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Abstract. We study the problem of mapping an initially unknown environ-
ment with autonomous mobile robots. More precisely, we consider simplistic
agents that move from vertex to vertex along the boundary of a polygon and
measure angles at each vertex. We show that such agents are already capable
of drawing a map of any polygon in the sense that they can infer the exact
geometry up to similarity. Often, such tasks require the agent to have some
prior bound on the size of the environment. In this paper, we provide an
efficient reconstruction algorithm that does not need any a priori knowledge
about the total number of vertices.

1 Introduction

From the perspective of a technology enthusiast it is fascinating to see more
and more problems in our daily lives being taken over by autonomous robots.
We have developed a good understanding of how to make sophisticated robots
perform impressive tasks like navigating cars through traffic. On the other
hand, we still do not understand how much sophistication is actually needed
for even the most fundamental problems. In other words: How powerful do
the sensors and movement capabilities of a robot need to be at the very least
for a given problem? From a theoretical point of view, trying to answer this
question leads to a better insight of both the essential difficulty of the problem
at hand and of the inherent power of different sensors. From a practical point
of view, investigating the question might enable us to replace sophisticated
robot designs with cheap and robust counterparts that can more easily be
produced in masses.
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Fig. 1 The agent moves from vertex to vertex along the boundary and measures
angles at each vertex

This paper aims to be a step towards the ultimate goal of developing a
complete classification of robotic tasks and required capabilities. Our focus
is on the problem of drawing a map, which is a core problem in almost any
task that requires a robot to operate in an initially unknown environment. We
approach the problem from a theoretical perspective and base our analysis on
simplistic models for both environments and robots. More precisely, we take
the initially unknown environment to be a simple polygon and consider the
following minimalistic agent model instead of dealing with realistic robots.

Ideally, we want the agent model to be as simplistic as possible, while still
allowing the agent to draw a complete map of its surrounding polygon. We
make the following modeling assumptions, where P refers to the environment
and a line of sight refers to a line segment lying inside P connecting two
vertices (cf. Fig. 1):

• The agent is initially located at a vertex of P .
• The agent can move along the boundary of P .
• While situated at a vertex v, the agent can order the lines of sight as they

appear in a counter-clockwise sweep of P at v.
• While situated at a vertex v, the agent can perceive the angle between any

two lines of sight.

Note that we do not assume the agent to be aware of the number n of vertices
of P . Since we are interested whether the information that the agent can
collect suffices to draw a map of P at all, we do not impose limitations on
the memory or computational power available to the agent. Of course, given
the choice, we prefer efficient mapping algorithms.

So, does our model empower the agent to draw a map? The answer to
this question depends on what we consider to be a “map” of a polygon.
The only geometrical data that is available to our agent is encoded in angles.
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This means that we cannot hope the agent to do better than to draw a map
that describes the geometry of the polygon up to similarity. The question is
whether the data available through the sensors of the agent alone already
uniquely determines the shape of P , or whether there can be two polygons
of different shape that yield the same observations.

In this paper, we show that the agent as modeled above can infer the shape
of any polygon uniquely, and hence draw a map.

1.1 Related Work

This paper is a follow-up to our earlier results in [9], where we give an algo-
rithm for reconstructing a polygon from a list of angle measurements. The
difference towards this earlier paper is that we consider an agent that does
not know the number of vertices n a priori. When n is known, it is easy for the
agent to collect all data initially. In that case we may as well ignore the agent
and view the problem as a geometrical reconstruction problem, where a list
of angle-lists is given and we look for the shape of the polygon. In this paper,
we make use of a central result of [9] to design an algorithm that allows the
agent to reconstruct the visibility graph incrementally while collecting angle
measurements along the boundary. We also use the observations made in [7]
to improve the efficiency of the resulting algorithm.

