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Abstract. We study the problem of finding all Pareto-optimal solutions
in a multi-criteria setting of the shortest path problem in time-dependent
graphs. This has important applications in timetable information systems
for train schedules. We present a new prototype to solve this problem in a
fully realistic scenario based on a multi-criteria generalization of Dijkstra’s
algorithm. As optimization criteria we use travel time and number of train
changes, as well as a new criterion “reliability of transfers”.

The performance of the prototype and various speed-up techniques are
analyzed experimentally on a large set of real test instances. In compar-
ison with a base-line implementation, our prototype achieves significant
speed-up factors of 20 with respect to the number of label creations and
of 138 with respect to label insertions into the priority queue. We also
compare our prototype with a time-expanded graph model.

Keywords: shortest paths, time-dependent graphs, multi-criteria op-
timization, speed-up techniques, case study.

1 Introduction

In peak times the timetable information system of the German railway com-
pany Deutsche Bahn AG calculates over 1,600,000 connections per hour [1].
This demonstrates the importance that such systems have gained. It is obvi-
ous that efficient algorithms have to be used in order to cope with that large
a demand. To achieve this kind of efficiency, the system currently in use by
Deutsche Bahn AG applies rather restrictive heuristics. Therefore, optimality of
the gained results cannot be guaranteed. Moreover, commercial systems usually
apply single-criteria algorithms optimizing travel time only.

In recent years, several research efforts have demonstrated that exact single-
criteria shortest path queries in train networks can be performed very efficiently
due to powerful speed-up techniques. Multi-criteria shortest path search is much
more challenging. Given two paths p and q, we say that p dominates q if and
only if there is at least one criterion for which p has a better value than q and
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there is no criterion for which p has a worse value than q. A path is called
Pareto-optimal if it is not dominated by any other path. Here, the usual goal is
to find all Pareto-optimal solutions. In theory, there can be exponentially many
Pareto-optima in the worst case, although in practice only a few are observed in
a realistic setting [2]. But in contrast to single-criteria search, one cannot abort
the search after finding a first optimal solution. In fact, even after finding all
Pareto-optima, search algorithms require a substantial amount of time to find a
certificate that no further solutions exist.

Related work. Two main approaches have been proposed for modeling
timetable information as a shortest path problem: the time-expanded [3,4,5],
and the time-dependent approach [6,7,8,9,10,11,5]. These models and algorithms
are described in detail in a recent survey [12].

Pyrga et al. [5] have presented an extensive computational study comparing
the time-expanded and the time-dependent graph for the earliest arrival prob-
lem. They also consider a bicritera search for all Pareto-optima with respect
to travel time and number of transfers. However, in the time-dependent ver-
sion they heavily exploit the fact that the number of transfers in Pareto-optimal
solutions is usually fairly small. More specifically, Pyrga et al. reduce the bicri-
teria search to a sequence of single-criteria problems with a bounded number
of transfers. They start by obtaining the lexicographically smallest optimum for
the combination of earliest arrival and number of transfers. If this optimum uses
T transfers, another T searches are performed bounding the number of transfers
by T − 1, . . . , 0. By excluding dominated results from all the obtained ones, all
Pareto-optima are computed in this particular bicriteria scenario. This trick is
neither well-suited for more than two criteria nor for criteria which may attain
a large range of values.

The second and third author have designed a fully realistic multi-criteria pro-
totype MOTIS (multi-criteria timetable information system) which is capable of
answering queries in about one second on standard PCs [13]. The MOTIS system
is currently based on a time-expanded graph due to the fact that it is much eas-
ier to model all side constraints arising in practice in this framework. However,
the major drawback of time-expanded graphs in comparison to time-dependent
models is the higher space consumption, in particular if highly-periodically oper-
ating regional mass transit has to be included. In addition, the time-dependent
graph model is easier to adapt in case of dynamic graph changes due to train
delays. This motivates our investigation of the time-dependent graph model in
this paper.

Only a few months ago Bauer et al. [14] have presented an experimental study
on speed-up techniques for timetable information systems. They observed that
many of the recently developed speed-up techniques are much slower on graphs
derived from timetable information than on road networks. Moreover, many
single-criteria speed-up techniques rely on a simultaneous bidirected search from
source and target. Such techniques are not applicable in train search applications
since we only know the target station but not the time at which an arrival can be
expected. A recently developed technique is the unidirectional routing algorithm
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SHARC [15]. A time-dependent version of SHARC yields only approximations,
but works well on road networks.

