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Abstract. The existence of a polynomial-time pivot rule for the simplex 
method is a fundamental open question in optimization. While many 
super-polynomial lower bounds exist for individual or very restricted 
classes of pivot rules, there currently is little hope for an unconditional 
lower bound that addresses all pivot rules. We approach this question 
by considering the active-set method as a natural generalization of the 
simplex method to non-linear objectives. This generalization allows us 
to prove the first unconditional lower bound for all pivot rules. More  
precisely, we construct a multivariate polynomial of degree linear in the 
number of dimensions such that the active-set method started in the 
origin visits all vertices of the hypercube. We hope that our framework 
serves as a starting point for a new angle of approach to understanding 
the complexity of the simplex method. 

Keywords: simplex method · active-set method · lower bound · linear 
programming · non-linear programming 

1 Introduction 

The simplex method [ 12] is widely regarded as one of the most natural and 
important practical algorithms for solving linear programming problems. How-
ever, its theoretical complexity remains an open question to this day. This has 
to do with the fact that the simplex method’s behavior is highly sensitive to 
the choice of pivot rule, which determines how ties between improving edges at 
a vertex are broken and significantly influences the method’s behavior, such as 
whether it guarantees termination. 

The discovery of a polynomial-time pivot rule for the simplex method would 
have profound implications. In particular, it would most likely provide a strongly 
polynomial algorithm for linear programming, thereby resolving the ninth open 
problem on Smale’s list of mathematical problems for the 21st century [ 35]. 
While weakly polynomial algorithms for linear optimization are known, namely 
the ellipsoid and the interior-point method [ 27, 38], and while the latter has 
recently been adapted to a strongly polynomial algorithm for linear programs 
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with at most two variables per constraint [ 2, 10], barrier methods cannot yield 
strongly polynomial guarantees [ 3]. For linear programs with zero-one vertices 
strongly polynomial simplex pivot rules are known [ 8]. A general polynomial-
time pivot rule for the simplex method would also imply a polynomial bound 
on the combinatorial diameter of polytopes, thus resolving the long-standing 
polynomial Hirsch conjecture [ 11, 33]. 

Over the years, super-polynomial lower running time bounds were established 
for various natural pivot rules. Bounds for straightforward rules were found early-
on by utilizing distorted hypercubes [ 5, 7, 24, 26, 29, 31]. More recently, linear pro-
grams derived from Markov Decision Processes have been used to handle more 
sophisticated, memory-based rules [ 6, 14, 20– 22]. In some cases, the exponential 
worst-case behavior of the simplex method could be attributed to its mighti-
ness [ 1, 17, 18], which can be seen as a conditional lower bound. Nevertheless, 
results from smoothed complexity [ 9, 13, 25, 36] suggest that the constructions 
underlying the above bounds are fragile, which indicates that fundamentally dif-
ferent approaches may be necessary to achieve an unconditional lower bound 
that applies universally across all pivot rules. While existing hypercube con-
structions were generalized to small classes of pivot rules [ 4, 15], the existence of 
an unconditional super-polynomial lower bound remains wide open. 

We approach this question by considering the active-set method [ 19, 32] as a  
natural generalization of the simplex method to non-linear programs. A case of 
particular importance for the active-set method are quadratic, concave programs 
for which, much like in the linear setting, only weakly polynomial algorithms are 
known [ 38, 39], and the active-set method is a promising candidate for the first 
strongly polynomial algorithm. Similarly to the simplex method, the active-set 
method is governed by a pivot rule that determines the improving direction in 
each step in case there is more than one option. Again, no general running time 
bounds for all pivot rules are known. 

Our Results. We prove the first unconditional super-polynomial lower bounds 
on the running time of the active-set method for all  pivot rules. More precisely, 
we show the following. 

Theorem 1. For all n ∈ N>2, there is a multivariate polynomial Fn of degree n 
such that the active-set method started in 0 needs 2n−1 iterations to optimize Fn 
over the n-dimensional hypercube [0, 1]n, irrespective of the pivot rule. 

In particular, our construction forces the active-set method to visit all vertices 
of the hypercube while traversing along its edges in a simplex-like fashion. 

