
Rectilinear Shortest Path and Rectilinear
Minimum Spanning Tree with Neighborhoods

Yann Disser1, Matúš Mihalák2, Sandro Montanari2(B), and Peter Widmayer2

1 Department of Mathematics, TU Berlin, Berlin, Germany
2 Department of Computer Science, ETH Zurich, Zurich, Switzerland

sandro.montanari@inf.ethz.ch

Abstract. We consider a setting where we are given a graph G = (R, E),
where R = {R1, . . . , Rn} is a set of polygonal regions in the plane.
Placing a point pi inside each region Ri turns G into an edge-weighted
graph Gp , p = {p1, . . . , pn}, where the cost of (Ri, Rj) ∈ E is the dis-
tance between pi and pj . The Shortest Path Problem with Neighborhoods
asks, for given Rs and Rt, to find a placement p such that the cost
of a resulting shortest st-path in Gp is minimum among all graphs Gp .
The Minimum Spanning Tree Problem with Neighborhoods asks to find
a placement p such that the cost of a resulting minimum spanning tree
is minimum among all graphs Gp . We study these problems in the L1

metric, and show that the shortest path problem with neighborhoods is
solvable in polynomial time, whereas the minimum spanning tree prob-
lem with neighborhoods is APX-hard, even if the neighborhood regions
are segments.

Keywords: Neighborhoods · Minimum spanning tree · Shortest path

1 Introduction

In computational geometry we typically assume to be able to estimate locations
of objects as exact points in the plane. In many real world applications, however,
obtaining this information without uncertainty might be unrealistic because of
noise or uncertain measurements; therefore, standard techniques and algorithms
cannot be applied.

A more realistic assumption is to consider, instead of exact points, uncer-
tainty (or neighborhood) regions in which we are assured the objects will lie. In
this setting, shapes and properties of geometric structures induced by the points
(i.e., convex hulls, minimum spanning trees, etc.) will vary with their placements
inside the regions. It then becomes crucial to inspect the best and worst pos-
sible placements for the considered application. Typically, these are placements
minimizing or maximizing a certain cost function of some geometric structure
induced by the placement points. In this paper, we study minimum spanning
trees and shortest paths under the assumption that the neighborhood regions
are rectilinear polygons, and distances are measured in the L1 metric.

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 208–220, 2014.
DOI: 10.1007/978-3-319-09174-7 18

Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree 209

Several geometric optimization problems have been studied in the setting
“with neighborhoods”, such as the Traveling Salesman Problem [4,5] , the prob-
lems of finding a convex hull [8] or enclosing circle [9], or the Minimum Spanning
Tree Problem [2,8,11]. In these variants, one searches for a placement of points
inside the neighborhood regions such that the resulting cost of the geometric
structure induced by the points of the placement is as big or as small as pos-
sible. For example, the Minimum Spanning Tree Problem with Neighborhoods
(MSTN for short) asks for a placement of points, one inside each neighborhood
region, such that the cost of a Euclidean minimum spanning tree of these points
is smallest among all such placements. Löffler and van Kreveld showed [8] this
problem to be NP-hard when the neighborhood regions are squares (not neces-
sarily disjoint). Yang et al. [11] showed that when the neighborhood regions are
disjoint unit disks, the problem admits a PTAS (i.e., it can be approximated
arbitrarily well). Dorrigiv et al. [2] later proved APX-hardness of MSTN in L2

metric when the neighborhood regions are disjoint disks. They propose to study
the setting where the regions may consist of other shapes, such as line segments
or rectangles. Our results show that even if the regions consist of vertically or
horizontally aligned segments, the problem remains hard to approximate.