Our Contribution and Overview. To the best of our knowledge, no com-
plete, realistic system has been built for exact multi-criteria search of all Pareto-
optimal solutions in the time-dependent graph model. In [5], Pyrga et al. treat
constant transfer times and traffic days, but other aspects of real timetables
like foot-paths and special transfer rules are not considered. In this paper we
describe a first prototype for multi-criteria search of all Pareto-optima within a
fully featured, real timetable. Its search results are guaranteed to be optimal.
We provide an extensive computational study showing the impact of several
speed-up techniques. Even though the number of possible speed-up techniques
is restricted severely in order to guarantee the optimality of all search results, the
performance of our prototype is already comparable to time-expanded systems,
but consumes much less space.

Most previous research (in particular [5]) concentrates on the earliest arrival
problem from a given point in time. But here we focus on a many-source short-
est path version because in a pre-trip search for train connections a user usually
wants to specify a time interval in which his journey should start. This implies
that we have to perform a simultaneous search from multiple starting times. In
a time-expanded graph model this can be handled very easily: One simply adds
a “super-source” and edges of length zero to all start events, thereby reducing
the search to a single-source search. In time-dependent graphs, however, solving
the many-source shortest path problem is more subtle if travel time is used as
an optimization criterion. Consider two subpaths from the source to some inter-
mediate node. Then, path p1 with start time s1 and travel time t1 dominates
another path p2 with start time s2 and travel time t2 with respect to travel time
only if t1 < t2 and s1 ≥ s2. Otherwise both paths are incomparable. This leads to
weaker dominance during search than for the earliest arrival problem, and con-
sequently to more non-dominated solutions which can be offered to customers.
It is therefore remarkable that we still achieve quite a reasonable performance.

Our approach can easily be extended to further criteria. In order to exemplify
this, the “reliability of transfers” is introduced as an additional criterion. The
reliability of transfers is a property of a connection that captures the probability
of catching all trains within it. Since possible train delays cannot be ignored,
such a criterion is of practical importance.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the time-dependent graph model and describe the adaptations needed in
order to make it suited for fully realistic timetables. A modification of Dijkstra’s
algorithm that makes it capable of minimizing multiple criteria is introduced
in Section 3. Several speed-up techniques that do not violate the optimality of
the search results are proposed. The results of the experimental analysis of our
time-dependent search system are presented in Section 4. We analyze the impact
of the proposed speed-up techniques on performance. The final performance is
then compared to a fully optimized search using a time-expanded graph. The
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last aspect of our discussion covers the relationship between performance and
the number of search criteria. Finally, Section 5 summarizes and gives an outlook
on future work.

2 Realistic Time-Dependent Graph Model

In this section we will describe a time-dependent graph model as introduced in
[5,10,11]. We will start off with a very basic time-dependent model and extend
it in the following.

We assume the timetable to consist of a set T of trains, a set S of stations, and
a set E of elementary connections. An elementary connection e ∈ E describes
a connection between two adjacent train stations without intermediate stops.
Such a connection contains a departure station from(e) ∈ S, an arrival station
to(e) ∈ S, a departure time d(e), and an arrival time a(e). In addition to that,
each elementary connection has several properties like train class, traffic days
and train number. Each train tr ∈ T is an ordered list of elements of E . A train
connection is composed of an ordered list of elementary connections which must
be consistent with the sequence of departure and arrival stations.

2.1 Basic Time-Dependent Model

For each station S ∈ S in the timetable there is a node v(S) ∈ V in the basic
time-dependent graph G = (V, E). We call these nodes station nodes. There is an
edge eAB = (v(A) , v(B)) ∈ E if the set EAB :={e ∈ E|from(e) = A ∧ to(e) = B}
is non-empty. The characteristics of all elementary connections in EAB are at-
tributed to this single edge eAB. Each edge has multiple length functions, one for
each optimization criterion. These length functions are time-dependent: depend-
ing on the time t at which the edge is to be used, different connections in EAB

may be favorable. In general, this is implemented with an iterator which com-
putes edge lengths “on-the-fly” and returns all necessary variants with different
characteristics.