This result yields a new method of approach for unconditional lower bounds 
on the running time of the simplex method: If we could lower the degree of 
the polynomial to 1 by considering more general polytopes, we would obtain a 
super-polynomial (even exponential) lower bound for the simplex method using 
any pivot rule. 

As a first step in this direction, we can lower the degree of the polynomial, 
while maintaining a super-polynomial bound, simply by neglecting most of the 
input dimensions.
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Corollary 1. For every d(n) =  ω(log n) with d(n) ≤ n, there are polynomi-
als (Fn)n∈N of degrees O(d(n)) such that the active-set method started in 0 
needs 2ω(log n) iterations to optimize Fn over the n-dimensional hypercube [0, 1]n, 
irrespective of the pivot rule. 

Importantly, we provide a single construction that addresses all pivot rules 
simultaneously (there is a unique improving direction in each step). This means 
that lowering the degree of the polynomial for general polytopes would constitute 
progress towards disproving the monotone polynomial Hirsch conjecture [ 40]. 

We  observe that it is  NP-complete to optimize polynomials of degree 3 over 
the hypercube (Proposition 5). This already implies a super-polynomial lower 
bound on the running time of the active-set method, assuming P �= NP. The  
value of our contribution lies in the fact that we provide an unconditional lower 
bound. 

In fact, it turns out that the polynomials of Theorem 1 and Corollary 1 induce 
decomposable unique sink orientations of the hypercube (Proposition 6) that can  
be solved in linear time [ 34]. In particular, the polynomials in our construction 
do not give rise to NP-hard optimization problems (unless P = NP). 

Notation. We write all vectors in boldface and denote the i-th unit vector 
by ei . For  x, y ∈ N ∪ {0}, we write x ≡2 y if both x and y are either even 
or odd. For n ∈ N, we write [n] =:  {1, . . . , n}. We denote the i-th row of a 
matrix A ∈ Rm×n by Ai· and, for an index set A ⊆  [m], we write AA· to denote 
the matrix that consists of the rows Ai· with i ∈ A. 

2 Simplex and Active-Set Method 

The aim of this section is to illustrate that the active-set method is a natural 
generalization of the simplex method. This connection is well-known. 

Proposition 1 (Exercise 8.17 in [ 19]). The active-set method, when applied to 
linear objectives, is equivalent to the simplex method, i.e., the same intermediate 
solutions are computed during the application of both algorithms. 

Consider Algorithms 1 & 2 for a side-by-side comparison of Simplex and 
ActiveSet. Both algorithms are formulated in a way that makes their connec-
tion evident. We now describe the behavior of both algorithms in more detail.
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The simplex method solves arbitrary linear programs of the form 

where c ∈ Qn, A ∈ Qm×n, and  b ∈ Qm. For simplicity, we assume that the 
feasible region P := {x : Ax ≤ b} is bounded, and that the constraints are 
non-degenerate, i.e., we assume that every vertex x of P satisfies | eq(x)| = n, 
where we write  eq(x) :=  {i : Ai·x = bi}. The simplex method can be understood 
combinatorially as a traversal of P along its edges. 

More precisely, it maintains a subset B, called a basis, of  n constraint indices 
such that the system AB·x = bB uniquely determines the current vertex x. By  
non-degeneracy, this is equivalent to B = eq(x). As long as  x is not already an 
optimum, the simplex method moves along edges of P to neighboring vertices 
with better objective function values. We now describe how our formulation of 
Simplex reflects this behavior. 

A vertex  x of P is not optimal if and only if there is a direction d that 
is feasible and improving, i.e., that satisfies Aeq(x)·d ≤ 0 and c�d > 0. In  
particular, there is at least one improving edge direction 1 in each vertex x that 
is not optimal. Due to non-degeneracy, every edge direction d corresponds to 
a unique index � ∈ B  with A�·d < 0 and AB\{�}·d = 0. In fact, a feasible 
direction d is an edge direction in x if and only if 

|{i ∈ B : Ai·d = 0}| = n − 1 =  |B| − 1. 

Now, if the current vertex x is not optimal, Simplex chooses an improving edge 
direction d, deletes the corresponding index � from B, and moves along d as 
far as possible without becoming infeasible. Note that, by boundedness of P, 
this transitions to another vertex y of P. The method then adds a new active 
constraint index j ∈ eq(y) to B to obtain a basis uniquely identifying the new 
vertex. By non-degeneracy, this index is uniquely determined by j ∈ eq(y) \ B. 

