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Abstract
We consider the problem of finding an incremental solution to a cardinality-constrained maximization
problem that not only captures the solution for a fixed cardinality, but also describes how to gradually
grow the solution as the cardinality bound increases. The goal is to find an incremental solution that
guarantees a good competitive ratio against the optimum solution for all cardinalities simultaneously.
The central challenge is to characterize maximization problems where this is possible, and to
determine the best-possible competitive ratio that can be attained. A lower bound of 2.18 and an
upper bound of φ + 1 ≈ 2.618 are known on the competitive ratio for monotone and accountable
objectives [Bernstein et al., Math. Prog., 2022], which capture a wide range of maximization problems.
We introduce a continuization technique and identify an optimal incremental algorithm that provides
strong evidence that φ+1 is the best-possible competitive ratio. Using this continuization, we obtain
an improved lower bound of 2.246 by studying a particular recurrence relation whose characteristic
polynomial has complex roots exactly beyond the lower bound. Based on the optimal continuous
algorithm combined with a scaling approach, we also provide a 1.772-competitive randomized
algorithm. We complement this by a randomized lower bound of 1.447 via Yao’s principle.
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1 Introduction

A classical optimization problem takes as input a single instance and outputs a single solution.
While this paradigm can be appropriate in static situations, it fails to capture scenarios that
are characterized by perpetual growth, such as growing infrastructure networks, expanding
companies, or private households with a steady income. In these cases, a single static solution
may be rendered useless unless it can be extended perpetually into larger, more expansive
solutions that are adequate for the changed circumstances.
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47:2 Incremental Maximization via Continuization

To capture scenarios like this more adequately, we adopt the incremental optimiza-
tion framework formalized as follows. An instance of the Incremental Maximization
(IncMax) problem is given by a countable set U of elements and a monotone objective
function f : 2U → R≥0 that assigns each subset X ⊆ U a value f(X). A solution for an
IncMax instance is an order σ = (e1, e2, . . . ) of the elements of U such that each prefix of σ

yields a good solution with respect to the objective function f . Formally, for k ∈ [n], let
Opt(k) = max{f(X) : |X| = k, X ⊆ U} denote the optimal value of the problem of maximiz-
ing f(X) under the cardinality-constraint |X| = k. A deterministic solution σ = (e1, e2, . . . )
is called α-competitive if Opt(k)/f({e1, . . . , ek}) ≤ α for all k ∈ [n]. A randomized solution
is a probability distribution Σ = (E1, E2, . . . ) over deterministic solutions (where E1, E2, . . .

are random variables). It is called α-competitive if Opt(k)/E[f({E1, . . . , Ek})] ≤ α for
all k ∈ [n]. In both cases, we call the infimum over all α ≥ 1, such that the solution is
α-competitive, the (randomized) competitive ratio of the solution. A (randomized) algorithm
is called α-competitive for some α ≥ 1 if, for every instance, it produces an α-competitive
solution, and its (randomized) competitive ratio is the infimum over all such α. The (ran-
domized) competitive ratio of a class of problems (or a problem instance) is the infimum over
the competitive ratios of all (randomized) algorithms for it.

Clearly, in this general form, no meaningful results regarding the existence of competitive
solutions are possible. For illustration consider the instance U = {a, b, c} where for some
M ∈ N we have

f(X) =
{

M, if {b, c} ⊆ X,

|{a} ∩ X|, otherwise
for all X ⊆ U .

Then, every solution needs to start with element a in order to be competitive for k = 1,
but any such order cannot be better than M -competitive for k = 2. The underlying
issue is that the optimal solution for k = 2 given by {b, c} does not admit a competitive
partial solution of cardinality k = 1. To circumvent this issue, Bernstein et al. [1] consider
accountable functions, i.e., functions f , such that, for every X ⊆ U , there exists e ∈ X

with f(X \ {e}) ≥ f(X) − f(X)/|X|. They further show that many natural incremental
optimization problems are monotone and accountable such as the following.
Weighted matching: U is the set of edges of a weighted graph, and f(X) is the maximum

weight of a matching contained in X;
Set packing: U is a set of weighted subsets of a ground set, and f(X) is the maximum

weight of a set of mutually disjoint subsets of X;
Submodular function maximization: U is arbitrary, and f is monotone and submodular;
(Multi-dimensional) Knapsack: U is a set of items with (multi-dimensional) sizes and values,

and f(X) is the maximum value of a subset of items of X that fits into the knapsack.

Bernstein et al. [1] gave an algorithm to compute a (1 + φ)-competitive incremental
solution and showed that the competitive ratio of the IncMax problem is at least 2.18.
Throughout this work, we assume that the objective f is accountable.

Our results. As a first step, we reduce the general IncMax problem to the special case of
IncMaxSep, where the elements of the instance can be partitioned into a (countable) set of
uniform and modular subsets such that the overall objective is the maximum over the modular
functions on the subsets. We then define the IncMaxCont problem as a continuization,
where there exists one such subset with (fractional) elements of every size c ∈ R>0. The
smooth structure of this problem better lends itself to analysis.
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We consider the continuous algorithm GreedyScaling(c1, ρ) that adds a sequence of
these subsets, starting with the subset of size c1 > 0 and proceeding along a sequence of
subsets of largest possible sizes under the constraint that ρ-competitiveness is maintained for
as long as possible. We first show that there always exists an optimal solution of this form.

▶ Theorem 1. For every instance of IncMaxCont, there exists a starting value c1 such that
the algorithm GreedyScaling(c1, ρ∗) achieves the best-possible competitive ratio ρ∗ ≥ 1.

