y

γ∗(X)e ≤ f(Y ).(2.5)

i.e., γ∗(X) associates a contribution to the overall objective to each element e ∈ E,
and this association is consistent for all sets Y ⊆ E.

The following lemma establishes that the order in which we add the elements of
each optimum solution are decreasing in density, in an approximate sense.

Lemma 2.2. Let C,C ′ ∈ R≥0 with C ≤ C ′ ≤ w(E). Then

f∗(C ′) ≤ C ′

C

(
f(S∗(C ′, C)) +M

)
.(2.6)

Proof. If S∗(C ′) = S∗(C ′, C), the statement holds trivially. Suppose that we have
|S∗(C ′)| > |S∗(C ′, C)|. Let j := |S∗(C ′, C)|, and let S∗(C ′) =

{
e1, . . . , e|S∗(C′)|

}
such

that (2.4) holds. Note that, by definition, S∗(C ′, C) = {e1, . . . , ej} and

(2.7) w({e1, . . . , ej}) ≤ C < w({e1, . . . , ej+1}).
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We have

f∗(C ′)
(2.3)
=

|S∗(C′)|∑
i=1

w(ei)
γ∗(S∗(C ′))ei

w(ei)

(2.4)
≤

(
j+1∑
i=1

γ∗(S∗(C ′))ei

)
+

∑j+1
i=1 w(ei)

w({e1, . . . , ej+1})

|S∗(C′)|∑
i=j+2

w(ei)
γ∗(S∗(C ′))ej+1

w(ej+1)

=

(
j+1∑
i=1

γ∗(S∗(C ′))ei

)
+

∑j+1
i=1 w(ei)

γ∗(S∗(C′))ej+1

w(ej+1)

w({e1, . . . , ej+1})

|S∗(C′)|∑
i=j+2

w(ei)

(2.4)
≤

(
j+1∑
i=1

γ∗(S∗(C ′))ei

)
+

(∑j+1
i=1 γ

∗(S∗(C ′))ei

)
w({e1, . . . , ej+1})

|S∗(C′)|∑
i=j+2

w(ei)

(2.7)
<

(
j+1∑
i=1

γ∗(S∗(C ′))ei

)
+

(∑j+1
i=1 γ

∗(S∗(C ′))ei

)
C

(C ′ − C)

=
C ′

C

[(
j∑

i=1

γ∗(S∗(C ′))ei

)
+ γ∗(S∗(C ′))ej+1

]
(2.5)
≤ C ′

C

(
f({e1, . . . , ej}) + f({ej+1})

)
≤ C ′

C

(
f(S∗(C ′, C)) +M

)
,

completing the proof.

Since every set S ⊆ E with w(S) ≤ C satisfies f(S) ≤ f∗(C), and since we have
w(S∗(C ′, C)) ≤ C, we immediately obtain the following.

Corollary 2.3. Let C,C ′ ∈ R≥0 with C ≤ C ′ ≤ w(E). Then

f∗(C ′) ≤ C ′

C

(
f∗(C) +M

)
.(2.8)

With this, we are now ready to show the upper bound of our main result.

Theorem 2.4. For ρ = max
{
λ
√
M, 2M

}
≈ max

{
3.2924

√
M, 2M

}
, the incre-

mental solution computed by Algscale is ρ-competitive.

Proof. We have to show that, for all sizes C ∈ R≥0, we have f∗(C) ≤ ρf(πA(C)).
We will do this by analyzing the different phases of the algorithm. Observe that, for
all i ∈ {2, . . . , N − 1}, we have

f∗(Ci) ≥ ρf∗(Ci−1) ≥ ρi−1f∗(C1)
(MB)
≥ ρi−1 ≥ (λ

√
M)i−1,(2.9)

where for the first inequality, we use the definition of the algorithm Algscale, and for
the last inequality we use the definition of ρ in (2.2).

In phase 1, we have C ∈ (0, C1]. Since C1 is the minimum weight of all elements
and we start by adding S∗(C1), i.e., the optimum solution of size C1, the value of
πA(C) is optimal.
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Consider phase 2, and suppose C ∈ (C1, C2). If C2 > δC1 holds, then C2 is the
smallest value such that f∗(C2) ≥ ρf∗(C1), i.e., by monotonicity of f , we have

f(πA(C)) ≥ f(πA(C1)) = f∗(C1) >
1

ρ
f∗(C).

Now assume C2 ≤ δC1. If C ∈ (C1, 3C1), i.e., any solution of size C cannot contain
more than two elements, or if C ∈ (C1, C2) and S∗(C2) contains at most 2 elements, by
fractional subadditivity and M -boundedness of f , we have f∗(C) ≤ |S∗(C2)|M ≤ 2M
and thus,

f(πA(C)) ≥ f∗(C1) ≥ 1 ≥ 1

2M
f∗(C) ≥ 1

ρ
f∗(C).

Now suppose C ∈ [3C1, C2) and that S∗(C2) contains at least 3 elements. The
prefix πA(C1 + C2) contains all elements from S∗(C1) ∪ S∗(C2), the prefix
πA(C2) = πA(C1 +C2 −C1) contains at least all but one elements of S∗(C2), and the
prefix πA(C2 −C1) contains at least all but 2 elements of S∗(C2) because the weight
of any element is at least C1. Since

C ≥ 3C1 > (δ − 1)C1 ≥ C2 − C1,

πA(C) contains at least all but 2 elements from S∗(C2). Recall that in phase 2, the
algorithm adds the element e ∈ S∗(C2) that maximizes γ∗(S∗(C2))e first. Therefore,
and because |S∗(C2)| ≥ 3, we have f(πA(C)) ≥ 1

3f(S
∗(C2)) ≥ 1

ρf
∗(C).

