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1 Introduction

This lecture is concerned with algorithmic problems of the following variety.

Definition 1.1. A mixed-integer (linear) program (MIP or MILP) is an optimization problem of the form

max c⊤x
s.t. Ax ≤ b,

x ∈Zp ×Rn−p,

with instances given by c ∈Rn, A∈Rm×n, b ∈Rm, n, m ∈N and p ∈ {1, . . . , n}.

Some special cases of a mixed-integer program are:
• linear program (LP): p = 0 (see Introduction to Optimization),
• integer (linear) program (IP or ILP): p = n,
• binary (linear) program (BP or BLP): x ∈ {0, 1}n.

As we will see, MIPs encompass all problems with linear objective function and a finite set of feasible solutions,
such as the minimum spanning tree, the shortest path, the matching, and even the 3Sat problem (see
Algorithmic Discrete Mathematics). We formalize this class of problems.

Definition 1.2. A (linear) combinatorial optimization problem is a problem of the form

max
F∈F

∑︂

e∈F

c(e),

with instances given by an objective function c(F) :=
∑︁

e∈F c(e) with c : E→R over a finite ground set E and a
set F ⊆ 2E of feasible solutions.

In particular, binary programs have a finite set of feasible solutions.

Observation 1.3. Every binary program can be formulated as a combinatorial optimization problem by setting
E := {1, . . . , n} and c(i) := ci for all i ∈ {1, . . . , n}, and F := {F ⊆ E :

∑︁

j∈F A· j ≤ b}.

The following proof gives a preview of the typical reasoning we will employ in the lecture. It relies on a
fundamental insight that will be shown in Chapter 2.

Proposition 1.4. Linear combinatorial optimization problems can be formulated as LPs.
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Proof. Let a combinatorial optimization problem be given by E = {e1, . . . , en}, F ⊆ 2E , and c : E → R. We
define the characteristic vector χ F ∈ {0, 1}E of a set F ⊆ E by

χ F
e :=

¨

1, if e ∈ F,

0, otherwise.

and we set X := {χ F ∈ {0,1}E : F ∈ F} and c̄ ∈Rn with c̄ i = c(ei). Then,

max
F∈F

c(F) =max{c̄⊤x : x ∈ X }

≤max{c̄⊤x : x ∈ conv(X )}. (1.1)

We will prove later that X being finite implies that conv(X ) is a polytope (Corollary 2.9), which means that
we can find m ∈N, A∈Rm×n, and b ∈Rm such that

conv(X ) = P(A, b) = {x ∈Rn : Ax ≤ b}. (1.2)

We already know that, since c̄⊤x is linear, the maximum in (1.1) is attained in a vertex of this polytope, and
its vertices are contained in X , since they are extreme points and cannot be written as a convex combination
of other points in X ⊆ conv(X ) (see Introduction to Optimization). Hence (1.1) holds with equality. With (1.2),
we obtain that

max
F∈F

c(F) =max{c̄⊤x : Ax ≤ b, x ∈Rn}

can indeed be formulated as a linear program.

Proposition 1.4 implies in particular that 3Sat (and thus every problem in NP) can be expressed as an LP.
With Observation 1.3 it further follows that binary programs can be reduced to LPs. In Chapter 4, we will see
that, under suitable assumptions, the same is true for MIPs in general.
On the other hand, we know that LPs can be solved in polynomial time with the ellipsoid method (see Intro-
duction to Optimization). How does this fit together?
This apparent contradiction is resolved by the fact that, while it must exist, the LP representation of a
combinatorial optimization problem may be difficult to find and it may be large. In particular, already the set
of feasible solutions F of a combinatorial optimization problem is often given implicitly and is often large
(such as the one of Observation 1.3). Many of the solution methods we will see are based on finding or
approximating the LP representation of a MIP.

1.1 Examples

We dealt with many integer and combinatorial optimization problems in the past (see Algorithmic Discrete
Mathematics and Introduction to Optimization). Let us briefly revisit some important examples.

Example 1.5 (assignment problem). In a company, there are n employees and n jobs that need to be carried
out. Each person can perform exactly one job. The cost incurred by the company when person i carries out
job j is ci j. How should the company deploy its employees as cost-efficiently as possible? In other words,
we aim to find a perfect matching of minimum cost between employees and jobs (see Algorithmic Discrete
Mathematics).
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We use the variables

x i j =

¨

1, if person i is assigned to job j,
0, otherwise.

This results in the following binary program:

min
n
∑︂

i=1

n
∑︂

j=1

ci j x i j

s.t.
n
∑︂

j=1

x i j = 1, for i ∈ {1, . . . , n},

n
∑︂

i=1

x i j = 1, for j ∈ {1, . . . , n},

x i j ∈ {0,1}, for i, j ∈ {1, . . . , n}.

The problem can be cast as a combinatorial optimization problem by setting E := {1, . . . , n}2, c((i, j)) := ci j,
and

F :={F ⊆ E : |{(i, j) ∈ F : j ∈ {1, . . . , n}}|= 1 ∀ i ∈ {1, . . . , n}}
∩ {F ⊆ E : |{(i, j) ∈ F : i ∈ {1, . . . , n}}|= 1 ∀ j ∈ {1, . . . , n}} △

Example 1.6 (knapsack problem). A thief wants to pack stolen goods of as large a value as possible in their
knapsack. Each item i ∈ {1, . . . , n} has weight ai > 0 and value ci > 0. The knapsack has capacity β > 0. Which
items should the thief pack?
We use the variables

x i =

¨

1, if item i is selected,
0, otherwise.

This results in the following binary program:

max
n
∑︂

i=1

ci x i

s.t.
n
∑︂

i=1

ai x i ≤ β ,

x ∈ {0,1}n.

The problem can be cast as a combinatorial optimization problem by setting E := {1, . . . , n}, c( j) := c j, and

F := {F ⊆ E :
∑︂

i∈F

ai ≤ β}. △

Example 1.7 (set-packing/partitioning/covering problems). We are given a finite ground set U = {1, . . . , m}
and a family {S j} j∈{1,...,n} of subsets of U . Each subset S j is associated with a cost/utility c j. The problem of
finding a minimum cost / maximum utility selection of subsets such that every e ∈ U is contained in at most,
exactly, resp. at least one subset is called set-packing, set-partitioning, resp. set-covering problem. Examples are
placing wind turbines without overlap in their areas of effect (set-packing), dividing a country into electoral
districts (set-partitioning), and positioning schools in a city (set-covering).
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We use the variables

x j =

¨

1, if S j is selected,
0, otherwise.