Our continuous embedding allows us to view every algorithm as an increasing sequence
of sizes of subsets that are added one after the other. Using elementary calculus, we can
show that, with the golden ratio φ := 1

2 (1 +
√

5) ≈ 1.618, GreedyScaling(c1, ρ) achieves
the known upper bound of φ + 1 for a range of starting values. Here, d(c) refers to the
density, i.e., value per size, of the subset of size c (see Sec. 2).

▶ Theorem 2. GreedyScaling(c1, φ + 1) is (φ + 1)-competitive if and only if d(c1) ≥ 1
φ+1 .

On the other hand, we are able to, for every starting value c1, construct an instance of
IncMaxCont where GreedyScaling(c1, ρ) is not better than (φ + 1)-competitive for any
ρ > 1. We emphasize that the optimum value of φ + 1 emerges naturally from the geometry
of complex roots. Based on this evidence, we conjecture that φ + 1 is the best-possible
competitive ratio.

Of course, proving a general lower bound requires to construct a single instance such that
GreedyScaling is not better than (φ + 1)-competitive for every starting value. Careful
chaining of our construction for a single starting value yields the following.

▶ Proposition 3. For every countable set S ⊂ R>0 of starting values, there exists an instance
of IncMaxCont such that GreedyScaling(c1, ρ) is not ρ-competitive for any c1 ∈ S and
any ρ < φ + 1.

Crucially, while this gives a lower bound if we only allow rational starting values c1 ∈ Q,
transferring the lower bound back to IncMax requires excluding all reals. Even though we
are not able to achieve this, we can extrapolate our analysis in terms of complex calculus to
any IncMaxCont algorithm. With this, we beat the currently best known lower bound
of 2.18 in [1].

▶ Theorem 4. The IncMax problem has a competitive ratio of at least 2.246.

We can also apply our technique, specifically the reduction to separable problem instances
and the structure of the GreedyScaling algorithm, to the analysis of randomized algorithms
for IncMax. We employ a scaling approach based on the algorithms in [1], combined with
a randomized selection of the starting value c1 inspired by a randomized algorithm for the
CowPath problem in [16]. The resulting algorithm has a randomized competitive ratio that
beats our deterministic lower bound.

▶ Theorem 5. IncMax admits a 1.772-competitive randomized algorithm.

We complement this result with a lower bound via Yao’s principle for separable instances
of IncMax.

▶ Theorem 6. Every randomized IncMax algorithm has competitive ratio at least 1.447.

ICALP 2023



47:4 Incremental Maximization via Continuization

Related work. Our work is based on the incremental maximization framework introduced
by Bernstein et al. [1]. We provide a new structural understanding that leads to a better
lower bound and new randomized bounds.

A similar framework is considered for matchings by Hassin and Rubinstein [13]. Here,
the objective f is the total weight of a set of edges and the solution is additionally required
to be a matching. Hassin and Rubinstein [13] show that the competitive ratio in this setting
is

√
2 and Matuschke, Skutella, and Soto [19] show that the randomized competitive ratio

is ln(4) ≈ 1.38. The setting was later generalized to the intersection of matroids [7] and to
independence systems with bounded exchangeability [15, 21]. Note that, while our results
hold for a broader class of objective functions, we require monotonicity of the objective
and cannot model the constraint that the solution must be a matching. We can, however,
capture the matching problem by letting the objective f be the largest weight of a matching
contained as a subset in the solution (i.e., not all parts of the solution need to be used).
That being said, it is easy to verify that the lower bound of

√
2 on the competitiveness of

any deterministic algorithm in the setting of [13] also applies in our case.
Hassin and Segev [14] studied the problem of finding a small subgraph that contains,

for all k, a path (or tree) of cardinality at most k with weight at least α times the optimal
solution and show that for this α|V |/(1 − α2) edges suffice. There are further results on
problems where the items have sizes and the cardinality-constraint is replaced by a knapsack
constraint [4, 6, 17, 20]. Goemans and Unda [9] studied general incremental maximization
problems with a sum-objective.

Incremental minimization problems further been studied for a variety of minimzation
problems such as k-median [3, 22, 18], facility location [18, 23], and k-center [10, 18]. As
noted by Lin et al. [18], the results for the minimum latency problem in [2, 8] implicitly
yield results for the incremental k-MST problem. There are further results on incremental
optimization problems where in each step the set of feasible solution increases [11, 12].

2 Separability of Incremental Maximization

As a first step to bound the competitive ratio of IncMax, we introduce a subclass of instances
of a relatively simple structure, and show that it has the same competitive ratio as IncMax.
Thus, we can restrict ourselves to this subclass in our search for bounds on the competitive
ratio.

▶ Definition 7. An instance of IncMax with objective f : 2U → R>0 is called separable if
there exist a partition U = R1 ∪ R2 ∪ . . . of U and values di > 0 such that

f(X) = max
i∈N

{|X ∩ Ri| · di} for all X ⊆ U.

We refer to di as the density of set Ri and to vi := |Ri| · di as the value of set Ri. The
restriction of IncMax to separable instances will be denoted by IncMaxSep.

We start our analysis of IncMaxSep with the following immediate observation.

▶ Lemma 8. Any instance of IncMaxSep can be transformed into one with the same or a
worse competitive, that satisfies the following properties.
1. There is exactly one set of every cardinality, i.e., |Ri| = i.
2. Densities are decreasing, i.e., 1 ≥ d1 ≥ d2 ≥ . . . .
3. Values are increasing, i.e., v1 ≤ v2 ≤ . . . .
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R1 R2 R3 R4 R5

Figure 1 Illustration of an instance of IncMaxSep with N = 5 sets. Each set Ri consists of i

elements. The height of the elements represents their value. As in Lemma 8, the values of the single
elements becomes less the larger i is, while the value of the whole set Ri increases.

