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Abstract. We consider classes of objective functions of cardinality-
constrained maximization problems for which the greedy algorithm guar-
antees a constant approximation. We propose the new class of γ-α-
augmentable functions and prove that it encompasses several impor-
tant subclasses, such as functions of bounded submodularity ratio, α-
augmentable functions, and weighted rank functions of an independence
system of bounded rank quotient – as well as additional objective func-
tions for which the greedy algorithm yields an approximation. For this
general class of functions, we show a tight bound of α

γ
· eα

eα−1
on the

approximation ratio of the greedy algorithm that tightly interpolates
between bounds from the literature for functions of bounded submodular-
ity ratio and for α-augmentable functions. In particular, as a by-product,
we close a gap in [Math.Prog., 2020] by obtaining a tight lower bound
for α-augmentable functions for all α ≥ 1. For weighted rank functions
of independence systems, our tight bound becomes α

γ
, which recovers

the known bound of 1/q for independence systems of rank quotient at
least q.

Keywords: Greedy algorithm · Cardinality-constrained
maximization · Approximation ratio · Independence system ·
Submodularity ratio · Augmentability

1 Introduction

We consider cardinality-constrained maximization problems of the form

max f(X)
s.t. |X| ≤ k

X ⊆ U,

with a monotone objective function f : 2U → R≥0 over a finite ground set U .
Additional constraints of the form X ∈ X can be modeled by the monotone
objective f ′(X) := max{f(Y )|Y ∈ 2X ∩ X}. In this way, every combinatorial,
cardinality-constrained maximization problem with monotone objective function
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can be captured, and we adopt this framework throughout the paper.1 For exam-
ple, the maximum weighted matching problem on a graph G = (V,E) with edge
weights w : E → R≥0 yields the objective function

f(X ⊆E) = max{
∑

e∈M

w(e)|M ⊆ X,M is a matching in G}.

We focus on the performance of the greedy algorithm that iteratively produces
a solution SG

f,k = {x1, . . . , xk} with

xi ∈ argmaxx∈U\{x1,...,xi−1}f({x1, . . . , xi−1} ∪ {x}),
for all i ∈ [k] := {1, . . . , k}, i.e., it adds elements such that the increase in
objective value is maximized in each step. The greedy algorithm is inherently
incremental and may be regarded as the most natural approach for incrementally
building up infrastructures that support changing active solutions (in the sense
of the definition f ′(X) above). While this algorithm is widely used in practical
applications, greedy solutions can be arbitrarily far away from optimal (e.g., for
the knapsack problem). A natural question in this context is, for which objective
functions f the greedy algorithm gives a good solution. We are interested in
characterizing these objective functions.

Note that we consider the adaptive greedy solution SG
f,k as opposed to the

non-adaptive greedy solution S̃G
f,k := SG

f,min{k,k̄}, where k̄ ∈ [|U |] is the smallest

cardinality such that f(SG
k̄

∪{x}) = f(SG
k̄
) for all x ∈ U \ SG

k̄
. In other words, the

non-adaptive greedy algorithm terminates as soon as it cannot improve the solu-
tion further. This non-adaptive variant of the greedy algorithm has often been
considered in the early literature (e.g., [15,16,22,23]). Note, that for submod-
ular functions, i.e., functions with f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for all
X,Y ⊆ U , there is no difference between these two variants, and for our purposes
both variants are interchangeable in the following sense.

Formally, we measure the quality of the greedy algorithm on a set of objec-
tives F by the approximation ratio supf∈F maxk∈[|Uf |]f(S∗

f,k)/f(Xf,k), where Uf

is the ground set of the function f ∈ F , S∗
f,k ∈argmaxX⊆U :|X|≤k f(X) denotes an

optimum solution of cardinality at most k, and Xf,k ∈ {SG
f,k, S̃G

f,k} refers to the
(non-)adaptive greedy solution of cardinality k. We claim that the approxima-
tion ratios of both variants of the greedy algorithm coincide. To see this, observe
that the non-adaptive setting is more restrictive, and that every lower bound
instance in the non-adaptive setting can be made adaptive by introducing addi-
tional elements that add a vanishingly small but positive objective value when
added to every solution. This implies that all our bounds on the approximation
ratio of the (adaptive) greedy algorithm immediately apply to both variants.