Consider phase 2 and suppose C ∈ [C2, C1 + C2]. We have

(2.10) f∗(C1 + C2) ≤ f∗(C2) +M

because f is subadditive and because C1 is the minimum weight of all elements.
Furthermore, we have

(2.11) f
(
πA(C2)

)
≥ f∗(C2)−M ≥ ρ−M ≥M

where the first inequality follows from subadditivity of f and the fact that the prefix
πA(C2) contains at least all but one element from S∗(C2). We obtain

f
(
SA(C2)

) (2.11)
≥ f∗(C2)−M

(2.10)
≥ f∗(C1+C2)−2M

(2.11)
≥ f∗(C1+C2)−2f(SA(c2)),

i.e., by monotonicity,

f∗(C) ≤ f∗(C1 + C2) ≤ 3f(πA(C2)) ≤ ρf(πA(C2)) ≤ ρf(πA(C)).

Now consider phase i ∈ {3, . . . , N} and C ∈
(∑i−1

j=1 Cj ,
∑i

j=1 Cj ]. Note that, for
1 ≤ j ≤ i ≤ N − 1, we have Ci ≥ δi−jCj and hence

i−1∑
j=1

Cj

Ci
≤

i−1∑
j=1

1

δi−j
<

∞∑
j=1

1

δj
=

1

δ − 1
< 1.

This yields
∑i−1

j=1 Cj ≤ Ci ≤
∑i

j=1 Cj . If i = N and
∑N−1

j=1 Cj ≥ CN = w(E), we
have nothing left to show because C ≥ w(E). Thus, suppose that

∑N−1
j=1 Cj < CN .

Furthermore, if i = N and ρf∗(CN−1) > f∗(CN ) = f∗(w(E)) = f(E), we again have
nothing to show as the prefix πA

(∑N−1
j=1 Cj

)
⊆ πA(C) contains the set S∗(CN−1) and

has value at least f∗(CN−1). Thus, assume that f∗(CN ) ≥ ρf∗(CN−1). This implies
that (2.9) also holds for i = N .
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Case 1: C ∈
(∑i−1

j=1 Cj , Ci

)
. We will show that in this case, the value of the

solution Ci−1, which is already added by the algorithm, is large enough to guarantee
competitiveness. If Ci > δCi−1 holds, then Ci is the smallest integer such that
f∗(Ci) ≥ ρf∗(Ci−1), i.e., using (MO), we have

f(πA(C)) ≥ f
(
πA(∑i−1

j=1 Cj

))
≥ f∗(Ci−1) >

1
ρf

∗(C).

Now, consider the case that Ci ≤ δCi−1. Note that Ci < δCi−1 is only possible if
i = N . We distinguish between two different cases:

Case 1.1: i = 3. Let c :=
(

1
λ
√
M

+ 1
λ2

)
δC2. We have

c ≤
(
1

λ
+

1

λ2

)
δC2

(2.1)
=

(
λ2

λ+ 1
− 1− 1

δ

)
C2

≤ λ2

λ√
M

+ 1
C2 − C2 − C1

=
λ2M

λ
√
M +M

C2 − C2 − C1.(2.12)

We will show that πA(C1 + C2) is competitive up to size C1 + C2 + c, and that
πA(C1 + C2 + c) is competitive up to size C3. We have

f∗(C1 + C2 + c)
(2.8)
≤ C1 + C2 + c

C2

(
f∗(C2) +M

)
(2.12)
≤

C1 + C2 +
(

λ2M
λ
√
M+M

C2 − C2 − C1

)
C2

(
f∗(C2) +M

)
=

λ2M

λ
√
M +M

(
1 +

M

f∗(C2)

)
f∗(C2)

(2.9)
≤ λ2M

λ
√
M +M

(
1 +

M

λ
√
M

)
f∗(C2)

= λ
√
M

λ
√
M

λ
√
M +M

(
λ
√
M +M

λ
√
M

)
f∗(C2)

≤ ρf∗(C2)

≤ ρf(πA(C1 + C2)),

where the last inequality follows from the fact that the algorithm starts by packing
S∗(C1) and S∗(C2) before any other elements and needs capacity C1+C2 to assemble
both sets, i.e., S∗(C2) ⊆ πA(C1 + C2).

Since Algscale adds the elements from S∗(C3) after those from S∗(C1) and S∗(C2),
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we have S∗(C3, c) ⊆ πA(C1 + C2 + c), and thus

f
(
πA(C1 + C2 + c)

) (MO)
≥ f(S∗(C3, c))

(2.6)
≥ c

C3
f∗(C3)−M

≥
[(

1

λ
√
M

+
1

λ2

)
− M

f∗(C3)

]
f∗(C3)

(2.9)
≥

(
1

λ
√
M

+
1

λ2
− M

λ2M

)
f∗(C3)

=
1

λ
√
M
f∗(C3)

≥ 1

ρ
f∗(C3),

where for the third inequality we use that C3 ≤ δC2. This, together with monotonicity
of f , implies f∗(C) ≤ ρf(πA(C)) for all C ∈ (C1 + C2, C3].

Case 1.2: i ≥ 4. : Recall that C ∈
(∑i−1

j=1 Cj , Ci

)
. We have

f∗(C)
(MO)
≤ f∗(Ci)

(2.8)
≤ Ci

Ci−1
(f∗(Ci−1) +M)

≤ δ

(
1 +

M

f∗(Ci−1)

)
f∗(Ci−1)

(2.9)
≤ δ

(
1 +

M

λ2M

)
f∗(Ci−1)

=
λ3

λ2 + 1

(
1 +

1

λ2

)
f∗(Ci−1)

= λf∗(Ci−1)

≤ ρf(πA(C)),

where for the third inequality we use that Ci ≤ δCi−1. Thus, also in this case, we
find f∗(C) ≤ ρf(πA(C)) for all C ∈

(∑i−1
j=1 Cj , Ci

)
.

