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a b s t r a c t

The Maximum Robust Flow problem asks for a flow on the paths of a network maximizing the
guaranteed amount of flow surviving the removal of any k arcs. We point out a flaw in a previous
publication that claimed NP-hardness for this problem when k = 2. For the case that k is part of the
input, we present a new hardness proof. We also discuss the complexity of the integral version of the
problem.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Network flows are an important tool for modeling vital net-
work services, such as transportation, communication, or energy
transmission [2]. In many of these applications, the flow is sub-
jected to uncertainties such as failures of links in the network
infrastructure. This motivates the study of robust optimization
versions of network flows, which offer room to anticipate and
counteract such failures [7]. A fundamental optimization problem
within this framework is to find a flow that maximizes the
amount of surviving flow after it is affected by a worst-case
failure of k links in the network for some given number k.

The complexity of this problem, which is also known as Max-
imum Robust Flow, appeared to have been settled a decade ago:
Aneja et al. [3] showed that the problem can be solved efficiently
when k = 1, while an article by Du and Chandrasekaran [9]
established that the problem is NP-hard for any constant value
of k larger than 1.

In this paper, we point out an error in the latter result. In its
stead, we give a new hardness proof which, however, requires the
number k to be a non-constant part of the input. We further show
that computing optimal integral solutions is already NP-hard for
k = 2 (whereas for k = 1, an efficient algorithm is known). On the
positive side, we give a polynomial time algorithm for computing
an optimal integral solution for arbitrary k when capacities are
small. Before we discuss these results in detail, we give a formal
definition of the problem and discuss related literature.

∗ Corresponding author.
E-mail address: jannik.matuschke@kuleuven.be (J. Matuschke).

1.1. Problem definition

We are given a directed graph G = (V , E) with source s, sink
t , capacities u ∈ ZE

+
, and an integer k, specifying the number of

possible link failures. Let P denote the set of s-t-paths in G and let
S := {S ⊆ E : |S| = k}. An s-t-flow is a vector x ∈ RP

+
respecting

the capacity constraints
∑

P :e∈P x(P) ≤ u(e) for all e ∈ E. The goal
is to find an s-t-flow x that maximizes the robust flow value

valr(x) :=

∑
P∈P

x(P) − max
S∈S

∑
P∈P:P∩S ̸=∅

x(P),

i.e., the amount of remaining flow after failure of any set of k arcs.

1.2. Related work

Aneja et al. [3] were the first to investigate Maximum Robust
Flow. They showed that if k = 1, the problem can be solved in
polynomial time by solving a parametric linear program. In fact,
their LP yields a flow x that simultaneously maximizes valr(x) and
the nominal flow value val(x) :=

∑
P∈P x(P). They also show that

a maximum integral robust flow can be found in polynomial time
for k = 1, even though its value might be strictly lower than that
of the optimal fractional solution. Following up on this work, Du
and Chandrasekaran [9] investigated the problem for values of
k larger than 1. They presented a hardness proof for Maximum
Robust Flow with k = 2. Unfortunately, however, this proof is
incorrect. We explain this error in detail in Section 2.3.

Because of the presumed hardness of the problem, later work
focused on approximation algorithms. Bertsimas et al. [6] use a
variation of the parametric LP to obtain an approximation algo-
rithm for Maximum Robust Flow whose factor depends on the
fraction of flow lost through the failure. More recently, Bertsimas
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et al. [5] gave an alternative analysis of the same algorithm,
establishing an approximation factor of 1+(k/2)2/(k+1). Another
related concept is k-route flows introduced by Aggarwal and Orlin
[1]. A k-route flow is a conic combination of elementary flows,
each sending flow uniformly along k disjoint paths. This structure
ensures that the failure of any arc can only destroy a 1/k fraction
of the total flow. Baffier et al. [4] observed that computing a
maximum (k + 1)-route flow yields a (k + 1)-approximation
for Maximum Robust Flow. They also performed computational
experiments, which indicated that a heuristic improvement of
the aforementioned algorithm computes optimal or near-optimal
solutions on a large variety of instances.