We also define the binary matrix A ∈ {0,1}m×n, with Ai j = 1 if and only if i ∈ S j. This yields the following
binary programs:

min/max c⊤x

s.t. Ax

⎧

⎨

⎩

≤
=
≥

⎫

⎬

⎭

1,

x ∈ {0,1}n.

The problem can be cast as a combinatorial optimization problem by setting E := {1, . . . , n}, c( j) := c j, and

F = {F ⊆ E : |{ j ∈ F : i ∈ S j}|

¨

≤
=
≥

«

1∀i ∈ U}. △

Remark 1.8. The problem of Example 1.5 is polynomially time solvable, while the problems in Examples 1.6
and 1.7 are NP-hard (see Algorithmic Discrete Mathematics).

1.2 Outline

The main topic of this lecture are techniques for solving mixed-integer programs. We begin (Chapter 2)
by extending our structural understanding of polyhedra from the lecture Introduction to Optimization. In
particular, we will see that a set P ⊆Rn is a polyhedron if and only if it can be written as the sum of a polytope
and a polyhedral cone.
Subsequently, we present a general “Branch-and-Bound” approach, which reduces solving a MIP to repeatedly
solving LPs (Chapter 3). The running time of this procedure is exponential in the worst case, and we will
show that it is generally NP-complete just to decide decide whether a linear program has an integer solution.
In contrast, we already know (see Introduction to Optimization) that fractional vertex solutions can be found
in polynomial time. We can therefore efficiently solve integer programs when all vertex solutions of the LP
relaxation are integral. We will show properties under which integer programs have this structure (Chapter 4).
We will then look at how we can use additional inequalities to exclude fractional solutions of the LP relaxation
(Chapter 5), and how we can separately handle problematic inequalities/variables (Chapter 6).
Finally, we deal with alternative solution methods, such as heuristics (Chapter 7) and approximation algorithms
(Chapter 8).
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2 Basic Polyhedral Theory

We have already learned some simple facts about polyhedra (see Introduction to Optimization). In this chapter,
we extend this understanding by techniques that we are going to need later.
Some of the arguments of his chapter hold for vector spaces over the field Q in addition to over R. To avoid
repeating arguments, we work over K ∈ {Q,R} for the time being. In particular, for K = Q, we consider
polyhedra as subsets of Qn for n ∈N.

2.1 Orthogonal projections of polyhedra

Projections are an important tool for establishing structural statements about polyhedra. We now discuss a a
method to compute orthogonal projections of a polyhedron, which amounts to the elimination of variables.

Definition 2.1. The orthogonal projection of a set S ⊆Kn with respect to its k-th coordinate, k ∈ {1, . . . , n} is

Projk(S) := {x ∈Kn : xk = 0, ∃ λ ∈K with x +λek ∈ S}.

We are particularly interested in the case where S = P(A, b) := {x ∈Kn : Ax ≤ b} is a non-empty polyhedron
with A ∈ Km×n, b ∈ Km (see Figure 2.1). To construct the orthogonal projection with respect to the k-th
coordinate of P(A, b), we divide the indices of the inequalities in Ax ≤ b into the following three sets:

• C−k := {i ∈ {1, . . . , m} : Aik < 0} (negative coefficients),
• C0

k := {i ∈ {1, . . . , m} : Aik = 0} (zero coefficients),
• C+k := {i ∈ {1, . . . , m} : Aik > 0} (positive coefficients).

Obviously, the inequalities Ai·x ≤ bi for i ∈ C0
k , do not contain the variable xk and are therefore inherited by

the projection.

x

y

P

Projy(P)

Figure 2.1: Example of an orthogonal projection with respect to the second coordinate. The colors of the
hyperplanes correspond to the sets C−y (yellow), C0

y (red), and C+y (green).
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For s ∈ C−k (i.e., Ask < 0) we can isolate xk in As ·x ≤ bs to obtain

xk ≥
bs

Ask
−

n
∑︂

j=1
j ̸=k

As j

Ask
x j . (2.1)

Similarly, for t ∈ C+k we obtain

xk ≤
bt

Atk
−

n
∑︂

j=1
j ̸=k

At j

Atk
x j . (2.2)

Combining (2.1) and (2.2) yields

bs

Ask
−

n
∑︂

j=1
j ̸=k

As j

Ask
x j ≤

bt

Atk
−

n
∑︂

j=1
j ̸=k

At j

Atk
x j

Ask<0
⇔

n
∑︂

j=1
j ̸=k

�

Atk As j − Ask At j

�

x j ≤ Atk bs − Ask bt . (2.3)

Observe that we obtained a new inequality which no longer contains the variable xk. In particular, the k-th
column of the resulting coefficient matrix is 0.

Lemma 2.2. The vector x̃ ∈Kn lies in Projk(P(A, b)) if and only if x̃k = 0 and x̃ satisfies the inequalities (2.3)
for all (s, t) ∈ C−k × C+k and the inequalities Ai·x ≤ bi for all i ∈ C0

k .

Proof. Let x̃ ∈ Projk(P(A, b)) and thus, in particular, x̃k = 0. By assumption, there exists λ ∈ K such that
x := x̃ + λek ∈ P(A, b), i.e., Ax ≤ b. From the derivation above it follows that x then also fulfills the
inequalities (2.3). Since these do not contain xk, they are also fulfilled by x̃ . Of course, this also applies to the
inequalities belonging to i ∈ C0

k .
Now assume that x̃k = 0 and x̃ satisfies the inequalities (2.3) for all (s, t) ∈ C−k × C+k and the inequalities
Ai·x ≤ bi for all i ∈ C0

k . Then, in particular, the maximum of the right-hand sides of (2.1) over all s ∈ C−k
cannot be greater than the minimum of the right-hand sides of (2.2) over all t ∈ C+k . We can therefore set
λ= xk to an arbitrary value between these two bounds to satisfy all inequalities (2.1) and (2.2). The resulting
vector x = x̃ +λek then lies in P(A, b). Hence, x̃ ∈ Projk(P(A, b)).