Case 2: C ∈
[
Ci,
∑i

j=1 Cj

]
. Since CN = w(E), we can assume that i < N . Up

to this budget, the algorithm had a capacity of C −
∑i−1

j=1 Cj > C − Ci ≥ 0 to pack
elements from S∗(Ci), i.e., S∗(Ci, C −

∑i−1
j=1 Cj) ⊆ πA(C). We will show that the

value of this set is large enough to guarantee competitiveness in this case. We have

f
(
πA(C)

) (MO)
≥ f

(
S∗(Ci, C −

∑i−1
j=1 Cj

))
(2.6)
≥

C −
∑i−1

j=1 Cj

Ci
f∗(Ci)−M

(2.8)
≥

C −
∑i−1

j=1 Cj

Ci

(
Ci

C
f∗(C)−M

)
−M

=

(
C −

∑i−1
j=1 Cj

C
−
C −

∑i−1
j=1 Cj

Ci
· M

f∗(C)
− M

f∗(C)

)
f∗(C)
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≥
(
1−

i−1∑
j=1

Cj

Ci
− 1 · M

f∗(C)
− M

f∗(C)

)
f∗(C)

(2.9)
≥

(
1−

i−1∑
j=1

1

δi−j
− 2M

ρi−1

)
f∗(C)

≥
(
1−

∞∑
j=1

1

δj
− 2M

ρi−1

)
f∗(C)

≥
[
1−

(
1

1− δ−1
− 1

)
− 2M

λ2M

]
f∗(C)

≥ 0.319 · f∗(C)

≥ 1

ρ
f∗(C),

where for the fourth inequality we use Ci ≤ C ≤
∑i

j=1 Cj and for the fifth inequality
we use Cj+1 ≥ δCj .

For 1-bounded objectives, Theorem 2.4 immediately yields the following.

Corollary 2.5. If M = 1, the incremental solution computed by Algscale is
3.2924-competitive.

3. Lower bound. In this section, we show the second part of Theorem 1.6,
i.e., we give a lower bound on the competitive ratio for the incremental optimization
problem (P) with monotone, M -bounded, and fractionally subadditive objectives, and
we show a lower bound for the special case with M = 1.

Theorem 3.1. For monotone, M -bounded, and fractionally subadditive objec-
tives, the knapsack problem (P) does not admit a ρ-competitive incremental solution
for ρ < M .

Proof. Consider the set E = {e1, e2} with weights w(ei) = i for i ∈ {1, 2} and
the values v(e1) = 1 and v(e2) = M . We define the objective f(S) :=

∑
e∈S v(e) for

all S ⊆ E. It is easy to see that f is monotone, M -bounded and modular and thus
fractionally subadditive.

Consider some competitive algorithm with competitive ratio ρ ≥ 0 for the knap-
sack problem (P). In order to be competitive for capacity 1, the algorithm has to
add element e1 first. Thus, the solution of the algorithm of size 2 cannot contain
element e2, i.e., the value of the solution of capacity 2 given by the algorithm has
value 1. The optimal solution of capacity 2 has value M , and thus ρ ≥M .

We proceed to give a stronger lower bound for M ∈ [1, φ+1) with φ = 1
2 (1+

√
5).

To this end, for a value n ∈ N, consider an instance I with
∑n

i=1 i = 1
2n(n + 1)

elements partitioned into sets E1, E2, . . . , En such that |Ei| = i for all i ∈ {1, . . . , n}.
We set

f(S) = max
i∈{1,...,n}

|S ∩ Ei| for all S ⊆ E.(3.1)

The elements’ weights are defined as w(e) = b+ i! for all e ∈ Ei with base weight
b = (n+ 2)!.

We note that the problem instance I is built in such a way that the elements
in all sets E1, . . . , En have roughly the same relative weight because b is very large.
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We show first, for a given capacity C ∈ N, the number of elements that can be
packed without exceeding this capacity can vary by at most 1, regardless of which
elements are packed. Yet, the weights of elements in Ei increase quickly enough with
increasing i such that, for capacity C = i(b+ i!) it is only possible to pack i elements
if all i elements are from the set E1 ∪ · · · ∪ Ei.

Proposition 3.2. Let π be a solution to the instance defined above. Consider
capacity C = i(b+ i!) for i ∈ {1, . . . , 12n(n+ 1)}. Then, we have

|π(C)| =

{
i if {eπ(1), . . . , eπ(i)} ⊆ E1 ∪ · · · ∪ Ei,

i− 1 else

with Ej = ∅ for j > n.

Proof. First we observe that |π(C)| ∈ {i, i − 1}: Assume |π(C)| < i − 1. Then,
we have

C − w(π(C)) ≥ i(b+ i!)− (i− 2)(b+ n!) ≥ 2b− in!

≥ b+ (n+ 2)!− n(n+ 1)n! = b+ 2(n+ 1)! ≥ max
e∈E

w(e),

contradicting that π(C) is the maximum prefix of π which fits into capacity C. Assume
|π(C)| > i. Then, we have w(π(C)) > (i + 1)b > ib + (i + 1)! > i(b + i!), which
contradicts w(π(C)) ≤ C.

If π(C) contains e ∈ Ej with j > i, we have

C − w(e) = i(b+ i!)− (b+ j!) = (i− 1)b+ ii!− j!

< (i− 1)b < (i− 1)min
e∈E

w(e).

So π(C) \ e contains at most i− 2 elements and |π(C)| ≤ i− 1. If the first i elements
in π are in the sets E1, . . . Ei, we have w({eπ(1), . . . , eπ(i)}) ≤ i(b+ i!) = C. Therefore,
we have |π(C)| ≥ i.

We say an incremental solution to the problem instance I given above is repre-
sented by a set of numbers A = {a1, . . . , aℓ} with ai < ai+1 and aℓ = n if the solution
adds first all elements from Ea1

, then from Ea2
, and so on until adding all elements

from Eaℓ
. Only afterwards all remaining elements are added in an arbitrary order.

Note, that elements added after the last element of En in any solution do not influ-
ence the objective value for any capacity, since when they are added the incremental
solution has already reached the maximum value of n. First we will observe, that
every incremental solution of problem instance I can be transformed into a solution
that can be represented by a set {a1, ..., aℓ} without decreasing the objective value
for any capacity.

Lemma 3.3. For every incremental solution π there is a set A = {a1, . . . , aℓ} with
ai < ai+1 and aℓ = n representing an incremental solution with objective value at least
f(π(C)) for all capacities C ≥ 0.

