
A Unified Worst Case for Classical Simplex and
Policy Iteration Pivot Rules
Yann Disser #

TU Darmstadt, Germany

Nils Mosis #

TU Darmstadt, Germany

Abstract
We construct a family of Markov decision processes for which the policy iteration algorithm needs
an exponential number of improving switches with Dantzig’s rule, with Bland’s rule, and with the
Largest Increase pivot rule. This immediately translates to a family of linear programs for which the
simplex algorithm needs an exponential number of pivot steps with the same three pivot rules. Our
results yield a unified construction that simultaneously reproduces well-known lower bounds for these
classical pivot rules, and we are able to infer that any (deterministic or randomized) combination of
them cannot avoid an exponential worst-case behavior. Regarding the policy iteration algorithm,
pivot rules typically switch multiple edges simultaneously and our lower bound for Dantzig’s rule
and the Largest Increase rule, which perform only single switches, seem novel. Regarding the
simplex algorithm, the individual lower bounds were previously obtained separately via deformed
hypercube constructions. In contrast to previous bounds for the simplex algorithm via Markov
decision processes, our rigorous analysis is reasonably concise.

2012 ACM Subject Classification Theory of computation → Linear programming; Mathematics of
computing → Markov processes

Keywords and phrases Bland’s pivot rule, Dantzig’s pivot rule, Largest Increase pivot rule, Markov
decision process, policy iteration, simplex algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.27

Related Version Full Version: http://arxiv.org/abs/2309.14034

1 Introduction

Since the simplex algorithm for linear programming was proposed by Dantzig in 1951 [12], it
has been a central question in discrete optimization whether it admits a polynomial time
pivot rule. A positive answer to this question would yield an efficient combinatorial algorithm
for solving linear programs, and thus resolve an open problem on Smale’s list of mathematical
problems for the 21st century [41]. It would also resolve the polynomial Hirsch conjecture [11],
which states that every two vertices of every polyhedron with n facets are connected via a
path of O(poly(n)) edges. At this point, the best known pivot rules are randomized and
achieve subexponential running times in expectation [21, 27, 31, 36].

For the most natural, memoryless and deterministic, pivot rules, exponential worst-
case examples based on distorted hypercubes were constructed early on [4, 25, 30, 35, 38].
Amenta and Ziegler [3] introduced the notion of deformed products to unify several of these
constructions. However, while this unification defines a class of polytopes that generalizes
distorted hypercubes, it does not yield a unified exponential worst-case construction to
exclude all pivot rules based on these deformed products, and neither does it yield new lower
bounds for additional pivot rules.

Randomized and history-based pivot rules resisted similar approaches, and it was a major
breakthrough in 2011 when Friedmann et al. were able to prove the first subexponential
lower bound for several randomized pivot rules [20, 21, 26]. They introduced a new technique

© Yann Disser and Nils Mosis;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:disser@mathematik.tu-darmstadt.de
https://orcid.org/0000-0002-2085-0454
mailto:mosis@mathematik.tu-darmstadt.de
https://orcid.org/0000-0002-0692-0647
https://doi.org/10.4230/LIPIcs.ISAAC.2023.27
http://arxiv.org/abs/2309.14034
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

based on a connection [39] between Howard’s policy iteration algorithm [28] for Markov
decision processes (MDPs) and the simplex algorithm for linear programs (LPs). The same
technique was later used to prove exponential lower bounds for history-based pivot rules that
had been candidates for polynomial time rules for a long time [5, 15]. While the approach via
MDPs has proven powerful, the resulting analyses are often very technical (the full version
of [15] with all details of the proof has 197 pages).

In this paper, we apply the MDP-based technique to classical (memoryless and determin-
istic) pivot rules and obtain a unified construction that excludes several pivot rules at the
same time, and any combination of them, while being relatively simple.

Our results. We give a unified worst-case construction for the policy iteration algorithm for
MDPs that simultaneously applies to three of the most classical pivot rules. The rigorous
analysis of the resulting MDPs is reasonably concise. We note that the exponential lower
bounds for Dantzig’s rule and the Largest Increase rule seem novel for the considered version
of the policy iteration algorithm, while the result for Bland’s rule is known [37].

▶ Theorem 1. There is a family (Dn)n∈N of Markov decision processes Dn of size O(n)
such that policy iteration performs Ω(2n) improving switches with Dantzig’s rule, Bland’s
rule, and the Largest Increase pivot rule.

In fact, all three pivot rules apply the same set of improving switches with only slight
differences in the order in which they get applied. Because of this, the result still holds if we
allow to change pivot rules during the course of the algorithm.

▶ Corollary 2. For any (deterministic or randomized) combination of Dantzig’s, Bland’s, or
the Largest Increase rule, the policy iteration algorithm has an exponential running time.

A well-known connection between policy iteration and the simplex method, allows to
immediately translate our result to the simplex algorithm with the same pivot rules. In
particular, we obtain an exponential lower bound construction that holds even if, in every
step, the entering variable is selected independently according to Dantzig’s rule, Bland’s rule,
or the Largest Increase pivot rule, i.e., even if we change pivot rules during the course of the
algorithm. In other words, we obtain a lower bound for a family of pivot rules that results
from combining these three rules.

▶ Corollary 3. There is a family (Ln)n∈N of linear programs Ln of size O(n) such that the
simplex algorithm performs Ω(2n) pivot operations for any (deterministic or randomized)
combination of Dantzig’s, Bland’s, or the Largest Increase pivot rule.

Related work. Policy iteration for MDPs has been studied extensively for a variety of pivot
rules. In its original version [28], the algorithm applies improving switches to the current
policy in all states simultaneously in every step. Fearnley [18] showed an exponential lower
bound for a greedy pivot rule that selects the best improvement in every switchable state. In
this paper, we focus on pivot rules that only apply a single switch in each iteration. Most of
the MDP constructions for randomized or history-based pivot rules [5, 15, 21, 26] consider
this case, and Melekopoglou and Condon [37] gave exponential lower bounds for several
such deterministic pivot rules. We emphasize that their constructions already include an
exponential lower bound for Bland’s rule [8]. Since policy iteration is traditionally considered
with simultaneous switches, to the best of our knowledge, no exponential lower bounds
are known for Dantzig’s rule [12] and the Largest Increase rule [11] in the setting of single
switches.

Y. Disser and N. Mosis 27:3

There is a strong connection between policy iteration and the simplex algorithm, which,
under certain conditions (see below), yields that worst-case results for policy iteration carry
over to the simplex method [39]. This connection was used to establish subexponential
lower bounds for randomized pivot rules, namely Randomized Bland [26] and Random-Edge,
RaisingTheBar and Random-Facet [21]. It also lead to exponential lower bounds for history-
based rules, namely Cunningham’s rule [5] and Zadeh’s rule [15]. Conversely, lower bounds
for the simplex algorithm with classical pivot rules were obtained via deformed hypercubes [3]
and do not transfer to MDPs. Such results include lower bounds for Dantzig’s rule [35],
the Largest Increase rule [30], Bland’s rule [4], the Steepest Edge rule [25], and the Shadow
Vertex rule [38]. We provide an alternate lower bound construction for the first three of
these rules via a family of MDPs. As far as we can tell, as a side product, this yields the first
exponential lower bound for policy iteration with Dantzig’s rule and the Largest Increase
rule.