If we only consider travel time and make the assumption that a connection
e1 ∈ EAB may not overtake another connection e2 ∈ EAB in the sense that
d(e1) ≥ d(e2) and a(e1) < a(e2), then the connection with the earliest depar-
ture after time t is the one chosen from EAB. Its travel time length is precisely
a(rel(EAB, t)) − t, where rel(EAB, t) := argmine∈EAB ,d(e)≥t d(e) is the relevant
connection in EAB at time t.

2.2 Transfers

In the basic model, transfers between different trains are not modeled differently
than two consecutive elementary connections with the same train. In order to
allow for our search to count the number of transfers and in order to assign a
duration to transfers, the model has to be extended as follows. We assume here
for simplicity that a constant transfer time is provided for each station.



Multi-criteria Shortest Paths in Time-Dependent Train Networks 351

Fig. 1. Extension of a simple time-dependent graph (left) to support transfers. The
timetable has three routes r1, r2, r3 so that the extended station (right) has three route
nodes.

In order to still be able to take advantage of the fact that multiple elemen-
tary connections are modeled by a single edge, it is necessary to group train
connections into routes. The set of routes forms a partition of T such that two
connections are in the same route if and only if they share equal stations and
properties. The departure and arrival times of two connections in the same route
may differ as well as their traffic days. Using this partition, each station is rep-
resented by several route nodes in addition to its station node. The station node
is used only to connect the route nodes and has no edges to nodes from other
stations. The expanded model is depicted in Figure 1.

One route node is required for each route that arrives or departs at the station.
For all connections in the same route, the corresponding route node plays the role
of the station node in the basic model. The assumption that connections may
not overtake each other can now be restricted to connections within a route. If
we have overtaking elementary connections within a route, the route can simply
be split up in order to separate the two elementary connections (and so we can
get rid off this assumption). If the route has a connection that arrives at the
station, an edge connecting the route node to the station node is introduced; if
the route has a connection that departs from the station, an edge connecting
the station node to the route node is introduced. One of these two edges needs
to carry the transfer costs at the station and is called transfer-edge, the other
has a transfer cost of 0. In the following we choose the edges from route nodes
to station nodes as transfer-edges. This is called exiting transfers as opposed to
entering transfers. We will see, that our choice is preferable due to performance
advantages of the multi-criteria search.

2.3 Foot-Paths and Special Transfer Rules

We propose the following extensions to make the model fully realistic. In a
real environment it is possible to walk from one station to another if the two
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Fig. 2. (a) Illustration of a station with two foot-edges in the time-dependent model
(b) Modifications to the graph for a station with a special transfer from train t1 to
train t2

stations lie in geographic proximity. Realistic models therefore contain foot-paths
to model this. Foot-paths are tuples (A, B, c) that represent a possibility to walk
between stations A and B within c minutes. We assume, that c already contains
all transfer costs at both A and B, so that no additional cost for switching trains
arise. Foot-paths are special in that their length is constant in time. Figure 2 (a)
shows the modifications that are needed in order to model a foot-path (A, B, c).
It is not sufficient to simply add an edge from the station node of A to the
station node of B with length c. This is because no additional transfer costs
have to be paid when using a foot-path. Reducing c by the transfer cost at A,
does not correctly model the costs when the journey starts at A. To circumvent
these problems, an additional foot-node is added to the stations subgraph.

Another feature of realistic timetables are special transfer rules, that change
the transfer time between two specific trains. The general transfer time of a
station may be increased or decreased that way, depending on the real-world
situation at the station. Two trains that use the same platform may for instance
have a reduced transfer time. For each transfer rule several changes to the graph
have to be made. Consider a special transfer time to get from train t1 to train
t2 at station A. Let X denote the route node of A for t1 and Y the route node
of A for t2. The station node for A is denoted by S. We assume that all special
transfers are reasonable, i.e. it is not possible to reach a train departing before t2
at Y if we arrived with t1. However, there are cases in which it is explicitly made
impossible to reach t2 by setting the time of the special transfer higher than the
usual transfer time. Figure 2 (b) shows the changes that have to be applied to
the model when a special transfer rule is introduced. A new edge leads from X
to Y carrying the special transfer cost. This edge may only be used after using
t1. The existing edges from S to Y and from Y to S have to be restricted so
that they may not be used if t1 is the last used train. This way Y cannot be
reached from X without using the special transfer and the special transfer may
not be used as shortcut to get to another route. For a proof of correctness of
this model, we refer to the full version of this paper.
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3 Multi-criteria Dijkstra and Speed-Up Techniques

In the following we briefly review an extension to Dijkstra’s algorithm [16] that
makes it capable of coping with several minimization criteria. Pseudocode is
given in Algorithm 1. See Möhring [17] or the PhD-thesis of Theune [18] for a
general description and correctness proofs.