Proof. First, we show that there is a solution π′, whose objective value is at least
f(π(C)) for every capacity, such that, for all i ∈ {1, ..., n− 1}, if at least one element
from the set Ei is added before the last element from En is added, then this is true for
all elements from Ei. Furthermore, if h ∈ N is the index of the last element from Ei

in π′, we have f({eπ′(1), ..., eπ′(h−1)}) + 1 = i = f({eπ′(1), ..., eπ′(h)}). We will do this
by altering the solution π to obtain the desired solution π′.
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Fix some i ∈ N such that at least one element from the set Ei is added before
the last element from En is added in the solution π. Let j ∈ N, j ≤ i be the largest
number such that, when the j-th element from the set Ei is added, the value of the
solution increases from j − 1 to j. If this does not exist, we set j = 0. If j = i, Ei is
completely added before the last element from En and when the last element from Ei

is added to the incremental solution its value increases by one to the value of i. Thus,
suppose that j < i. All elements from Ei that are added after the j-th element do
not increase the value of the solution and can thus be moved to the end of the whole
order π. Since now, there are only j elements from the set Ei added before the last
element from the set En is added, it makes sense to add the elements from the set Ej

instead of these j elements, as they have a smaller weight (if they are not already
added). We can then move the j elements from Ei to the end of the order. After all
these changes the solution obtains all values at least as fast as before. By doing this
for all i ∈ {1, ..., n− 1}, we obtain the desired solution π′.

Now, we will show that we can reorder the elements in the solution π′ such that
the elements that are added before the last element from En is added are ordered
by the index of the set they belong to. Consider any two sets Ei, Ej , i < j that
are added before the last element from set En is added. Recall that, when the last
element from Ei is added, the value of the solution is i. This implies that at that
point at most i− 1 elements from the set Ej are added. Thus, swapping the elements
of Ei and Ej in the order π′ until all elements from Ei are added before the elements
from Ej , does not decrease the value of the solution for any capacity. By doing this for
all pairs (i, j), we obtain a solution that can be represented by a set A = {a1, ..., aℓ}.

Utilizing the properties of the weights we mentioned before, we can find a collec-
tion of conditions which are necessary and sufficient for a set of numbers {a1, . . . , aℓ}
to represent a ρ-competitive solution for the problem instance I. In the following, we
denote by ℓ′ the index with ρaℓ′ < n and ρaℓ′+1 ≥ n and set zi :=

∑i
j=1 aj . The

index ℓ′ is needed because all indices i > ℓ′ satisfy ρai ≥ n, i.e., after a solution has
added the set Ei, it is ρ-competitive for all capacities.

Lemma 3.4. Let A = {a1, . . . , aℓ} with ai < ai+1 and aℓ = n be a set of numbers
that represents an incremental solution for instance I. Then, the incremental solution
is ρ-competitive if and only if the following three conditions are satisfied:

(i) a1 = 1,
(ii) the following two conditions hold for all i ∈ {1, . . . , ℓ′}:

(iia) zi + ai ≤ ⌊ρai⌋ if ai+1 ≤ ⌊ρai⌋+ 1,
(iib) zi + ai + 1 ≤ ⌊ρai⌋ if ai+1 > ⌊ρai⌋+ 1.

Proof. We first show that for a ρ-competitive incremental solution represented by
a set of numbers A conditions (i), (iia) and (iib) have to be satisfied.

If a1 ̸= 1, the incremental solution is not competitive for capacity C = b + 1,
i.e., (i) must hold.

Consider capacity C = (⌊ρai⌋+1)(b+(⌊ρai⌋+1)!) for i ∈ {1, . . . , l′}. The optimum
solution of capacity C is S∗(C) = E⌊ρai⌋+1 and has value f∗(C) = ⌊ρai⌋ + 1. The
value of the incremental solution is at least ai +1, since 1

ρ (⌊ρai⌋+1) > ai. Thus, the
incremental solution of capacity C contains at least ai + 1 elements from Eai+1 .

If ai+1 ≤ ⌊ρai⌋+1, the incremental solution contains ⌊ρai⌋+1−zi elements from
Eai+1

by Proposition 3.2 at capacity C. Thus, we have ai + 1 ≤ ⌊ρai⌋+ 1− zi which
implies (iia). If ai+1 > ⌊ρai⌋+1, the incremental solution contains ⌊ρai⌋−zi elements
from Eai+1

by Proposition 3.2. Thus, we have ai +1 ≤ ⌊ρai⌋− zi which implies (iib).
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We proceed to show that, conversely, an incremental solution represented by a set
of numbers A satisfying conditions (i), (iia) and (iib) is ρ-competitive. To this end,
fix an arbitrary incremental solution with these properties. Since all elements have
integer weight, it suffices to show ρ-competitiveness for all capacities C ∈ N.

For capacities C ∈ {1, . . . , b + 1}, the incremental solution is ρ-competitive be-
cause b+ 1 is the smallest weight of all elements and a1 = 1 by (i), i.e., the element
of smallest weight is added first.

Let i ∈ {1, . . . , ℓ′}. We will show that, for all capacities in{
zi(b+ zi!) + 1, . . . , zi+1(b+ zi+1!)

}
,

the incremental solution is ρ-competitive. For all capacities

C ∈
{
zi(b+ zi!) + 1, . . . , (⌊ρai⌋+ 1)(b+ (⌊ρai⌋+ 1)!)− 1

}
,(3.2)

the value of the optimum solution is at most ⌊ρai⌋ while the value of the incremental
solution is at least ai because it contains at least all elements from Ea1

, . . . , Eai
at

capacity zi(b+zi!) by Proposition 3.2. Thus, the incremental solution is ρ-competitive
for all values C as in (3.2). Next, suppose that

C ∈
{
(⌊ρai⌋+ 1)(b+ (⌊ρai⌋+ 1)!), . . . , zi+1(b+ zi+1!)

}
.

Let a∗ ∈ {⌊ρai⌋ + 1, . . . , zi+1} be the value of the optimum solution of capacity C.
This implies that C ≥ a∗(b+ a∗!). We consider two cases.