Proof. We will show that every instance that does not satisfy the assumptions can be
transformed into one that does, without changing the optimum value for any size, and
without changing the value of the best incremental solution. Thus the competitive ratio of
the two instances coincide.

If there are two sets Ri, Rj with |Ri| = |Rj |, it only makes sense to consider the one
with higher density, as every solution adding elements from the set of lower density can be
improved by adding elements from the other set instead. If there is i ∈ N≥2 such that there
is no set with i elements, we can add a new set with i elements to the instance. This new set
will have value vi−1 . Then, every solution that adds elements from the newly introduced
set can be improved by adding elements from set Ri−1 instead. If there is no set R1 with 1
element, we can introduce it with density d2. Then, every solution that adds this one element
can instead also add one element from R2. Thus, the first assumption can be made.

The assumption that 1 ≥ d1 is without loss of generality by rescaling the objective f . If
there was i ∈ N with di < di+1, every solution to the problem instance that adds elements
from the set Ri could be improved by adding elements from the set Ri+1 instead. Since
|Ri+1| ≥ |Ri|, this is possible.

The third assumption can be made because, if there was i ∈ N with vi > vi+1, a solution
that adds elements from Ri+1 can be improved by adding elements from Ri instead. ◀

In the following, we assume that every instance satisfies the properties from Lemma 8.

▶ Definition 9. We say that a solution for IncMaxSep is represented by a sequence of sizes
(c1, c2, . . . ) if it first adds all elements from the set Rc1 , then all elements from the set Rc2 ,
and so on.

A solution of IncMaxSep can only improve if it is altered in a way that it is represented by
a sequence of sizes. Indeed, if not all elements of one set are added, the solution does not
degrade if a smaller set is added instead because the density of the smaller set is at least as
large as the density of the larger set. Moreover, adding all elements of one set consecutively
is better because the value of the solution increases faster this way.

▶ Lemma 10 ([1], Observation 2). There is an algorithm achieving the best-possible competitive
ratio for IncMaxSep such that the solution generated by this algorithm can be represented
by a sequence (c1, c2, . . . ). We can assume that vci < vci+1 and thus, since the values (vi)i∈N
are non-decreasing, ci < ci+1 for all i ∈ N.

ICALP 2023



47:6 Incremental Maximization via Continuization

From now on, we will only consider solutions of this form and denote a solution X by the
sequence it is represented by, i.e., X = (c1, c2, . . . ). For a size C ∈ N, we denote by X(C) the
first C elements added by X, i.e., |X(C)| = C and, with Oi := arg max{f(S) | S ⊆ U, |S| = i},
we have X

(∑k
i=1 ci

)
=
⋃k

i=1 Oci
.

▶ Proposition 11. The competitive ratios of IncMax and IncMaxSep coincide.1

Proof Sketch. As IncMaxSep is a subclass of IncMax, the competitive ratio of Inc-
MaxSep is not larger than that of IncMax.

It remains to show that the competitive ratio of IncMax is smaller or equal to that of
IncMaxSep. To see this, consider an instance of IncMax. We will construct an instance
of IncMaxSep such that every ρ-competitive solution to this problem instance induces a
ρ-competitive solution for the initial instance of IncMax.

To define the instance of IncMaxSep, let R1, R2, . . . be disjoint sets with |Ri| = i for all
i ∈ N. For i ∈ N, let di = Opt(i)/i. By modularity of the value function within one set Ri,
the value of the optimal solution of a given size in this instance is the same as that in the
instance of IncMax.

For ρ ≥ 1, let (c1, c2, . . . ) be a ρ-competitive solution for the separable instance. We
consider the solution for the initial problem that starts by adding the optimal solution of
size c1, then adds the optimal solution of size c2, and so on. Accountability guarantees that
it is possible to add the elements within one optimal solution such that the value of the
partially added solution grows at least proportionally with the size of the solution. Since the
values of the optimal solutions of a given size in the two instances coincide, the value of the
solution for the initial instance we defined above is always greater or equal to that of the
solution (c1, c2, . . . ). Thus, the solution for the initial instance is also ρ-competitive, which
implies that the competitive ratio of IncMax is smaller or equal to that of IncMaxSep. ◀

3 Continuization Results

In order to find lower bounds on the competitive ratio of IncMaxSep, we transform the
problem into a continuous one.

▶ Definition 12. In the IncMaxCont problem, we are given a density function
d : R≥0 → (0, 1] and a value function v(c) := cd(c). As for the discrete problem, we de-
note an incremental solution X for IncMaxCont by a sequence of sizes X = (c1, c2, . . . ).
For a given size c ≥ 0, we denote the solution of this size by X(c). With n ∈ N such that∑n−1

i=1 ci < c ≤
∑n

i=1 ci, the value of X(c) is defined as

f(X(c)) := max
{

max
i∈{1,...,n−1}

v(ci),
(

c −
n−1∑
i=1

ci

)
d(dn)

}
.

An incremental solution X is ρ-competitive if ρ ·f(X(c)) ≥ v(c) for all c > 0. The competitive
ratio of X is defined as inf{ρ ≥ 1 | X is ρ-competitive}.