Several alternative robustness models for flows have been pro-
posed in different application contexts. Taking a less conservative
approach, Bertsimas et al. [6] and Matuschke et al. [13] proposed
different models of flows that can be rerouted after failures occur.
Matuschke et al. [14] investigated variants of robust flows in
which an adversary can target individual flow paths and the
network can be fortified against such attacks. Gottschalk et al.
[11] devised a robust variant of flows over time in which transit
times are uncertain.

Robust flows can be seen as a dual version of network flow
interdiction, where the task is to find a subset of k arcs whose
removal minimizes the maximum flow value in the remain-
ing network. Wood [15] proved that this problem is strongly
NP-hard. The reduction presented in Section 3 also exploits the
fact that interdiction is NP-hard, but the construction is consid-
erably more involved in order to couple network flow and inter-
diction decisions in the correct way. For an overview of results
on network flow interdiction, see the recent article by Chestnut
and Zenklusen [8] on the approximability of the problem.

1.3. Results and structure of this paper

In Section 2, we give the background necessary to understand
the reduction from [9] and the reason why it does not imply
hardness for Maximum Robust Flow with k = 2.

In Section 3, we then give a new reduction that establishes
NP-hardness for Maximum Robust Flow when k is an arbitrarily
large number given in the input. Our reduction works even when
the number of paths in the graph is polynomial in the size of the
network and only two different capacity values occur (capacity
1 and a capacity that is large but polynomial in the size of the
network). We also point out that the problem becomes easy for
the case that all capacities are equal.

In Section 4, we show that it is NP-hard to compute an optimal
integral solution for k = 2. Note that this is in contrast to the
case k = 1, where the optimal integral solution can be computed
efficiently [3]. While NP-hardness for the integral case even holds
when capacities are bounded by 3, we show that the problem can
be solved efficiently when capacities are bounded by 2, even for
arbitrary values of k.

2. Background

The hardness result from [9] is based on an LP formulation of
Maximum Robust Flow and the equivalence of optimization and
separation, which we shortly recapitulate in this section.

2.1. LP formulation

For our further discussion of Maximum Robust Flow, the
following linear programming formulation of the problem will be
useful:

[P] max
∑
P∈P

x(P) − λ

s.t.
∑
P :e∈P

x(P) ≤ u(e) ∀ e ∈ E∑
P :P∩S ̸=∅

x(P) − λ ≤ 0 ∀ S ∈ S

x(P) ≥ 0 ∀ P ∈ P

Note that λ = maxS∈S
∑

P∈P:P∩S ̸=∅
x(P) in any optimal so-

lution to [P], i.e., λ represents the amount of flow lost in a
worst-case failure scenario for flow x. We also consider the dual
of [P]:

[D] min
∑
e∈E

u(e)y(e)

s.t.
∑
e∈P

y(e) +

∑
S:P∩S ̸=∅

z(S) ≥ 1 ∀ P ∈ P

∑
S∈S

z(S) = 1

y(e) ≥ 0 ∀ e ∈ E
z(S) ≥ 0 ∀ S ∈ S

Note that the number of s-t-paths in G and hence the number
of variables of [P] can be exponential in |E|. On the other hand, the
number of variables of [D] is |E|+

(
|E|

k

)
, which is polynomial in |E|

for constant values of k. In such a situation, a standard approach
is to solve the dual via its separation problem, which is described
in the next section.

2.2. Equivalence of optimization and separation

Let Q ⊆ Rn be a rational polyhedron. By a classic result
of Grötschel et al. [12], optimizing arbitrary linear objectives over
Q is polynomially equivalent to finding out whether a given point
is in Q and finding a hyperplane separating the point from Q if
not. We give a formal statement of this result below.

Separation(Q )

Input: a vector y ∈ Rn

Task: Assert that y ∈ Q , or find a separating hyperplane, i.e., a
vector d ∈ Rn such that dT x < dTy for all x ∈ Q .