We can turn Lemma 2.2 into the following algorithm, the so-called Fourier-Motzkin elimination.

Algorithm: Fourier-Motzkin elimination
input: polyhedron P(A, b), A∈Km×n, b ∈Km, index k ∈ {1, . . . , n}
output:P(D, d) such that Projk(P(A, b)) = {x ∈Kn : Dx ≤ d, xk = 0}
C−k := {i ∈ {1, . . . , m} : Aik < 0}, C0

k := {i ∈ {1, . . . , m} : Aik = 0}, C+k := {i ∈ {1, . . . , m} : Aik > 0}
i← 1
for z ∈ C0

k :
Di·← Az·; di ← bz; i← i + 1

for (s, t) ∈ C−k × C+k :
Di·← Atk As · − Ask At · (it follows that Dik = 0)
di ← Atk bs − Ask bt
i← i + 1

return P(D,d)
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We note the following immediate consequences.

Corollary 2.3. Let P(D,d) be the result of the Fourier-Motzkin elimination. We have

(a) Projk(P(A, b)) = {x ∈Kn : xk = 0, Dx ≤ d};

(b) Dek = 0;

(c) The rows of Dx ≤ d are non-negative linear combinations of the rows of Ax ≤ b, i.e., there exists a
matrix Ū ≥ 0 with ŪA= D and Ūb = d;

(d) P(A, b) ̸= ∅ ⇔ P(D,d) ̸= ∅ ⇔ Projk(P(A, b)) ̸= ∅.

Proof. Statement (a) holds because of Lemma 2.2 and the definition the Fourier-Motzkin elimination. State-
ment (b) follows from the fact that the algorithm ensures Dik = AtkAsk − AskAtk = 0. Statement (c) holds by
definition of the algorithm with Atk > 0 and Ask < 0. It remains to prove (d).
If x ∈ P(A, b) exists, then by (c) it holds that

Dx = ŪAx
Ū≥0
≤ Ūb = d.

Thus, x ∈ P(D,d) and therefore P(D,d) ̸= ∅.
If x ∈ P(D,d) exists, then, because of (b), also x̃ :=

∑︁

i ̸=k x iei ∈ P(D,d). Because of (a) and x̃k = 0, it further
follows that x̃ ∈ Projk(P(A, b)) and therefore Projk(P(A, b)) ̸= ∅.
If, in turn, x ∈ Projk(P(A, b)) exists, then, by definition, there is λ ∈K with x +λek ∈ P(A, b) and therefore
P(A, b) ̸= ∅.

Corollary 2.3 (d) provides a certificate for the infeasibility of the system Ax ≤ b via the infeasibility of the lower
dimensional system Dx ≤ d. By iteratively projecting out all variables, we eventually obtain a zero-dimensional
certificate in the form of a single point. It turns out that this point is exactly the certificate provided by the
Farkas lemma (see Introduction to Optimization).
To see this, we start by applying Fourier-Motzkin elimination to the first variable, yielding P(D(1),d(1)).
Corollary 2.3 implies

(i) D(1)e1 = 0.

(ii) There is a matrix Ū (1) ≥ 0 with Ū (1)A= D(1), Ū (1)b = d(1). (2.4)

(iii) P(A, b) = ∅ ⇐⇒ P(D(1),d(1)) = ∅.

In this manner, we can iteratively eliminate the first k variables. In the k-th step, we obtain a matrix D(k) and
Ū (k) ≥ 0 with D(k) = Ū (k)D(k−1). We set U (k) = Ū (k)Ū (k−1) · · · Ū (1) such that U (k)A= D(k) and U (k)b = d(k), and
obtain

(i) D(k)e j = 0, for all j ∈ {1, . . . , k}.

(ii) There is a matrix U (k) ≥ 0 with U (k)A= D(k) and U (k)b = d(k). (2.5)

(iii) P(A, b) = ∅⇔ P(D(k),d(k)) = ∅.

Now let P(A, b) = ∅. According to (2.5) (iii), P(D(n),d(n)) = ∅. Since D(n) = 0 because of (2.5) (i), this implies
that an index i must exist with d(n)i < 0. According to (2.5) (ii), it then holds for u := (U(n)

i· )
⊤ that u ≥ 0,

7



u⊤A= D(n)
i· = 0⊤ and u⊤b = dn

i < 0. Conversely, it immediately follows from the existence of such a u ≥ 0
that P(A, b) = ∅, since then

u⊤Ax = 0> dn
i = u⊤b ∀x ∈Kn.

This means that exactly one of the following two systems has a solution (see Introduction to Optimization):

∃ x : Ax ≤ b
·
⋁︂

∃u ≥ 0: u⊤A= 0, u⊤b < 0.

Moreover, Corollary 2.3 (a) immediately implies the following.

Corollary 2.4. The orthogonal projection Projk(P(A, b)) is a polyhedron.

This allows to prove an important fact that opens a new perspective on polyhedra. We will later show that
every polyhedron can be written in the following form.1

Theorem 2.5. For every A∈Km×n and B ∈Km×n′ , the set P = conv(A) + cone(B) is a polyhedron.

Proof. We have

P = {x ∈Km : ∃λ,µ≥ 0: 1⊤λ= 1, x = Aλ+ Bµ}

= {x ∈Km : ∃λ,µ: D
�

λ
µ
x

�

≤ d},

with

D =

⎛

⎝

−I 0 0
0 −I 0

1⊤ 0⊤ 0⊤

−1⊤ 0⊤ 0⊤
A B −I
−A −B I

⎞

⎠ and d =

⎛

⎝

0
0
1
−1
0
0

⎞

⎠ .

Via iterative orthogonal projection of the variables in λ and µ in D
�

λ
µ
x

�

≤ d, by Corollary 2.4, we obtain a
polyhedron Projλ,µ(P(D,d)). This polyhedron is exactly P embedded in Kn+n′+m, i.e.,

P = {x ∈Km :
�

0
x

�

∈ Projλ,µ(P(D,d))},

or, conversely,
Projλ,µ(P(D,d)) = {

�

0
x

�

∈Kn+n′+m : x ∈ P}.