While it remains open whether LPs can be solved in strongly polynomial time, there are
several, both deterministic [32, 34] and randomized [7, 17, 33], algorithms that solve LPs in
weakly polynomial time. A (strongly) polynomial time pivot rule for the simplex algorithm
would immediately yield a strongly polynomial algorithm.

There have been different attempts to deal with the worst-case behavior of the simplex
method from a theoretical perspective. For example, the excessive running time was justified
by showing that the simplex algorithm with Dantzig’s original pivot rule is NP-mighty [16],
which means that it can be used to solve NP-hard problems. This result was subsequently
strengthened by establishing that deciding which solution is computed and whether a given
basis will occur is PSPACE-complete [2, 19]. On the positive side, there are different
results explaining the efficiency of the simplex method in practice, such as average-case
analyses [1, 9, 44]. Spielman and Teng [42] introduced smoothed analysis as a way of bridging
the gap between average-case and worst-case analysis. They showed that the simplex
algorithm with the shadow vertex pivot rule [24] has a polynomial smoothed complexity, and
their results were further improved later [10, 14, 29, 45].

Another approach to derive stronger lower bounds on pivot rules is to consider combina-
torical abstractions of LPs, such as Unique Sink Orientations (USOs) [23]. There is still a
large gap between the best known deterministic algorithm for finding the unique sink, which
is exponential [43], and the almost quadratic lower bound [40]. Considering randomized
rules, the Random-Facet pivot rule, which is the best known simplex rule [27], is also the
best known pivot rule for acyclic USOs [22], achieving a subexponential running time in both
settings.

2 Preliminaries

Markov Decision Processes
A Markov decision process is an infinite duration one-player game on a finite directed
graph G = (VA, VR, EA, ER, r, p). The vertex set V = VA ∪ VR of the graph is divided into
agent vertices VA and randomization vertices VR. Every agent edge e ∈ EA ⊆ VA × V is
assigned a reward r(e) ∈ R, while every randomization edge ê ∈ ER ⊆ VR × V is assigned
a transition probability p(ê) ∈ [0, 1]. Outgoing transition probabilities add to one in every
randomization vertex.

A process starts in an arbitrary starting vertex. If this is an agent vertex, the agent
moves along one of the outgoing edges of this vertex (we assume that all vertices have at
least one outgoing edge) and collects the corresponding reward. Otherwise, it gets randomly
moved along one of the outgoing edges according to the transition probabilities. The process
continues in this manner ad infinitum.

ISAAC 2023

27:4 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

An agent vertex s ∈ VA whose only outgoing edge is a self-loop with reward zero is
called sink of G if it is reachable from all vertices. A policy for G is a function π : VA → V

with (v, π(v)) ∈ EA for all v ∈ VA, determining the behavior of the process in agent vertices.
A policy π for G is called weak unichain if G has a sink s such that π reaches s with a
probability of one from every starting vertex.

The value of a vertex v w.r.t. a policy π for a Markov decision process G is given by
the expected total reward that the agent collects with policy π when the process starts
in v. More formally, the value function Valπ,G : V → R is defined by the following system of
Bellman [6] equations

Valπ,G(u) =

 r((u, π(u))) + Valπ,G(π(u)), if u ∈ VA,∑
v∈Γ+(u)

p((u, v)) Valπ,G(v), if u ∈ VR,

together with Valπ,G(s) = 0 if G has a sink s. The policy π is optimal (w.r.t. the expected total
reward criterion) if Valπ,G(v) ≥ Valπ̃,G(v) for all v ∈ VA and all policies π̃ for G. Whenever
the underlying process G is clear from the context, we write Valπ instead of Valπ,G.

We say that the agent edge (u, v) ∈ EA is an improving switch for the policy π for
process G if it satisfies zπ,G(u, v) := r((u, v)) + Valπ,G(v)−Valπ,G(u) > 0, where zπ,G(u, v)
are the reduced costs of (u, v) with respect to π. Again, we usually write zπ instead of zπ,G.

If we apply an improving switch s = (u, v) ∈ EA to a policy π, we obtain a new policy πs

which is given by πs(u) = v and πs(w) = π(w) for all w ∈ VA \ {u}. The improving switch s

increases the value of u without decreasing the value of any other vertex.

Policy Iteration for Markov Decision Processes

Howard’s [28] policy iteration algorithm receives as input a finite Markov decision process G

and a weak unichain policy π for G. It then iteratively applies a set of improving switches
to the current policy until there are none left. In the remainder of this paper, we consider
a version of this algorithm that applies a single switch in every iteration, cf. Algorithm 1.
Due to monotonicity of the vertex values, this procedure visits every policy at most once. As
there are only finitely many policies, the algorithm thus terminates after a finite number of
iterations for every initial policy.

Algorithm 1 PolicyIteration(G, π).

input: a weak unichain policy π for a Markov decision process G

while π admits an improving switch :
s̄← improving switch for π

π ← πs̄

return π

We know that the policy iteration algorithm returns an optimal policy if there is an
optimal policy which is weak unichain.

▶ Theorem 4 ([20]). Let π be a weak unichain policy for a Markov decision process G.
If G admits a weak unichain, optimal policy, then PolicyIteration(G, π) only visits weak
unichain policies and returns an optimal policy w.r.t. the expected total reward criterion.

Y. Disser and N. Mosis 27:5

In this paper, we consider the following three pivot rules, i.e., rules that determine the
choice of PolicyIteration(G, π) in each iteration:

Bland’s pivot rule assigns a unique number to every agent edge of G. Then, in every
iteration, it chooses the improving switch with the smallest number.
Dantzig’s pivot rule chooses an improving switch s̄ maximizing the reduced costs zπ(s̄).
The Largest Increase rule chooses an improving switch s̄ maximizing

∑
v∈VA

Valπs̄(v).

A Connection between Policy Iteration and the Simplex Method
Given a Markov decision process, we can formulate a linear program such that the application
of the simplex method is in some sense equivalent to the application of policy iteration. We
refer to [20] for more details and the derivation of the following result.

▶ Theorem 5 ([20]). Let π be a weak unichain policy for a Markov decision process G.
Assume that there is an optimal, weak unichain policy for G and that PolicyIteration(G, π)
with a given pivot rule takes N iterations. Then, there is an LP of linear size such that the
simplex algorithm with the same pivot rule takes N iterations.

In terms of the simplex method, Bland’s pivot rule chooses the entering variable of smallest
index [8], Dantzig’s rule chooses an entering variable maximizing the reduced costs [12], and
the Largest Increase rule greedily maximizes the objective function value.

The linear program in the previous theorem has one variable for every agent edge of
the Markov decision process such that the reduced costs of a given edge equal the reduced
costs of the corresponding variable, and the objective function equals the sum over all vertex
values as given in the Largest Increase rule for policy iteration [5, 15, 26]. Therefore, the
choices of each pivot rule in the two settings are consistent.