The number of iterations of the simplex method depends on the pivot rule 
that determines the improving edge direction d chosen in each step in case 
there is more than one. The question of whether or not there exists a pivot rule 
guaranteeing a polynomial running time of the simplex method is arguably one 
of the most famous open problems in (linear) optimization. We refer to [ 11] for  
more details on the simplex method. 

The active-set method can be applied to non-linear programs with linear 
constraints of the form 

where f : Rn → R is continously differentiable, A ∈ Qm×n, and  b ∈ Qm. As  
before, we denote the feasible region by P, and the set of indices of the constraints
1 An edge direction in vertex x is a vector of the form d := λ(y − x) where y is a 
neighboring vertex of x and λ >  0. 
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that are active in some x ∈ P  by eq(x). For simplicity, we again assume that P 
is bounded. 

If x∗ is a local optimum of (NLP), then there are no feasible improving 
directions in x∗. That is,  for all  d with Aeq(x∗)·d ≤ 0, we have  ∇f(x∗)�d ≤ 0. 
The active-set method aims to find a critical point, i.e., a point satisfying this 
necessary optimality condition, by determining the set of constraints that are 
active in such a point. 

More precisely, the active-set method maintains a subset A ⊆  eq(x), called 
active set, of constraints that are active in the current solution x ∈ P. As long  
as x is not already a critical point, the method tries to move along an improving 
feasible direction d that respects the active set, i.e., that satisfies AA·d = 0. If  
there is no such direction, the method removes as few indices as possible from A 
until such a direction d can be found. Now it moves as far as possible along d 
without becoming infeasible, or until reaching a point y with ∇f(y)�d ≤ 0. 
If this movement is stopped by hitting the boundary of P, the method adds 
a new active constraint to A. This procedure is iterated until a critical point 
for (NLP) is found. We now describe how our formulation of ActiveSet allows 
this behavior. 

A feasible point  x is not critical if and only if there is a feasible improv-
ing direction d, i.e., a direction d with Aeq(x)·d ≤ 0 and ∇f(x)�d > 0. 
In ActiveSet, we take such a direction d which also maximizes the num-
ber of indices j ∈ A  with Aj ·d = 0, and can then remove indices i from A 
with Ai·d < 0 (in separate iterations). This corresponds to deleting a smallest 
set I ⊆  A  from A that ensures the existence of a feasible improving direction d 
with AA\I·d = 0. Now the method moves along the improving direction d as far 
as possible without becoming infeasible or reaching a point where the derivative 
of the objective in direction d is non-positive. If the directional derivative is still 
positive in the new point, the movement was stopped by hitting the boundary 
of P, so the method adds a new active constraint to A. 

Implementations of the active-set method are usually formulated for strictly 
concave, quadratic objective functions (see e.g. [ 19, 32]), where they compute 
Karush-Kuhn-Tucker (KKT) points [ 28, 30] of equality constrained subprob-
lems until reaching a KKT point, that is, the unique global optimum solution, 
of (NLP). More precisely, given a feasible solution x of (NLP) and an active 
set A ⊆ {i : Ai·x = bi} of constraint indices, the method computes a KKT 
point x∗ of 

Then, it moves from x towards x∗ as far as possible without becoming infeasible. 
If it reaches x∗, the method removes a constraint from the active set to enable 
further progress. Otherwise, it adds a new constraint to the active set. 

Note that our formulation of ActiveSet allows this behavior for strictly 
concave, quadratic functions. If the current solution x is not already the KKT 
point of (NLPA), the direction d := x∗ − x is improving (by concavity of the
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objective) and satisfies AA·d = 0, i.e., maximizes |{i ∈ A : Ai·d = 0}|. Further,  
we have x∗ = x + μ̄d for 

μ̄ := inf{μ ≥ 0:  ∇f(x + μd)�d ≤ 0}. 

If x is the KKT point of (NLPA), then there is no feasible improving direction d 
with AA·d = 0, so  ActiveSet removes constraints from A preventing progress. 

While concave quadratic functions allow for an efficient implementation, the 
computations in an iteration of ActiveSet are non-trivial for general functions. 
In the following, we assume that ActiveSet has access to an oracle, which 
finds d and computes μ in each step. 