Many studies related with our setting are concerned with geometrical re-
construction problems, where geometrical objects have to be reconstructed
from given measurement data, i.e., without considering agents that have to
gather the data first. The main focus of work in this area, typically, is to
decide whether a certain kind of data encodes enough information for a re-
construction or not. Work in this area includes [8, 20, 23]. Another variant of
geometrical reconstruction problems ask for any object compatible to given
measurement data without requiring the solution to be unique. The main
focus for studies for this variant usually lies in finding efficient algorithms.
Work in this area includes [2, 16, 21, 22].

There have been different approaches to modeling minimalistic agents for
various environments and objectives [1, 11, 17, 24]. Some works have even
established hierarchies of agent models and frameworks that allow to com-
pare otherwise unrelated models [4, 10, 19]. We based our model on the one
proposed in [24], which has also been studied previously in [3, 4, 6, 5, 12, 18].

The agents (called Bitbots) that were studied in [17] are similar to ours in
that they can only move along the walls of the environment. While Bitbots
have somewhat more powerful movement capabilities than our agents, they
are much more limited in their sensing. As it turns out, this makes them
incapable of inferring even a topological map [17].

Another similar setting was considered in [3]. This study uses the same
movement capabilities as our model, but again only provides agents with
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very basic, combinatorial sensors. And again, it turns out that such agents
cannot even infer a topological map of their environment.

There is also an example of agents with weaker sensors than our’s which
can infer a topological map: The agents in [6] can only distinguish convex
from reflex angles, but they are allowed to move through the interior of the
environment and they need to be provided with knowledge of at least a bound
on the total number of vertices. In addition, the reconstruction algorithm that
is developed in [6] is extremely inefficient compared to the one we introduce
here.

2 The Mapping Problem

Throughout this paper, we consider the exploration of a simple polygon P
by an autonomous agent. In particular, we assume P not to have holes or
self-intersections. We let V denote the set of vertices of P and let n = |V | be
its size. We assume the agent to initially be located at a vertex v0 of P , and
denote all other vertices of P by v1, v2, . . . , vn−1 in the order in which appear
along a counterclockwise tour of the boundary starting at v0. We express the
cyclic order of the vertices in notation by writing vi±k for vi±kmodn.

In the model which we adopt the agent can (1) move from vertex to vertex
along the boundary of P and (2) make local observations in P while situated
at a vertex. The agent is aware that its environment is a simple polygon,
but other than that it has no initial knowledge about P . In particular, it has
no knowledge about n. This means that, initially, the agent does not know
how many vertices it needs to visit in order to complete an exact tour of the
boundary.

We now define precisely what local observations the agent can make at
a vertex vi. All vertices vj which can be connected to vi via straight line
segments in P (including the boundary) are considered to be visible to vi and
hence to be visible to the agent. We refer to the corresponding line segments
as lines of sight, and we order the vertices visible to vi locally according to
the angles formed inside P by the vivi+1 and the corresponding line of sight.
The local observation of the agent at vi is encoded in the vector of angles
α(vi) = (α1, α2, . . .), where αl is the angle inside P between the l-th and the
(l + 1)-th line segment. We refer to α(vi) as the angle measurement at vi.
From α(vi) it is easy to infer the angle spanned by any two non-consecutive
vertices visible to vi, simply by summing up all enclosed angles. On the other
hand, the angle measurement does not provide the identity of the visible
vertices, i.e., the agent cannot tell which vertices of V are visible to vi just
by inspecting α(vi). Of course, the agent always knows that the first visible
vertex is vi+1 and the last one is vi−1.

In order to argue that an agent can always draw a map, we need to pro-
vide an algorithm that governs how the agent moves and reasons about the
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knowledge it has gained so far. We use the term exploration strategy to refer to
such an algorithm. An exploration strategy consists of a succession of three
types of operations: (1) moving to a neighboring vertex and collecting the
angle measurement at the new location, (2) making computations that may
involve any of the data collected so far, and (3) terminating. The efficiency
of an exploration strategy is measured upon termination by the number of
physical moves and sensing operations, the number of atomic computations,
and the required memory. We say that an exploration strategy computes a
certain quantity if it always terminates after a finite number of moves and
atomic computations, in a state where the agent knows the desired quantity.