Another problem considered in the setting “with Neighborhoods” is the so-
called TouringPolygons. Given a sequence of simple polygons in the plane, a
start point s, and a target point t, TouringPolygons is the problem to find a
shortest tour that starts at s, visits the polygons in the given order, and ends at
t. This problem is solvable in polynomial time whenever the polygons are convex
and disjoint [3]. If the polygons are allowed to be non-convex and intersecting,
the problem is NP-hard for any metric Lp, p ≥ 1, unless the polygons are recti-
linear regions (not necessarily convex) and distances are measured with the L1

metric [3]. For several years, the complexity for the case of general non-convex
yet disjoint polygons has been open, which motivated the design of approxima-
tion algorithms [10]. Recently, Ahadi et al. [1] proved TouringPolygons to be
NP-hard for non-convex disjoint polygons for every metric Lp, p ≥ 1, even for
degenerate polygons composed of two line segments joint at a common endpoint
whose angles with the x-axis are in {0,±π/4, π/2}.

In this paper we study a generalization of TouringPolygons relaxing the
requirement to visit all polygons in a natural way. In addition to the set of poly-
gons, we are given a set of allowed traversals represented as a graph defined on
the polygonal regions. Given a start and a target polygon, we search for a path
of minimum length traversing the polygons accordingly with the edges of the
underlying graph. We call this the Shortest Path Problem with Neighborhoods,
SPN for short. In general the problem remains NP-hard, since TouringPoly-
gons is a special case where the graph is the path induced by the order in which
the polygons need to be visited. Our results show that SPN is solvable in poly-
nomial time for the L1 metric in case the polygons are rectilinear regions not
necessarily convex.

210 Y. Disser et al.

2 Shortest Path with Neighborhoods

Let G = (R, E) be a directed graph defined over a set of non-overlapping recti-
linear polygons R = {R1, . . . , Rn}. Placing a point pi inside each Ri turns G into
an edge-weighted graph Gp,p = {p1, . . . , pn}, where the cost of (Ri, Rj) ∈ E is
the L1 distance between pi and pj . Given a pair s, t ∈ {1, . . . , n}, the Shortest
Path Problem with Neighborhoods, or SPN, asks for a placement p such that the
cost of a shortest path between Rs and Rt in Gp is smallest among all possible
placements. We call such a placement an optimum SPN placement.

The SPN problem can be solved trivially if (Rs, Rt) ∈ E. In this case, a
shortest st-path is the edge (Rs, Rt), and an optimum placement minimizes the
length of this edge. If (Rs, Rt) /∈ E, it is not clear a priori what sequence of
rectangles constitutes a shortest st-path, for an optimum placement p. Note
that, if we know which regions constitute a shortest st-path, and in which order,
the problem becomes the Touring Polygons Problem.

Given a finite set of points P ⊂ R
2, the Hanan grid of P is induced by

imposing horizontal and vertical lines through the points in P . In the following,
we show that an optimum SPN placement lies on the intersections of the lines
of the Hanan grid induced by the corners of the regions in R. Based on this,
we provide an algorithm that computes an optimum SPN placement in time
O(n2k2 log nk+mnk3), where n = |R|, m = |E|, and k is the maximum number
of corners of a region of R. This result is a generalization of the polynomial-time
algorithm for TouringPolygons with rectilinear regions.

2.1 Properties of Optimum Solutions

Since distances between points are measured in L1 metric and the neighborhood
regions are axis-parallel, one of the most trivial approaches is to consider as
possible placement points only the corners of regions in R. It is however easy
to construct instances where every optimum placement contains at least one
point that is not a corner of a region in R. We do not have to consider many
more points other than the corners of the regions, though. Lemma 1 (below)
shows that there always exists an optimum SPN placement where all points are
points of the Hanan grid induced by the corners of the regions in R, lying on the
perimeters of those regions. To prove this, we use a property of the L1 metric
defined in terms of bounding boxes of points in R

2. Given x, y ∈ R
2, the bounding

box Bxy is the smallest axis-parallel rectangle containing x and y.

Proposition 1. For every x, y, z ∈ R
2,

z ∈ Bxy ⇐⇒ ‖xy‖ = ‖xz‖ + ‖zy‖
z /∈ Bxy ⇐⇒ ‖xy‖ < ‖xz‖ + ‖zy‖.

Lemma 1. There exists an optimum placement p such that every pi ∈ p lies on
the perimeter of Ri and is a grid point of the Hanan grid induced by the corners
of the regions in R.

Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree 211

Proof. Let p be an optimum placement and P a shortest st-path in Gp. We show
how to move points in p not satisfying the lemma to points of the Hanan grid
on the perimeter of the regions in a way such that the resulting placement is
still optimum. We distinguish between regions on (visited by) P and not on P .

A point in p of a region not on P not satisfying the lemma can be trivially
moved to an arbitrary corner of that region. Since the cost of P in the resulting
placement is the same as in Gp, the resulting placement is still optimum.

We first show how to move points of regions on P not satisfying the lemma
to the perimeter in a way such that the resulting placement is still optimum.
Then, we show that every remaining point still not satisfying the lemma can be
moved to a Hanan grid point on the perimeter of its region.

Note that ps of Rs lies on its perimeter, otherwise we can obtain a better
placement by moving it to a point on the perimeter of Rs closest to the point in
the successor of Rs on P . The same argument holds by simmetry for pt.

Let Rj /∈ {Rs, Rt} be a region on P , and consider pi, pk ∈ p, where Ri is the
predecessor of Rj on P and Rk is its successor. Consider the bounding box Bpipj

,
and let pc be a point on the perimeter of Rj contained in Bij . By Proposition 1
and triangle inequality, we have

‖pipj‖ + ‖pjpk‖ = ‖pipc‖ + ‖pcpj‖ + ‖pjpk‖ ≥ ‖pipc‖ + ‖pcpk‖.

Thus, moving pj to pc does not increase the cost of P . The resulting placement
is still optimum, and pj now lies on the perimeter of Rj . We can apply this
operation to every point in the interior of its region.

We now show how to move points in p to Hanan grid points on the perimeters
of their regions in such a way that the resulting placement is still optimum. By
the above, we can assume each point of p to be lying on the perimeter its region,
and that only points of regions on P may not be grid points.

Let pj = (xj , yj) ∈ p be a point on the perimeter of Rj not on the Hanan
grid. Since Rj is axis-parallel, pj lies on a line of the grid. Thus, either xj is
the x-coordinate of a grid point, or yj is the y-coordinate of a grid point. We
consider only the latter case; the former is symmetric.

Let xl be the largest x-coordinate of a grid point lying to the left of pj , and
xr be the smallest x-coordinate of a grid point lying to the right of pj . We define
the set {(x, y) ∈ R

2 |xl < x < xr} as the vertical stripe of pj .
Consider a sequence Ri, . . . , Rk of consecutive regions on P of maximal length

such that Rj is in the sequence, and every point in p of a region in the sequence
lies in the vertical stripe of pj . None of the points in the sequence is a grid point;
however, the y-coordinate of all such points are y-coordinates of grid points. We
first consider the case where Ri �= Rs and Rk �= Rt.

Let Ri′ be the predecessor of Ri on P , and Rk′ be the successor of Rk on P .
If pi′ lies to the left of the vertical stripe of pj , we move every point pi, . . . , pk
horizontally to the x-coordinate xl. Otherwise, we move them horizontally to xr.
Figure 1 illustrates an example of such a moving. The cost difference of P before
and after moving the points can be expressed as

212 Y. Disser et al.

pi

pk′

pi′

pk

pj

xl xr

pk′

pi′

xl xr

pi

pk

pj

Fig. 1. Moving points in a vertical stripe.

∑

(Ra,Rb)∈P ′
‖pa, pb‖ − ‖p′

a, p
′
b‖, (1)

where P ′ is the sub-path between Ri′ and Rk′ , and p′
a (resp. p′

b) is the new
location of pa (pb). Since points are only moved horizontally, their y-differences
do not change. Thus, (1) can be rewritten as

∑

(Ra,Rb)∈P ′
|xa − xb| − |x′

a − x′
b|. (2)

Before moving them, all points pi, . . . , pk are contained in the vertical stripe of
pj ; therefore the cost of P ′ before the moving is at least |xi′ − xi| + |xk′ − xk|.
After the moving, the x-coordinates of all pi, . . . , pk become x′ ∈ {xl, xr}. Thus,
(2) is at least

|xi′ − xi| + |xk′ − xk| − |xi′ − x′| − |xk′ − x′|. (3)

If pi′ and pk′ lie on the same side of the vertical stripe of pj , the new coordinate
x′ is closer to both xi′ and xk′ . If pi′ and pk′ lie on different sides of the vertical
stripe, then |xi′ −x′|+ |xk′ −x′| = |xi′ −xk′ |. In both cases, (3) is positive; that
is, the cost of P does not increase and the new placement is still optimum.