From now on, we write SG
k := SG

f,k and S∗
k := S∗

f,k, whenever f is clear from
the context. In these terms, we are interested in characterizing the set of objec-
tives for which the greedy algorithm has a bounded approximation ratio. Known
1 Note that the objective function f may be computationally hard to evaluate. If we

assume that the greedy algorithm has oracle access to f , it requires O(|U |k) queries
to the oracle.
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examples include the objectives of maximum (weighted) (b-)matching, maximum
(weighted) coverage, and many more [2,3,8,18,30], and we additionally introduce
a multi-commodity flow problem (Sect. 2), where the greedy algorithm yields an
approximation.

A well-known class of functions for which the greedy algorithm has a bounded
approximation ratio of (exactly) e

e−1 are monotone, submodular functions [22].
This class includes the maximum coverage problem, but fails to capture many
other greedily approximable settings. See Fig. 1 along with the following.

Das and Kempe [8] introduced the class of functions of bounded submodular-
ity ratio as a generalization of submodular functions. Importantly, its definition
depends on the greedy solutions for different cardinalities. We adapt and weaken
the definition from [8] for consistency, by restricting ourselves to greedy solutions
and by minimizing over all cardinalities.

Definition 1 ([8]). The weak submodularity ratio of f : 2U → R≥0 is (using
0
0 := 1)

γ(f) := min
X∈{SG

0 ,...,SG
k̄

},Y ⊆U\X

∑
y∈Y (f(X ∪ {y}) − f(X))

f(X ∪ Y ) − f(X)
∈ [0, 1].

Das and Kempe [8] showed an upper bound of eγ

eγ−1 on the approximation
ratio of the greedy algorithm for the set of all monotone functions with submod-
ularity ratio at least γ > 0, and Bian et al. [3] extended this to a tight bound that
is additionally parameterized by the curvature of the objective. Since submodu-
lar functions have submodularity ratio 1, this bound generalizes the submodular
bound. Crucially, it is easy to verify that these results carry over to the set F̃γ

of all monotone functions with weak submodularity ratio at least γ > 0.2
Another generalization of submodularity was proposed by Bernstein et al. [2].

We extend the definition by a weakened variant in order to bring it more in line
with Definition 1.

Definition 2 ([2]).The function f : 2U → R≥0 is (weakly) α-augmentable for
α ≥ 1, if, for every X ⊆ U (X ∈ {SG

0 , . . . , SG
k̄

}) and Y ⊆ U with Y � X, there
exists an element y ∈ Y \ X with

f(X ∪ {y}) − f(X) ≥ f(X ∪ Y ) − αf(X)
|Y | .

Bernstein et al. showed that the greedy algorithm has an approximation
ratio of at most α · eα

eα−1 on the set Fα of monotone, α-augmentable functions,
for α ≥ 1, and that this bound is tight for α ∈ {1, 2} and in the limit α → ∞.
Since submodular functions are 1-augmentable, this bound again generalizes the
submodular bound. The class of α-augmentable problems captures the objective
of the maximum (weighted) α-dimensional matching problem, which is not sub-
modular. In this paper, we introduce a natural α-commodity flow variant that
2 Here and throughout we use the notation F̃ as opposed to F to refer to a function

class based on a weak definition.
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is α-augmentable, and we prove a tight lower bound on the approximation ratio
for all α ≥ 1.