Case 1: ai+1 ≤ ⌊ρai⌋+ 1. By (iia), we have zi + ai ≤ ⌊ρai⌋ and thus

a∗ − zi ≥ ai + a∗ − ⌊ρai⌋ ≥
1

ρ
⌊ρai⌋+

1

ρ

(
a∗ − ⌊ρai⌋

)
=

1

ρ
a∗.(3.3)

By Proposition 3.2 the incremental solution contains at least a∗−zi elements from the
set Eai+1

at capacity C since ai+1 ≤ ⌊ρai⌋ + 1 ≤ a∗. This means that, by (3.3), the
incremental solution of capacity C has value at least a∗ − zi ≥ 1

ρa
∗, i.e., the solution

is ρ-competitive for capacity C.
Case 2: ai+1 > ⌊ρai⌋+ 1. By (iib), we have zi + ai + 1 ≤ ⌊ρai⌋ and thus

a∗ − zi − 1 ≥ ai + a∗ − ⌊ρai⌋ ≥
1

ρ
⌊ρai⌋+

1

ρ

(
a∗ − ⌊ρai⌋

)
=

1

ρ
a∗.(3.4)

By Proposition 3.2 the incremental solution contains at least a∗−zi−1 elements from
the set Eai+1

at capacity C. This means that, by (3.4), the incremental solution of
capacity C has value at least a∗ − zi − 1 ≥ 1

ρa
∗, i.e., the solution is ρ-competitive for

capacity C.
We conclude that for every capacity C ∈

{
1, . . . , zℓ′+1(b+zℓ′+1!)

}
the incremental

solution is ρ-competitive. For all capacities C > zℓ′+1(b + zℓ′+1!), the value of the
incremental solution is at least aℓ′+1, while the optimum solution has value at most n.
By definition of ℓ′ we have ρaℓ′+1 ≥ n. Therefore, the incremental solution is ρ-
competitive.

In the following we will show that, for 2 ≤ ρ ≤ φ+1 and given some set of numbers
{a1, . . . , ai}, every algorithm is forced to choose ai+1 ≤ ⌊ρai⌋+1 to be ρ-competitive
for capacity ⌊ρai⌋+ 1.

If zi + ai = ⌊ρai⌋, then zi + ai + 1 > ⌊ρai⌋, i.e., contraposition of condition (iib)
from Lemma 3.4 yields the following.
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Corollary 3.5. If a set of numbers {a1, . . . , aℓ} represents a ρ-competitive in-
cremental solution and zi + ai = ⌊ρai⌋ for some i ∈ {1, . . . , ℓ′}, then

ai+1 ≤ ⌊ρai⌋+ 1.(3.5)

Proposition 3.6. Let ρ ∈ [2, φ + 1], and let A = {a1, . . . , aℓ} with ai < ai+1 be
a set of numbers that represents an incremental solution. If the incremental solution
is ρ-competitive, then ai+1 ≤ ⌊ρai⌋+ 1 for all i ∈ {1, . . . , ℓ′}.

Proof. By Corollary 3.5, it suffices to show that we have zi + ai = ⌊ρai⌋ for all
i ∈ {1, . . . , ℓ′}. We will prove this by induction. For i = 1, we have

z1 + a1 = 1 + 1 = 2 = ⌊ρ⌋ = ⌊ρa1⌋,

where we use the fact that a1 = 1 by Lemma 3.4(i).
Suppose that

(3.6) zi + ai = ⌊ρai⌋

holds for some i ∈ {1, . . . , ℓ′ − 1}. By Lemma 3.4(iia) and (iib) and the ρ-competi-
tiveness of the incremental solution, we have zi+1 + ai+1 ≤ ⌊ρai+1⌋. Thus, we only
have to show that

(3.7) zi+1 + ai+1 ≥ ⌊ρai+1⌋.

To prove this, we first calculate for ρ ∈ (2, φ+ 1]:

(3.8)
(3− ρ)(ρ− 1)

ρ− 2
=

−(ρ− 2)2 + 1

ρ− 2
=

1

ρ− 2
− (ρ− 2)

≥ 1

φ− 1
− (φ− 1) = φ− (φ− 1) = 1,

where for the inequality we use that ρ ≤ φ + 1. In the case ρ = 2 we can calculate
directly ρ− 2 = 0 ≤ 1 = (3− ρ)(ρ− 1). We then obtain

(3− ρ)⌊(ρ− 1)ai⌋+ 1 > (3− ρ)((ρ− 1)ai − 1) + 1

= (3− ρ)(ρ− 1)ai + ρ− 2

(3.8)
≥ (ρ− 2)ai + ρ− 2

= (ρ− 2)(ai + 1).(3.9)

Utilizing this inequality, we have

⌊(ρ− 2)(⌊ρai⌋+ 1)⌋ = ⌊(ρ− 2)(⌊(ρ− 1)ai⌋+ ai + 1)⌋
= ⌊⌊(ρ− 1)ai⌋+ (ρ− 3)⌊(ρ− 1)ai⌋+ (ρ− 2)(ai + 1)⌋
= ⌊(ρ− 1)ai⌋+ ⌊(ρ− 3)⌊(ρ− 1)ai⌋+ (ρ− 2)(ai + 1)⌋

(3.9)
< ⌊(ρ− 1)ai⌋+ ⌊1⌋,

where for the third equation we use that ⌊(ρ− 1)ai⌋ ∈ N. Because both sides of this
inequality are in N, we have

(3.10) ⌊(ρ− 2)(⌊ρai⌋+ 1)⌋ ≤ ⌊(ρ− 1)ai⌋.
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This yields

⌊ρai+1⌋ = ⌊(ρ− 2)ai+1⌋+ 2ai+1

(3.5)
≤ ⌊(ρ− 2)(⌊ρai⌋+ 1)⌋+ 2ai+1

(3.10)
≤ ⌊(ρ− 1)ai⌋+ 2ai+1

= ⌊ρai⌋ − ai + 2ai+1

(3.6)
= zi + 2ai+1

= zi+1 + ai+1,

i.e., (3.7) holds. By induction zi + ai = ⌊ρai⌋ follows for all i ∈ {1, . . . , ℓ′}, and
therefore, by Corollary 3.5, the proposition holds.