The case where Ri = Rs follows trivially from above, because we can define
pi′ to be the point pi itself. In this way, the distance between pi and pi′ is always
0, and the direction of the moving depends only on the position of pk′ . The same
holds also for the remaining cases. 	

2.2 Algorithm

We now present an algorithm that computes an optimum SPN placement by
exploiting the structural properties of optimal placements established in Lemma 1.
To do so, we create an auxiliary graph from R and E with the property that a
shortest path between two designated vertices of this graph yields a minimum SPN
placement. Such a path can be found using standard shortest path techniques,
such as Dijkstra’s algorithm. The auxiliary graph D = (VD, ED) is defined as fol-
lows. There is a vertex in VD for every point on the perimeter of a region that is

Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree 213

also a point of the Hanan grid induced by the corners of the regions in R, and two
additional vertices vs and vt. In the following, we say “a vertex v of region Ri” to
indicate a vertex corresponding to a point of Ri. There is an edge in ED from vs
to every vertex of Rs, and from every vertex of Rt to vt. Also, let u be a vertex
of Ri and Rj be a region such that (Ri, Rj) ∈ E. For every segment composing
the perimeter of Rj , there is an edge in ED from u to its closest vertex on that
segment. Furthermore, there is an edge in ED from u to the next vertex along the
perimeter of Ri, in both directions. We assign a cost to an edge (u, v) ∈ ED equal
to 0 if either u = vs or v = vt, and equal to ‖uv‖ otherwise. The following theo-
rem shows that a shortest path between vs and vt in D yields an optimum SPN
placement.

Theorem 1. Given a shortest path PD from vs to vt in D, let p be a placement
as follows. For each region Ri ∈ R, if Ri has vertices on PD, p contains the
first of them. Otherwise, p contains one of its corners chosen arbitrarily. The
placement p is an optimum SPN placement.

Proof. Consider the vertices on PD chosen as points of p in the order as they
appear on PD. Since the regions of these points are connected in G, PD corre-
sponds to an st-path P in G. By triangle inequality, the cost of P in Gp is at most
the cost of PD. For the sake of contradiction, suppose there exists an optimum
placement q and a shortest st-path Q in Gq with cost smaller than the cost of
P in Gp. Without loss of generality, we can assume the points in q to satisfy
Lemma 1. Thus, every point of q corresponds to a vertex of D. We construct
a path QD from vs to vt in D as follows. The first edge is (vs, qs); after that,
for every edge (Ri, Rj) on Q, consider the points qi, qj ∈ q, the bounding box
Bqiqj , and the at most two segments on the perimeter of Rj on which qj lies. By
construction, qi is connected in D to a vertex on both segments; let v be one of
them chosen arbitrarily such that v ∈ Bqiqj . We add to QD the path that from
qi goes to v, and follows the perimeter of Rj to qj . By Proposition 1, the cost of
this path is equal to ‖qiqj‖. The last edge on QD is (qt, vt). To see that the cost
of QD is equal to the cost of Q in Gq it is sufficient to notice that the first and
the last edge of QD have cost 0 and, for every edge (Ri, Rj) on Q, the sub-path
from qi to qj in QD has cost equal to ‖qiqj‖. This results in a contradiction,
because we have then found a path from vs to vt with cost smaller than PD. 	