Optimization(Q)

Input: a vector c ∈ Rn

Task: Either assert that Q = ∅, or find x, d ∈ Rn such that
cTd > 0 and x + αd ∈ Q for all α ≥ 0, or find x ∈ Q
maximizing cT x.

Theorem 1 (Grötschel et al. [12, Theorem 6.4.9]). The optimization
problem for Q can be solved in oracle-polynomial time given an
oracle for the separation problem for Q , and vice versa.

2.3. Dual separation for maximum robust flow

Let Q be the set of feasible solutions to the dual program [D],
i.e.,

Q :=

{
(y, z) ∈ RE×S

:

∑
S∈S

z(S) = 1,

∑
e∈P

y(e) +

∑
S:P∩S ̸=∅

z(S) ≥ 1 ∀ P ∈ P
}
.

In the separation problem for Q , we are given (y, z) ∈ RE×S

and have to decide whether (y, z) ∈ Q . Since checking whether∑
S∈S z(S) = 1 can be done in polynomial time for constant
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values of k, the separation problem is polynomial-time equivalent
to finding a path P such that

∑
e∈P y(e) +

∑
S:P∩S ̸=∅

z(S) < 1 or
deciding that no such path is exists.

Du and Chandrasekaran [9] showed that the problem
Separation(Q ) is NP-hard, even when k = 2. They concluded that
by the equivalence of optimization and separation, solving [D]
and hence solving [P] is NP-hard. However, this implication is not
correct. It is true that the hardness of Separation(Q ) implies that
also Optimization(Q ) is NP-hard. However, [D] is only a special
case of Optimization(Q ): The objective function of [D] is not an
arbitrary vector in RE×S , but it is restricted to those objective
functions where all coefficients corresponding to the z-variables
are 0. Hence, a polynomial time algorithm for Maximum Robust
Flow does not necessarily imply a polynomial time algorithm for
Optimization(Q ) and therefore the hardness of the latter does not
transfer to the former.

It is worthwhile to note that the instances ofMaximum Robust
Flow with k = 2 constructed in the reduction from [9] contain
an s-t-cut of cardinality 2. For such instances, every s-t-flow has
a robust value 0. Hence Maximum Robust Flow can be solved in
polynomial time for these instances. This shows that the invalid
implication is not just a mere technicality that could easily be
fixed. If Maximum Robust Flow for k = 2 is indeed NP-hard, a
reduction that shows this would need to construct considerably
more involved instances of the problem.

3. Robust flows with large number of failing arcs

Theorem 2. Maximum Robust Flow is strongly NP-hard, even
when restricted to instances where the number of paths is polyno-
mial in the size of the graph.

Proof. We show this by a reduction from Clique: Given a graph
G′

= (V ′, E ′) and k′
∈ Z+, is there a clique of size k′ in G′? We will

construct an instance of Maximum Robust Flow consisting of a
graph G = (V , E), source s, sink t , capacities u: E → Q+ ∪ {∞},
and k ∈ Z+ from the Clique instance (at the end of the proof,
we show how to obtain an equivalent instance with finite and
integral capacities). Let

ℓ := |V ′
| + 2|E ′

|, k := k′ℓ + (|V ′
| − k′) + 2|E ′

|,

ε :=
1
ℓ
, M := (1 + ε)k.

For every vertex v ∈ V ′ we introduce a node av and two
additional groups of ℓ nodes each, Av = {av,1, . . . , av,ℓ} and
Bv = {bv,1, . . . , bv,ℓ}. We connect av to every node in Bv by an
arc of capacity M , and we also connect each node av,i to bv,i by
an arc of capacity 1. For every edge e = {u, v} ∈ E ′ we introduce
two nodes a′

e, a
′′
e and arcs (a′

e, bu,i), (a
′′
e , bu,i), (a

′
e, bv,i), (a′′

e , bv,i) for
i ∈ {1, . . . , ℓ}, each of capacity M . We denote

A :=

⋃
v∈V ′

({av} ∪ Av) ∪

⋃
e∈E′

{a′

e, a
′′

e } and B :=

⋃
v∈V ′

Bv.