The running time of the algorithm, i.e., the number of iterations, highly 
depends on the pivot rule that determines the direction d and the indices i ∈ A  
and j ∈ eq(x) \ A  in each iteration in case there is more than one choice. It is 
an open problem whether there is a polynomial time pivot rule for the active-set 
method for (strictly) concave, quadratic objective functions. 

3 Unconditional Super-Polynomial Bounds for Active-Set 

In Sect. 3.1, we define multivariate polynomials Fn : Rn → R of degree n for 
all n >  2. We then see in Sect. 3.2 that there is exactly one improving edge in 
every vertex of the boolean hypercube [0, 1]n which is not optimal; and that the 
value of Fn increases when moving along this edge to the neighboring vertex. The 
path π obtained by starting in 0 and iteratively moving along unique improving 
edges to neighboring vertices visits all 2n vertices of the hypercube, see Sect. 3.3. 
In Sect. 3.4, we obtain our main results by showing that ActiveSet follows the 
path π. Finally, we make some remarks on the complexity of the optimization 
problem induced by our polynomials in Sect. 3.5. 

3.1 Polynomials of Linear Degree 

For each n ∈ N, we define a multivariate polynomial Fn : Rn → R by 

Fn(x) =  
n∑

i=1

(
2i−1 αn,i(x) − βn,i(x)

)
, 

with x = (x1, . . . , xn)�∈ Rn and αn,i, βn,i : Rn → R given by αn,n+1(x) = 0  and 

αn,i(x) =  xi + (1  − 2xi)αn,i+1(x), ∀ i ∈ [n], (1) 

βn,i(x) = 2i
(
xi − x2 

i

) (
1 − xi−1 +

∑i−2 

j=1 
xj

)
, ∀ i ∈ [n], 

where we write x0 := 1, i.e., we have βn,1(x) = 0  for all x. Whenever x and its 
dimension are clear from the context, we write αi := αn,i(x) and βi := βn,i(x). 
Note that Fn is a multivariate polynomial of degree n – except for F2 which is 
of degree 3.
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We will analyze the behavior of ActiveSet optimizing Fn on the hyper-
cube [0, 1]n starting in 0. As a preparation, we now compute the maximum 
of Fn on [0, 1]n as well as the gradients of Fn in the vertices of the hypercube. 2

Lemma 1. For all n ∈ N, the optimum solution of 

max Fn(x) 
s.t. x ∈ [0, 1]n 

is attained by the unit vector en . 

Lemma 2. For all n ∈ N, k ∈ [n], and  x ∈ {0, 1}n, the k-th partial derivative 
of Fn is given by 

∂kFn(x) = (1  − 2αk+1) 
k∑

i=1 

2i−1 
k−1∏

j=i 
(1 − 2xj) − 2k(1 − 2xk)

(
1 − xk−1 + 

k−2∑

i=1 

xi

)
, 

where we write  x0 := 1, i.e., we have ∂1Fn(x) = 1  − 2α2. 

3.2 Uniqueness of Improving Edges 

We now show that in every vertex of the hypercube that is not optimal, there is 
exactly one improving edge direction. 

Proposition 2. For all n ∈ N and all x ∈ {0, 1}n \ {en}, there is exactly 
one k ∈ [n] such that ∂kFn(x) > 0 and xk = 0, or  ∂kFn(x) < 0 and xk = 1. 

Before giving the proof, we introduce notation tightening our further analysis. 

Definition 1. Given some x = (x1, . . . , xn)� ∈ Rn and k ∈ [n], we write 

Pn(x, k) =  xk−1 

k−2∏

j=1 

(1 − xj) and Sn(x, k) =  
n∑

j=k+1 

xj , 

where we set x0 := 1, i.e., we have Pn(x, 1) = 1 for all x. Whenever n and x 
are clear from the context, we write P(k) :=  Pn(x, k) and S(k) :=  Sn(x, k). 

We now observe how the dimension k of Proposition 2 is determined by the 
values of Pn and Sn.(see footnote 2) 

Lemma 3. The following are equivalent for all x ∈ {0, 1}n and k ∈ [n]: 

(i) ∂kFn(x) > 0 and xk = 0, or  ∂kFn(x) < 0 and xk = 1, 
(ii) S(k) ≡2 xk and P(k) = 1.