The above theorem shows how to construct an optimum SPN placement
once a shortest path between vs and vt in D is known. Since edge costs in D
are greater or equal than 0, we can find such a path with Dijkstra’s algorithm
in time O(|VD| log |VD| + |ED|). The sizes of VD and ED depend on the number
of points on the perimeters of the regions that are the grid points of the Hanan
grid induced by the corners of R. To evaluate this number, consider a line of
the Hanan grid. Each time this line intersects (cut in two nonempty parts)
an orthogonal segment on the perimeter of a region, an additional vertex is
introduced. Conversely, each segment of the perimeter of a region can in the
worst case be intersected by every grid line orthogonal to it. If k is the maximum
number of corners of a region in R (and therefore on the number of segments of

214 Y. Disser et al.

its perimeter), and |R| = n, the number of grid lines is O(nk). Thus, the number
of grid points lying on the perimeter of one region is O(nk2), and the size of VD is
O(n2k2). To evaluate the size of ED, consider an edge (Ri, Rj) ∈ E and a vertex
v of Ri. By construction, there is an edge from v to a vertex on each of the at most
k segments on the perimeter of Rj . Furthermore, v is connected to at most two
vertices on the perimeter of Ri. If we have |E| = m edges and O(nk2) vertices in
each region, the size of ED is O(mnk3). Thus, computing a shortest path from
vs to vt in D with Dijkstra’s algorithm takes time O(n2k2 log nk + mnk3).

3 Minimum Spanning Tree with Neighborhoods

In the Minimum Spanning Tree Problem with Neighborhoods, or MSTN, we are
given a set of regions R = {R1, . . . , Rn} and an underlying graph G = (R, E).
The problem asks for a placement p such that the cost of a minimum spanning
tree in Gp is smallest among all possible placements.

It is known [2] that, if distances are measured in L2 norm and the neighbor-
hood regions are disks, the MSTN problem does not admit an FPTAS unless
P = NP. We will adapt their proof and show that MSTN does not admit an
FPTAS for the L1 metric even for non-overlapping axis-parallel segments.

The reduction is from the planar 3-SAT problem. Planar 3-SAT is a variant of
3-SAT where the graph associated with the formula is planar. The graph contains
a vertex for each variable and each clause, and there is an edge from a variable to
a clause if the clause contains a literal of that variable. Planar 3-SAT was shown
to be NP-hard by a reduction from the standard 3-SAT problem [7]. Furthermore,
it was shown that in the plane embedding used in the reduction there always
exists a so-called spinal path passing through every vertex corresponding to
a variable without crossing any edge of the graph. Knuth and Raghunathan
[6] observed that there always is a simple embedding where the variables are
arranged on a straight line (the spinal path), and the clauses are drawn as three
legged segments completely above or below them, in a way such that none of the
legs cross each other. Figure 2 shows an example of such an embedding.

The reduction starts from a plane embedding of an instance of planar 3-SAT
and constructs an instance of MSTN such that a solution to the latter indicates
whether the former is satisfiable. First, we define three types of gadgets: a gadget
for each variable, a gadget for each clause, and a gadget for the spinal path.
Then, we show how to replace each variable, clause and the spinal path with a

v1 v2 v3 v4 v5

Fig. 2. A planar 3-SAT instance on 5 variables. Dashed lines are parts of the spinal
path, solid lines are clauses.

Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree 215

corresponding gadget resulting in an instance of MSTN. From our construction,
it will be easy to see that the size of the resulting MSTN instance is polynomially
bounded. Finally, we provide two threshold values t1 and t2, with t1 < t2, and
we prove that an optimum solution of the constructed MSTN instance has a
cost smaller than t1 if and only if the initial 3-SAT formula is satisfiable. If the
formula is not satisfiable, the cost of an optimum solution of the MSTN instance
is at least t2. This proves that MSTN does not admit an FPTAS unless P = NP.

An important tool in the definitions of the gadgets is a so-called wire. A wire
is a set of points (i.e., regions) placed in close succession, so that any minimum
spanning tree (for any placement) will contain the edges connecting the points.
To ensure this, it is sufficient to place two consecutive points in a wire at a
suitably small distance. Since the edges between consecutive points in wires do
not form a cycle, any minimum spanning tree in any placement will contain the
edge connecting them. However, this suitably small distance must still be large
enough to guarantee that a wire can be realized with a polynomial number of
points. Since in the following construction the smallest non-zero distance between
any two regions (other than those for the wires) is at least d/2, for a constant
d := 0.25, a suitably small value for the points of a wire is, for example, d/4.