The interpretation of the functions d and v is that the instance is partitioned into sets,
one for every positive size c ∈ R, each consisting of c fractional units with a value of d(c) per
unit, for a total value of v(c) for the set. The solution can be interpreted in the following way:
It starts by adding the set of size c1, then the set of size c2, and so on. With n ∈ N such that

1 A full proof of this and all other results can be found in [5].
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∑n−1
i=1 ci < c ≤

∑n
i=1 ci, the solution X(c) has added all of the sets of sizes c1, . . . , cn−1 and

c −
∑n−1

i=1 ci units of the set of size cn. Unlike the IncMaxSep problem, the IncMaxCont
problem includes subsets of all real sizes instead of only integer sizes and, furthermore, allows
fractional elements to be added to solutions instead of only an integral number of elements.

As for the discrete version of the problem, without loss of generality, we assume that
the density function d is non-increasing and the value function v is non-decreasing. These
assumptions imply that d is continuous: If this was not the case and d was not continuous for
some size c′, i.e., limc↗c′ d(c) > limc↘c′ d(c), then limc↗c′ v(c) > limc↘c′ v(c) by definition
of v, i.e., v would not be increasing in c. So d is continuous, and, by definition of v, also v is
continuous. Furthermore, without loss of generality, we assume that d(0) = 1.

For a fixed size c ≥ 0, we define p(c) = max{c′ ≥ 0 | v(c′) ≤ ρv(c)}. This value gives
the size up to which a solution with value v(c) is ρ-competitive. Throughout our analysis,
we assume that p(c) is defined for every c ≥ 0, i.e., that limc→∞ v(c) = ∞. Otherwise, any
algorithm can terminate when the value of its solution is at least 1

ρ supc∈R≥0
v(c).

▶ Proposition 13. The competitive ratio of IncMaxSep is greater or equal to that of
IncMaxCont.

Proof Sketch. Given a lower bound construction for the competitive ratio of IncMaxCont,
one can discretize it with arbitrary resolution such that, with an arbitrarily small loss, it
carries over to the IncMaxSep problem. ◀

This proposition implies that instead of devising a lower bound for the IncMaxSep
problem, we can construct a lower bound for the IncMaxCont problem.

Note that it is not clear whether the competitive ratio of IncMaxSep and IncMaxCont
coincide. This is due to the fact that a solution to the IncMaxCont problem may add
fractional elements while a solution to the IncMaxSep problem may only add an integral
number of items. There are even discrete instances where every continuization of the instance
has a competitive ratio smaller than the initial instance.

▶ Observation 14. There exists an instance of IncMaxSep that has a competitive ratio that
is strictly larger than that of every instance of IncMaxCont that monotonically interpolates
the IncMaxSep instance.

Proof Sketch. We show that the instance of IncMaxSep with N = 16 sets and

d1 = 1,

d3 = d4 = 17
40 ,

d12 = d13 = d14 = d15 = d16 = 16473
107200 .

has a competitive ratio of at least 1.446, while every monotone interpolation of it has a
competitive ratio of at most 1.425. ◀

Note that, even though this shows that there are instances where the continuous problem is
easier than the discrete one, this does not rule out that the competitive ratios of IncMaxSep
and IncMaxCont coincide. This is due to the fact that the instance in the proof is not a
worst-case instance.

ICALP 2023



47:8 Incremental Maximization via Continuization

3.1 Optimal Continuous Online Algorithm
In this section, we present an algorithm to solve the IncMaxCont problem, and analyze
it. To get an idea what the algorithm does, consider the following lemma. It gives a
characterization of a solution (c1, c2, . . . ) being ρ-competitive, depending on (c1, c2, . . . ), v

and d.

▶ Lemma 15. A solution (c1, c2, . . . ) for an instance of the IncMaxCont problem is
ρ-competitive if and only if d(c1) ≥ 1

ρ and, for all i ∈ N, d(ci+1) ≥ v(ci)
p(ci)−

∑i

j=1
cj

.

The intuition behind the fraction

v(ci)
p(ci) −

∑i
j=1 cj

is the following: The value of the solution (c1, . . . , ci−1, ci) is v(ci) and this value is
ρ-competitive up to size p(ci). The size required for this solution is

∑i
j=1 cj . Thus, in

order to stay competitive, the size added next, namely ci+1, needs to be chosen such that(
p(ci) −

∑i
j=1 cj

)
d(ci+1) ≥ v(ci), i.e., the density d(ci+1) is large enough such that the value

of the solution of size p(ci) is
(
p(ci) −

∑i
j=1 cj

)
d(ci+1).

We use this fraction to define an algorithm for solving the IncMaxCont Problem. For
the algorithm, we assume that v is strictly increasing and d is strictly decreasing to make
the choice of our algorithm unique. Every instance of IncMaxCont can be transformed to
satisfy this with an arbitrarily small loss by simpliy “tilting” constant parts of d and v by a
small amount. The algorithm GreedyScaling(c1, ρ) starts by adding the optimal solution
of size c1 > 0 and chooses the size ci+1 such that

d(ci+1) = v(ci)
p(ci) −

∑i
j=1 cj

, (1)

i.e., as large as possible while still satisfying the inequality in Lemma 15. An illustration of
the algorithm can be found in Figure 2.

Using the definition of the algorithm in (1) and Lemma 15, we are able to prove the
following.

▶ Proposition 16. The algorithm GreedyScaling(c1, ρ) is ρ-competitive if and only if it
produces a solution (c1, c2, . . . ) with ci < ci+1 for all i ∈ N and d(c1) ≥ 1

ρ .