We also introduce a source s and a sink t and arcs (s, a) for every
a ∈ A and (b, t) for every b ∈ B, all of infinite capacity. We
then add k parallel s-t-arcs e1, . . . , ek. Defining h := 2 ·

(k′
2

)
− 2,

we set the capacity of e1, . . . , eh to 1 + ε and the capacity of
eh+1, . . . , ek to 1. We finally add two additional nodes v′, v′′,
together with two s-v′-arcs e′

1, e
′

2, two v′′-t-arcs e′′

1 , e
′′

2 , and arcs
(s, v′′), (v′, t), (v′, v′′). We set the capacities u(e′

1) = u(e′′

1) = 1,
u(e′

2) = u(e′′

2) = u(v′, v′′) = ε and u(s, v′′) = u(v′, t) = 1 + ε. We
let EH denote the arcs in the subgraph H induced by the node set
{s, v′, v′′, t}. The complete construction is depicted in Fig. 1.

We now prove the following lemma, which implies Theorem 2.
For convenience we will use the notation x(e) :=

∑
P :e∈P x(P) for

the total flow through an arc e.

Lemma 3. Let (x∗, λ∗) be an optimal solution to Maximum Robust
Flow. Then there is a clique of size k′ in G′ if and only if x∗(v′, v′′)
> 0.

Proof. In order to prove Lemma 3 we first observe that, without
loss of generality, we can assume that all arcs in E ∩ (A × B)
and the arcs e1, . . . , ek are saturated by x∗: If any of these arcs
is not saturated, we can increase the flow along the unique
path containing that arc and increase λ∗ by the same value, not
decreasing the value of the solution and not changing the flow on
(v′, v′′).

Consider the set F := {e1, . . . , ek, (s, v′′), (v′, t)} and define

fx∗ (r) := max

{∑
e∈F ′

x∗(e) : F ′
⊆ F , |F ′

| ≤ r

}
for r ∈ N. To prove Lemma 3, we establish the following result
that relates the value of λ∗ to the maximum number of edges
induced by a k′-vertex subgraph of G′.

Lemma 4. Let h∗
:= max{|E ′

[U]| : U ⊆ V ′, |U | ≤ k′
}. Then,

λ∗
= (|V ′

| + 4|E ′
|)ℓM + k′ℓ + fx∗ (2h∗).

Proof. Let S ∈ S be such that
∑

P∈P:S∩P ̸=∅
x∗(P) = λ∗. We first

observe that we can assume S ∩ (A × B) = ∅ without loss of
generality: If S contains an arc (a, b) ∈ A × B, we can replace it
by either of the arcs (s, a) or (b, t), each of which intersects the
unique s-t-path containing (a, b).

Now define

U := {v ∈ V ′
: (b, t) ∈ S ∀ b ∈ Bv}.

Note that |U | ≤ ⌊k/ℓ⌋ ≤ k′ by choice of k and ℓ. Furthermore,
note that x∗(P) = M for exactly (|V ′

| + 4|E ′
|)ℓ paths P ∈ P

by our earlier assumption that arcs in E ∩ (A × B) are fully
saturated. Also, by choice of M and since every other path carries
at most 1 + ε units of flow, the only possibility to destroy at
least (|V ′

| + 4|E ′
|)ℓM units of flow is for S to intersect all these

paths, and by maximality of λ∗, this must indeed be the case.
Therefore, we can assume that for every v ∈ V ′, either v ∈ U
or {(s, av)} ∪ {(s, a′

e), (s, a
′′
e ) : e ∈ δ(v)} ⊆ S. This implies that U

already determines a subset SU of

kU := ℓ|U | + |V ′
| − |U | + 2(|E ′

| − |E ′
[U]|)

arcs in S, destroying a flow of (|V ′
| + 4|E ′

|)ℓM + |U |ℓ units. The
remaining k − kU arcs in S can destroy an additional flow of at
most fx∗ (k − kU ), as no arc in E \ F carries more than 1 unit of
flow after destruction of the flow paths of value M and there are
at least k arcs in F with flow value at least 1. Furthermore observe
that fx∗ (r ′