3.1 Dijkstra’s Algorithm for Multiple Criteria

The major difference when considering multiple search criteria is that nodes in
the graph may be visited multiple times. The order in which nodes are visited
in the classical algorithm guarantees that once a node is visited no better way
of reaching it will be found later on. Multiple criteria allow for the possibility of
different paths to a node that are not comparable – neither is strictly better.

Thus we need a way to remember all promising paths with which a node was
reached. We do this by using multi-dimensional labels. Labels are associated with
nodes and contain an entry for each criterion and a reference to its predecessor
on the path. For every node in the graph we maintain a list of labels that are not
dominated by any other label at the node. In the beginning, all label lists are
empty. Then, start labels are created for all nodes with a timestamp within the
query interval and are stored in a priority queue (lines 4-6). In the main loop of
the algorithm, a lexicographically minimal label is extracted from the priority
queue in each iteration (line 8). For the corresponding node of that label all
outgoing edges are scanned and labels for their head nodes are created, provided
that the edge is feasible (lines 9-11). Any new label is compared to all labels in
the list corresponding to its node. It is only inserted into that list and into the
priority queue if it is not dominated by any other label in the list. On the other
hand, labels dominated by the new label are marked as invalid and removed
from the node list (line 16).

3.2 Speed-Up Techniques

A good measure for the performance of this multi-criteria search algorithm is the
number of labels created during a search. There are several techniques of reducing
this number and thus increasing the algorithm’s performance. As inserting labels
into the priority queue is an expensive part of the search, the number of insertions
can serve as a secondary measure of the algorithm’s performance. We will now
briefly discuss some important optimizations of the search, starting with some
techniques that have been used in the time-expanded approach for some time
[13]. In Section 3.2 we introduce two new and rather technical optimizations that
have some impact on the search within the time-dependent graph.

Obtaining Lower Bounds. Some of the techniques described below make use
of lower bounds for the distance of a node to the target node. These bounds
can be available for some or all criteria. A general way of obtaining bounds is to
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Input: a timetable graph and a query
Output: a set of Pareto-optimal labels at the terminal

foreach node v do1

list<Label> labelListAt(v) := ∅;2

PriorityQueue pq := ∅;3

foreach node v in start interval do4

Label startLabel := createStartLabel(v);5

pq.insert(startLabel);6

while ! pq.isEmpty() do7

Label label := pq.extractLabel();8

foreach outgoing edge e=(v,w) of v=label.getNode() do9

if isInfeasible(e) then continue; // ignore this edge10

Label newLabel := createLabel(label, e);11

if newLabel is dominated then continue;12

// newLabel is not dominated13

pq.insert(newLabel);14

labelListAt(w).insert(newLabel);15

labelListAt(w).removeLabelsDominatedBy(newLabel);16

Algorithm 1. Pseudocode for the generalized Dijkstra algorithm

simplify the graph enough to make it possible to search quickly. In a simplified
auxiliary graph, a single-criterion backward search is performed in order to ob-
tain lower bounds for all nodes and one criterion. In order to be able to perform
a backward search, any time-dependency must be eliminated.

We have implemented two different versions of simplified graphs with different
properties. The more efficient one uses the graph of the basic time-dependent
model in which only travel time can be optimized and transfers are costless.
Time-dependency is removed by replacing variable edge costs with their mini-
mal cost over time. This graph is suited for obtaining lower bounds for travel
time only. Another simplification procedure keeps the complete graph and only
substitutes time-dependent edges with constant ones as in the first approach.
The resulting graph is more complicated but yields tighter bounds and can also
be used for transfers.

Dominance by Early Results. The basic version of the generalized Dijkstra
algorithm tests only labels which reside at the same node for mutual domination.
Therefore, sub-optimality of sub-paths can often only be detected at a later stage
— at the latest at the terminal. This causes a significant amount of wasted work
which we try to avoid.