Proof Sketch. “⇐”: If ci < ci+1 for all i ∈ N and d(c1) ≥ 1/ρ, we can simply apply
Lemma 15 and obtain that the solution is ρ-competitive.

“⇒”: If d(c1) < 1/ρ, Lemma 15 yields that the solution is not ρ-competitive. If ck+1 ≤ ck

for some k ∈ N, one can iteratively show that ci+1 ≤ ci for all i ∈ {k, k +1, . . . }. This implies
that the value of the solution (c1, c2, . . . ) is smaller or equal to v(ck) for all sizes. Yet, for
large sizes C ∈ N, we have v(C) > ρv(ck) as limc→∞ v(c) = ∞. ◀

The algorithm GreedyScaling(c1, ρ) only depends on the desired competitive ratio ρ

and the starting value c1. Given that some algorithm can achieve a competitive ratio of ρ,
we can show that GreedyScaling(c∗

1, ρ) with the correct starting value c∗
1 > 0 also gives a

ρ-competitive solution.

▶ Theorem 1. For every instance of IncMaxCont, there exists a starting value c1 such that
the algorithm GreedyScaling(c1, ρ∗) achieves the best-possible competitive ratio ρ∗ ≥ 1.
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∑i
j=1 cj

p(ci) ci+1 ∑i+1
j=1 cj

v(ci)

v(ci+1)

c

v(c)

1
ρ
v(c)

GreedyScaling(c)

Figure 2 Illustration how GreedyScaling(c1, ρ) works. Between size
∑i

j=1 cj and size
∑i+1

j=1 cj ,
the algorithm adds the optimal solution of size ci+1. This size is chosen in a way that the value of
the partially added solution has value v(ci) exactly at size p(ci), i.e., when the previously added
solution of size ci loses ρ-competitiveness.

Proof sketch. The idea of the proof is to start with a ρ∗-competitive solution (c1, c2, . . . )
for the instance of IncMaxCont. For every k ∈ N, we define a new ρ∗-competitive solution
(ck

1 , ck
2 , . . . ) as follows. For i ∈ N with

∑i
j=1 cj ≥ k, we set ck

i = ci. For i ∈ N with∑i
j=1 cj < k, we choose ck

i ≥ 0 as small as possible without losing ρ∗-competitiveness. This
new solution satisfies the inequality

d(ck
i+1) ≥ v(ck

i )
p(ck

i ) −
∑i

j=1 ck
j

from Lemma 15 with equality for i ∈ {1, . . . , k − 1}. This implies, that we can calculate
ck

2 , . . . , ck
k solely based on ck

1 , d, and v. For every k ∈ N, we obtain such a solution (ck
1 , ck

2 , . . . ).
For all k ∈ N, we have d(ck

1) ≥ 1/ρ∗, which implies that all sizes in {c1
1, c2

1, . . . } are from
the finite interval [0, d−1(1/ρ∗)]. By the Bolzano-Weierstrass theorem, this implies that
the sequence (c1

1, c2
1, . . . ) contains a converging sub-sequence. If we choose the limit of this

sub-sequence to be the starting value c∗
1 of the algorithm GreedyScaling(c∗

1, ρ∗), we obtain
a ρ∗-competitive algorithm. ◀

For a range of starting values c1, we are able to show the upper bound on the competitive
ratio of GreedyScaling(c1, φ + 1) in Theorem 2, where φ = 1

2 (1 +
√

5) ≈ 1.618 is the
golden ratio.

▶ Theorem 2. GreedyScaling(c1, φ + 1) is (φ + 1)-competitive if and only if d(c1) ≥ 1
φ+1 .

Proof Sketch. By Proposition 16, it suffices to show that, for the solution (c1, c2, . . . ) pro-
duced by GreedyScaling(c1, φ + 1), we have ci+1 > ci for every c1 > 0 with d(c1) > 1

φ+1 .
We show iteratively that ci+1 ≥ (φ + 1)ci. In order to do this, we observe that

p(ci) = (φ + 1)v(ci)
d(p(ci))

≥ (φ + 1)ci.
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By a straighforward induction that uses the fact that (φ+1)i−jcj ≤ ci for all j ∈ {1, . . . , i−1}
as well as the definition of GreedyScaling(c1, φ + 1) we obtain that d(ci+1) < d(p(ci)).
This implies ci+1 > p(ci) ≥ (φ + 1)ci. ◀

Since GreedyScaling(c1, ρ) with the correct starting value c1 is the best-possible
algorithm for a fixed instance, we can give a lower bound of ρ > 1 for the IncMaxCont
problem by finding an instance that is a lower bound for GreedyScaling(c1, ρ) with all
starting values c1 > 0 that satisfy d(c1) ≤ 1/ρ. In the following, we show that, for every
countable set of starting values, there is an instance where GreedyScaling(c1, ρ) cannot
have a competitive ratio of better than φ + 1 for any of these starting values. In order to do
this, we need the following lemma.

▶ Lemma 17. For α, β, ρ, ϵ ∈ R≥0 with β > 0, consider the recursively defined sequence
(tn)n∈N with

t0 = β, tn+1 = 1
ρ

tn(1−ϵ) −
(∑n

j=0
(ρ+ϵ)j−n

tj

)
− α

(ρ+ϵ)n

for all n ∈ N ∪ {0}.

If 1 < ρ < φ + 1, then there exists ϵ′ > 0 such that, for all ϵ ∈ (0, ϵ′], there is ℓ ∈ N with
tℓ < 0.