Additionally, we want to mention that the linear program from Theorem 5 is always
non-degenerate. Therefore, we cannot reduce the number of required iterations on these
programs by combining a given pivot rule with the Lexicographic pivot rule [13].

Notation
Let n ∈ N be fixed. We write [n] = {1, 2, . . . , n} and [n]0 = {0, 1, . . . , n}. Then, the set of all
numbers that can be represented with n bits is [2n − 1]0.

For every x ∈ [2n − 1]0 and i ∈ [n], let xi denote the i-th bit of x, i.e., x =
∑

i∈[n] xi2i−1,
and let L(i, x) = max{j ∈ [i − 2] | xj = 1 or j = 1} for i ≥ 3. Finally, for x ∈ [2n − 1],
we denote the least significant set bit of x by ℓ1(x) = min{i ∈ [n] : xi = 1}, and the most
significant set bit of x by m1(x) = max{i ∈ [n] : xi = 1}.

Let G = (VA, VR, EA, ER, r, p) be a Markov decision process. For v ∈ VA ∪ VR, we
write Γ+

G(v) = {w ∈ VA ∪ VR : (v, w) ∈ EA ∪ER}. If the underlying process is clear from the
context, we just write Γ+(v).

3 An Exponential Lower Bound for Bland’s pivot rule

In this section, we consider a family (Bn = (VBn
, EBn

, rBn
))n∈N of Markov decision processes,

which do not involve any randomization. Consider Figure 1a for a drawing of B4. Every
process Bn consists of n separate levels, together with a global transportation vertex t, a
sink s, and a dummy vertex d. Each level ℓ ∈ [n] comprises two vertices, called aℓ and bℓ.
For convenience, we sometimes denote the sink by an+1 and the dummy vertex by bn+1.

ISAAC 2023

27:6 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

a1

b1

2

a2

b2 0.75

4

a3

b3 0.75

8

a4

b4 0.75

16

s

d 0.75

t

-0.75

-2.75-6
.7
5

-1
4.7
5

(a)

a1

b1

5

a2

b2

6

8

910

a3

b3

11

14

13

15

a4

b4

16

19

18

20

s

d

21

24

23

25

26

t

7

1

12

2

17
3

22

4

(b)

Figure 1 Two drawings of the Markov decision process B4. In (a), edge labels denote rewards
and unlabeled edges have a reward of zero. In (b), edge labels define the Bland numbering NB4 .

Table 1 Edge names and the definition of the Bland numbering NBn , where i ∈ [n].

e ∈ EBn NBn(e)

(t,ai) travel(i) i
(ai, bi) enter(i) n+ 1 + 5(i− 1)

(ai, ai+1) skip(i) n+ 2 + 5(i− 1)
(ai, t) board(i) n+ 3 + 5(i− 1)

(bi, bi+1) stay(i) n+ 4 + 5(i− 1)
(bi, ai+1) leave(i) n+ 5 + 5(i− 1)

In vertex aℓ, the agent can either enter level ℓ by going to vertex bℓ, skip this level by going
to vertex aℓ+1, or board the transportation vertex by going to t. From the transportation
vertex, the agent travels to one of the vertices ai with i ∈ [n]. In bℓ, the agent can decide
between leaving the set

⋃
i∈[n+1]{bi} by going to aℓ+1 and staying in this set by going to bℓ+1.

We will simply say that the agent leaves level ℓ or stays in level ℓ, respectively.
Finally, when the agent reaches the dummy vertex d, it must go to the sink, and the only

outgoing edge of the sink s is the self-loop (s, s).
The function rBn

grants the agent a reward of 2ℓ for entering level ℓ, a reward of 0.75 for
staying in level ℓ, and a (negative) reward of (−2ℓ + 1.25) for boarding t from aℓ; all other
rewards are zero.

The Bland numbering NBn : EBn → |EBn | of the edges of Bn is defined in Table 1, together
with NBn

((d, s)) = 6n + 1 and NBn
((s, s)) = 6n + 2(= |EBn

|). This table also contains
alternative names for the edges, which match the description above and which we will use to
simplify the exposition. Consider Figure 1b for the Bland numbering of B4.

In the following, consider Bn for some arbitrary but fixed n ∈ N. The aim of this section
is to show that PolicyIteration with Bland’s pivot rule, cf. Algorithm 2, applies Ω(2n)
improving switches when given Bn, a suitable initial policy, and NBn

as input.

Algorithm 2 Bland(G, π, N).

input: Markov decision process G, weak unichain policy π, edge numbering N

while π admits an improving switch :
s̄← the improving switch s for π that minimizes N (s)
π ← πs̄

return π

More precisely, we will see that the algorithm visits all of the following policies.

Y. Disser and N. Mosis 27:7

▶ Definition 6. The policy π0 for Bn such that travel(1) is active, and skip(i) and leave(i)
are active for all i ∈ [n] is the canonical policy for 0. For x ∈ [2n − 1], the policy πx for Bn

is the canonical policy for x if it satisfies the following conditions:
<1> The policy travels from t to the least significant set bit, i.e., travel(ℓ1(x)) is active.
<2> It collects no reward above the most significant set bit, i.e., leave(m1(x)), skip(i),

and leave(i) are active for all m1(x) < i ≤ n.
<3> Every set bit xi = 1 determines the behavior of the policy down to the next, less

significant set bit or, if i = ℓ1(x), down to the first bit:
<a> enter(i) is active.
 if i = 2, then leave(1) is active. If additionally x1 = 0, then skip(1) is active.
<c> if i ≥ 3 and xi−1 = 1, then leave(i− 1) is active.
<d> if i ≥ 3 and xi−1 = 0:

<d1> stay(i− 1), skip(i− 1), and leave(i− 2) are active.
<d2> if L(i, x) < i−2, then for all j ∈ {L(i, x)+1, . . . , i−2}, the edges board(j)

and stay(j − 1) are active; if L(i, x) = 1 and x1 = 0, then board(1) is
active. ⌟

Consider Figure 2a and Figure 2d for examples of canonical policies. Note that canonical
policies exist and are unique as the definition contains precisely one condition on every agent
vertex with more than one outgoing edge. Further, the 2n canonical policies are pairwise
different as enter(i) is active in πx if and only if xi = 1.

We will now analyze the behavior of Bland(Bn, π0,NBn
), i.e., we choose the canonical

policy for zero as our initial policy. Since this policy visits every vertex except the sink only
once, it is weak unichain.

▶ Observation 7. The canonical policy π0 is a weak unichain policy for Bn.

Thus, according to Theorem 5, the following result will allow us to transfer our results
for the policy iteration algorithm to the simplex method.

▶ Lemma 8. Let the policy π∗ for Bn be determined as follows: stay(n) and travel(1) are
active, enter(i) is active for all i ∈ [n], and leave(j) is active for all j ∈ [n− 1]. Then, π∗ is
weak unichain and optimal for Bn.