2 All missing proofs are provided in the full version [ 16]. 
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We obtain our proposition by showing that there is a unique dimension k 
that satisfies condition (ii) from Lemma 3 in each vertex that is not optimal. 

Proof of Proposition 2. We assume n ≥ 3, the  cases  n ∈ {1, 2} can be checked 
directly. We start with two technical observations. First, fix some x ∈ {0, 1}n 

and 1 < k1 < k2 ≤ n. We can  easily  see that  P(k1) = 1  implies xk1−1 = 1, 
while P(k2) = 1  implies xk1−1 = 0. Since  P(k) ∈ {0, 1} for all k ∈ [n], this yields 
the following: 

∀x ∈ {0, 1}n , 1 < k1 < k2 ≤ n : P(k1) = 0  ∨ P(k2) = 0. (2) 

Now fix some x ∈ {0, 1}n with S(1) ≡2 x1. Assume that P(k) = 1  holds 
for some fixed k ∈ {2, . . . , n}. Then, we have xk−1 = 1  and xj = 0  holds for 
all j ∈ [k − 2]. Thus,  S(1) ≡2 x1 implies S(k) ≡2 xk + 1, which gives us the 
following: 

∀x ∈ {0, 1}n with S(1) ≡2 x1, ∀k ∈ {2, . . . , n} : P(k) = 0∨S(k) ≡2 xk+1. (3) 

For all x ∈ {0, 1}n, Eqs. (2) & (3) yield that we have S(k) ≡2 xk and P(k) = 1  
for at most one k ∈ [n]. 

Now consider some x ∈ {0, 1}n \ {en}. It remains to argue that there exists 
some k ∈ [n] with S(k) ≡2 xk and P(k) = 1. We may assume S(1) ≡2 x1 + 1  
since P(1) = 1. This yields the existence of some j ∈ [n] with xj = 1. Further,  
we have k := min{j ∈ [n] :  xj = 1} < n  as x �= en , hence P(k + 1)  =  1  
and S(k + 1)  ≡2 xk+1. The statement now follows directly by Lemma 3. �


Let k be the unique dimension from Proposition 2 for some vertex x that 
is not optimal. We show that the value of ∂kFn(x) does not depend on xk.(see 
footnote 2) 

Proposition 3. Let n ∈ N and x ∈ {0, 1}n \ {en}. Let  k ∈ [n] be the unique 
dimension from Proposition 2. Then, we have 

∂kFn(x) =  ∂kFn(x + μek) 

for all μ ∈ R. 

3.3 Visiting all Vertices of the Hypercube 

We will see that ActiveSet applied to Fn over the hypercube and starting in 0 
moves from one vertex to another along the unique improving edges we identified 
in Sect. 3.2. This trajectory results in a Hamiltonian path in the polyhedral graph 
of [0, 1]n, i.e., in a path along the edges of the hypercube that visits all of its 2n 

vertices exactly once.
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Proposition 4. Let n ∈ N. The sequence (xi)i∈[2n] ⊆ {0, 1}n given by x1 := 0 
and 

xi+1 := xi + (1  − 2(xi)ki
)eki , ∀i ∈ [2n − 1], (4) 

where ki ∈ [n] is the unique dimension of Proposition 2 in xi , forms a Hamilto-
nian path in the polyhedral graph of [0, 1]n ending in en . 

Proof. By Lemma 3 and Proposition 2, the choice of ki ∈ [n] is indeed unique 
for xi ∈ {0, 1}n \ {en} and we have  P(ki) = 1  and S(ki) ≡2 (xi)ki

. We prove  
the statement by induction on n ∈ N. It obviously holds for n = 1, so assume it 
holds for some fixed n ∈ N. 

Consider the sequence (xi)i∈[2n+1] ⊆ {0, 1}n+1 as defined in the statement. 
By induction, the subsequence (xi)i∈[2n] forms a Hamiltonian path in the poly-
hedral graph of [0, 1]n ending in x2n 

= en , since the additional entry (xi)n+1 = 0  
does not change the value of P(k) or S(k) for any k ∈ [n]. Further, since  
we have Pn+1(en , n  + 1)  =  1  and Sn+1(en , n  +  1) = 0 = (en )n+1, it holds  
that k2n = n + 1  and thus x2n +1 = en + en +1. 