The shape of P is given by its geometry disregarding scale, rotation and
translation. We say that an exploration strategy reconstructs a polygon P if
an agent executing it in P knows the shape of P upon termination. We say the
agent can solve the mapping problem if there is an exploration strategy that
reconstructs every polygon P . As long as the agent only measures angles,
computing the shape is the best it can hope for. Any scaled, rotated or
translated version of a polygon P yields the exact same observations and can
therefore not be distinguished from P by any exploration strategy for the
agent.

Our main result relies on the fact that the agent can efficiently compute
the visibility graph Gvis of P , which is defined as follows. Every vertex of P
is a node of Gvis, and there is an edge in Gvis for every two vertices of P
that see each other. The number of vertices and edges of Gvis is denoted by
n,m, respectively, throughout the paper. We will argue that from Gvis to-
gether with the angle measurement for every vertex, the agent can efficiently
compute the shape of P . Note that the characterization of visibility graph is
a long-standing open problem [13, 15, 14].

3 Reconstructing the Shape of P
We first show that once the agent knows the visibility graph Gvis of P and the
angle measurements at each vertex, it can compute the shape of P . We show
this by considering a subgraph of Gvis that corresponds to a triangulation
of P , and by using this subgraph to construct the shape of P . After we
established that knowing Gvis allows the agent to solve the mapping problem
we move on to our main result, namely the design of an exploration strategy
that computes the visibility graph.

3.1 Inferring the Shape from Gvis

In this section we argue that the visibility graph Gvis = (V,E) of P to-
gether with the angle measurements α(vi) for every vertex vi ∈ V uniquely
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determine the shape of P . We forget the agent for the moment and establish
how to efficiently reconstruct the shape of P from this data. Once the agent
has acquired knowledge of Gvis and the angle measurements, it can obtain
the shape by using the computation described below.

Consider a vertex vi ∈ V of degree d in Gvis. Let α(vi) = (α1, α2, . . . , αd−1)
be the angle measurement at vi, and let N(vi) = {vi+δ1 , vi+δ2 , . . . , vi+δd}
be its neighborhood in Gvis, with 1 = δ1 < δ2 < . . . < δd = n − 1. For
geometrical reasons, it turns out that the global vertex vi+δl is exactly the
l-th vertex locally visible to vi. This means in particular that αl is the angle
inside P between the line segments vivi+δl and vivi+δl+1

. Knowing the angle
measurements hence implies knowing the angle between vivi+δl and vivi+δk

for any 1 ≤ l < k ≤ d. This, in turn, means that we can enhance Gvis by
assigning an angle to every pair of edges at each vertex of Gvis.

We give the following fact without its simple but technical proof. Intu-
itively, if two neighbors of a vertex vi do not see each other, there needs to
be something obstructing their line of sight. This in turns implies that vi sees
another vertex in-between. A proof can be found in [13, 14] (Lemma 3, resp.
Lemma 6.2.3).

Proposition 1. Let vi ∈ V be a vertex of degree d and let N(vi) =
{vi+δ1 , vi+δ2 , . . . , vi+δd} be its neighborhood in Gvis, with 1 = δ1 < δ2 <
. . . < δd = n− 1. Then vi+δl and vi+δl+1

see each other for every 1 ≤ l < d.

We proceed with the proof of the main theorem of this section.

Theorem 1. The shape of a polygon P can be inferred from its visibility
graph together with its angle measurements in time and space O(m).

Proof. We show how to inductively obtain the shape of a polygon P from its
enhanced visibility graph Gvis. If |V | = 3, the polygon is a triangle and, since
v0, v1, v2 need to appear in counter-clockwise order, the shape is uniquely
determined.