Another well-known setting, besides submodularity, where the greedy algo-
rithm has a bounded approximation ratio, are weighted rank functions of inde-
pendence systems of bounded rank quotient [17]. An independence system is a
tuple (U, I ⊆ 2U ), where I is closed under taking subsets and ∅ ∈ I. For a given
weight function w : U → R≥0, the weighted rank function of (U, I) is given by
f(X) = max{∑

x∈Y w(x)|Y ∈ I ∩ 2X}. The rank quotient of an independence
system (U, I) is q(U, I) := minX⊆U minB,B′∈B(X) |B|/|B′|, where 0

0 := 1, and
the set B(X) of all bases of some set X ⊆ U is the set of inclusion-wise max-
imal subsets of I ∩ 2X , i.e., B(X) := {B ∈ I ∩ 2X |∀x ∈ X \ B : B ∪ {x} /∈ I}.
Jenkyns [15] and Korte and Hausmann [16] showed that the greedy algorithm
has an approximation ratio of exactly 1/q on the set Fq of all weighted rank
functions of independence systems with rank quotient at least q > 0.3

Our Results. Our goal is to unify and to generalize the above classes of functions
on which the greedy algorithm has a bounded approximation ratio. To this end,
we first observe that each one of the classes F̃γ , Fα, and Fq uniquely captures
greedily approximable objectives (cf. Fig. 1). In particular, we construct a natural
α-augmentable variant of multi-commodity flow that does not have bounded
(weak) submodularity ratio (for α ∈ N \ {1}) and cannot be expressed as the
maximization of a weighted rank function. Besides the α-dimensional matching
problem, to our knowledge, the problem introduced in Sect. 2 is the only other
natural α-augmentable problem to date.

Proposition 1. For every γ, q ∈ (0, 1) and α ≥ 1, it holds that

F̃γ � (Fα ∪ Fq) and Fα � (F̃γ ∪ Fq) and Fq � (F̃γ ∪ Fα).

This motivates the following definition to consolidate all three classes.

Definition 3. The function f : 2U → R≥0 is (weakly) γ-α-augmentable for γ ∈
(0, 1] and α ≥ γ if, for all sets X ⊆ U (X ∈ {SG

0 , ..., SG
k̄

}) and all Y ⊆ U with
Y � X, there exists y ∈ Y with

f(X ∪ {y}) − f(X) ≥ γf(X ∪ Y ) − αf(X)
|Y | .

Note that we need to consider the weak variant of this definition if we hope
to encompass the class F̃γ , which enforces its defining property only for “greedy
sets”, however, any upper bound on the approximation ratio immediately car-
ries over to the same bound in the stronger definition. Also note that γ-α-
augmentability only requires α ≥ γ, unlike α-augmentability where α ≥ 1.
This is in line with the definitions of α-augmentability where γ = 1 and of
the submodularity ratio where α = γ. We let F̃γ,α denote the set of all weakly

3 Note that we abuse notation, since, e.g., Fα �= Fq for α = q = 1. However, the set
of functions we are referring to will always be clear by the naming of the indices.
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γ-α-augmentable functions. The first part of our main result is that this set
encompasses all functions in F̃γ ∪ Fα ∪ Fq and captures additional functions
(cf. Fig. 1). Formally, we show the following.

Theorem 1. For every γ, q ∈ (0, 1], every γ′ ∈ (0, 1), every α ≥ 1, and every
α′ ≥ γ′, it holds that

F̃γ,max{α,1/q} ⊇ F̃γ ∪ Fα ∪ Fq and F̃γ′,α′ � F̃γ ∪ Fα ∪ Fq.

Note that α′ and γ′ in Theorem 1 do not depend on α, γ and q. The second
part of our main result is a tight bound on the approximation ratio of the greedy
algorithm on F̃γ,α (cf. Theorem 6 and Proposition 4).

Theorem 2. The approximation ratio of the greedy algorithm on the class F̃γ,α

of monotone, weakly γ-α-augmentable functions, with γ ∈ (0, 1] and α ≥ γ, is
exactly

α

γ
· eα

eα − 1
.

Importantly, this bound recovers exactly the known bound for functions of
bounded submodularity ratio, since F̃γ ⊆ F̃γ,γ , as well as the known bound
for α-augmentable functions, since Fα ⊆ F̃1,α. In that sense, our new bound
interpolates tightly between these two bounds and generalizes them. In addition,
our tight lower bound for F̃1,α is obtained with an α-augmentable function. This
means that, in particular, we are able to close the gap left in [2], by showing a
tight lower bound for α-augmentable objectives, for all α ≥ 1.

Corollary 1. The approximation ratio of the greedy algorithm on the class Fα

of monotone, α-augmentable functions is exactly α · eα

eα−1 for all α ≥ 1.