Observe that, in the proof of Theorem 2.5, the only non-zero entries of d are associated with λ, i.e., with conv(A).
It follows that every conic hull is a polyhedral cone.

Corollary 2.6. For every B ∈Km×n, there exists a matrix D ∈Kk×m with cone(B) = P(D,0).

The argument of Theorem 2.5 essentially uses that any affine map of a polyhedron is a polyhedron. In
particular, analogous arguments yield the following corollaries (exercises).

Corollary 2.7. For every A∈Km×n, the sets lin(A), aff(A), cone(A), and conv(A) are polyhedra.
1Throughout the lecture, for a matrix A ∈ Km×n, we denote lin(A) := lin({A·1, . . . , A·n}) = {Aλ : λ ∈ Kn} and analogously for

aff(A) = {Aλ : 1⊤λ= 1}, cone(A) = {Aλ : λ≥ 0} and conv(A) = {Aλ : 1⊤λ= 1,λ≥ 0}.
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Corollary 2.8. The Minkowski sum P +P ′ of two polyhedra P ,P ′ ⊆Kn is a polyhedron.

We can already observe that not only does conv(A) induce a polytope, in fact every polytope can be expressed
this way. In the next section, we will complement Theorem 2.5 in same way for polyhedra.

Corollary 2.9. A set P ⊆Kn is a polytope if and only if there exists a finite set V ⊆Kn with P = conv(V).

Proof. Let V ⊆Kn be finite and P = conv(V). Then, P is a polyhedron by Corollary 2.7, and P is bounded by

∥x∥ ≤
∑︂

v∈V
∥v∥ ∀x ∈ P .

Hence, P is a polytope.
Conversely, recall that every polytope P = P=(A, b) has a finite set of extreme points (i.e., vertices), each
arising from a combination (i.e., a basis) of the columns of A – and as a compact and convex set, P is given by
the convex hull of its extreme points (see Introduction to Optimization).

2.2 Representations of polyhedra

Let’s take another look at the Farkas lemma from a different point of view:

∃ x ≥ 0: Ax = b
·
⋁︂

∃ y : y⊤A≤ 0⊤, y⊤b > 0,

or, expressed differently,

∃ x ≥ 0: Ax = b ⇐⇒ ∀ y : A⊤y ≤ 0 ⇒ y⊤b ≤ 0. (2.6)

This characterizes all right-hand sides b for which the system Ax = b, x ≥ 0 is feasible. By definition,

cone(A) = {b ∈Km : ∃ x ≥ 0 with Ax = b}.

Together with the Farkas lemma (2.6), this yields the following observation.

Proposition 2.10. For all matrices A∈Km×n it holds that

cone(A) = {b ∈Km : y⊤b ≤ 0 ∀ y ∈ P(A⊤,0)}.

The geometric interpretation of Proposition 2.10 could be written as
�

feasible right-hand sides b
of Ax = b, x ≥ 0

�

∧
=

�

vectors that form an obtuse (≥ π/2) angle
with all vectors fromP(A⊤,0)

�

.

The latter can be expressed more abstractly using the following definition.

Definition 2.11. The polar cone S◦ of S ⊆Kn is the set of vectors that form an obtuse angle with all vectors
in S, i.e.,

S◦ := {y ∈Kn : y⊤x ≤ 0 ∀ x ∈ S}.

9



P(A⊤,0)

P(A⊤,0)◦

cone(A)

Figure 2.2: Illustration of Example 2.13 with P(A⊤,0)◦ = cone(
��−3

2

�

,
� 1
−2

�	

).

With this, we can write Proposition 2.10 more concisely.2

Corollary 2.12. For all A∈Km×n it holds that cone(A) = P(A⊤,0)◦.

Our reasoning so far can be summarized as

Ax = b, x ≥ 0 is feasible
(2.6)
⇐⇒ b ∈ P(A⊤,0)◦

Cor. 2.12
⇐⇒ b ∈ cone(A).

Example 2.13. For

A=

�

−3 1
2 −2

�

we have

P(A⊤,0) = {
� x

y
�

∈K2 : x/2≤ y ≤ 3x/2},

and indeed P(A⊤,0)◦ = cone(A) (see Figure 2.2). Accordingly,

Ax =
�

0
1

�

, x ≥ 0 is infeasible, but Ax =
�

−1
0

�

, x ≥ 0 is feasible. △

To reverse Corollary 2.12, we observe that the polar cone already is a conic hull and vice-versa.

Lemma 2.14. For S ⊆Kn, it holds that

S◦ = cone(S◦) = cone(S)◦.

Proof. exercise.

We can now complement Corollary 2.12.
2For convenience, we write P(A, b)◦ := (P(A, b))◦, cone(S)◦ := (cone(S))◦, and S◦◦ := (S◦)◦.

10



cone(A⊤)

P(A,0)

Cor. 2.15

Cor. 2.12

Figure 2.3: Correspondence between a polyhedral cone and a conic hull in “polar row space”, and vice versa.

Corollary 2.15. For all A∈Km×n it holds that P(A,0) = cone(A⊤)◦.

Proof. We have

(cone(A⊤))◦
Lem. 2.14
= {(A1·)⊤, . . . , (Am·)⊤}◦

Def. 2.11
= {y : y⊤A⊤ ≤ 0⊤}= {x : Ax ≤ 0}= P(A,0).

We have all ingredients in place to prove that both polyhedral cones of the form P(A,0) and conic hulls of the
form cone(A) induce themselves as polar cones (see Figure 2.3).

Theorem 2.16. For every A∈Km×n, it holds that

P(A,0)◦◦ = P(A,0),

cone(A)◦◦ = cone(A).

Proof. We use the relationship between polyhedral cones and conic hulls established in Corollaries 2.12
and 2.15:

P(A,0)
Cor. 2.15
= cone(A⊤)◦

Cor. 2.12
= P(A,0)◦◦,

cone(A)
Cor. 2.12
= P(A⊤,0)◦

Cor. 2.15
= cone(A)◦◦.

We now show that the objects in Theorem 2.16 are not only intimately related but actually different represen-
tations of the same sets.

Theorem 2.17 (Minkowski 1896). For every matrix A∈Km×n there is a matrix B ∈Kn×k with

P(A,0) = cone(B),

and vice versa.