3.1 Reduction Gadgets

Variable Gadget. For each variable there are k = 6c + 6 segments of length α,
where c is the maximum number of clauses in which the variable appears as a
literal that are completely above or below the variable vertex in the embedding.
Note that k ≥ 12, because a variable appears at least once in a clause. In the
following we specify the value of the parameter α more precisely, and we show
it to be polynomial in the number of clauses and variables.

As illustrated in Fig. 3, the segments are placed along the perimeter of a
rectangle with sides of length 3cα + d and 3α + d. In its interior we place a
wire for every two segments consecutive in clockwise order. Each of these wires
ends on the line bisecting the angle formed by the corresponding segments; for
parallel segments, the endpoint is at distance d from their common point. For
perpendicular segments, the endpoint is at distance d from the intersection of
the lines passing through the segments. We connect these wires in the bounded
region in a tree-like structure as in Fig. 3. We call this arrangement of wires in
the internal region a k-tree.

A placement of points inside a variable gadget is called a configuration if, for
every two consecutive segments in clockwise order, the placement contains either
their two closest points or their two farthest points. For a variable gadget there
exist exactly two different configurations. To see this, consider two consecutive
segments in a variable gadget and a configuration placement. If the placement
contains their two closest points, we can place points in the remaining segments
in exactly one way in order to obtain a configuration. Similarly, if the placement
contains their two farthest points, we have exactly one way to place points in
the remaining segments. We associate these two possible configurations with the
two assignments to the variable.

216 Y. Disser et al.

Fig. 3. A variable gadget with k = 18. The variable appears in A with negative sign
and in B,C with positive sign. Thick lines are segments, the rest wires.

Clause Gadget. Clause gadgets are composed of at most three wires meeting
at a single point following the embedding. As in Fig. 3, each wire of a clause
gadget approaches the common point of two adjacent horizontal segments of a
variable gadget. Clauses that are located above the spinal path in the rectilinear
embedding approach variable gadgets from above, while clauses that in the rec-
tilinear embedding are located below the spinal path approach variable gadgets
from below. Furthermore, clause wires approach a variable gadget in the same
clockwise order as the edges connecting the variable vertex to the corresponding
clauses in the rectilinear embedding.

A clause wire terminates at distance 1 + 2d from the common point of the
approached segments along the vertical line passing through it. The approached
segments are chosen such that their common point is contained in a configuration
satisfying the clause. That is, an edge with cost 1 + 2d connects the clause wire
to the segments in a configuration placement satisfying the clause.

Spinal Path Gadget. The spinal path gadget consists of wires following the
embedding of the planar 3-SAT instance. As in Fig. 3, the spinal path gadget
approaches every variable gadget twice, once from the left and once from the
right. For each side, the spinal path wire is split in two parts, each approaching
two adjacent vertical segments. The point at which a part terminates is located
at distance 1 from the common point of the approached segments along the
horizontal line passing through it.

3.2 The Reduction

Given a rectilinear embedding of an instance of planar 3-SAT, we create an
instance of MSTN and provide two threshold values t1, t2, with t1 < t2. We
show that if the 3-SAT instance is satisfiable, then there is a placement with a

Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree 217

minimum spanning tree of cost at most t1, and if the 3-SAT instance is unsatis-
fiable, then the cost of a minimum spanning tree for any placement is at leat t2.

Theorem 2. MSTN with L1 metric and axis-parallel segments is APX-hard.

Proof. To create an instance of MSTN, replace in the given embedding every
variable, clause, and the spinal path with a gadget as explained above. The wires
forming the spinal path, the m clause gadgets and the k-trees in the internal
region of each variable gadget have a fixed cost in every MST, denoted as cwires.
The remaining cost of the spanning tree is given by connecting the segments of
the variable gadgets to the k-trees and the spinal path and clause wires.