+r ′′) ≤ fx∗ (r ′)+(1+ε)r ′′ as none of the arcs in F carries
more than 1 + ε units of flow. We deduce that

λ∗
≤ (|V ′

| + 4|E ′
|)ℓM + |U |ℓ + fx∗ (k − kU )

= (|V ′
| + 4|E ′

|)ℓM + |U |ℓ

+ fx∗ ((k′
− |U |)(ℓ − 1) + 2|E ′

[U]|)
≤ (|V ′

| + 4|E ′
|)ℓM + |U |ℓ

+ fx∗ (2|E ′
[U]|) + (1 + ε)(k′

− |U |)(ℓ − 1)
= (|V ′

| + 4|E ′
|)ℓM + k′ℓ

+ (k′
− |U |)(ε(ℓ − 1) − 1  

≤0

) + fx∗ (2 |E ′
[U]|  

≤h∗

)

≤ (|V ′
| + 4|E ′

|)ℓM + k′ℓ + fx∗ (2h∗).
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Fig. 1. Construction of the reduction from Clique for two vertices v, w and an edge e = {v, w}. Solid arcs have a ‘‘large’’ capacity (i.e., u(e) ∈ {M, ∞}), dashed arcs
have a ‘‘small’’ capacity (i.e., u(e) ∈ {ε, 1, 1 + ε}).

Now let U∗
⊆ V ′ be such that |U∗

| = k′ and |E ′
[U∗

]| = h∗ and
let F∗

⊆ F be such that |F∗
| = 2h∗ and

∑
e∈F∗ x∗(e) = fx∗ (2h∗).

Consider the set

S∗
:=

⋃
v∈U∗

Bv ∪ {av : v ∈ V ′
\ U∗

}

∪ {a′

e, a
′′

e : e /∈ E ′
[U∗

]} ∪ F∗

and observe that |S∗
| ≤ k. Note that

∑
P :P∩F∗ ̸=∅

x∗(P) =∑
e∈F∗ x∗(e) because no s-t-path contains more than one arc from

F∗
⊆ F . Therefore

λ∗
≥

∑
P :P∩S∗

̸=∅

x∗(P) = (|V ′
| + 4|E ′

|)ℓM + k′ℓ + fx∗ (2h∗).

This proves Lemma 4. □

We use Lemma 4 to prove Lemma 3 as follows. Observe
that (x∗, λ∗) maximizes the quantity

∑
P∈P x∗(P) − λ∗. Define

C1 := (|V ′
| + 4|E ′

|)ℓM + ℓ|V ′
| +

∑k
i=1 u(ei). As we already fixed

the flow value on all paths outside of the subgraph H , we know
that∑
P∈P

x∗(P) = C1 +

∑
P∈P:P⊆EH

x∗(P)

= C1 + x∗(v′, t) + x∗(v′, v′′) + x∗(s, v′′),

where the last three summands together determine the total
nominal flow through H . Defining

C2 := (|V ′
| + 4|E ′

|)ℓM + k′ℓ,

Lemma 4 states that λ∗
= C2 + fx∗ (2h∗). Thus∑

P∈P

x∗(P) − λ∗
= C1 − C2 + x∗(v′, t) + x∗(v′, v′′)

+ x∗(s, v′′) − fx∗ (2h∗).

Since, by definition, the values C1 and C2 do not depend on x∗,
optimality of x∗ implies that the flow maximizes the quantity

x∗(v′, t) + x∗(v′, v′′) + x∗(s, v′′) − fx∗ (2h∗).