11



Proof. For a given matrix B, the corresponding matrix A exists by Corollary 2.6. For given A, again by
Corollary 2.6, there exists a matrix B with (see Figure 2.3)

P(A,0)
Cor. 2.15
= cone(A⊤)◦

Cor. 2.6
= P(B⊤,0)◦

Cor. 2.12
= cone(B).

By reducing the general case to the conic case, we now prove the dual statement to Theorem 2.5, i.e., every
polyhedron can be decomposed into a bounded and a conic part.

Theorem 2.18. For every A∈Km×n, b ∈Km there exist finite sets V ,E ⊆Kn with

P(A, b) = conv(V) + cone(E).

Proof. We embed P(A, b) into a polyhedral cone

H = P
��

A −b
0⊤ −1

�

,
�

0
0

�

�

.

In particular, we add an additional dimension and place our polyhedron onto the plane
��

λ
1

�	

λ∈Kn , i.e.,
x ∈ P(A, b)⇔

�x
1

�

∈H.
According to Theorem 2.17, there is a matrix B ∈ K(n+1)×d with H = cone(B). Due to the last row in the
description of H, the last row of B has only non-negative entries. By scaling and swapping the columns of B
we can transform B into a matrix B̄ with cone(B̄) = cone(B) =H, so that

B̄ =

�

V̄ Ē
1⊤ 0⊤

�

,

where V̄ , Ē may be empty. Let V and E be the sets of the columns of the matrices V̄ and Ē, respectively. This
means that

x ∈ P(A, b) ⇐⇒
�

x
1

�

∈H

⇐⇒
�

x
1

�

∈ cone(B̄)

⇐⇒ ∃λ,µ≥ 0:
x = V̄λ+ Ēµ
1= 1⊤λ

⇐⇒ x ∈ conv(V) + cone(E).

Together, Theorems 2.5 and 2.18 yield the central structure theorem of polyhedral theory.

Theorem 2.19 (representation theorem). A subset P ⊆Kn is a polyhedron if, and only if there are finite sets
V ,E ⊆Kn with

P = conv(V) + cone(E).

Intuitively, the convex hull in the representation of a polyhedron corresponds to its bounded part, while the
conic hull corresponds to the unbounded part. Accordingly, a polytope, i.e., a bounded polyhedron reduces
to a convex hull. We can phrase Theorem 2.19 by saying that every polyhedron is the sum of a polytope
(Corollary 2.9) and a polyhedral cone (Theorem 2.17).

12



conv(V)

conv(V) + cone(E)

Figure 2.4: Internal structure of a polyhedron.

Remark 2.20. Note that conv(∅) = ∅ (∅ is convex) and cone(∅) = {0}. However, because ∅+ S = ∅ for every
set S, we have that V is non-empty if, and only if P is non-empty. Furthermore, the representation is not
unique. For example, the vectors in E can be scaled arbitrarily, and if P is a linear subspace, any v ∈ P can be
chosen and any basis b(1), . . . , b(k) (with k = dim(P)) in P = conv({v}) + cone({b(1),−b(1), . . . , b(k),−b(k)}).

We now know two representations for polyhedra (see Figure 2.4):
(a) The exterior representation or halfspace representation (H-representation):

P = P(A, b) =
m
⋂︂

i=1

{x ∈Kn : Ai·x ≤ bi},

i.e., P is regarded as the intersection of larger objects (halfspaces).
(b) The interior representation or vertex representation (V-representation):

P = conv(V) + cone(E),

i.e., P is described by its vertices and extreme rays.
We will generally consider polyhedra as subsets ofRn. The representation theorem still yields a correspondence
between rational interior and exterior descriptions of polyhedra.

Corollary 2.21. Let P ⊆ Rn and K = R. There exist A ∈ Qm×n, b ∈ Qm, and m ∈N with P = P(A, b) if and
only if there exist finite sets V ,E ⊆Qn with P = conv(V) + cone(E).

Proof. Theorem 2.19 for K = Q yields the existence of A and b, respectively of V = {v (1), . . . , v (k)} and E =
{r (1), . . . , r (ℓ)}, such that

{x ∈Qn : Ax ≤ b}= {
k
∑︂

i=1

λi v
(i) +

ℓ
∑︂

j=1

µ j r
( j) : λ ∈Qk

≥0,µ ∈Qℓ≥0,1⊤λ= 1}.
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We claim that the set on the left-hand-side is dense in P(A, b) = {x ∈ Rn : Ax ≤ b} and the set on the
right-hand-side is dense in conv(V) + cone(E). This completes the proof since the latter sets are closed in Rn.
The right-hand-side is dense in conv(V) + cone(E), since Q is dense in R and since, by linearity of the
involved sums, every real point in conv(V)+ cone(E) can be approached by the sum of a rational convex and a
rational conic combination of the (rational) points in V and E . For the left-hand-side, we observe that every
point x ∈ P(A, b) lies in some polytope P ′ := P(A, b)∩{y ∈Rn : Iy ≤ β1, Iy ≥ −β1} with β ∈Q. Thus, x can
again be approached by a rational convex combination of the extreme points of P ′. These extreme points
are solutions of systems of equations with rational coefficients (see Introduction to Optimization) and thus lie
in Qn. Hence, {x ∈Qn : Ax ≤ b} is dense in P(A, b).

Remark 2.22. In order to convert from the exterior to the interior representation, we can proceed as in
Theorem 2.18 and obtain the matrix B as in the proofs of Theorems 2.17 and 2.5. Conversely, we can go
from the interior to the exterior description directly as in Theorem 2.5. Observe that both directions use the
Fourier-Motzkin elimination.

Remark 2.23. Unfortunately, when computing the vertices of a polytope with Fourier-Motzkin elimination,
it can happen that in intermediate iterations, the number of generated vertices can be exponential in the
dimension, even though the final result is small.

2.3 The integer hull

We now transition back to working with vector spaces over R. In particular, we deal with the set of feasible
solutions of a mixed-integer program of the form

max c⊤x

s.t. Ax ≤ b,

x ∈Zp ×Rn−p,

which is a subset of the polyhedron P(A, b).

Definition 2.24. The integer hull of a polyhedron P is the set PI,p := conv({x ∈ P : x ∈ Zp ×Rn−p})} for
p ∈ {0, 1, . . . , n}. We write PI := PI,n.