A way to improve the behavior is to explicitly check newly created labels
against results we already have. If they are already worse they may be discarded
right away. The sooner our first results are obtained, the less avoidable labels are
created this way. Lower bounds may be used when trying to dominate a label
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by earlier results. The criteria are therefore modified by adding the lower bound
for the current node. That way labels that cannot lead to new Pareto optima
are discarded as early as possible. If the lower bounds are tight enough, this can
lead to major improvements once the first result has been found.

Goal-Directed Search. The lower bounds at a node can be used to add them
as future costs to the cost values of a partial connection. If the extract opera-
tion from the priority queue is based on these modified values, this results in
a goal-directed search as in the A* algorithm. It is important to note that this
modification by itself leads to no improvement of running-time. It simply causes
the search to find the first result earlier on. Together with the dominance by
early results however, it leads to a major running-time improvement.

Avoid Hopping and Label Forwarding. Two phenomena that often arise
when searching the time-dependent graph can be eliminated in order to improve
performance. The first one is that labels propagate back to the node which they
originated from. In this case the labels are immediately dominated. The search
can easily be adapted to forbid “hopping”, i.e. the back-propagation of labels.
The other phenomenon is due to the fact that all edges between station and
route nodes in our graph have a cost of zero for all criteria. Because of this, newly
created labels often have the same values for the single criteria as the label they
originated from. Therefore, they are lexicographically minimal in the priority
queue from the moment on they are inserted. We can thus avoid inserting them
and simply hold them back until the current label has been processed completely.
Before extracting further labels from the queue, the labels that are held back
can be processed.

4 Computational Study

In the following, we analyze the performance of our multi-criteria search algo-
rithm. We apply the above speed-up techniques and compare our prototype to
a time-expanded approach. For the main part of our experiments we selected
two relatively unrelated criteria, namely travel time and the number of trans-
fers. Later we also show the influence on performance when adding an additional
criterion to the search.

4.1 Train Network and Test Cases

The train network used in this study is derived from the train schedule of
all trains within Germany of 2007 (56,994 trains, 8916 stations). The time-
dependent graph has about 240,000 nodes and 670,000 edges while the corre-
sponding time-expanded graph uses about 3,479,000 nodes and 5,633,000 edges.
Three different sets of test cases were used. Each test case contains a source
and a target station for the search, a date and a start time interval on that
date. The first set of test cases is a synthetic one. It contains 1,000 randomly
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created tests that allow for arbitrary start time intervals (referred to as random
cases). The second set also contains 1,000 randomly created tests which however
have more realistic start time intervals of exactly one hour (realistic cases). The
third set contains about 14,000 tests that were obtained from a snapshot of real
connection queries provided by Deutsche Bahn AG (real cases).

4.2 Computational Environment

All computations were executed on an AMD Athlon(tm) 64 X2 dual core pro-
cessor 4600+ with 2.4 GHz and 4 GB main memory running under Suse Linux
10.2. Our C++ code has been compiled with g++ 4.1.2 and compile option -O3.

4.3 Experiments

We first analyze the impact of single speed-up techniques. As a main indicator
for performance we use several operation counts on representative operations,
most importantly on the number of created labels, as well as on the number of
labels which pass the domination tests and are inserted into the priority queue.
We also provide CPU times, however, since our system is just a prototype to
demonstrate feasibility of the approach, no serious effort was spent on fine-tuning
the code in order to improve running time directly.

Impact of Exact Speed-Up Techniques. We start with a base-line vari-
ant which is the generalized Dijkstra algorithm on the fully realistic graph
model without using any optimization techniques and choosing exiting trans-
fers (cf. Section 2.2). Our first investigation compares this base-line variant with
an optimized version which includes domination by early results as well as goal
direction. The lower bounds are obtained from the basic time-independent graph
(cf. Section 3.2). In addition to that, avoidance of hopping and label forwarding
are used. Table 1 shows the combined impact of these techniques on performance.
We observe an improvement of a factor of about six with respect to the number
of created labels and a factor of 13 with respect to the number of insertions into
the priority queue. A more careful analysis reveals the individual impact of the
low level optimizations of avoiding the hopping of labels and their forwarding
along costless edges (cf. Section 3.2). This can be seen in Table 2.