Suppose there exists a satisfying assignment. Then, we place points in each
variable gadget in a configuration according to its value in the assignment. We
provide an upper bound t1 on the cost of a minimum spanning tree in this
placement by constructing a spanning tree and evaluating its cost. For each
pair of consecutive segments having their closest points in the placement, the
spanning tree connects them to the k-tree of the corresponding variable with cost
d. If there is a total of K segments among all variable gadgets, the spanning tree
requires a cost of (K/2)d to connect all of them to the k-trees (note that K is
even). For each clause gadget, consider a variable satisfying it in the assignment.
We connect the corresponding endpoint of the clause wire to one of the segments
it approaches with an edge with cost 1 + 2d. Overall, the cost for connecting
all the clause wires to the tree is m(1 + 2d). For each part of the spinal path
gadget approaching a variable gadget, exactly one of its endpoint approaches
a point of the placement. The spanning tree contains the 2n edges of cost 1
connecting them. Overall, the cost of an optimum MSTN solution in case a
satisfying assignment exists is therefore at most

t1 := cwires + (K/2)d + (1 + 2d)m + 2n.

If there is no satisfying assignment, we show that the cost of an optimum
MSTN solution is at least t2 := t1+d. To see this, consider an optimum placement
where every point in a segment is one of its extreme points. The existence of
such an optimum placement is guaranteed by the fact that wires approaching
variable gadgets and wires of the k-trees terminate either to the left or to the
right of horizontal segments, and above or below vertical segments.

We first provide an upper bound on the minimum spanning tree cost for
such a placement. By constructing a spanning tree and evaluating its cost in
the placement. Then, we use this upper bound to show that, in every minimum
spanning tree, clause wires are connected to the tree either with an edge from
one of the endpoints to one of the approached segments, or with an edge from
one of its endpoints to the approached k-tree endpoint. Finally, we show that
the cost of any optimum MSTN solution is at least t2.

The spanning tree contains the wires composing the spinal path, the clauses,
and all k-trees. Every segment in a variable gadget is connected to an endpoint
of the k-tree with an edge of cost d. Every part of a wire of the spinal path
approaching a variable gadget is connected to one of the approached segments

218 Y. Disser et al.

by one of its endpoints with an edge with cost 1. Similarly, an endpoint of each
clause wire chosen arbitrarily is connected to a k-tree of a variable appearing in
that clause with an edge with cost 1 + 3d. The cost of such a spanning tree is

cwires + 2n + m(1 + 3d) + Kd. (4)

We now prove that, in every minimum spanning tree, each clause is connected
to it either with an edge from one of its endpoint to an approached segment,
or with an edge from one of its endpoints to the corresponding k-tree endpoint.
Suppose this is not the case, and there is a clause whose endpoint in the MST
is connected neither to an approached segment, nor to the corresponding k-tree
endpoint. By construction, the next closest object is located at distance at least
α, where α is the above defined length of the segments of the variable gadgets.
Since the spinal path, clauses and k-trees wires are part of every MST, setting

α := 2n + m(1 + 3d) + Kd + 1

we get a contradiction, because the cost of a minimum spanning tree would
then be greater than (4). Thus, in every minimum spanning tree every clause is
connected via one of its endpoints to one of the approached regions.

Finally, we show that if the formula is not satisfiable, any optimum MSTN
solution has cost greater than t2. Clearly, we cannot provide a configuration for
each variable gadget such that every clause where that variable appears can be
connected to it with an edge with cost 1 + 2d, otherwise the formula would be
satisfiable. Therefore, in an optimum solution, either at least one variable gadget
is not set in a configuration, or every variable gadget is in a configuration and
for at least one clause no wire endpoint approaches a point of the placement.

In the former case, the cost of a minimum spanning tree is at least cwires +
2n + (K/2)d + j(1 + 2d) + (m − j)δ, where j is the number of clauses that
can be satisfied by the assignment corresponding to the configuration and δ is
the minimum cost necessary to connect a clause that is not satisfied by the
assignment. By the above, we know that in any minimum spanning tree a clause
wire is connected to one of the approached segments or the corresponding k-tree
endpoint. Since every variable gadget is in a configuration, the smallest distance
δ between a non satisfied clause wire and a point in the placement is at least
1+3d. Thus, any optimum MSTN solution where every variable gadget is set in
a configuration results in a minimum spanning tree with cost at least t2.