For the remaining part of the sequence, note that having (xi)n+1 = 1  instead 
of (xi)n+1 = 0  in the additional dimension does not change Pn+1(xi , k) and flips 
the value of (Sn+1(xi , k) mod  2)  ∈ {0, 1} for all k ∈ [n]. 

By Eq. (4), for all i ∈ [2n − 1], we have  Pn+1(xi , ki) =  Pn+1(xi+1 , ki) 
and Sn+1(xi , ki) =  Sn+1(xi+1 , ki). Therefore, the second half of the sequence 
is the inverse of the first half; more precisely, we have 

(xi)i∈{2n+1,2n+2,...,2n+1} = (yk)k∈[2n], 

where yk := x2n +1−k + en +1 for all k ∈ [2n]. In particular, (xi)i∈[2n+1] forms 
a Hamiltonian path in the polyhedral graph of [0, 1]n+1 ending in en +1. �


3.4 Proofs of the Super-Polynomial Bounds 

We define a matrix C ∈ {−1, 0, 1}2n×n by Ci· = (ei)� and C(i+n )· = −(ei)�

for all i ∈ [n], and a vector c ∈ {0, 1}2n by ci = 1  and ci+n = 0  for all i ∈ [n]. 
So we have 

[0, 1]n = {x : Cx ≤ c}. 

Fixing this implementation of the hypercube, we can now state our main result 
formally. For the proof, we combine the insights of the previous subsections. 

Theorem 1. For all n ∈ N, ActiveSet(Fn, C,  c, 0) solves 

max Fn(x) 
s.t. x ∈ [0, 1]n 

in 2n − 1 iterations, irrespective of the pivot rule.
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Proof. We show that ActiveSet visits all vertices of the hypercube [0, 1]n. 
Let (xi)i∈[2n] denote the sequence of Proposition 4. The initial solution is given 
by 0 = x1. Now  fix  some  i ∈ [2n − 1] and assume that xi is the intermedi-
ate solution at the start of iteration i of ActiveSet(Fn, C,  c, 0) and that the 
current active set is A = eq(xi) :=  {j : Cj ·xi = cj}. Note that, according to 
Proposition 4, we have  xi �= en so we can fix k ∈ [n] as the unique dimension of 
Proposition 2 in the point xi . 

All edge directions in xi are of the form 

dj,λ := λ(1 − 2(xi)j)ej 

for some j ∈ [n] and some λ >  0. Note that ∂jFn = ∇Fn
�ej = −∇Fn

�(−ej ) 
for all j ∈ [n], so we have  ∇Fn (xi)�dj,λ > 0 if and only if ∂jFn(xi) > 0 
and (xi)j = 0, or  ∂jFn(xi) < 0 and (xi)j = 1. Hence, by Proposition 2, the  
improving edge directions in xi are given by dk,λ  = λ(1 − 2(xi)k)ek for λ >  0. 

Since the system Cx ≤ c is non-degenerate and A = eq(xi), every feasible 
direction d in the vertex xi satisfies 

|{i ∈ A : Ai·d = 0}| = |A| − 1 

if and only if it is an edge direction in xi . In particular, for every edge direction d 
in xi , there is a unique index � ∈ A with A�·d < 0 and AA\{�}·d = 0. Further,  
the system AA·d = 0 only has the trivial solution. Hence, taking an arbitrary 
feasible improving direction maximizing |{i ∈ A : Ai·d = 0}| is equivalent to 
taking an arbitrary improving edge direction. 

This yields that ActiveSet chooses the improving edge direction d := dk,λ  

for some fixed λ >  0 in iteration i and deletes the unique � ∈ A  with A�·d < 0. 
We have AA\{�}·d = 0 and, by Proposition 3, 

∇Fn (xi + μd)�d = ∇Fn (xi)�d > 0 

for all μ ∈ R. Hence, ActiveSet moves from xi along d in iteration i until 
reaching the next vertex 

xi + d = xi + (1  − 2(xi)k)ek = xi+1 . 

Finally, since ∇Fn (xi+1)�d > 0, an index j ∈ eq(xi+1) \ A  is added to A. In  
fact, since the system Cx ≤ c is non-degenerate, this choice of j is unique, i.e., 
ActiveSet starts iteration i + 1  in the point xi+1 with A = eq(xi+1). 