We are particularly interested in the fully integral case p = n.

Definition 2.25. A polyhedron P is integral if P = PI.

Intuitively, one might think that the integer hull, i.e., in particular, the convex hull of all feasible solutions of a
MIP, is a polyhedron. However, this is not the case, as the following example shows.

Example 2.26. Consider the MIP
sup {x1 −

⎷
2x2 : x ∈ PI}

with P = {x ∈R2 : x1 −
⎷

2x2 ≤ 0, x2 ≥ 1} (see Figure 2.5).
The proplem is feasible since, e.g.,

�

1
1

�

∈ P ∩Z2 ⊂ conv(P ∩Z2) = PI, and bounded by x1 −
⎷

2x2 ≤ 0, but
does not have an optimum as we will see. By strong duality (see Introduction to Optimization), this implies
that the MIP above cannot be an LP, i.e., that PI cannot be a polyhedron.
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Figure 2.5: Illustration of Example 2.26.

To see that the supremum is not attained, first observe that, for points in PI, the inequality x1 −
⎷

2x2 ≤ 0
is equivalent to x1

x2
≤
⎷

2, because x2 > 0. Since
⎷

2 is irrational, x1 −
⎷

2x2 < 0 holds for all points in
P ∩Z2 and thus for all points in PI = conv(P ∩Z2). We construct a sequence (x (i))i∈N with x (i) ∈ N2 and
0<
⎷

2x (i)2 − x (i)1 <
1
i to prove that the supremum is 0, which is not attained in PI.3 Let y j := j

⎷
2− ⌊ j ·

⎷
2⌋ ∈

[0, 1) for j ∈ {0, . . . , i}, and let { ỹ0, . . . , ỹ i} = {y0, . . . , yi} be sorted such that ỹ0 ≤ ỹ1 ≤ . . . . By pidgeonhole
principle, there are k > ℓ with 0≤ ỹk − ỹℓ <

1
i . We can now let x (i)1 := ⌊k

⎷
2⌋ − ⌊ℓ

⎷
2⌋ and x (i)2 := k− ℓ≤ 1 to

obtain x (i)1 −
⎷

2x (i)2 = ỹℓ − ỹk ∈ (−
1
i , 0], as desired. △

The root (literally) of the issue above lies in the irrationality of the data. We now establish that this is the only
obstruction to PI being a polyhedron.

Definition 2.27. A polyhedron P ⊆Rn is called rational if there are A∈Qm×n and b ∈Qm with P = P(A, b).

We begin with the following observation.

Proposition 2.28. If PI ⊆Rn is a polyhedron, then PI is rational.

Proof. If PI is a polyhedron, then, according to Theorem 2.19, there are finite sets V ,E with PI = conv(V) +
cone(E). Since PI is the convex hull of integer points, all vertices of PI are integral and every extreme ray
contains integer points. So we can choose the sets V ,E to consist of integer vectors. We can use Corollary 2.21
to obtain a representation by rational inequalities.

We collect sufficient conditions for PI to be a polyhedron.

Proposition 2.29. Let P ⊆Rn be a polyhedron.

(a) If P is a polytope, then PI is also a polytope.

(b) If P is a rational polyhedral cone, then P = PI.

Proof.
(a) Since P is bounded, X = {x ∈Zn : x ∈ P} is finite. By Corollary 2.9, conv(X ) = PI is a polytope.

3It is insufficient to require x (i)1 /x
(i)
2 →

⎷
2, since this does not imply x (i)1 −

⎷
2x (i)2 → 0, e.g., for x (i)1 =

⎷
i + i
⎷

2 and x (i)2 = i.
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Figure 2.6: Illustration of the proof of Theorem 2.30: left: P with y (1) =
�2

1

�

and y (2) =
�3

1

�

, center: Q+B in
gray, right: (Q+B)I in gray.

(b) By Theorem 2.17 and analogously to Corollary 2.21, there exist rational r (i) withP = cone({r (1), . . . , r (k)}).
By scaling, we can assume that r (i) is integral for all i.
It is clear that P ⊇ PI, since P is convex and PI is the convex hull of points in P. For the opposite
inclusion, let x ∈ P. For x = 0 we have x ∈ PI. Otherwise, there exists a vector λ≥ 0 with

x =
k
∑︂

i=1

λi r
(i).

To express x as a convex combination of integral vectors, we rescale each r (i) by the same integral factor
to decrease the sum of the coefficients to below 1 and add a suitable multiple of 0. Specifically, we set
µ := 1⊤λ> 0 (since x ̸= 0) and define λ̄ := 1

⌈µ⌉λ to write

x =
k
∑︂

i=1

λ̄i (⌈µ⌉r (i)) + (1− 1⊤λ̄)0

with
∑︁k

i=1 λ̄i + (1−1⊤λ̄) = 1. Because the vectors 0, ⌈µ⌉r (1), . . . , ⌈µ⌉r (k) are integral and contained in P ,
we have that x is a convex combination of integer points in P, i.e., x ∈ PI.

We finally conclude that it is sufficient to require the system Ax ≤ b to have rational coefficients in order to
ensure that the convex hull of all integral solutions to form a polyhedron.

Theorem 2.30. If P ⊆Rn is a rational polyhedron, then PI is also a (rational) polyhedron.

Proof. Once we establish that PI is a polyhedron, rationality follows by Proposition 2.28.
By Corollary 2.21, we know that P has a representation of the form P = Q+ C, where Q is a convex hull
of rational vectors and C is the conic hull of rational vectors. By scaling, we can thus determine y (i) ∈ Zn,
i ∈ {1, . . . , k}, with C = cone({y (1), . . . , y (k)}). We set

B := {
k
∑︂

i=1

µi y
(i) : 0≤ µ≤ 1}.
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Note that the (bounded) set B is a polytope by Corollarly 2.8. By Corollaries 2.6 and 2.8, Q+B is a polytope,
since it is bounded. According to Proposition 2.29 (a), (Q+B)I is therefore a polytope as well. Finally, by
Theorem 2.17 and Corollary 2.8, it follows that (Q+B)I + C is a polyhedron.
With this, it suffices to show

PI = (Q+B)I + C.