In the latter case, there exists at least one variable gadget that is not in a
configuration. Let then a be the overall number of segments for which the point
in the placement is not the closest or the farthest to the point in one of the
consecutive segments. Note that a is even, therefore a ≥ 2, and the cost of a
spanning tree is at least

cwires + 2n +
(K + a)

2
d + m(1 + 2d) ≥ t2.

Suppose now that there exists an FPTAS for MSTN. Given an instance
of planar 3-SAT, we construct the gadget presented above and calculate t1.

Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree 219

We then set a parameter ε < d/t1, so a (1 + ε)-approximate solution to the
MSTN problem would tell us whether the cost of the corresponding optimum
solution is smaller than t1 or greater than t2, and thus, whether there exists a
satisfying assignment for the planar 3-SAT instance. 	

4 Conclusions

We considered the Shortest Path Problem and the Minimum Spanning Tree
Problem with Neighborhoods in the L1 metric and showed that the former can
be solved efficiently if the neighborhood regions are rectilinear polygons not
necessarily convex, while the latter does not admit a PTAS unless P = NP even if
the regions are axis-parallel segments. An interesting open problem is to consider
variants of SPN and MSTN where the goal is to find placements maximizing the
cost of shortest paths and minimum spanning tree, respectively.

Acknowledgments. This work was supported by the EU FP7/2007-2013 (DG
CONNECT.H5-Smart Cities and Sustainability), under grant agreement no. 288094
(project eCOMPASS) and by the Alexander von Humboldt-Foundation.

References

1. Ahadi, A., Mozafari, A., Zarei, A.: Touring disjoint polygons problem is NP-hard.
In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp.
351–360. Springer, Heidelberg (2013)

2. Dorrigiv, R., Fraser, R., He, M., Kamali, S., Kawamura, A., López-Ortiz, A., Seco,
D.: On minimum-and maximum-weight minimum spanning trees with neighbor-
hoods. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp.
93–106. Springer, Heidelberg (2013)

3. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.S.B.: Touring a sequence of polygons.
In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing
(STOC), pp. 473–482 (2003)

4. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neigh-
borhoods in the plane. In: Proceedings of the Twelfth Annual ACM-SIAM Sym-
posium on Discrete algorithms (SODA), pp. 38–46 (2001)

5. Elbassioni, K.M., Fishkin, A.V., Mustafa, N.H., Sitters, R.A.: Approximation
algorithms for euclidean group TSP. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1115–1126.
Springer, Heidelberg (2005)

6. Knuth, D., Raghunathan, A.: The problem of compatible representatives. SIAM
J. Discrete Math. 5(3), 422–427 (1992)

7. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343
(1982)

8. Löffler, M., Kreveld, M.: Largest and smallest convex hulls for imprecise points.
Algorithmica 56(2), 235–269 (2010)

9. Löffler, M., van Kreveld, M.J.: Largest bounding box, smallest diameter, and
related problems on imprecise points. Comput. Geom. 43(4), 419–433 (2010)

220 Y. Disser et al.

10. Pan, X., Li, F., Klette, R.: Approximate shortest path algorithms for sequences of
pairwise disjoint simple polygons. In: Proceedings of the 22nd Canadian Conference
on Computational Geometry (CCCG), pp. 175–178 (2010)

11. Yang, Y., Lin, M., Xu, J., Xie, Y.: minimum spanning tree with neighborhoods. In:
Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 306–316. Springer,
Heidelberg (2007)

	Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree with Neighborhoods
	1 Introduction
	2 Shortest Path with Neighborhoods
	2.1 Properties of Optimum Solutions
	2.2 Algorithm

	3 Minimum Spanning Tree with Neighborhoods
	3.1 Reduction Gadgets
	3.2 The Reduction

	4 Conclusions
	References