We have seen that ActiveSet transitions from xi to xi+1 in iteration i, 
where i ∈ [2n − 1] was chosen arbitrarily. This proves the statement since the 
optimum solution of the given program is x2n 

= en by Lemma 1. �

If we are willing to relax the exponential bound from Theorem 1, we can  

lower the degrees of the polynomials. In Corollary 1, the degrees are chosen just 
large enough to yield a super-polynomial bound.
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Proof of Corollary 1. Let d(n) =  ω(log n) with d(n) ≤ n for all n ∈ N. Since  
the additional dimensions do not affect its behavior, by Theorem 1, ActiveSet 
started in 0 solves 

max F�d(n)�(x1, . . . , x�d(n)�) 
s.t. x ∈ [0, 1]n 

in 2�d(n)� − 1 iterations for all n ∈ N>2. Since  2�d(n)� = 2ω(log n) and the polyno-
mials

(F�d(n)�
)
n∈N 

are of degrees �d(n)� = O(d(n)), this concludes the proof. �


3.5 The Complexity of Maximizing Over the Hypercube 

The lower bounds in Theorem 1 and Corollary 1 are unconditional, meaning 
they show that ActiveSet is inefficient on the hypercube even if P = NP. It is  
folklore that the underlying decision problem is already NP-hard for polynomials 
of degree 3. We include a proof to make our presentation self-contained.(see 
footnote 2) 

Proposition 5. Given a multivariate polynomial f : Rn → R of degree 3, it  
is NP-complete to decide whether there is x ∈ {0, 1}n with f(x) ≥ 0. 

While the underlying problem is hard, the next statements show that our 
polynomial Fn belongs to a class of functions for which linear time algorithms 
exist that find the optimum vertex of the hypercube. We need some definitions 
before we can state this formally. 

Every function f : Rn → R attaining unique values on the vertices of [0, 1]n 

induces an orientation σf of the edges of the hypercube if we direct every 
edge {x, y} from x to y if f(x) < f(y), and  from  y to x if f(y) < f(x). 
We write x →σ y if edge {x, y} is directed from x to y in σ. 

An orientation σ of the edges of the hypercube is called unique sink orienta-
tion (USO) if there is exactly one sink, i.e., a vertex without outgoing edges, in 
every face of the hypercube. For more details on USOs, see e.g. [ 23, 37]. 

We say that an orientation σ is combed if there is a dimension i ∈ [n] such 
that all edges along dimension i point in the same direction, i.e., if we have 

x →σ x + (1  − 2xi)ei 

for all x ∈ {0, 1}n with xi = δ, where  δ ∈ {0, 1} is fixed. An orientation is called 
decomposable if it is combed on every nonzero-dimensional subcube of [0, 1]n.(see 
footnote 2) 

Proposition 6. The function Fn induces a decomposable orientation of {0, 1}n. 

Every decomposable orientation is also a USO, and can be solved in linear 
time [ 34]. Hence, the polynomials of Theorem 1 and Corollary 1 do not induce 
NP-hard optimization problems (unless P = NP).
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4 Future Research 

In this paper, we considered the active-set method as a natural generalization 
of the simplex method in order to derive the first unconditional running time 
bounds for all pivot rules. A canonical next step towards a general bound for 
the simplex method would be to lower the degree of our polynomial. 

Question 1. Is there a polynomial of degree O(log n) over the hypercube for 
which active-set takes super-polynomially many iterations for all pivot rules? 

It might be possible to reduce the complexity of the objective function even 
more drastically by increasing the complexity of the feasible region. 

Question 2. Is there a polynomial of constant degree over some polytope for 
which active-set takes super-polynomially many iterations for all pivot rules? 

While a general bound for linear objectives, i.e., for the simplex method, 
would be a massive breakthrough, reaching quadratic and concave objectives 
would already be very interesting: Much like in the linear setting, only weakly 
polynomial algorithms are known, namely ellipsoid and interior-point meth-
ods [ 38, 39], and the active-set method is a promising candidate for a strongly 
polynomial algorithm, due to its combinatorial nature. 

Question 3. Is there a concave, quadratic polynomial over some polytope for 
which active-set takes super-polynomially many iterations for all pivot rules? 
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