⊆: We argued that (Q+B)I + C is a polyhedron, i.e., in particular, it is convex. Since PI is the convex hull
of integer points, it suffices to show that all integer points in PI also lie in (Q+B)I + C. So let p ∈ PI be
integral. Then there exist q ∈Q and c ∈ C with p = q + c. We can find µ≥ 0 with

c =
k
∑︂

i=1

µi y (i).

Now let

c′ :=
k
∑︂

i=1

⌊µi⌋y (i)

and b := c − c′. It follows that c′ ∈ C ∩ Zn and q + b = p − c′ ∈ Zn, since p and c′ are integral.
Furthermore, b ∈ B by definition and therefore q + b ∈ (Q+B)I. Hence, p = q + b+ c′ ∈ (Q+B)I + C.

⊇: Because of B ⊆ C we have
(Q+B)I + C ⊆ (Q+ C)I + C = PI + C,

and, by Proposition 2.29 (b),

PI + C = PI + CI

⊆ (P + C)I = PI,

which establishes (Q+B)I + C ⊆ PI.

Corollary 2.31. Let P ⊆Rn be a rational polyhedron such that PI ̸= ∅. Then, for all c ∈ Rn, max{c⊤x : x ∈ P}
is bounded if and only if max{c⊤x : x ∈ PI} is bounded.

Proof. In the proof of Theorem 2.30, we have P =Q+C and PI = (Q+B)I+C, where C is the only unbounded
term in either equality. In addition, PI ̸= ∅ (and thus P ̸= ∅) implies that (B +Q)I ̸= ∅ and Q ̸= ∅. Hence,
both max{c⊤x : x ∈ P} and max{c⊤x : x ∈ PI} are unbounded if and only if there exists r ∈ C with
c⊤r > 0.

With analogous arguments, Theorem 2.30 can be extended to the mixed-integer case.

Theorem 2.32. If P is a rational polyhedron, then PI,p is a rational polyhedron for all p ∈ {0, . . . , n}.

We conclude the chapter with a useful characterization.

Lemma 2.33. Let P be a rational polyhedron. Then the following are equivalent:

(a) P = PI.

(b) Every non-empty face of P contains an integer point.

(c) Every non-empty minimal face of P , i.e., every face containing no other faces, contains an integer point.

(d) max{c⊤x : x ∈ P} is assumed at an integer point, for all c ∈Rn (or c ∈Zn), for which the maximum is
finite.
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Proof. exercise.

In particular, a MIP reduces to an LP if the underlying polyhedron is integral.

Corollary 2.34. If P(A, b) is integral, then the optimum vertex solutions of the following problems coincide

max c⊤x max c⊤x
s.t. Ax ≤ b, s.t. Ax ≤ b,

x ∈Zp ×Rn−p, x ∈Rn.
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3 Branch-and-Bound Method

In this chapter we deal with the branch-and-bound method, an exact method for solving mixed-integer
programs. The method exhaustively searches the solution space and thus guarantees that an optimum solution
is found if one exists. In case the underlying problem is bounded, the method terminates, but with exponential
running time. In practice, the branch-and-bound method is very often efficient and is the basis of all modern
integer optimization solvers. We begin by showing that, from a theoretical perspective, solving mixed-integer
programs is computationally difficult.

3.1 Complexity of integer programs

We already know (Proposition 2.29 (a) and Theorem 2.30) that every bounded or rational MIP can be reduced
to a linear program, i.e., there exist D ∈Qm×n and d ∈Qm, with PI = P(D,d). Here, m can become very large.
We now show that, in general, we cannot hope to solve a rational MIP efficiently. More precisely, we show the
following.

Theorem 3.1. The decision problem “Has a given rational system of inequalities Ax ≤ b an integral solution?”
is NP-complete (even if x is binary).

We begin by recalling central definitions (see Algorithmic Discrete Mathematics).

Definition 3.2. A decision problem is a tuple (I, (SI)I∈I) with SI ∈ {{‘yes’}, {‘no’}} for all I ∈ I. The input
size |I | of an instance I ∈ I is defined to be equal to the number of bits in the binary representation of I. An
algorithm has polynomial running time if it computes A(I) = SI in time |I |O(1) for all I ∈ I.

Roughly speaking, NP is the class of decision problems for which ’yes’-instances can be verified in polynomial
time. For a rigorous definition we refer to Algorithmic Discrete Mathematics. Based on this class, we can
capture the computational intractability as follows.

Definition 3.3. A decision problem Π = (I, (SI)I∈I) is NP-hard if, for all Π′ = (I ′, (S′I ′)I ′∈I′) ∈ NP, there is a
reduction R: I ′→ I that satisfies S′I ′ = SR(I) and can be computed in polynomial time. If, additionally, Π ∈ NP,
then Π is NP-complete.

One of the most important NP-complete problems is the satisfiability problem (Sat).

Satisfiability (Sat) Problem
input: CNF formula given by clauses C = {Ci}i=1,...,m over variables X = {x i}i=1,...,n
problem: Is there a satisfying assignment α: X → {0,1}?
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An example of a CNF formula is (x1 ∨ x̄2 ∨ x4)∧ (x2 ∨ x̄3)∧ (x3 ∨ x̄4) with satisfying assignment, e.g.,
α(x1) = α(x2) = 1 and α(x3) = α(x4) = 0.
We need the following observation about the coding length of a solution, i.e., the length of a binary representa-
tion (for a proof see [39, Chapter 17]).

Lemma 3.4. Let P = P(A, b) be a rational polyhedron such that the coding length of each inequality is at
most ϕ ∈N. If PI ̸= ∅, then there is an integer point in P, whose coding length is at most 6n3ϕ.

Proof of Theorem 3.1. From Lemma 3.4 we obtain a polynomial certificate for P ̸= ∅. It follows that the
decision problem is in NP.
We can model a given SAT instance with variables x1, . . . , xn and clauses C1, . . . , Cm as an integer system
Ax̂ ≤ b consisting of the (negated) inequalities

∑︂

j:x j∈Ci

x̂ j +
∑︂

j: x̄ j∈Ci

(1− x̂ j)≥ 1 ∀ i ∈ {1, . . . , m},

with x̂ ∈ {0,1}n. An integral solution of Ax̂ ≤ b can then be interpreted as

x̂ j =

¨

1, if variable x j is set to “true”,
0, if variable x j is set to “false”.