Theorem 3.7. For ρ < φ + 1, there is no ρ-competitive algorithm for problem
instance I with sufficiently large n ∈ N.

Proof. Suppose, for ρ < 2, there was a ρ-competitive incremental solution repre-
sented by the set of numbers {a1, . . . , aℓ}. Without loss of generality we can assume
that ai < ai+1 for all i ∈ {1, . . . , ℓ− 1}. Yet, Lemma 3.4(i), (iia) and (iib) imply that

2 = z1 + a1 ≤ ⌊ρa1⌋ = 1

which is a contradiction, i.e., for ρ < 2, there is no ρ-competitive incremental solution.
Next, suppose that for ρ ∈ [2, φ+ 1) there was a ρ-competitive incremental solu-

tion. Let the number of disjoint sets n ∈ N in the instance be sufficiently large, and let
{a1, . . . , aℓ} be the set of numbers representing a ρ-competitive incremental solution.
Without loss of generality, we can assume that ai+1 > ai for all i ∈ {1, . . . , ℓ− 1}. By
Lemma 3.4 and Proposition 3.6, we know that the following conditions are satisfied:

(i) a1 = 1,
(ii) zi + ai ≤ ⌊ρai⌋ for all i ∈ {1, . . . , ℓ′},
(iii) ai+1 ≤ ⌊ρai⌋+ 1 for all i ∈ {1, . . . , ℓ′}.

For 1 ≤ j ≤ i ≤ ℓ′, from (iii) it follows that

aj ≥
1

ρ
⌊ρaj⌋

(iii)
≥ 1

ρ
(aj+1 − 1) ≥ 1

ρ

[
1

ρ

(
aj+2 − 1

)
− 1

]
≥ · · · ≥ 1

ρi−j
ai −

i−j∑
k=1

1

ρk
.
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This implies

zi =

i∑
j=1

aj

≥
i∑

j=1

(
1

ρi−j
ai −

i−j∑
k=1

1

ρk

)

=

(
i−1∑
j=0

1

ρj

)
ai −

i∑
j=1

i−j∑
k=1

1

ρk

=
1− ρ−i

1− ρ−1
ai −

i∑
j=1

(
1− ρj−i−1

1− ρ−1
− 1

)

≥ 1− ρ−i

1− ρ−1
ai − i

1

1− ρ−1

=
1

1− ρ−1

(
(1− ρ−i)ai − i

)
.(3.11)

For i ∈ {2, . . . , ℓ′}, we obtain

ρ ≥ 1

ai
⌊ρai⌋

(ii)
≥ 1

ai
(zi + ai)

(3.11)
≥ 1

ai
· 1

1− ρ−1

(
(1− ρ−i)ai − i

)
+ 1

=
1

1− ρ−1

(
1− ρ−i − i

ai

)
+ 1.(3.12)

Observe that aj+1 > aj for all j ∈ {1, ..., ℓ− 1} implies aj ≥ j for all j ∈ {1, ..., ℓ}. It
follows that

ai ≥ 1

ρ− 1

(
⌊ρai⌋ − ai

)
(ii)
≥ 1

ρ− 1
zi

aj≥j

≥ 1

ρ− 1
· i(i+ 1)

2
,

which implies that

(3.13)
i

ai
≤ 2(ρ− 1)

i+ 1
.

By definition of ℓ′ and by Proposition 3.6, ℓ′ increases when n is increased sufficiently.
Thus, for every ε > 0, there exists some n ∈ N such that

(3.14)
ℓ′

aℓ′

(3.13)
≤ 2(ρ− 1)

ℓ′ + 1
≤ ε

2
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and

(3.15) ρ−ℓ′ ≤ ε

2
.

Since we chose n sufficiently large, we can assume that this holds. By choosing
ε = 1− ρ−1

ρ φ we see that ε > 0 since ρ < φ+ 1, and we obtain

ρ
(3.12)
≥ 1

1− ρ−1

(
1− ρ−ℓ′ − ℓ′

aℓ′

)
+ 1

≥ 1

1− ρ−1
(1− ε) + 1

=
ρ

ρ− 1

(
1−

(
1− ρ− 1

ρ
φ
))

+ 1

= φ+ 1,

where the second inequality uses (3.14) and (3.15). This yields a contradiction to the
fact that ρ < φ+ 1. Thus, there is no ρ-competitive algorithm for ρ < φ+ 1.

This result immediately yields the desired lower bound.

Corollary 3.8. For monotone, 1-bounded, and fractionally subadditive objec-
tives, the knapsack problem (P) does not admit a ρ-competitive incremental solution
for ρ < φ+ 1.

4. Application to flows. In this section we show that our algorithm Algscale

can be used to solve problems as given in Example 1.5. Formally, for the incre-
mental maximal potential-based flow problem on parallel edges, we are given a graph
G = (V,E) consisting of two nodes s and t with a collection of edges between them,
and want to determine an order in which to build the edges while maintaining a
potential-based flow between s and t that is as large as possible. To this end, we
are given a continuous and strictly increasing potential-loss function ψ : R → R with
limx→∞ ψ(x) = ∞. Every edge e has an edge resistance β(e) ∈ R>0 and a capacity
u(e). Vertex potentials ps, pt ∈ R induce a flow of xe = ψ−1(p/β(e)) on edge e where
p = pt − ps. This flow is only feasible if xe ≤ u(e). The goal is to choose vertex
potentials ps, pt ∈ R together with a subset of active edges that maximizes the total
induced flow. This yields the objective

f(S) = max

{∑
e∈T

ψ−1

(
p

β(e)

) ∣∣∣∣∣T ⊆ S, p ∈ R≥0 with ψ−1

(
p

β(e)

)
≤u(e) for all e ∈ T

}(4.1)

for all S ⊆ E. The function f is obviously monotone. We further obtain that f scaled
by (mine∈E u(e))

−1 is M -bounded for M := maxe∈E u(e)
mine∈E u(e) because f({e}) = u(e). We

proceed to show that the objective is fractionally subadditive.