Proof sketch. We define an auxiliary sequence (an)n∈N with an = 1
tn

for all n ∈ N ∪ {0}.
This sequence becomes negative if and only if (tn)n∈N∪{0} becomes negative. We show that
(an)n∈N∪{0} is fully described by the homogeneous recurrence relation

an+1 = an

(
1

ρ + ϵ
+ ρ

1 − ϵ
− 1
)

− an−1
ρ

(1 − ϵ)(ρ + ϵ)

for all n ∈ N, together with the start values a0 = 1/β and

a1 = 1
t1

= ρ

β(1 − ϵ) − 1
β

− α.

Its characteristic polynomial is

0 = x2 −
(

1
ρ + ϵ

+ ρ

1 − ϵ
− 1
)

x + ρ

(1 − ϵ)(ρ + ϵ) .

We show that the roots x and y of this polynomial are complex if ρ < φ + 1 and ϵ > 0 small
enough. Thus, they are also distinct which implies that the sequence (an)n∈N∪{0} has the
closed-form expression

an = λxn + µyn

for all n ∈ N∪{0} where λ, µ ∈ C are chosen accordingly. The fact that the starting values a0
and a1 are real valued imply that λ and µ are complex conjugate. Thus, we obtain

an = 2R(λxn)

for all n ∈ N ∪ {0}, where R(λxn) denotes the real part of λxn. We analyze this equation by
visualizing it on the complex plane (cf. Figure 3). Since x is not real valued, multiplying by x

corresponds to a rotation by an angle that is not 0 and not π. Thus, for some n ∈ N ∪ {0},
R(λxn) must become negative. ◀



Y. Disser, M. Klimm, K. Schewior, and D. Weckbecker 47:11

-3 -2 -1 1 2 3

-2i

2i

3i

−i

i

x

λ λx

λx7

Figure 3 Multiplying λ repeatedly by x ∈ (C \ R) is equivalent to a rotation around the origin
that, at some point, reaches the half-plane corresponding to negative real parts.

▶ Proposition 3. For every countable set S ⊂ R>0 of starting values, there exists an instance
of IncMaxCont such that GreedyScaling(c1, ρ) is not ρ-competitive for any c1 ∈ S and
any ρ < φ + 1.

Proof Sketch. We give an overview how to construct an instance where the algorithm
GreedyScaling(c1, ρ) is not ρ-competitive for one fixed starting value c1 > 0 and every
ρ ∈ [1, φ + 1). For the sake of simplicity, in this overview, we describe an instance where the
density function d and the value function v are locally constant. In the final construction,
we avoid this by slightly tilting constant parts of the function.

Let ϵ > 0 be arbitrarily small. The beginning of the instance up to size c1 can be chosen
arbitrarily. We set d(c) = d(c1) for all c ∈ [c1, (ρ + ϵ)c1]. By doing this, we ensure that the
value obtained by adding the optimal solution of the first size c1 is ρ-competitive for as few
sizes as possible, i.e., until p(c1) = ρc1. Then, d(c2) = v(c1)

ρc1−c1
can be calculated. We set

v(c) = v((ρ+ϵ)c1) for all c ∈ [(ρ + ϵ)c1, v((ρ+ϵ)c1)
d(c2) ]. This ensures that c2 is as small as possible,

namely c2 = v((ρ+ϵ)c1)
d(c2) . Now we repeat what we did for c1, i.e., we define d to be constant so

that the value v(c2) is ρ-competitive for as few sizes as possible. Then, we calculate d(c3)
and define v to be constant so that c3 is as small as possible. We continue doing this for all
larger ci with i ≥ 3. It turns out that we have d(ci) = ti where the sequence (ti)i∈N is defined
as in Lemma 17. Thus, at some point, the density GreedyScaling(c1, ρ) calculates the
next capacity to be negative, which is not possible, i.e., the algorithm is not ρ-competitive.

We have seen how to construct an instance that excludes one starting value. This instance
is finite and the beginning can be chosen arbitrarily. Thus, we can chain together multiple
of these instances by scaling an instance for some set of starting values and modifying the
beginning such that it contains an instance for an additional starting value. ◀

3.2 General Lower Bound
Now we want to employ the techniques we used to prove Lemma 17 and Proposition 3 in
order to prove a lower bound on the competitive ratio of IncMaxCont. Let ρ∗ be the
unique real root ρ ≥ 1 of the polynomial −4ρ6 + 24ρ4 − ρ3 − 30ρ2 + 31ρ − 4. As before, we
need to show that a recursively defined sequence becomes negative at some point.
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▶ Lemma 18. For ρ ∈ R≥0 and ϵ > 0, consider the recursively defined sequence (tn)n∈N with

t0 = 1, t1 = 1 − ϵ

ρ
, tn = 1 − ϵ

ρ
tn−1

− 1
tn−2

− 1
ρ

(∑n−3
j=0

(ρ+ϵ)j+2−n

tj

) for all n ∈ N≥2.

If 1 < ρ < ρ∗, then there exists ϵ′ > 0 such that, for all ϵ ∈ [0, ϵ′], there is ℓ ∈ N with tℓ < 0.

The proof of this lemma is along the same lines as the proof of Lemma 17, with additional
technical difficulties because the recurrence relation of the sequence is of order 3. With this
lemma, we are ready to construct our lower bound on the competitive ratio of IncMaxCont
and thus, via Propositions 11 and 13, of IncMax.

▶ Theorem 4. The IncMax problem has a competitive ratio of at least 2.246.