Finally, we are also able to show a tight bound of α/γ for γ-α-augmentable,
weighted rank functions on independence systems. Since Fq ⊆ F̃1,1/q (by Theo-
rem 1), our bound recovers exactly the known bound of 1/q for the approximation
ratio of the greedy algorithm when the rank quotient is bounded from below by
q > 0. This means that the class of monotone, weakly γ-α-augmentable func-
tions truly unifies and generalizes the three classes F̃γ , Fα, and Fq of greedily
approximable functions (cf. Fig. 1). Note that, in particular, the lower bound
is tight already for α-augmentable functions, which implies a tight bound of α
for the approximation ratio of the greedy algorithm on α-augmentable weighted
rank functions.

Theorem 3. Let FIS :=
⋃

q∈(0,1] Fq be the set of weighted rank functions on
some independence system. The approximation ratio of the greedy algorithm on
the class F̃γ,α ∩ FIS, with γ ∈ (0, 1] and α ≥ γ, is exactly α

γ .

The proofs of all results can be found in the full version [9].

Related Work. We can view our cardinality-constrained maximization framework
as a special case of maximization over an independence system. In particular,
the cardinality-constraint can be expressed as a uniform matroid contraint [17].
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Fig. 1. Relation of the different problem classes. Newly introduced classes and problems
are marked in red. The parameter k′ is chosen sufficiently large, depending on γ and α.
(Color figure online)

From that perspective, the most basic, non-trivial setting is the maximization
of a linear (i.e., modular) objective over an independence system. Regarding the
approximation ratio of the greedy algorithm, this classic setting is equivalent to
the maximization of a weighted rank function, as considered in Theorem 3. This
is easy to see by considering the non-adaptive variant of the greedy algorithm,
and by observing that the greedy solution is guaranteed to remain feasible while
the algorithm makes progress.

In that sense, the perfomance of the greedy algorithm for weighted rank func-
tion maximization has extensively been studied in the past. Rado [25] showed
that the greedy algorithm is optimal for all weight functions if the underlying
independence system is a matroid, and Edmonds [10] established the reverse
implication. Jenkyns [15] extended this result by showing an upper bound
of 1/q for the approximation ratio of the greedy algorithm on independence
systems with rank quotient q, and Korte and Hausmann [16] gave a tight lower
bound. Years later, Mestre [21] independently proved this tight bound for the
subclass of k-extendible independence systems. Bouchet [4] gave a different gen-
eralization of the result by Rado and Edmonds by showing that the greedy
algorithm remains optimal on symmetrical matroids.

Another prominent setting is the maximization of a submodular function
over an independence system. Again, this includes cardinality-constrained max-
imization of a submodular objective, which is equivalent to submodular maxi-
mization over a uniform matroid. Nemhauser, Wolsey, and Fisher [23] showed
that the greedy algorithm has a tight approximation ratio of e

e−1 for maximiz-
ing a monotone, submodular function under a cardinality-constraint. Krause et
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al. [19] observed that the approximation ratio is unbounded when maximizing the
minimum of two monotone, submodular functions. Non-monotone submodular
maximization over a cardinality-constraint (and knapsack constraints) was con-
sidered by Lee et al. [20]. Feldman et al. [14] analyzed a variant of the continuous
greedy algorithm [28] and showed an upper bound on its approximation ratio of
(1/e−o(1))−1. This bound for the non-monotone case with cardinality-constraint
was later improved by Buchbinder et al. [5] and Ene and Nguyen [11] by fur-
ther adapting the (continuous) greedy algorithm. For maximizing a submodular
function subject to k-extentible system and k-systems constraints, Feldman et
al. [12,13] considered three variants of the greedy algorithm, a repeated greedy,
a sample greedy and a simultaneous greedy. They were able to show approxima-
tion ratios of k + O(1) for k-extendible system constraints and k + O(