Proposition 4.1. The function f : 2E → R≥0 defined in (4.1) is fractionally
subadditive.

Proof. For e ∈ E, let
pe := β(e)ψ(u(e))

be the maximum potential difference between s and t such that the flow along e
induced by the potential difference pe is still feasible, i.e., does not violate the capacity



22 YANN DISSER, MAX KLIMM, ANNETTE LUTZ, AND DAVID WECKBECKER

constraint u(e). For e, e′ ∈ E, we define xe(pe′) to be the flow value along e induced
by a potential difference of pe′ between s and t if this flow is feasible and 0 otherwise.
For S ⊆ E, we have

f(S) = max

{∑
e∈T

ψ−1

(
p

β(e)

) ∣∣∣∣∣T ⊆ S, p ∈ R≥0 with ψ−1

(
p

β(e)

)
≤u(e) for all e ∈ T

}

= max

{∑
e∈S

xe(pe′)

∣∣∣∣∣ e′ ∈ E

}
,

i.e., f is an XOS-function and thus fractionally subadditive (see Example 1.3).

As a corollary, we obtain the following result.

Corollary 4.2. The best possible ρ ≥ 1 for which the incremental maximal
potential-based flow problem on parallel edges admits a ρ-competitive solution satisfies

ρ ∈
[
max

{
φ+1,M

}
,max

{
3.293

√
M, 2M

}]
,

where M = maxe∈E u(e)
mine∈E u(e) .

It is possible to define a problem instance of the potential-based maximum flow
problem on parallel edges which reflects the lower bound construction in Section 3.
Thus, the lower bound on the competitive ratio translates also to this special case.

Corollary 4.3. The incremental maximum potential-based flow problem on par-
allel edges does not admit a ρ-competitive algorithm for ρ < φ+ 1.

Proof. For i = 1, . . . , n define Ei to be a set of i parallel edges from s to t with
unit capacities. For ei ∈ Ei, define its resistance to be β(ei) := εi for some 0 < ε < 1.
Let the potential loss function ψ be continuous and strictly increasing with ψ(0) = 0.
Let pi := εiψ(1) be the potential difference between s and t inducing a flow of 1 on all
edges e ∈ Ei. Then, the maximum potential-based flow on a subset S ⊆ E =

⋃n
i=1Ei

is given by

f ′(S) = max

{∑
e∈T

ψ−1

(
p

β(e)

) ∣∣∣∣∣T ⊆ S, p ∈ R≥0 with ψ−1

(
p

β(e)

)
≤u(e) for all e ∈ T

}

= max

{
i∑

j=1

∑
e∈Ej∩S

ψ−1

(
pi

β(ej)

) ∣∣∣∣∣ i ∈ {1, . . . , n}

}

= max
i∈{1,...,n}

|S ∩ Ei|+
i−1∑
j=1

ψ−1(εi−jψ(1))|S ∩ Ej |.

The weights that represent the construction cost of the edges are defined as in the
problem instance above to be w(ei) = b+ i! for b = (n+ 2)!.

Assume there is a ρ-competitive algorithm with ρ < φ + 1 for this problem.
Let ε′ > 0 with ρ + ε′ < φ + 1. By Theorem 3.7 there is an n ∈ N such that
the incremental knapsack problem given above does not admit a (ρ+ ε′)-competitive
solution for the objective function f defined in (3.1). Choose ε small enough such
that ρn2ψ−1(εψ(1)) < ε′. This implies

f ′(S)− f(S) =

i−1∑
j=1

ψ−1(εi−jψ(1))|S ∩ Ej | ≤ n2ψ−1(εψ(1)) <
ε′

ρ
.
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Let π be a ρ-competitive solution for f ′ produced by the algorithm. Then, for C ≥ b+1
we have

(ρ+ ε′)f(π(C)) > ρ

(
f ′(π(C))− ε′

ρ

)
+ ε′ ≥ (f ′)∗(C) ≥ f∗(C),

where in the first inequality we use f(π(C)) ≥ 1 and f ′(S) − f(S) < ε′/ρ, in the
second we use ρ-competitiveness of π w.r.t. f ′ and in the third inequality we use
the fact that f(S) ≤ f ′(S). Thus, π would be a (ρ + ε′)-competitive solution for
the incremental knapsack problem, contradicting our assumption. Therefore, a ρ-
competitive algorithm for the incremental maximum potential-based flow problem
cannot exist for ρ < φ+ 1.

We now return to the incremental maximum flow problem discussed in Section 1.
In this problem, we are given a directed graph G = (V,E) with two designated vertices
s, t ∈ V . For r ∈ R≥0, a vector (xe)e∈E is an s-t-flow of value r if xe ≤ u(e) for all
e ∈ E and

∑
e∈δ+(v)

xe −
∑

e∈δ−(v)

xe =


r if v = s,

−r if v = t,

0 otherwise,

where

δ+(v) = {e ∈ E | e = (v, w) with w ∈ V },
δ−(v) = {e ∈ E | e = (w, v) with w ∈ V }

denote the set of outgoing edges and the set of ingoing edges of a vertex v, respectively.
The incremental maximum flow problem has the objective

f(S) = max
{
r
∣∣ there exists an s-t-flow of value r in GS = (V, S)} for all S ⊆ E.

It is straightforward to verify that f is modular (and, hence, also fractionally subad-
ditive) for the case that G has only the two vertices s and t and all edges go from s
to t. We here consider the case for a general graph G. For this case, it is easy to see
that the objective need not to be fractionally subadditive in general. In fact, for the
example of Figure 1.1a, we have

f({b}) = 0, f({c}) = 0, f({b, c}) = k.

This contradicts fractional subadditivity for the choices A = {b, c}, B1 = {b},
B2 = {c}, and α1 = α2 = 1.