Proof sketch. We fix a competitive ratio ρ < ρ∗ and some small ϵ > 0. Similarly to the
construction in the proof of Proposition 3, the lower bound in Theorem 4 is a construction
where we have intervals on which, alternatingly, either the density function or the value
function is constant (cf. Figure 4). For i ∈ N, on the (2i)-th interval, the value is constant
and equals (ρ + ϵ)i−1. On the (2i − 1)-th interval, the density is constant and equal to ti−1,
where (tn)n∈N is defined as in Lemma 18. Every solution that contains a size from an interval
of constant value can be improved by picking the largest size from the preceding interval
of constant density instead. This size has the same value and is smaller. Thus, we assume
that algorithms only pick sizes from the intervals with constant density. We denote the
solution by (c1, c2, . . . ). We have d(c1) = t0 = 1 because t1 < 1/ρ is too small. In order to be
competitive for the first constant value interval of value 1, the solution has to satisfy c1 ≥ 1/ρ

to achieve a value of at least 1/ρ. Then, the following recursive argument is made. Fix i ∈ N.
Whenever, for all j ∈ {1, . . . , i}, the solution satisfies d(cj) = tj−1 and cj ≥ (ρ+ϵ)i−1

ρ , then
we have d(ci+1) = ti and ci+1 ≥ (ρ+ϵ)i

ρ . The equality d(ci+1) = ti is due to the definition
of the sequence (tn)n∈N and Lemma 15. The inequality ci+1 ≥ (ρ+ϵ)i

tiρ follows from the fact
that, after the size ci+1 is added to the solution, the solution has to be competitive on the
(2i + 2)-th interval of value (ρ + ϵ)i. Since the sequence (tn)n∈N becomes negative at some
point, the solution is not ρ-competitive. ◀

4 Randomized Incremental Maximization

We turn to analyzing randomized algorithms to solve the (discrete) IncMaxSep problem. In
contrast to deterministic algorithms, we do not compare the value obtained by the algorithm
to an optimum solution, but rather the expected value obtained by the algorithm. This
enables us to find an algorithm with randomized competitive ratio smaller than the lower
bound of 2.24 on the competitive ratio of deterministic algorithms in Theorem 4.

4.1 Randomized Algorithm
Scaling algorithms, i.e., algorithms where the size ci is chosen such that ci = δci−1 with an
appropriate scaling factor δ > 1, have been proven to perform well for the deterministic
version of the problem. The best known algorithm is, in fact, a scaling algorithm [1]. In the
analysis, it turns out that, on average, a scaling algorithm performs better than the actual
competitive ratio, which is only tight for few sizes. By randomizing the initial size c0, we
manage to average out the worst-case sizes in the analysis.
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Figure 4 Lower bound construction for ρ = 2.1.

We describe the randomized algorithm RandomizedScaling for IncMaxSep. Let r > 1
be some scaling parameter to be determined later. The algorithm RandomizedScaling
starts by choosing ϵ ∈ (0, 1) uniformly at random. For all i ∈ N0, it calculates c̃i := ri+ϵ and
ci := ⌊c̃i⌋ and returns the solution (c0, c1, c2, . . . ).2 This approach is similar to a randomized
algorithm to solve the CowPath problem in [16], which also calculates such a sequence with
a different choice of r ∈ R in order to explore a star graph.

We define

t̃i :=
i∑

j=0
c̃j = rϵ ri+1 − 1

r − 1 and ti :=
i∑

j=0
cj .

For better readability, we let c̃−1 = c−1 = t̃−1 = t−1 = 0. Note that, for all i ∈ N0, we have

ti−1 ≤ t̃i−1 = rϵ ri − 1
r − 1

r>2
≤ ri+ϵ − rϵ ≤ ri+ϵ − 1 = c̃i − 1 ≤ ci. (2)

For every size c ∈ N0, we denote the solution created by the algorithm RandomizedScaling
by XAlg(c). Note that the optimum solution of size c ∈ N0 is given by the set Rc because
v1 ≤ v2 ≤ . . . and d1 ≥ d2 ≥ . . . . Thus, the value of the optimum solution of size c is vc.

In order to find an upper bound on the randomized competitive ratio of Randomized-
Scaling, we need the following lemma. It gives an estimate on the expected value of the
solution for a fixed size C ∈ N of RandomizedScaling depending on the interval in which C

falls.

▶ Lemma 19. Let C ∈ N.
1. For i ∈ N ∪ {0} with P[C ∈ (ci−1, ci]] > 0, we have

E
[
f(XAlg(C)) | C ∈ (ci−1, ci]

]
≥ E

[
max

{ci−1

C
,

C − ti−1

max{C, ci}

} ∣∣∣ C ∈ (ci−1, ci]
]

· vC .

2 With this definition, the algorithm does not terminate on finite instances. To avoid this, it suffices to
stop calculating the sizes ci until they are larger than the number of elements in the instance.
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2. For i ∈ N with P[C ∈ (c̃i, t̃i − 1]] > 0, we have

E
[
f(XAlg(C)) | C ∈ (c̃i, t̃i − 1]

]
≥ E

[
1 − t̃i−1

C

∣∣∣ C ∈ (c̃i, t̃i − 1]
]

· vC .

3. For i ∈ N with P[C ∈ (t̃i−1 − 1, c̃i]] > 0, we have

E
[
f(XAlg(C)) | C ∈ (t̃i−1−1, c̃i]

]
≥ E

[
max

{ c̃i−1 − 1
C

,
C − t̃i−1

c̃i

} ∣∣∣ C ∈ (t̃i−1−1, c̃i]
]
·vC .