Proof. Since π∗ visits every vertex, besides the sink, only once, it is weak unichain. For
optimality, note that t travels to a1 and that, when starting in a vertex aℓ, policy π∗ enters
level ℓ and all levels above and collects the reward of stay(n). The policy is thus clearly
optimal among the set of policies that do not use boarding edges.

Further, we have rBn(board(ℓ)) = −2ℓ + 1.25 = −(
∑ℓ−1

i=1 2i + 0.75). That is, the costs
of board(ℓ) equal the maximum reward that can be collected in the first ℓ−1 levels. Thus, we
cannot increase vertex values by using boarding edges, which yields that π∗ is optimal. ◀

The following technical result will be helpful in the upcoming proofs.

▶ Lemma 9. Let x ∈ [2n − 1]0 and i ∈ [n]. Then, travel(i) is not improving for πx.

Proof. All vertex values with respect to π0 are zero, and rBn
(travel(i)) = 0. Thus, the claim

holds for x = 0, so we assume x ∈ [2n − 1] in the following.
Let the vertices ak and aℓ either correspond to successive set bits, i.e., xk = xℓ = 1

and xj = 0 for all k < j < ℓ, or let k = m1(x) and ℓ = n + 1. Either way, Definition 6
implies that πx includes a path from ak to aℓ, which does not contain any boarding edge.

ISAAC 2023

27:8 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

Hence, we have Valπx(aα) ≥ Valπx(aβ) ≥ 0 for all set bits xα = xβ = 1 with α ≤ β. Since
the transportation vertex chooses the least significant set bit in πx, this yields that travel(i)
is not improving if xi = 1.

Further, Definition 6 yields that xj = 1 if and only if enter(j) is active in πx. Thus, when
starting in some vertex ai with xi = 0, policy πx either boards t from ai or it skips levels
until reaching a node that boards t, a level corresponding to a set bit, or the sink. In all four
cases, travel(i) is not improving. This completes the proof. ◀

We will show in two steps that, when using the initial policy π0, Bland visits all of the
other canonical policies. Firstly, given the canonical policy for an arbitrary even integer x, we
see that the algorithm applies improving switches until reaching the canonical policy πx+1.

▶ Lemma 10. Let x ∈ [2n − 2]0 be even. Then, Bland(Bn, πx,NBn
) visits πx+1.

Proof. According to Lemma 9, no travel edges are improving for πx, so the Bland number-
ing NBn yields that the algorithm applies the switch enter(1) to πx if it is improving. This
edge is improving for π0, and one can easily check that its application results in the canonical
policy π1. Hence, it suffices to consider x ̸= 0 in the following. This yields ℓ1 := ℓ1(x) > 1
as x is even. Influenced by condition <3> from Definition 6, we consider two cases.

Firstly, if ℓ1 = 2, conditions <1> and state that travel(2), skip(1) and leave(1)
are active in πx. Hence, enter(1) is improving for πx and gets applied by Bland. The
edge travel(1) becomes improving and gets applied next as it minimizes NBn .

Secondly, if ℓ1 ≥ 3, conditions <1> and <d> yield that πx includes the paths (a1, t, aℓ1)
and (b1, b2, . . . , bℓ1−2, aℓ1−1, aℓ1) =: P . Hence, Valπx(a1) ≤ Valπx(aℓ1) ≤ Valπx(b1). There-
fore, as enter(1) has a positive reward, it is improving and gets applied to πx. The new
policy walks from a1 to b1 and then follows the path P , so a1 has a higher value than aℓ1 .
Since travel(ℓ1) is active in πx, the edge travel(1) is improving and gets applied next.

Let π denote the policy resulting from the application of enter(1) and travel(1) to πx. It
now suffices to show that π satisfies the conditions of Definition 6 for x + 1.

As x + 1 is odd, we have ℓ1(x + 1) = 1, so π satisfies the first condition. Further, the
second condition remains satisfied as both applied switches are below the most significant
set bit. Finally, the third condition now requires that enter(1) is active – instead of skip(1)
if ℓ1 = 2, or board(1) if ℓ1 ≥ 3 – and otherwise contains the same requirements. Hence, π is
the canonical policy for x + 1. ◀

Secondly, we need to show that the algorithm also transforms the canoncial policy πx

for an arbitrary odd number x into the next canonical policy πx+1. We will see that the
algorithm does this by applying the following sequence of improving switches.

▶ Definition 11. Let x ∈ [2n − 3] be odd and write ℓ := ℓ0(x) > 1. Then, the canonical
phases with respect to x are:
1. If xℓ+1 = 1, activate leave(ℓ).
2. If xℓ+1 = 1 or ℓ > m1(x), activate stay(ℓ− 1).
3. Activate enter(ℓ) and travel(ℓ).
4. If ℓ ≥ 3, activate board(j) for all j ∈ [ℓ− 2] in increasing order.
5. Activate skip(ℓ− 1).
6. If ℓ ≥ 4, activate stay(j) for all j ∈ [ℓ− 3] in decreasing order.
7. If ℓ = 2, activate leave(1). ⌟

Y. Disser and N. Mosis 27:9

(a) The canonical policy π7 for B4. (b) The policy that results from applying the first
two canonical phases w.r.t. 7 to π7.

(c) The policy that results from applying the first
three canonical phases w.r.t. 7 to π7.

(d) The canonical policy π8 for B4, which results
from applying all canonical phases w.r.t. 7 to π7.

Figure 2 An example that illustrates how the canonical phases transform one canonical policy
into the next one. Active edges are depicted in a bold blue color, while inactive edges are slightly
transparent. Note that π7 enters the first three levels, which correspond to the set bits in the binary
representation of 7; analogously, π8 only enters the fourth level.

The following Lemma shows that if the algorithm applies the canonical phases to the
corresponding canonical policy, it reaches the next canonical policy.1 Consider Figure 2 for
an example.

▶ Lemma 12. Let πx be the canonical policy for some odd x ∈ [2n − 3]. Applying the
canonical phases with respect to x to πx results in the canonical policy πx+1.

Finally, we show that Bland actually applies the canonical phases when given the
corresponding canonical policy.

▶ Lemma 13. Let x ∈ [2n − 3] be odd. Then, Bland(Bn, πx,NBn
) visits πx+1.

According to Lemma 10, Bland transforms every even canonical policy πx into πx+1, and
by Lemma 13, the same holds for odd canonical policies. Since the initial policy is canonical
for zero, this yields that Bland(Bn, π0,NBn) visits all canonical policies πi with i ∈ [2n − 1].
Since these are pairwise different, this proves the main result of this section.

▶ Theorem 14. There is an initial policy such that the policy iteration algorithm with Bland’s
pivot rule performs Ω(2n) improving switches when applied to Bn.

We close this section with two technical observations that help us later.

▶ Observation 15. For every i ∈ [n], whenever Bland(Bn, π0,NBn) applies the improving
switch skip(i), this edge has higher reduced costs than board(i); whenever it applies enter(i),
this edge has higher reduced costs than skip(i) and board(i).