It can also be seen that the choice between entering and exiting transfers
(cf. Section 2.2) makes a notable difference in performance. Together a factor
of nearly two is achieved in the number of created labels and a factor of over
three is achieved in the number of inserted labels. Note that the running times
of the different sets of queries cannot be compared. The real cases use start time
intervals of three hours while the realistic cases use one hour. This leads to an
average number of about six non-dominated solutions for the real cases, but only
an average of about two for the realistic cases. Therefore, different running times
are to be expected. Although the average number of created labels is similar for
both sets of instances, the actual distribution of the number of created labels
has a significantly larger variance for the real cases.
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Table 1. Comparison of the base-line variant with an optimized version

1000 realistic cases

created inserted average time
labels labels in seconds

base-line variant 1236744 636393 4.730
optimized version 207976 47967 1.050

Table 2. Performance improvement when avoiding hopping and forwarding labels

1000 random cases 1000 realistic cases 14076 real cases
created inserted avg. created inserted avg. created inserted avg.

labels labels time labels labels time labels labels time

entering transfers 1232592 545416 7.049s 385982 160200 1.606s 386764 176540 2.360s
exiting transfers 1072187 552012 5.990s 315565 160516 1.311s 343248 177193 2.098s
avoid hopping 682925 552014 5.453s 207984 160514 1.183s 212503 177192 1.932s
avoid hopping +
label forwarding 682897 146766 4.690s 207976 47967 1.050s 212516 45114 1.570s

As explained in Section 3.2, there are several ways of obtaining lower bounds.
The above results used the basic time-dependent graph. However, by using the
more complex approach, lower bounds can be obtained for other criteria as well,
like the number of transfers. Unfortunately, the lower bounds on the number
of transfers do not improve the search sufficiently to overcome the effort of
determining the bounds in the first place, as can be seen in Table 3.

An improvement can still be achieved with tighter bounds on the travel time.
Compared to not using any heuristic, we obtain an improvement of factor about
two. The most efficient variant of these bounds — the complex graph with travel
time bounds only — will from here on be used as our standard variant for further
comparisons.

Further Speed-Up by Realistic Assumptions. One of the strengths of our
approach is the guaranteed optimality of the search results. We are not willing
to sacrifice this advantage by using speed-up techniques that violate optimal-
ity. The only exception are optimizations that use realistic assumptions in order
to limit the search to certain reasonable ranges for the criteria. The results of
applying some of these techniques are shown in the following. There are two
ways of restricting the allowed travel time. Firstly it can be restricted by a fixed
upper limit like 24 hours. This helps a lot for long connections but does not
help at all for short ones. A more adaptive restriction is to limit the allowed
travel time to γ times the time of the fastest connection, where γ is a variable
parameter of our algorithm. This improves the search a lot for short queries.
Our results are summarized in Table 4. To limit the number of transfers did
not show a notable effect on performance in our tests. A maximum of five al-
lowed transfers did not yield a better performance, even though it makes some



358 Y. Disser, M. Müller–Hannemann, and M. Schnee

Table 3. Performance when using several combinations of the simple and the complex
graph in order to obtain lower bounds (realistic cases)

heuristic for lower bounds created inserted average time
labels labels in seconds

none 420803 92305 1.839
simple (time) 207976 47967 1.050

complex (time) 205260 45886 1.003
simple (time), complex (transfers) 207813 47939 1.106

complex (time & transfers) 205101 45866 1.159

Pareto-optimal connections impossible. Hence we dropped the limit on the num-
ber of transfers completely. A reasonable limitation can be put on the maximum
waiting time at a station since long waiting periods are very unattractive for
most passengers. This especially improves the search for connections running
over night. The improvement can be seen in Table 5. Finally, the single limits
can be applied together in different ways. We applied conservative limits of 24
hours for maximum travel time, five hours for maximum waiting time and γ = 5
and tight limits of ten hours for maximum travel time, three hours for maximum
waiting time and γ = 2. The improvements can be found in Table 6. In summary,
together with the exact speed-up techniques, a speed-up factor of about 20 over
the base-line version has been achieved with respect to the number of created
labels and a factor of 138 with respect to the number of insertions.