Consider a polygon P with |V | > 3 vertices with its enhanced visibil-
ity graph Gvis. We distinguish two cases concerning the neighborhood of v1
(cf. Fig. 2). If v1 has degree two, then v0, v2 see each other by Proposition 1.
By induction, we can compute both the shape of the subpolygon induced
by v2, v3, . . . , v0 as well as the shape of the triangle v0, v1, v2. We obtain the
shape of P by combining both these shapes. If v1 has degree at least 3, we
determine the second visible vertex vi of v1. By induction, we can compute
the shape of the subpolygons induced by v1, v2, . . . , vi and vi, vi+1, . . . , v0, v1.
We can again combine both shapes to obtain the shape of P .

A careful recursive implementation of this algorithm runs in time O(m)
and essentially needs the space required for storing Gvis. ��
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Fig. 2 The two different cases in the induction for deducing the shape of P from
Gvis

3.2 An Exploration Strategy to Compute Gvis

In this section, we introduce an exploration strategy that builds Gvis in-
crementally. The following definitions will allow us to describe increasing
portions of Gvis that have already been inferred by our strategy. The graph
Gj

i = (V j
i , E

j
i ) is defined to be the subgraph of Gvis induced by the vertices

vi, vi+1, . . . , vj . Observe that, in this notation, Gvis = Gn−1
0 . The degree of

a vertex vk in Gj
i is denoted by dji (vk), and we write dk := dn−1

0 (vk) for the
degree of vk in the visibility graph Gvis of P .

The key of our exploration strategy is to maintain a growing subgraph
of Gvis that has already been determined. After each new measurement, the
agent incorporates the new data to obtain a bigger part of Gvis. More pre-
cisely, in step t, the agent moves from vertex vt−1 to vertex vt and computes
Gt

0 from Gt−1
0 and the new angle measurement at vt. The main ingredient

to our exploration strategy originates from [7, 9] and can be formalized as
follows.

Lemma 1 ([7, 9]). The graph Gj
i , , 0 ≤ i < j, can be computed from Gj−1

i ,
Gj

i+1, and α(vi),α(vi+1), . . . ,α(vj) in constant time.

The main problem that has to be solved for the computation in Lemma 1
can be reformulated as follows: Given the edges Ej

i \{vi, vj} and the angles
given by α(vi),α(vi+1), . . . ,α(vj), decide whether {vi, vj} ∈ Ej

i , i.e., decide
whether vi sees vj or not. In [9], we provided a necessary and sufficient condi-
tion for making this decision. Later, Chen and Wang [7] showed how to test
the condition in constant time. The notation that we use here is motivated
by the incremental nature of the strategy that the agent has to employ, and
therefore different from the one used in the original papers. For convenience,
we describe the inner workings of Lemma 1 in Sect. 3.3.

Theorem 2. There is an exploration strategy that computes the shape of any
polygon P using O(n) moves and sensing operations, O(n2) atomic compu-
tations, and O(m) bits of memory.
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Proof. Lemma 1 provides the means for our incremental exploration strategy.
We give a listing of the strategy in Algorithm 1.1. It uses the operations
sense and move to govern the physical actions of the agent. When located
at a vertex vk, the operation sense returns α(vk), while the operation move
moves the agent one step along the boundary to vk+1.

Algorithm 1.1. Algorithm for computing the visibility graph Gvis.
function computeGvis

G0
0 ← (v0, ∅) ;

α(v0)← sense;
j ← 0
while dj0(v0) < |α(v0)|+ 1:

j ← j + 1;
move;
α(vj)← sense;
Gj

j = (vj , ∅) ;
for l← j − 1, j − 2, . . . 1, 0

compute Gj
l from Gj

l+1, G
j−1
l ,α(vl),α(vl+1), . . . ,α(vj); (see Lemma 1)

return Gj
0;

The algorithm maintains the invariant that, after each iteration of the
outer loop, Gr

l has been computed for all 0 ≤ l ≤ r < j. In particular,
Gvis = Gn−1

0 has been computed after n− 1 iterations. Because dn−1
0 (v0) =

|α(v0)| + 1, this means that the algorithm terminates after n − 1 iterations
and returns Gvis = Gn−1

0 . The agent performs exactly n − 1 moves and n
sensing operations. The total computational running time is O(n2), due to
Lemma 1. Together with Theorem 1, we have proven the claim. ��

3.3 Deciding Whether vi Sees vj

In this section, we describe in more detail how to construct Gj
i from Gj−1

i

and Gj
i+1 when the angle measurements α(vi),α(vi+1), . . . ,α(vj) are known

(Lemma 1). Since all the edges in Ej
i \ {vi, vj} are already present in either

Gj−1
i or Gj

i+1, the problem boils down to deciding whether {vi, vj} ∈ Ej
i , i.e.,

whether vi sees vj . Of course, this problem is non-trivial only when vj �= vi+1.
Consider Fig. 3 alongside the discussion below.

Recall that, in our notation, vi sees di vertices in total. Of those vertices, we
can identify the first dj−1

i (vi), simply by looking at Gj−1
i . Now, if vi actually

sees vj , then vj is the first unidentified vertex of vi, i.e., the (dj−1
i (vi) + 1)-

th vertex among the vertices visible to vi. Similarly, for vertex vj , the last
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Fig. 3 Illustration of the construction of Gj
i from Gj−1

i and Gj
i+1. The difficulty

is to decide whether vi sees vj .

dji+1(vj) vertices visible to vj are identified. If vj sees vi, then vi is the last
unidentified vertex of vj , i.e., the (dj − dji+1(vj))-th visible vertex of vj .

By Proposition 1, the dj−1
i (vi)-th and the (dj−1

i (vi) + 1)-th visible vertex
of vi see each other. If vi would see vj , then vj would be this (dj−1

i (vi)+1)-th
visible vertex of vi, and hence vi, the dj−1

i (vi)-th visible vertex of vi, and
vj would form a triangle in P . The three enclosed angles of this triangle
would sum up to 180 degrees. Whether this is the case can be determined by
inspecting Gj−1

i and Gj
i+1: From Gj−1

i we know the global identity vk of the
dj−1
i (vi)-th visible vertex of vi, and from Gj

i+1 we can check whether vk sees
vj . If vk does not see vj , we can conclude that vi does not see vj . Otherwise,
let α denote the angle at vi between vk and the (dj−1

i (vi) + 1)-th visible
vertex, let β denote the angle at vk between vj and vi, and let γ denote the
angle at vj between the (dj−dji+1(vj))-th visible vertex and vertex vk. Again,
if α + β + γ �= 180◦, we can conclude that vi does not see vj . What is more
surprising is that the opposite holds as well, i.e., if α + β + γ = 180◦, then
vi and vj must see each other. This has been proved formally in [7, 9] – we
illustrate the idea behind the proof in Fig. 4. Intuitively, if α+ β+ γ = 180◦,
then the triangle vi, vk, vj is empty, and hence nothing can obstruct the line
of sight between vi and vj .

Overall, this necessary and sufficient criterion gives us a simple and com-
putationally efficient means to check whether vi and vj see each other, and
thus whether or not {vi, vj} ∈ Ej

i .

Lemma 2 ([9]). Let vi, vj ∈ V with vj �= vi+1 and let vk, α, β, γ be defined
as before, then

vi sees vj if and only if α+ β + γ = 180◦.
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vi

vk

vj

α

β

vi

vk

vj

α

β

γ γ

Fig. 4 An illustration that vi sees vj if and only if α+ β + γ = 180◦

4 Conclusion

We have presented an exploration strategy for an agent that moves along the
boundary of a polygon and observes the angles formed by the lines of sight at
each vertex. We have shown that the agent can infer the shape of the polygon
in O(n) moves using O(n2) atomic computations and O(m) memory. The
exploration strategy we presented is based on an incremental construction
of the visibility graph, and does not need any knowledge about n, which is
an improvement over previous results. This, in fact, is a rare property when
considering problems for autonomous agents. We usually need some means
to “break the symmetry”, such as pebbles that can be used to mark vertices.

A natural open problem is to achieve a better running time than O(n2) if
the underlying visibility graph is sparse. We can of course not do better than
O(m), but the gap remains. Maybe O(m) atomic computations are enough?
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