▶ Observation 16. At any point during the execution of Bland(Bn, π0,NBn), at most one
of the edges travel(i) with i ∈ [n] is improving.

1 All missing proofs can be found in the full version.

ISAAC 2023

27:10 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

4 A Combined Exponential Bound

In this section, we consider a family (Dn = (V A
n , V R

n , EA
n , ER

n , rDn , pDn))n∈N of Markov
decision processes such that each process Dn results from the process Bn = (VBn

, EBn
, rBn

) of
the previous section by replacing every edge, besides the sink-loop, with the construction given
in Figure 3; note that the construction uses a probability pv ∈ (0, 1] for every v ∈ VBn

\ {s},
which we will choose later.

v xv,w yv,w

1− pv

zv,w
pv

w
rBn((v, w))

Figure 3 The construction that replaces every edge (v, w) ∈ EBn \ {(s, s)} in Dn. Circular
vertices are agent vertices, square ones are randomization vertices. Edge labels denote rewards and
probabilities, where pv ∈ (0, 1]. Note that, since v and w remain in the process, we have VBn ⊆ V A

n .

In the following, consider Dn for some arbitrary but fixed n ∈ N. The aim of this section
is to show that policy iteration with Bland’s rule, with Dantzig’s rule, and with the Largest
Increase rule performs Ω(2n) improving switches to a suitable initial policy for Dn.

Before we can analyze the behavior of Bland on Dn, we need to specify the Bland
numbering NDn

: EA
n → |EA

n | for Dn. It is constructed as follows: starting from the number-
ing NBn

, replace every edge (v, w) ∈ EBn
\ {(s, s)} by the edges (xv,w, yv,w) and (v, xv,w).

Then, insert all edges of the form (xu,·, u) with u ∈ VBn \ {s} at the beginning of the
numbering (the internal order of these edges can be chosen arbitrarily). We do not need to
specify the Bland numbers of edges that are the unique outgoing edge of a vertex.

Now that we have a Bland numbering, we want to transfer our results from the previous
section to the new Markov decision process Dn. The following definition extends policies
for Bn to policies for Dn.

▶ Definition 17. Let π and π′ be policies for Bn and Dn, respectively, and let v ∈ VBn
\ {s}.

Assume there is a w ∈ Γ+
Bn

(v) such that (v, xv,w), (xv,w, yv,w), and (xv,u, v) are active in π′

for all u ∈ Γ+
Bn

(v) \ {w}. Then, we say that v is (w-)oriented w.r.t. π′. We call π′ the twin
policy of π if every vertex v ∈ VBn \ {s} is π(v)-oriented w.r.t. π′. ⌟

Let π′
0 denote the twin policy of the canonical policy π0 for Bn. We could start by showing

that Bland(Dn, π′
0,NDn) visits the twin policy of every policy that Bland(Bn, π0,NBn)

visits. Note that this would immediately imply the desired exponential number of improving
switches. However, we prefer to gather some general results first, which then allows for a
more unified treatment of the three pivot rules.

Starting in a w-oriented vertex v ∈ VBn
\ {s}, the agent reaches vertex w with probability

one (due to pv > 0), while collecting a reward of rBn
((v, w)). This immediately yields the

following result.

▶ Observation 18. Let π be a policy for Bn with twin policy π′ for Dn. Then, for every
vertex v ∈ VBn

, we have Valπ,Bn
(v) = Valπ′,Dn

(v).

By the same argument, twin policies of weak unichain policies are weak unichain, and
the proof idea of Lemma 8 carries over.

Y. Disser and N. Mosis 27:11

▶ Observation 19. The twin policy of every weak unichain policy for Bn is a weak unichain
policy for Dn. The twin policy of the optimal policy for Bn is optimal for Dn.

By Theorem 4, this guarantees the correctness of PolicyIteration(Dn, π′
0). Further,

Theorem 5 will allow us to carry our results over to the simplex method.
Since twin policies are central in our analysis, it comes in handy that only a certain type

of edges might be improving for them.

▶ Observation 20. Let π′ be the twin policy of some policy for Bn. Then, all improving
switches for π′ are of the form (xv,w, yv,w) ∈ EA

n for some (v, w) ∈ EBn .

Proof. Since every vertex u ∈ VBn
\ {s} is oriented w.r.t π′, edges of the form (xu,·, u)

or (u, xu,·) are either active or their application creates a zero-reward cycle of length two.
Hence, none of these edges is improving for π′. ◀

The following Lemma shows how the probabilities (pv)v∈VBn \{s} affect the reduced costs
of these potentially improving edges. Further, it yields a connection between the improving
switches for a policy for Bn and those for its twin policy.

▶ Lemma 21. Let π be a policy for Bn with twin policy π′, and let (v, w) ∈ EBn
\ {(s, s)}.

Then, zπ′,Dn(xv,w, yv,w) = pv · zπ,Bn(v, w). In particular, (xv,w, yv,w) is improving for π′ if
and only if (v, w) is improving for π.

Proof. For convenience, we write x, y, and z instead of xv,w, yv,w, and zv,w. If (v, w) is
active in π, vertex v is w-oriented w.r.t. π′. Thus, (x, y) is active in π′ as well. Hence, both
edges are not improving as they have reduced costs of zπ′(x, y) = zπ(v, w) = 0.

Now assume that (v, w) is inactive in π, which yields that (x, v) is active in π′. We obtain

zπ′,Dn
(x, y) = Valπ′(y)−Valπ′(x) = Valπ′(y)−Valπ′(v)

= pv Valπ′(z) + (1− pv) Valπ′(v)−Valπ′(v)
= pv(Valπ′(w) + rBn((v, w))−Valπ′(v)) = pvzπ,Bn(v, w),

(1)

where we used Observation 18 for the last equality. The equivalence holds since pv > 0. ◀

Note that we can transform a given twin policy with three switches into a different one
by changing the orientation of an agent vertex v ∈ VBn

\ {s}. The following Lemma shows
that, if applied consecutively, these switches all have the same reduced costs.

▶ Lemma 22. Let (v, w) ∈ EBn
\ {(s, s)} and let the policy π for Dn be the twin policy of

some weak unichain policy for Bn. If the edge (xv,w, yv,w) is improving for π, we have

zπ(xv,w, yv,w) = zπ′(v, xv,w) = zπ′′(π(v), v),

where π′ denotes the policy that results from applying (xv,w, yv,w) to π and π′′ denotes the
policy that results from applying (v, xv,w) to π′.

It is essential for the proofs of Lemma 10 and Lemma 13 that Bland(Bn,NBn
) prefers

switches in vertices appearing early in the vertex numbering NV : VBn
→ |VBn

| given
by (t, a1, b1, a2, b2, . . . , an, bn, d, s), i.e., let NV (t) = 1, NV (a1) = 2, and so on. Using
the following definition, we can observe a similar behavior of policy iteration with Dantzig’s
rule, cf. Algorithm 3, on Dn.