We proceed to show that despite the lack of (fractional) subadditivity, this prob-
lem has a competitive solution when u(e) = 1 for all e ∈ E. To solve this problem,
we describe the algorithm Quickest-Increment that has been introduced by Kali-
nowski et al. [18] for a different incremental flow problem where the sum of the flow
values for all integer capacities C is to be maximized. The algorithm starts by adding
the shortest path and then iteratively adds the smallest set of edges that increase
the maximum flow value by at least 1. Let r ∈ N be the number of iterations until
Quickest-Increment terminates. For i ∈ {0, 1, . . . , r}, let λi be the size of the set
added in iteration i, i.e., λ0 is the length of the shortest s-t-path, λ1 the size of the
set added in iteration 1, and so on. For k ∈ {1, . . . , |E|}, we denote the solution of
size k of the algorithm by SA(k).
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With vmax ∈ R≥0 defined as the maximal possible s-t-flow value in the underlying
graph, for j ∈ {1, . . . , ⌊vmax⌋}, we denote by cj the minimum number of edges required
to achieve a flow value of at least j. The values λi and cj are related in the following
way; see Kalinowski et al. [18] (Lemma 4).

Lemma 4.4. When w(e) = u(e) = 1 for all e ∈ E, we have λi ≤ cj/(j − i) for all
i, j ∈ N with 0 ≤ i < j ≤ r.

Using this estimate, we can find a bound on the competitive ratio of Quickest-
Increment for the unit weight and unit capacity case.

Theorem 4.5. For the incremental maximal flow problem with w(e) = u(e) = 1
for all e ∈ E, the algorithm Quickest-Increment is 2-competitive.

Proof. Note that, since we consider the unit capacity case, we have vmax = r + 1
because Quickest-Increment increases the value of the solution by exactly 1 in
each iteration.

Consider some size k ∈ {1, . . . , |E|}. If k < c1, we have f
(
S∗(k)

)
= 0, i.e.,

every solution is competitive. If k ≥ c1, let j := f
(
S∗(k)

)
. Note that we have

f
(
S∗(cj)

)
= j = f

(
S∗(k)

)
and therefore k ≥ cj . By Lemma 4.4, we have

⌈j/2⌉−1∑
i=0

λi ≤
⌈j/2⌉−1∑

i=0

cj
j − i

= cj

⌈j/2⌉−1∑
i=0

1

j − i

≤ cj

⌈j/2⌉−1∑
i=0

1

j −
⌈
j
2

⌉
+ 1

= cj

⌈
j

2

⌉
1⌊

j
2

⌋
+ 1

≤ cj(4.2)

This implies f(SA(k)) ≥ f(SA(cj))
(4.2)
≥
⌈
j
2

⌉
≥ 1

2j =
1
2f(S

∗(k)).

Now, we turn to the case of unit capacities and rational weights. By rescaling the
weights, we can assume that, without loss of generality, the weights are integral. To
transform an instance with integral weights to one where all edges have unit weight,
one can simply replace every edge e ∈ E by a path of length w(e) where every edge
on the new path has unit weight. Then, Theorem 4.5 can be applied and we obtain
the following.

Corollary 4.6. For the incremental maximal flow problem with u(e) = 1 and
w(e) ∈ Q≥0 for all e ∈ E, the algorithm Quickest-Increment is 2-competitive.

If we consider capacities that are in the interval [1,M ], one path can bring at
most M times as much flow as every other path. Combining this with the fact that
the solution of Quickest-Increment for the instance with u(e) = 1 for all e ∈ E is
2-competitive yields that adding the edges in the same order is always within a factor
of 2M of the optimum solution.

Corollary 4.7. For the incremental maximal flow problem with u(e) ∈ [1,M ],
w(e) ∈ Q≥0 for all e ∈ E, the solution generated by Quickest-Increment, if it only
considers capacities u(e) = 1, is 2M -competitive.
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s

v1 v2 v3

u1 u2 u3

t

Figure 4.1. A lower bound instance with best possible competitive ratio 2 for the problem
Incremental Maximum s-t-Flow

As it turns out, the competitiveness of Quickest-Increment of 2 in the unit
capacity case is optimal.

Theorem 4.8. For the incremental maximal flow problem with u(e) = w(e) = 1
for all e ∈ E, there is no ρ-competitive algorithm with ρ < 2.

Proof. Consider the graph G = (V,E) with

V := {s, t, u1, u2, u3, v1, v2, v3},
E := {(s, u1), (s, v1), (u1, u2), (v1, v2), (u2, u3), (v2, v3), (u3, t), (v3, t), (u1, v3)},

with unit capacities and unit weights (cf. Figure 4.1). Let π be an arbitrary in-
cremental solution that is ρ-competitive. If the first three elements in π are not
the elements (s, u1), (u1, v3), and (v3, t) (in any order) then the solution is not
competitive for C = 3. Thus, any competitive solution contains these three ele-
ments at the first three positions. This, however, implies that the first eight ele-
ments of π cannot contain the elements of the upper and lower paths, i.e., we have
{(s, u1), (u1, u2), (u2, u3), (u3, t)} ∪ {(s, v1), (v1, v2), (v2, v3), (v3, t)}. This implies that
f(π(8)) ≤ 1. Since f∗(8) = 2, we obtain ρ ≥ 2, as claimed.

Furthermore, similar to the incremental maximization of a fractionally subad-
ditive function subject to a knapsack constraint, no algorithm can have a better
competitive ratio than M when u(e) ∈ [1,M ] for all e ∈ E.

Theorem 4.9. For the incremental maximal flow problem with u(e) ∈ [1,M ] and
w(e) = 1 for all e ∈ E, there is no ρ-competitive algorithm with ρ < M .

Proof. Consider the graph G = (V,E) with

V := {s, t, v},
E := {(s, t), (s, v), (v, t)},

with unit weights and capacities u((s, t)) = 1, u((s, v)) = u((v, t)) = M (cf. Fig-
ure 1.1a).

Let π be an arbitrary incremental solution. If π does not begin with element (s, t),
then it is not competitive for C = 1. This, however, implies that for any competitive
incremental solution π, we have π(2) ̸= {(s, v), (v, t)}. Thus, for any competitive π,
we have f(π(2)) = 1 while f∗(2) =M . This implies ρ ≥M , as claimed.
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