Comparison with a Time-Expanded Approach. In general, we expect a
better performance of the time-dependent approach than of the time-expanded
one. It is unclear however, whether this can be achieved in a multi-criteria setting.
In order to answer this question, we compare the performance of our time-
dependent approach with the time-expanded search incorporated in MOTIS.
As the time-dependent system was developed as a proof of concept only, it
makes not much sense to compare running times. We restrict our analysis to
the comparison of the number of labels inserted into the priority queue. As
can be seen in Table 7 the time-dependent approach creates much fewer labels.
When using realistic assumptions, the time-dependent system adds 5.4 times
less labels into the priority queue. However, it should be noted, that the time-
dependent approach requires additional effort to compute actual edge lengths
on-the-fly. Thus we expect (and empirically observe) similar running times for
both approaches. As expected, the memory consumption of the time-expanded
graph is a lot higher than that of the time-dependent one. In our tests, MOTIS
needed 1.25 GB while the time-dependent graph used only 281 MB.

Adding an Additional Criterion: Reliability of Transfers. The above
experiments were performed using travel time and the number of transfers as
only search criteria. An interesting question is how the performance worsens
when further criteria are introduced. This was explored by adding the “reliability
of transfers” as a further criterion.
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Table 4. Limiting the maximum travel time (realistic cases)

algorithmic created inserted average time
variant labels labels in seconds

standard 205260 45886 1.003
max. travel time = 24h 180910 30893 0.845
max. travel time = 15h 141602 16175 0.631
max. travel time = 10h 83162 6999 0.406

γ = 5 182535 32030 0.865
γ = 3 144678 17015 0.653
γ = 2 84125 6890 0.415

Table 5. Limiting the maximum waiting time (realistic cases)

algorithmic created inserted average time
variant labels labels in seconds

standard 205260 45886 1.003
max. waiting time = 5h 167914 19751 0.777
max. waiting time = 3h 151680 15441 0.637

Table 6. Performance improvement when combining limits (realistic cases)

algorithmic created inserted average time
variant labels inserted in seconds

standard 205260 45886 1.003
conservative limits 156515 17827 0.685

tight limits 63261 4605 0.335

The reliability of a single transfer is a function of the buffer time which is the
available time exceeding the minimum transfer time at the station. This means
that a passenger will catch the connecting train unless the incoming train is
delayed by more than the buffer time. There are many plausible ways to map a
buffer time t into a reliability measure. In this paper, we propose to define

reliability : t %→ s − expln(1−a)− 1
b ·t,

with parameters a = 0.6, b = 8, s = 0.99 so that the maximal reliability of a
single transfer is 99% and a buffer time of 0 minutes leads to 60% reliability. The
reliability of connections with several transfers is defined as the product of the
reliabilities of each single transfer. This yields a continuous reliability measure
which we further transformed into a discrete one by subdividing the interval of
[0,1] into 50, 20 and 10 equivalence classes of equal width. Table 8 summarizes
the performance of the search when using different numbers of criteria. The
addition of the number of transfers as second criterion leads to a slow-down of
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Table 7. The number of labels inserted into the priority queue on average for both
the time-dependent and the time-expanded search

real cases inserted labels

time-expanded (optimized, conservative limits) 92538
time-expanded (optimized, tight limits) 64782

time-dependent (optimal, no limits) 44133
time-dependent (realistic assumptions, tight limits) 11913

Table 8. Relationship between the number of criteria and performance on 1000 realistic
test cases. Different numbers of discretization steps are used for reliability.

criteria created inserted average time average number of
labels labels in seconds Pareto optima

time 99284 19401 0.454 1.28
time, transfers 205260 45886 1.003 2.34

time, transfers, reliability (50 classes) 990664 160254 5.726 6.76
time, transfers, reliability (20 classes) 853742 149366 4.727 5.67
time, transfers, reliability (10 classes) 772822 142615 4.138 4.66

factor two, the addition of reliability of transfers as third criterion leads to a
slow-down of another factor four if we use 10 equivalence classes.

5 Conclusions and Future Work

In this work we have presented our prototype for a time-dependent, multi-criteria
search system that works in a fully realistic scenario. We have shown how to in-
troduce the most important features of real timetables and how to improve per-
formance significantly. We have provided the results of our experimental analysis
that show that a speed-up factor of 20 with respect to the number of label cre-
ations and 138 with respect to the number of label insertions can be achieved
under realistic assumptions. A comparison to the time-expanded approach was
done, indicating that the new approach clearly is competitive. Finally we dis-
cussed the impact on performance when adding further criteria to the search.

In order to make the time-dependent approach able to replace current online
search systems, its performance needs to be improved further. If possible, opti-
mality should be maintained. It remains a challenge to design better speed-up
techniques for multi-criteria search. Another goal is to extend our prototype to
a dynamic scenario with train delays.
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