ISAAC 2023

27:12 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

▶ Definition 23. The edge e ∈ EA
n belongs to vertex v ∈ VBn

\ {s} if

e ∈ B(v) :=
⋃

w∈Γ+
Bn

(v)

{(xv,w, yv,w), (v, xv,w), (xv,w, v)}. ⌟

We obtain the following bounds on the reduced costs.

▶ Lemma 24. Let v ∈ VBn
\ {s} and e ∈ B(v) be arbitrary. Let π be a weak unichain policy

for Dn such that all vertex values w.r.t. π are non-negative. If e is improving for π, then its
reduced costs are bounded by pv · 0.25 ≤ zπ(e) ≤ pv · 2n+2.

Proof. Since e ∈ B(v), we have e ∈ {(xv,w, yv,w), (v, xv,w), (xv,w, v)} for some w ∈ Γ+
Bn

(v).
For convenience, we write x, y, and z instead of xv,w, yv,w, and zv,w.

Firstly, assume that e = (x, y). Then, since e is improving, (x, v) is active in π. As in
equation (1), we obtain zπ(x, y) = pv(Valπ(w) + rBn((v, w))−Valπ(v)) =: pv · δ(π, v, w).

Secondly, assume that e = (v, x). Then, (x, y) is active in π as otherwise e would not be
improving due to zπ(v, x) = Valπ(x)−Valπ(v) = 0. This yields

zπ(v, x) = Valπ(x)−Valπ(v) = Valπ(y)−Valπ(v) = pv · δ(π, v, w). (2)

Lastly, assume e = (x, v). Then, as before, (x, y) is active in π. We can thus conclude
from (2) that zπ(x, v) = Valπ(v)−Valπ(x) = −pv · δ(π, v, w).

By assumption, every vertex has a non-negative value with respect to π. Further, all
vertex values are bounded from above by the maximum vertex value w.r.t. the optimal policy
for Dn. By Lemma 8, Observation 18, and Observation 19, this is Valπ′

∗
(t) = 2n+1 − 1.25.

Since the absolute value of any edge reward is at most 2n, we obtain

|δ(π, v, w)| ≤
(
2n+1 − 1.25 + 2n

)
≤ 2n+2.

Hence, we have an upper bound of zπ(e) ≤ pv · 2n+2.
As all edge rewards are integer multiples of 0.25, also Valπ(u) is an integer multiple

of 0.25 for every u ∈ VBn (starting in u, policy π visits every edge that has a non-zero reward
either exactly once or never). This yields that |δ(π, v, w)| is a multiple of 0.25 as well, which
concludes the proof. ◀

Note that, by Theorem 4 and as all vertex values w.r.t. π′
0 are zero, Dantzig(Dn, π′

0)
only visits weak unichain policies with non-negative vertex values. Therefore, if we choose the
probabilities (pv)v∈VBn \{s} for increasing vertex numbers NV (v) fast enough decreasing, then
the previous lemma yields that Dantzig prefers improving switches that belong to vertices
appearing early in the vertex numbering NV . We use this in the proof of Theorem 28.

The following technical result holds independently of the chosen pivot rule.

Algorithm 3 Dantzig(G, π).

input: Markov decision process G, weak unichain policy π for G

while π admits an improving switch :
s̄← an improving switch s for π maximizing zπ(s)
π ← πs̄

return π

Y. Disser and N. Mosis 27:13

▶ Lemma 25. Let (v, w) ∈ EBn be an improving switch that gets applied to a policy π

during the execution of Bland(Bn, π0,NBn
). Let π̄′ denote the policy for Dn that results

from applying the switches (xv,w, yv,w) and (v, xv,w) to the twin policy π′ of π. Then,
the edge (xv,π(v), v) is improving for π̄′ and it remains improving during the execution
of PolicyIteration(Dn, π̄′) until it gets applied or until an improving switch of the
form (xu,·, yu,·) with NV (u) > NV (v) gets applied.

With this, we can show that a certain class of pivot rules, including Bland’s, Dantzig’s,
and the Largest Increase rule, yield an exponential number of improving switches on Dn.

▶ Lemma 26. Assume that PolicyIteration(Dn, π′
0), where π′

0 denotes the twin policy
of π0, gets applied with a pivot rule that satisfies the following conditions:
(a) For every improving switch (v, w) ∈ EBn that Bland(Bn, π0,NBn) applies to some

policy π, PolicyIteration applies (xv,w, yv,w) and (v, xv,w) to the twin policy of π.
(b) While an edge of the form (xv,·, v) is improving for some v ∈ VBn , PolicyIteration

does not apply an improving switch of the form (xu,·, yu,·) with NV (u) > NV (v).
Then, PolicyIteration(Dn, π′

0) performs Ω(2n) improving switches.

Proof. Let π be a policy for Bn occurring during the execution of Bland(Bn, π0,NBn
),

where we allow π = π0, and let (v, w) ∈ EBn
denote the switch that Bland applies to π.

Let π′ be the twin policy of π, and let π̃ = π(v,w).
By condition (a), PolicyIteration applies (xv,w, yv,w) and (v, xv,w) to π′. Denote the

resulting policy by π̄′.
According to Lemma 25, the edge (xv,π(v), v) now stays improving until it gets applied as an

improving switch or until an improving switch of the form (xu,·, yu,·) withNV (u) > NV (v) gets
applied. With condition (b), this yields that (xv,π(v), v) gets applied by PolicyIteration
at some point, and that it is constantly improving until then.

Note that, as long as (v, xv,π(v)) is inactive, the policy’s choice in xv,π(v) only affects the
reduced costs of its unique incidental edge (v, xv,π(v)). This edge is not active in π̄′ and is not
improving until the application of (xv,π(v), v). Therefore, if we were to force the algorithm to
apply (xv,π(v), v) to π̄′, this would not alter the remaining behavior of the algorithm. The
policy resulting from this forced switch is the twin policy of π̃.

Hence, without changing the total number of applied improving switches (we only
rearrange them), we can assume that PolicyIteration(Dn, π′

0) visits the twin policy of
every policy visited by Bland(Bn, π0,NBn). By Theorem 14, this yields that the algorithm
needs to perform an exponential number of improving switches, which concludes the proof. ◀

Now it suffices to check the conditions given in Lemma 26 for each pivot rule.

▶ Proposition 27. Let π′
0 denote the twin policy of π0. Then, Bland(Dn, π′

0,NDn
) per-

forms Ω(2n) improving switches.

Proof. We check the two conditions from Lemma 26. For condition (a), let π be a policy
for Bn visited by Bland(Bn, π0,NBn

), including the case π = π0, and let π′ be the twin
policy of π. Assume that Bland applies the improving switch (v, w) ∈ EBn

to π.
By Observation 20, all improving switches for π′ are of the form (x·, y·). According

to Lemma 21, the edge (xv,w, yv,w) is improving for π′. As (v, w) is the improving switch
for π with the smallest Bland number in NBn

, we know that, by construction of NDn
, the

algorithm applies the switch (xv,w, yv,w) to π′.
Further, since π is weak unichain due to Theorem 4, Lemma 22 yields that (v, xv,w) is

improving after this switch. As it is the successor of (xv,w, yv,w) in NDn
and as no other

egde became improving due to the first switch, the algorithm applies (v, xv,w) next. That is,
Bland’s rule satisfies condition (a).