√
k) for

k-system constraints.
Maximization of a monotone, submodular function over a matroid was consid-

ered by Vondrák [28] and by Calinescu et al. [6], who showed that the continuous
greedy algorithm has an approximation ratio of e

e−1 in this setting. Nemhauser,
Wolsey, and Fisher [23], showed an upper bound of p + 1 for the regular greedy
algorithm when maximizing over the intersection of p matroids. A generaliza-
tion of this upper bound to the setting o maximizing subject to a p-system
constraint was later proven by Calinescu et al. [6]. Conforti and Cornuejols [7]
gave an upper bound of p + c depending on the curvature c of the monotone
submodular function – this interpolates between the submodular bound of [23]
(c = 1) and the linear bound of [16] (c = 0). Vondrák [29] showed that the con-
tinuous greedy algorithm has an approximation ratio of at most c ec

ec−1 over an
arbitrary matroid, and Sviridenko, Vondrák, and Ward [27] showed an improved
upper bound of e

e−c for the approximation ratio of a modified continuous greedy
algorithm over a uniform matroid (i.e., a cardinality-constraint).

Other variants of the problem setting include the maximization of a mono-
tone, submodular function over a knapsack constraint [26], and robust submod-
ular maximization [1,24].

2 Weak Submodularity Ratio, α-Augmentability,
and Independence Systems

In this section, we give an idea how to prove Proposition 1, i.e., how to separate
the function classes F̃γ , Fα, and Fq.

We start by introducing a natural α-commodity flow problem that models,
e.g., production processes where output is limited by availability of all com-
ponents. The objective of this problem is (exactly) α-augmentable, but, for
α ∈ N \ {1}, does not have a bounded (weak) submodularity ratio and can-
not be expressed as a weighted rank function over an independence system. This
problem also gives a tight lower bound for the approximation ratio of the greedy
algorithm on α-augmentable functions, for α ∈ N. We will extend this lower
bound to all α ≥ 1 in Sect. 3.1, and thus close a gap left by [2].
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Definition 4. Let G = (V,E) be a directed graph with source s ∈ V , sinks
T ⊆ V , and arc capacities μ : E → R≥0. We define an s-T -flow to be a function
ϑ : E → R≥0 that satisfies

ϑ(e) ≤ μ(e) ∀e ∈ E (capacity constraint),
exϑ(v) = 0 ∀v ∈ V \ ({s} ∪ T ) (flow conservation),
exϑ(t) ≥ 0 ∀t ∈ T (T are sinks),

where (using δ+(v) := ({v} × V ) ∩ E, δ−(v) := (V × {v}) ∩ E) the excess of a
vertex v ∈ V is defined as exϑ(v) :=

∑
e∈δ−(v) ϑ(e) − ∑

e∈δ+(v) ϑ(e).

We extend this notion to multi-commodity flows, where each commodity has
an independent capacity function.

Definition 5. Let α ∈ N and G = (V,E) be a graph, let s ∈ V and T ⊆ V , and
let �μ = (μi : E → R≥0)i∈[α] be capacity functions. A multicommodity-flow in G

w.r.t. �μ is a tuple �ϑ = (ϑ1, ..., ϑα), where ϑi is an s − T − flow in G with respect
to capacities μi. The minimum-excess of the sink vertex t ∈ T in �ϑ is

minex�ϑ(t) := min
i∈[α]

exϑi
(t).

For convenience, we let μ(u, v) := μ((u, v)), ϑ(u, v) := ϑ((u, v)), and we let
exϑ(V ′) :=

∑
v∈V ′ exϑ(v) for V ′ ⊆ V , and minex�ϑ(T

′) :=
∑

t∈T ′ minex�ϑ(t) for
T ′ ⊆ T in the following.

An instance of the problem Multi-Sink α-Commodity Flow, for α ∈ N,
is given by a tuple (G, s, T, �μ), where G = (V,E) is a directed graph, s ∈ V is
a source vertex, T ⊆ V contains sink vertices, and �μ = (μi : E → R≥0)i∈[α] are
capacity functions. The problem is to find a subset of sinks X ⊆ T with |X| = k
that maximizes the objective function

f(X) = max
�ϑ∈MG,μ

minex�ϑ(X),

where MG,μ denotes the set of all multicommodity-flows in G w.r.t. capacities �μ.