By choosing r ≈ 5.1646 to be the unique maximum of

g(x) =
1 −

√(
x3−1
x−1 xz − 1

)2 + 4x5+2z

2 log(x)x3+z
− (1 − δ)1 − x−3

x − 1 + z − 1 − x−3

2(x − 1) log(x)

−
(1 − x−3

x − 1 − 1
x3+z

)(
logx

(√(x3 − 1
x − 1 xz − 1

)2 + 4x5+2z − x3 − 1
x − 1 xz + 1

)
− logx(2) − 3

)
− 2x2+z(√(

x3−1
x−1 xz − 1

)2 + 4x5+2z − x3−1
x−1 xz + 1

)
log(x)

+ 2
log(x) −

(
1 + 1

x3+z

)(
logx(x3+z + 1) + logx(x − 1) − logx(x4 − 1)

)
,

we can show that the following holds.

▶ Lemma 20. Let k ∈ N and δ ∈ (0, 1] such that rk+δ ≥
∑3

i=0 ri. Then

g(r) ≤ I(k, δ) :=
∫ 1

min
{

1,µ(k−1)
} 1 − t̃k−2

rk+δ
dϵ +

∫ min{1,µ(k−1)}

min{1,ν(k−1)}

c̃k−1 − 1
rk+δ

dϵ

+
∫ min{1,ν(k−1)}

δ

rk+δ − t̃k−1

c̃k
dϵ +

∫ δ

max
{

0,µ(k)
} 1 − t̃k−1

rk+δ
dϵ

+
∫ max{0,µ(k)}

max{0,ν(k)}

c̃k − 1
rk+δ

dϵ +
∫ max{0,ν(k)}

0

rk+δ − t̃k

c̃k+1
dϵ

where

µ(i) = logr(rk+δ + 1) + logr(r − 1) − logr(ri+1 − 1),

ν(i) = logr

(√(
rk+δ

1 − r−(i+1)

r − 1 −1
)2

+ 4r2k+2δ−1 − rk+δ 1 − r−(i+1)

r − 1 + 1
)

−logr(2) − i.

With these lemmas, we are ready to prove an upper bound of 1/g(r) < 1.772 on the
randomized competitive ratio of RandomizedScaling.

▶ Theorem 5. IncMax admits a 1.772-competitive randomized algorithm.

Proof Sketch. In order to find this estimate, we start by fixing k ∈ N such that
C ∈ [rk, r(k+1)). Then, depending on the value of ϵ, C is from one of the intervals

I1 = (c̃k−1, t̃k−1 − 1], I2 = (t̃k−1 − 1, c̃k], I3 = (c̃k, t̃k − 1], I4 = (t̃k − 1, c̃k+1].

Yet, not all of these intervals are relevant to calculate the randomized competitive ratio.
Depending on where in the interval [rk, r(k+1)) the value C lies, only 2 or 3 of the intervals I1
to I4 have a non-zero probability to contain C. Thus, we distinguish the different cases,
where C lies in [rk, r(k+1)) and use Lemma 19 to calculate the randomized competitive ratio
to be the integral expression in Lemma 20. Applying this lemma gives the desired bound on
the randomized competitive ratio. ◀
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4.2 Randomized Lower Bound
We turn to proving the lower bound in Theorem 6 for IncMaxSep.

▶ Theorem 6. Every randomized IncMax algorithm has competitive ratio at least 1.447.

Proof. We fix N to be the number of sets R1, . . . , RN , leaving d1, . . . , dN as parameters
to determine the instance; we denote the resulting instance by I(d1, . . . , dN ). Note that,
given a probability distribution p1, . . . , pN over the elements {1, . . . , N} in addition, Yao’s
principle [24] yields

inf
Alg∈AN

N∑
i=1

pi · i · di

Alg(I(d1, . . . , dN ), i)

as a lower bound on the randomized competitive ratio of the problem. Here, Alg(I, i)
denotes the value of the first i elements in the solution produced by Alg on instance I,
and AN is the set of all deterministic algorithms on instances with N sets R1, . . . , RN . As
observed earlier, we may assume that

AN :=
{

Algc1,...,cℓ

∣∣∣ 1 ≤ c1 < · · · < cℓ ≤ N,

ℓ∑
i=1

ci ≤ N

}
,

where Algc1,...,cℓ
is the algorithm that first includes all elements of Rc1 into the solution,

then all elements of Rc2 , and so on. Once it has added the cℓ elements of Rcℓ
, it adds some

arbitrary elements from then onwards.
We can formulate the problem of maximizing the lower bound on the competitive ratio

as an optimization problem:

max ρ

s.t. ρ ≤
N∑

i=1
pi · i · di

Alg(I(d1, . . . , dN ), i) ∀Alg ∈ AN ,

N∑
i=1

pi = 1,

d1, . . . , dN ≥ 0,

p1, . . . , pN ≥ 0.

Note that the expression Algc1,...,cℓ
(I(d1, . . . , dN ), i) can also be written as a function

of c1, . . . , cℓ, d1, . . . , dN , and i by taking the maximum over all sets from which Algc1,...,cℓ

selects elements:

Algc1,...,cℓ
(I(d1, . . . , dN ), i) = max

1≤j≤ℓ

max
{

i −
∑

1≤j′<j

cj′ , cj

}
· dcj

 .

A feasible solution to the above optimization problem with N = 10 is given by

(ρ; d1, . . . , d10; p1, . . . , p10)
= (1.447; 1, 1/2, 1/2, 1/2, 2/5, 1/3, 1/3, 1/3, 1/3, 1/3; 0.132, 0, 0, 0.395, 0, 0, 0, 0, 0, 0.473),

with objective value 1.447. ◀
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