We use this to finally show that x∗(v′, v′′) > 0 if and only if G′

contains a clique of size k′.
First, assume that there is no clique of size k′ in G′, i.e.,

h∗
≤

(k′
2

)
− 1. In this case, 2h∗

≤ h and therefore fx∗ (2h∗) =

2h∗(1 + ε), independent of the flow values in the subgraph H , as

no arc in EH can carry more than 1 + ε units of flow and there
are already h arcs with flow value 1 + ε in F \ EH . Therefore, x∗

maximizes x∗(v′, t)+ x∗(v′, v′′)+ x∗(s, v′′), which implies it is the
unique maximum flow in H , which fulfills

∑
P :(v′,v′′)∈P x

∗(P) = 0.
Now assume G′ has a clique of size k′ and thus h∗

=
(k′
2

)
. In

this case 2h∗
= h + 2 and hence

fx∗ (2h∗) = 2h · (1 + ε) + max{1, x∗(v′, t)}
+ max{1, x∗(s, v′′)},

as (v′, t) and (s, v′′) are the only two arcs in F outside {e1, . . . , eh}
that can carry more than 1 unit of flow. Thus the flow x∗ maxi-
mizes

x∗(v′, t) + x∗(v′, v′′) + x∗(s, v′′)
−

(
max{1, x∗(v′, t)} + max{1, x∗(s, v′′)}

)
.

This term is maximized for x∗(v′, t) = x∗(s, v′′) = 1 and
x∗(v′, v′′) = ε.

The above two observations conclude the proof of
Lemma 3. □

Note that the size of the graph G = (V , E) constructed in the
reduction is polynomial in the size of G′. Furthermore observe
that the number of paths in G is polynomial in |E| and that all
capacities are polynomial in the size of G (note that the capac-
ity ∞ can be replaced by |E|M , and multiplying all capacities
with ℓ yields integral capacities). This concludes the proof of
Theorem 2. □

3.1. Reduction to two capacity values

We now observe that there is a pseudopolynomial transforma-
tion that converts general instances of Maximum Robust Flow
to instances with where the capacity of each arc is one of two
different values: 1 or umax, where umax is the maximum capacity
value occurring in the original instance.

Lemma 5. There is an algorithm that given an instance of Maxi-
mum Robust Flow I = ((V , E), s, t, u, k) computes in time
O(|E|umax) an instance of Maximum Robust Flow I ′ = ((V ′, E ′, s′,
t ′, u′, k) with u′(e) ∈ {1, umax} for all e ∈ E ′ such that the maximum
robust flow value of I and I ′ is identical, where umax := maxe∈E u(e).
Moreover, given an (integral) flow x′ in I ′ one can compute in
time polynomial in |E| and |supp(x′)| an (integral) flow x in I with
valr(x) = valr(x′).
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Fig. 2. Construction for Lemma 5. Arc (v, w) with capacity 5 is replaced by a
sequence of an arc with capacity ∞ and 5 arcs with capacity 1.

Proof. To obtain an equivalent instance in which only the ca-
pacities 1 and umax occur, observe that we can replace any arc of
capacity u by the concatenation of an arc of capacity umax and u
parallel arcs of capacity 1. Failure of the original arc corresponds
to failure of the infinite capacity arc in the modified instance. See
Fig. 2 for an illustration. □

In particular, this implies that our hardness result still holds
in the more restricted setting of capacities 1 and ∞ (where ∞

can also be replaced by a number that is polynomially bounded
in the network size).

Corollary 6. Maximum Robust Flow is NP-hard, even when re-
stricted to instances where u(e) ∈ {1, ∞} for all e ∈ E and where
the number of paths is polynomial in the size of the graph.

3.2. Unit capacities

On the other hand, it is not hard to see that the problem
becomes easy in the unit capacity case.

Theorem 7. If u ≡ 1 then any maximum flow also is a maximum
robust flow.