ISAAC 2023

27:14 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

Additionally, condition (b) holds since the edge (xv,π(v), v) precedes any switch of the
form (xu,·, yu,·) with NV (u) > NV (v) in the Bland numbering NDn

. ◀

As motivated above, the choice of the probabilities (pv)v∈VBn \{s} in the following theorem
yields that Dantzig prefers improving switches that belong to vertices appearing early in
the vertex numbering NV .

▶ Theorem 28. Let pv = 2−NV (v)(n+5) for all v ∈ VBn \ {s}, and let π′
0 denote the twin

policy of π0. Then, Dantzig(Dn, π′
0) performs Ω(2n) improving switches.

Proof. We check the two conditions from Lemma 26. For condition (b), we compute that
the choice of the probabilities pv yields that Dantzig prefers improving switches belonging
to vertices with a small vertex number.

Let u, v ∈ VBn
\ {s} with NV (u) > NV (v). Let further eu ∈ B(u) and ev ∈ B(v) be

improving switches for some policy π for Dn, which gets visited by PolicyIteration(Dn, π′
0).

Then, π is weak unichain and only induces non-negative vertex values, so Lemma 24 yields

zπ(ev) ≥ pv · 0.25 = 2−NV (v)(n+5)−2 ≥ 2−NV (u)(n+5)+(n+5)−2 = pu · 2(n+3) > zπ(eu).

Hence, Dantzig’s rule prefers switches belonging to v over those belonging to u, so it satisfies
condition (b).

For condition (a), let π be a policy for Bn visited by Bland(Bn, π0,NBn), including the
case π = π0, and let (v, w) ∈ EBn

denote the switch that Bland applies to π. Let π′ be the
twin policy of π.

By Observation 20, all improving switches for π′ are of the form (x·, y·). By construction
of NDn

, we know that Bland prefers those switches (x·, y·) that belong to vertices with
a small vertex number. In the proof of Proposition 27, we see that Bland(Dn, π′,NDn)
applies (xv,w, yv,w) to π′. Since Dantzig also prefers switches belonging to vertices with a
small vertex number, we conclude that Dantzig(Dn, π′

0,NDn) applies an improving switch
to π′ that belongs to v. However, there might be multiple such switches.

Recall that all improving switches for π′ are of the form (x·, y·). If v = bi for some i ∈ [n],
then only two of these (possibly improving) edges belong to v, one of which is active in π′.
Therefore, in this case, Dantzig applies the improving switch (xv,w, yv,w).

Now assume v = ai for some i ∈ [n]. Then, Observation 15 and Lemma 21 yield

zπ′(xai,bi
, yai,bi

) > max{zπ′(xai,ai+1 , yai,ai+1), zπ′(xai,t, yai,t)}

if (v, w) = enter(i), and

zπ′(xai,ai+1 , yai,ai+1) > zπ′(xai,t, yai,t)

if (v, w) = skip(i). Therefore, the edge (xv,w, yv,w) has higher reduced costs than the other
edges that belong to v, so Dantzig applies it to π′.

Finally, if v = t, then Observation 16 and Lemma 21 yield that (xv,w, yv,w) is the only
improving switch that belongs to t. Thus, it gets applied by Dantzig.

We conclude that, in all cases, Dantzig applies the switch (xv,w, yv,w) to π′, which is
the unique edge with the highest reduced costs. According to Lemma 22, the edge (v, xv,w)
has now the same reduced costs as (xv,w, yv,w) had before its application. Since (v, xv,w) is
the only edge that became improving during the last switch, Dantzig applies this edge next.
Therefore, Dantzig’s rule also satisfies condition (a), which concludes the proof. ◀

Y. Disser and N. Mosis 27:15

Algorithm 4 LargestIncrease(G, π).

input: Markov decision process G, weak unichain policy π for G

while π admits an improving switch :
s̄← an improving switch s for π maximizing

∑
v∈V A

n
Valπs(v)

π ← πs̄

return π

Finally, we turn to policy iteration with the Largest Increase pivot rule, cf. Algorithm 4.
In the most general sense, consider an arbitrary improving switch s = (v, w) for some
policy π. Assume that no ingoing edges of v are active in π. Then, the reduced costs
of s coincide with the increase of the sum over all vertex values, that is, we obtain the
equality zπ(s) =

∑
v∈V A

n
Valπs(v) −

∑
v∈V A

n
Valπ(v). Further, the induced increase of the

sum is always at least as large as the reduced costs.
From this, using the structure of Dn, we can conclude that LargestIncrease mirrors

the behavior of Dantzig if we choose the probabilities pv as before.

▶ Theorem 29. Let pv = 2−NV (v)(n+5) for all v ∈ VBn \ {s}, and let π′
0 denote the twin

policy of π0. Then, LargestIncrease(Dn, π′
0) performs Ω(2n) improving switches.

Proof. We check the two conditions from Lemma 26. For condition (a), let π be a policy
for Bn occurring during the execution of Bland(Bn, π0,NBn

), where we allow π = π0, and
let (v, w) ∈ EBn denote the switch that Bland applies to π. Let π′ be the twin policy of π.

According to the proof of Theorem 28, Dantzig applies the improving switches (xv,w, yv,w)
and (v, xv,w) to π′. By Observation 20, all improving switches for π′ are of the form (x·, y·),
where π′ does not reach x· when starting in any other vertex. Therefore, since the prob-
abilities (pv)v∈VBn \{s} are chosen as in Theorem 28, the reduced costs of each of these
improving switches coincide with the induced increase of the sum over all vertex values.
Hence, LargestIncrease also applies the improving switch (xv,w, yv,w) to π′.

This switch only increases the reduced costs of the edge (v, xv,w), which, by Lemma 22,
coincide with the previous reduced costs. Therefore, the induced increase of the sum over all
vertex values is for (v, xv,w) now at least as large as it was for (xv,w, yv,w) before. Hence,
LargestIncrease also applies (v, xv,w) next. We conclude that the Largest Increase pivot
rule satisfies condition (a).

Note that the reduced costs of the edges from condition (b) again coincide with the
induced increase of the sum over all vertex values. Further, by the proof of Theorem 28, we
know that Dantzig’s rule prefers switches belonging to vertices with a small vertex number.
Therefore, the Largest Increase rule also satisfies condition (b). ◀

Note that Theorem 1 is now a direct consequence of Theorems 27, 28, and 29. Moreover,
we have seen in the proofs of these theorems that Bland’s rule, Dantzig’s rule, and the
Largest Increase rule satisfy the conditions from Lemma 26. Thus, any combination of these
rules also satisfies the conditions, which immediately yields Corollary 2. Finally, Corollary 3
follows from Theorem 5 together with Obervation 7, Lemma 8, and Observation 19.

References
1 Ilan Adler, Richard M Karp, and Ron Shamir. A simplex variant solving an m× d linear

program in o (min (m2, d2) expected number of pivot steps. Journal of Complexity, 3(4):372–
387, 1987.