Theorem 4. For every α ∈ N, the objective of Multi-Sink α-Commodity
Flow is monotone and α-augmentable.

For α = 2, Multi-Sink α-Commodity Flow problem is equivalent to the
BridgeFlow problem considered in [2]. We generalize the tight lower bound
construction for BridgeFlow to arbitrary α ∈ N (see full version [9] for details).

With this, we obtain a lower bound for the approximation ratio of the greedy
algorithm on Fα for α ∈ N that tightly matches the upper bound of [2], i.e.,
we obtain Corollary 1 for α ∈ N. In particular, it follows that the objective of
Multi-Sink α-Commodity Flow is not β-augmentable for any β < α. We
will generalize the lower bound to all α ≥ 1 in Sect. 3.1.

Theorem 5. For α ∈ N, the greedy algorithm has an approximation ratio of at
least α eα

eα−1 for Multi-Sink α-Commodity Flow.
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2.1 Separating Function Classes

We are now ready to show Proposition 1 for α ∈ N \ {1}. The case α ≥ 1 will be
addressed in Sect. 3.1.

In order to seperate Fα for α ∈ N \ {1}, we have shown that the objective of
Multi-Sink α-Commodity Flow does not have a (weak) submodularity ratio
bounded away from zero, and cannot be represented as the weighted rank func-
tion of some independence system. Separating F̃γ and Fq for every γ, q ∈ (0, 1)
is done by defining a simple according function.

3 γ-α-Augmentability

In this section, we argue that the class F̃γ,α of weakly γ-α-augmentable functions
unifies and generalizes the classes F̃γ , Fα, and Fq. We start by proving the first
half of Theorem 1. The second half will be shown in Sect. 3.1, together with lower
bounds for the approximation ratio of the greedy algorithm.

Since (weak) γ-α-augmentability implies (weak) γ′-α′-augmentability for all
γ ≥ γ′ and α ≤ α′, the following proposition implies the first part of Theorem1.

Proposition 2. For every γ, q ∈ (0, 1], and every α ≥ 1, it holds that

F̃1,α ⊇ Fα and F̃γ,γ ⊇ F̃γ and F̃γ,γ/q ⊇ Fq.

Having shown that F̃γ,α subsumes the other three classes of functions, we
now prove the upper bound of Theorem 2 for this class. Observe that the upper
bound trivially carries over to the class of monotone, γ-α-augmentable (not
weakly) functions.

Theorem 6. The approximation ratio of the greedy algorithm on the class F̃γ,α

of monotone, weakly γ-α-augmentable functions, with γ ∈ (0, 1] and α ≥ γ, is at
most

α

γ
· eα

eα − 1
.

3.1 A Critical Function

To obtain the tight lower bound of Theorem 2 for weakly γ-α-augmentable prob-
lems and to separate this class from F̃γ ∪ Fα ∪ Fq, we introduce a function that
is inspired by a construction in [3] for the submodularity ratio.

We fix γ ∈ (0, 1] and α ≥ γ. Let k ∈ N with k > α, and let A = {a1, ..., ak}
and B = {b1, ..., bk} be disjoint sets. We set U = A ∪ B, define ξi := 1

k (
k−α

k )i−1

and let h(x) := γ−1−1
k−1 x2+ k−γ−1

k−1 x. For our purpose, the important facts about h

are h(0) = 0, h(1) = 1, h(k) = k
γ and that h is convex. With this in mind, we

define the function Fγ,α,k : 2U → R≥0 by

Fγ,α,k(X) = max
X′⊆X

{h(|{b1} ∩ X ′| · |B ∩ X ′|)
k

(
1 − α

∑

i∈[k]:
ai∈A∩X′

ξi

)
+

∑

i∈[k]:
ai∈A∩X′

ξi

}
.



308 Y. Disser and D. Weckbecker

We show that our modification of the function introduced in [3] retains the same
structure in regard to greedy solutions.

Proposition 3. For i ∈ [k], the greedy algorithm picks the element ai in iter-
ation i, and, for i ∈ [2k] \ [k], the greedy algorithm picks the element bi−k in
iteration i.

With this, we can show that Fγ,α,k is weakly γ-α-augmentable.