Proof. Let C be a minimum s-t-cut in G. If |C | ≤ k, then every
flow has robust value 0. Thus assume |C | > k. Let x be any
s-t-flow. Clearly, valr(x) ≤ |C | − k, as after removal of any k arcs
from C , the remaining flow must traverse the |C | − k remaining
arcs in the cut. Now assume x is a maximum flow, i.e., val(x) =

|C |. Since every arc carries at most 1 unit of flow, the removal of
any k arcs from G can only decrease the flow value by k, thus x is
an optimal solution to Maximum Robust Flow. □

4. Integral robust flows

In this section, we show that finding a maximum integral
robust flow is NP-hard already for instances with k = 2. This
is in contrast to the case k = 1, for which it is possible to
efficiently compute the best integral solution [3]. In fact, our
reduction implies that it is hard to distinguish instances with
optimal value 2 or 3, resulting in hardness of approximation for
the integral problem. Interestingly, the fractional version of the
problem admits a 4/3-approximation algorithm for k = 2 [5],
indicating that the integral problem is indeed harder.

Theorem 8. Unless P = NP, there is no (3/2−ε)-approximation al-
gorithm for Integral Maximum Robust Flow, even when restricted
to instances where k = 2 and u(e) ≤ 3 for all e ∈ E.

Proof. We reduce from Arc-disjoint Paths, which is well-known
to be NP-hard [10]. As input of Arc-disjoint Paths, we are given
a directed graph G′

= (V ′, E ′) and two pairs of nodes (s1, t1) and
(s2, t2). The task is to decide whether there is an s1-t1-path P ′

1 and
an s2-t2-path P ′

2 in G′ with P ′

1 ∩ P ′

2 = ∅.

Fig. 3. The construction for showing NP-hardness of Integral Maximum Robust
Flow with k = 2. The dotted box contains an instance of Arc-disjoint Paths.
Labels at the arcs show the capacities. All unlabeled arcs have unit capacity.

From the input graph G′
= (V ′, E ′), we construct an instance

of Maximum Robust Flow by adding 6 new nodes and 13 new
arcs, obtaining a new directed graph G = (V , E) with

V = V ′
∪ {s, t, v, v′, v′′, w}

E = E ′
∪ {(s, v), (s, v′), (s, v′′), (v, s1), (v, v′), (v, v′′),

(v′, t), (v′′, t), (s, w), (t1, w), (w, t), (s, s2), (t2, t)}.

We set u(s, v) = 3 and u(v′, t) = u(v′′, t) = u(w, t) = 2. All other
arcs have capacity 1. The whole construction is depicted in Fig. 3.

We show that there is an integral flow x with valr(x) ≥ 3
if an only if there is an s1-t1-path P ′

1 and an s2-t2-path P ′

2 in G′

with P ′

1 ∩ P ′

2 = ∅. It is thus NP-hard to distinguish instances
of Integral Maximum Robust Flow with optimal value at least
3 from those with optimal value at most 2.

First assume there is an integral flow x with robust value
valr(x) = 3. Consider the arc set S ′

= {(s, v), (w, t)}. As∑
P :P∩S′=∅

x(P) ≥ 3, there must be three s-t-paths carrying 1
unit of flow each and not intersecting with S ′. These paths must
thus start with the arcs (s, v′), (s, v′′), and (s, s2), respectively. In
particular, the latter path must end with (t2, t), because (t2, t)
together with (w, t) forms an s2-t-cut, and (w, t) ∈ S ′ is not
contained in the path. Let P2 be this unique flow-carrying path
starting with (s, s2) and ending with (t2, t). Note that all arcs
of P2 have unit capacity and thus no other flow-carrying path
can intersect P2. Now consider the arc set S ′′

= {(v′, t), (v′′, t)}.
Because the arc (v, s1) is part of an s-t-cut with capacity 3 in
the network (V , E \ S ′′), there must be a flow path P1 containing
(v, s1). As (t2, t) is already saturated by the flow on P2, the path
P1 must use (t1, w). In particular, P1 contains an s1-t1-path P ′

1 and
P2 contains an s2-t2-path P ′

2, and P1 ∩ P2 = ∅.
Conversely, assume there is an s1-t1-path P ′

1 and an s2-t2-path
P ′

2 in G′ with P ′

1 ∩ P ′

2 = ∅. Let

P1 := {(s, v), (v, s1)} ∪ P ′

1 ∪ {(t1, w), (w, t)} and
P2 := {(s, s1)} ∪ P ′

2 ∪ {(t2, t)}.