ISAAC 2023

27:16 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

2 Ilan Adler, Christos Papadimitriou, and Aviad Rubinstein. On simplex pivoting rules and com-
plexity theory. In Integer Programming and Combinatorial Optimization: 17th International
Conference, IPCO 2014., pages 13–24. Springer, 2014.

3 Nina Amenta and Günter M Ziegler. Deformed products and maximal shadows of polytopes.
Contemporary Mathematics, 223:57–90, 1999.

4 David Avis and Vasek Chvátal. Notes on Bland’s pivoting rule. Polyhedral Combinatorics:
Dedicated to the memory of D.R. Fulkerson, pages 24–34, 1978.

5 David Avis and Oliver Friedmann. An exponential lower bound for Cunningham’s rule.
Mathematical Programming, 161:271–305, 2017.

6 Richard Bellman. Dynamic Programming. Princeton University Press, 1957.
7 Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks. Journal

of the ACM, 51(4):540–556, 2004.
8 Robert G Bland. New finite pivoting rules for the simplex method. Mathematics of Operations

Research, 2(2):103–107, 1977.
9 Karl-Heinz Borgwardt. The average number of pivot steps required by the simplex-method is

polynomial. Zeitschrift für Operations Research, 26:157–177, 1982.
10 Daniel Dadush and Sophie Huiberts. A friendly smoothed analysis of the simplex method.

In Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC), pages
390–403, 2018.

11 George Dantzig. Linear programming and extensions. Princeton university press, 1963.
12 George B. Dantzig. Maximization of a linear function of variables subject to linear inequalities.

Activity analysis of production and allocation, 13:339–347, 1951.
13 George B. Dantzig, Alex Orden, and Philip Wolfe. The generalized simplex method for

minimizing a linear form under linear inequality restraints. Pacific Journal of Mathematics,
5(2):183–195, 1955.

14 Amit Deshpande and Daniel A Spielman. Improved smoothed analysis of the shadow vertex
simplex method. In 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’05), pages 349–356. IEEE, 2005.

15 Yann Disser, Oliver Friedmann, and Alexander V. Hopp. An exponential lower bound for
zadeh’s pivot rule. Mathematical Programming, 199(1-2):865–936, 2023.

16 Yann Disser and Martin Skutella. The simplex algorithm is NP-mighty. ACM Transactions
on Algorithms (TALG), 15(1):1–19, 2018.

17 John Dunagan and Santosh Vempala. A simple polynomial-time rescaling algorithm for solving
linear programs. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC), pages 315–320, 2004.

18 John Fearnley. Exponential lower bounds for policy iteration. In Proceedings of the 37th
International Colloquium on Automata, Languages and Programming (ICALP), pages 551–562,
2010.

19 John Fearnley and Rahul Savani. The complexity of the simplex method. In Proceedings of
the 47th Annual ACM Symposium on Theory of Computing (STOC), pages 201–208, 2015.

20 Oliver Friedmann. Exponential lower bounds for solving infinitary payoff games and linear
programs. PhD thesis, LMU Munich, 2011.

21 Oliver Friedmann, Thomas D. Hansen, and Uri Zwick. Subexponential lower bounds for
randomized pivoting rules for the simplex algorithm. In Proceedings of the 43rd Annual ACM
Symposium on Theory of Computing (STOC), pages 283–292, 2011.

22 Bernd Gärtner. The random-facet simplex algorithm on combinatorial cubes. Random
Structures & Algorithms, 20(3):353–381, 2002.

23 Bernd Gärtner and Ingo Schurr. Linear programming and unique sink orientations. In
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
749–757, 2006.

24 Saul Gass and Thomas Saaty. The computational algorithm for the parametric objective
function. Naval research logistics quarterly, 2(1-2):39–45, 1955.

Y. Disser and N. Mosis 27:17

25 Donald Goldfarb and William Y. Sit. Worst case behavior of the steepest edge simplex method.
Discrete Applied Mathematics, 1(4):277–285, 1979.

26 Thomas D. Hansen. Worst-case analysis of strategy iteration and the simplex method. PhD
thesis, Aarhus University, 2012.

27 Thomas D. Hansen and Uri Zwick. An improved version of the random-facet pivoting rule
for the simplex algorithm. In Proceedings of the 47th Annual ACM Symposium on Theory of
Computing (STOC), pages 209–218, 2015.

28 Ronald A. Howard. Dynamic programming and Markov processes. John Wiley, 1960.
29 Sophie Huiberts, Yin Tat Lee, and Xinzhi Zhang. Upper and lower bounds on the smoothed

complexity of the simplex method. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing (STOC), pages 1904–1917, 2023.

30 Robert G. Jeroslow. The simplex algorithm with the pivot rule of maximizing criterion
improvement. Discrete Mathematics, 4(4):367–377, 1973.

31 Gil Kalai. A subexponential randomized simplex algorithm. In Proceedings of the 24th Annual
ACM Symposium on Theory of Computing (STOC), pages 475–482, 1992.

32 Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings
of the 16th Annual ACM Symposium on Theory of Computing (STOC), pages 302–311, 1984.

33 Jonathan A Kelner and Daniel A Spielman. A randomized polynomial-time simplex algorithm
for linear programming. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC), pages 51–60, 2006.

34 Leonid G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics, 20(1):53–72, 1980.

35 Victor Klee and George J Minty. How good is the simplex algorithm? Inequalities, 3(3):159–175,
1972.

36 Jiří Matoušek, Micha Sharir, and Emo Welzl. A subexponential bound for linear programming.
Algorithmica, 16(4/5):498–516, 1996.

37 Mary Melekopoglou and Anne Condon. On the complexity of the policy improvement algorithm
for Markov decision processes. ORSA Journal on Computing, 6(2):188–192, 1994.

38 Katta G. Murty. Computational complexity of parametric linear programming. Mathematical
Programming, 19(1):213–219, 1980.

39 Martin L. Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 1994.

40 Ingo Schurr and Tibor Szabó. Finding the sink takes some time: An almost quadratic lower
bound for finding the sink of unique sink oriented cubes. Discrete & Computational Geometry,
31(4):627–642, 2004.

41 Steve Smale. Mathematical problems for the next century. Mathematics: frontiers and
perspectives, pages 271–294, 2000.

42 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463, 2004.

43 Tibor Szabó and Emo Welzl. Unique sink orientations of cubes. In Proceedings of the 42nd
IEEE Symposium on Foundations of Computer Science (FOCS), pages 547–555, 2001.

44 Michael J Todd. Polynomial expected behavior of a pivoting algorithm for linear comple-
mentarity and linear programming problems. Mathematical Programming, 35(2):173–192,
1986.

45 Roman Vershynin. Beyond hirsch conjecture: walks on random polytopes and smoothed
complexity of the simplex method. SIAM Journal on Computing, 39(2):646–678, 2009.

ISAAC 2023

	1 Introduction
	2 Preliminaries
	3 An Exponential Lower Bound for Bland's pivot rule
	4 A Combined Exponential Bound