Lemma 1. For every γ ∈ (0, 1], every α ≥ γ, and every k ∈ N with k > α, it
holds that Fγ,α,k ∈ F̃γ,α.

It is straightforward to bound the approximation ratio of the greedy algo-
rithm for Fγ,α,k.

Proposition 4. The approximation ratio of the greedy algorithm for maximizing
the function Fγ,α,k, with γ ∈ (0, 1], α ≥ γ and k ∈ N with k > α, is at least

α

γ

1
1 − (1 − α

k )
k
.

Now, the tight lower bound of Theorem 2 follows in the limit k → ∞.
It turns out that, for γ = 1, the function Fγ,α,k is α-augmentable. Together

with Proposition 4, this extends the lower bound of Theorem 5 to all α ≥ 1 and
thus proves Corollary 1.

For k large enough, it can even be shown that F1,α,k /∈ (F̃γ ∪ Fq) for fixed
γ, q ∈ (0, 1], which separates Fα for α ≥ 1, and thus closes the gap left in
Sect. 2.1.

3.2 γ-α-Augmentability on Independence Systems

To tightly capture the class Fq of weighted rank functions on independence sys-
tems, we show a stronger bound for the approximation ratio of the greedy algo-
rithm on monotone, (weakly) γ-α-augmentable functions. In particular, it was
already shown in [2] that the objective function of α-Dimensional Matching
is (exactly) α-augmentable, while the greedy algorithm yields an approximation
ratio of α, which beats the upper bound of α · eα

eα−1 for this case. We show that
this can be explained by the fact that α-Dimensional Matching can be repre-
sented via a weighted rank function over an indepencence system. We first show
the upper bound of Theorem 3.

Proposition 5. Let FIS :=
⋃

q∈(0,1] Fq be the set of weighed rank functions on
some independence system. The approximation ratio of the greedy algorithm on
the class F̃γ,α ∩ FIS is at most α

γ , for every γ ∈ (0, 1] and α ≥ γ.

The lower bound of Theorem 3 follows directly from the well-known tight
bound of 1/q for Fq [15] and the fact that every weighted rank function over an
independence system with rank quotient q is γ-γ

q -augmentable, by Proposition 2.
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4 Outlook

The vision guiding our work is to precisely characterize the set of cardinality-
constrained maximization problems for which the greedy algorithm yields an
approximation, and to tightly bound the corresponding approximation ratio.

In this paper, we have made progress towards this goal by unifying and gener-
alizing important classes of greedily approximable maximization problems, and
by providing tight bounds on the approximation ratio for the resulting gener-
alized class of problems. While this brings us closer to a full characterization,
there are still settings that are not captured by (weak) γ-α-augmentability.

Proposition 6. For γ ∈ (0, 1] and α ≥ γ, there exists a monotone function fγ,α

that is not weakly γ-α-augmentalbe, and for which the greedy algorithm computes
an optimum solution.

Proof (Sketch). Let U be any ground set of size |U | > 1
γ and consider the

objective function fγ,α : 2U → R≥0 with

fγ,α(X) = |X|2,
and show that it is not weakly γ-α-augmentable. Yet, picking elements in any
order is obviously optimal. ��

We leave it as an open problem to find a natural generalization of weak γ-
α-augmentability that captures a larger set of greedily approximable objectives.
The challenge is to find a meaningful generalization in terms of a natural defini-
tion that does not directly depend on the behavior of the greedy algorithm, but
rather enforces some structural property of the objective function. In that sense,
the dependency of weak γ-α-augmentability on the greedy solutions SG

0 , . . . , SG
k̄

is a significant flaw. Note that we needed to introduce this dependency in order
to encompass settings with bounded (weak) submodularity ratios, since the def-
inition of the latter depends on the greedy solutions as well. Importantly, our
upper bound on the approximation ratio of the greedy algorithm carries over to
the stronger notion of γ-α-augmentability that requires the defining property to
hold for all sets X, and not just the greedy solutions. Our tight lower bound does
not immediately translate to this, more restrictive, definition, and it remains an
open problem to construct a tight lower bound in this setting as well.
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