Send 1 unit of flow along each of the paths P1, P2 and the five
remaining paths s-v′-t , s-v′′-t , s-v-v′-t , s-v-v′′-t , and s-w-t , ob-
taining a flow x. Now assume by contradiction that valr(x) < 3.
Because val(x) = 7, there must be S ∈ S with

∑
P :P∩S ̸=∅

x(P) > 4.
In particular, the arc (s, v) must be contained in S, as it is the
only arc carrying more than 2 units of flow. The other arc in
S must be one of the arcs with capacity 2, i.e., (v, v′), (v, v′′),
or (w, t). However, each of these three arcs is contained in one
of the three flow paths using (s, v). Thus

∑
P :P∩S ̸=∅

x(P) = 4, a
contradiction. □
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For the reduction given above to work, it is sufficient to have
arcs of capacity at most 3. We now argue that the problem can
be solved efficiently for arbitrary values of k when capacities are
bounded by 2.

Theorem 9. Integral Maximum Robust Flow restricted to in-
stances with u(e) ≤ 2 for all e ∈ E can be solved in polynomial
time.

Proof. Let x∗ be an optimal solution to Integral Maximum
Robust Flow. Let x1 be a maximum flow in G with respect to
unit capacities and let x2 be a maximum flow in G with respect
to capacities u. As capacities are integral, we can assume without
loss of generality that x1 and x2 are integral. We will show that
valr(x∗) = max{0, val(x1) − k, val(x2) − 2k}.

To prove this claim, consider a minimum cardinality s-t-cut C
in G. We greedily construct a set S ⊆ C with |S| ≤ k as follows:
Starting with S = ∅, iteratively add an arc e ∈ C \ S to S that
maximizes

∆(S, e) :=
∑

P∈P : e∈P, P∩S=∅
x∗(P)

until |S| = k or S = C . In other words, we greedily add an
arc from C to S that removes the most flow from x∗. Note that
throughout this selection process, the value ∆(S, e) ∈ {0, 1, 2} is
non-increasing for each e ∈ C . After construction of S, let ∆ := 0
if S = C and ∆ := maxe∈C\S ∆(S, e) otherwise.

1. If ∆ = 0, then
∑

P∈P:P∩S ̸=∅
x∗(P) = val(x∗) and therefore

valr(x∗) = 0. In this case, any integral flow is an optimal
solution.

2. If ∆ = 1, then
∑

P∈P∈P:e∈P,P∩S=∅
x∗(P) ≤ 1 for every arc

e ∈ C \ S. Therefore valr(x∗) ≤
∑

P :P∩S=∅
x∗(P) ≤ |C \ S| =

val(x1) − k ≤ valr(x1), where the equality follows from
val(x1) = |C | and the last inequality follows from the fact
that every arc carries at most 1 unit of flow in x1. We
conclude that x1 is an optimal solution in this case.

3. If ∆ = 2, then
∑

P∈P:P∩S ̸=∅
x∗(P) = 2k, because in every

iteration an arc e with ∆(S, e) = 2 was added to S. Thus
valr(x∗) ≤ val(x∗)− 2k ≤ val(x2)− 2k ≤ valr(x2), where the
last inequality follows from the fact that every arc carries
at most 2 units of flow in x2. We conclude that x2 is an
optimal solution in this case.

Computing x1 and x2 and determining whether or not val(x1) −

k ≥ val(x2) − 2k can be done in polynomial time. □

5. Conclusion

Our hardness result for Maximum Robust Flow presented in
Section 3 crucially requires the number of failing arcs k to be

large. This immediately leads to the following question, which
had seemingly been settled over a decade ago, but is now open
once more:

Question. What is the complexity of Maximum Robust Flowwhen
restricted to instances where k ≥ 2 is a constant?
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