Now, Ax̂ ≤ b has an integral solution (i.e. { x̂ ∈ {0,1}n : Ax̂ ≤ b} ̸= ∅) if and only if the given Sat instance has
a solution. The transformation can be carried out in polynomial time and x̂ is obviously bounded.

The following is an immediate consequence of Theorem 3.1.

Corollary 3.5. Every problem in NP can be modeled as a (binary) integer program.

Since finding a feasible solution to a MIP is NP-hard and thus solving a MIP is difficult, but LPs can be solved in
polynomial time (see Introduction to Optimization), we cannot expect to efficiently find a complete description
of PI or to solve the associated separation problem (unless P = NP). With this in mind, we now introduce the
branch-and-bound method for solving general mixed-integer programs. In Chapter 4, we will deal with cases
that allow to find solutions efficiently.

3.2 The branch-and-bound method

The branch-and-bound method revolves around the two operations of branching and bounding. We want to
solve the mixed-integer optimization problem

max c⊤x

s.t. Ax ≤ b (3.1)
x ∈Zp ×Rn−p,

where A∈Qm×n, c ∈Qn, b ∈Qm, and p ∈ {1, . . . , n}. Note that we assume that all data are rational, because
this is the case in practice and because the irrational case causes theoretical problems, as we saw in Section 2.3.
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We use a “relaxation” that yields an upper bound on the optimum value of the problem (3.1) by forgoing the
integer conditions. We obtain the LP relaxation

max c⊤x

s.t. Ax ≤ b (3.2)
x ∈Rn.

Such linear programs can be solved efficiently (see Introduction to Optimization). If the computed optimum
solution of the LP relaxation is integral, we have solved (3.1). Otherwise, we branch, i.e., we generate
subproblems, which we solve recursively. In this way, we generate a collection of subproblems with shrinking
feasible regions. Every optimum solution to our integer problem appears in one of the subproblems, so that no
optimum solutions are lost on the way.
The LP relaxation can be further enhanced by inequalities (see Chapter 5) and other relaxations can be used
(see Chapter 6). Furthermore, the procedure can be accelerated by heuristics (see Chapter 7).

3.2.1 Divide and conquer

As a first step, we solve the LP relaxation (3.2) to obtain a fractional optimum solution x̂ . If we are lucky,

x̂ ∈ X := {x ∈Zp ×Rn−p : Ax ≤ b},

i.e., x̂ is feasible for (3.1), and we have already found an optimum solution to the mixed-integer problem.
Sufficient conditions that guarantee that this case occurs will be discussed in Chapter 4.
In general, the solution x̂ of the LP relaxation is not integral (i.e., x̂ /∈Zp ×Rn−p). In this case, there exists an
index i ∈ {1, . . . , p} such that x̂ i /∈Z. We now create two subproblems

X≤ := {x ∈ X : x i ≤ ⌊ x̂ i⌋} ⊂ X and X≥ := {x ∈ X : x i ≥ ⌈ x̂ i⌉} ⊂ X .

Evidently, X = X≤ ∪X≥ and X≤ ∩X≥ = ∅, so that every (optimum) solution of the MIP (3.1) must either lie
in X≤ or in X≥. These sets are associated with the two polyhedra

P≤ := {x ∈ P : x i ≤ ⌊ x̂ i⌋} and P≥ := {x ∈ P : x i ≥ ⌈ x̂ i⌉},

where P := P(A, b) = {x : Ax ≤ b}. Because x̂ /∈ P≤ ∪ P≥, the LP relaxations of both subproblems yield
optimum solutions different from x̂ . We can now apply the procedure recursively to the two subproblems.
The recursive subdivision into subproblems creates a branch-and-bound tree whose nodes correspond to the
subproblems, see Figure 3.1. In each step, a subproblem that has not yet been processed is selected and
an optimum solution x̂ of the corresponding LP relaxation is computed; if it is infeasible, we continue with
another subproblem. If x̂ /∈ X , we create two new subproblems. If x̂ ∈ X , we have found a feasible solution for
the MIP. In this case we keep track of the best solution x ⋆ we encountered so far and continue with another
subproblem. The procedure terminates when all subproblems have been processed. The optimum solution
then is x ⋆ if any solution was found, otherwise the problem is infeasible.
In practice, the procedure can be accelerated using the following simple insight. Let us assume that we already
have found some feasible solution x ⋆ ∈ X . Then, obviously,

max {c⊤x : x ∈ X } ≥ c⊤x ⋆.
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Figure 3.1: Example of an application of the branch-and-bound method: The tree is searched from left to
right. In the lower parts, the respective other subproblems are infeasible and ommitted.
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The solution x ⋆ therefore provides us with a lower bound on the optimum objective function value of our MIP.
If we now solve a subproblem with associated polyhedron P̂ satisfying

max {c⊤x : x ∈ P̂} ≤ c⊤x ⋆,

then there cannot be any better feasible solution than x ⋆ in this subproblem, and this subproblem need not be
further considered. Accordingly, we may prune (i.e., “cut off”) the corresponding subtree.

3.2.2 Formal definition

The above procedure results in the branch-and-bound method, which is formally stated below.

Algorithm: branch-and-bound method
input: MIP max {c⊤x : Ax ≤ b, x ∈Zp ×Rn−p} with P(A, b) bounded
output: optimum solution x ⋆ or “infeasible” if z = −∞
A← {P(A, b)} (active nodes)
z←−∞, x̄ ← ∅ (lower bound, best solution)
while A ̸= ∅ :

choose P̂ ∈ A (subproblem selection)
if P̂ ̸= ∅ :

compute x̃ ∈ P̂ ∩ (Zp ×Rn−p) via primal heuristics (see Chapter 7)
if c⊤ x̃ > z :

z← c⊤ x̃ , x̄ ← x̃

x̂ ← argmax{c⊤x : x ∈ P̂} (or use Chapter 6)
if c⊤ x̂ > z :

if x̂ ∈Zp ×Rn−p :
z← c⊤ x̂ , x̄ ← x̂ (see Chapter 4)

else
choose i ∈ {1, . . . , p} with x̂ i /∈Z (variable selection)
P̂≤← {x ∈ P̂ : x i ≤ ⌊ x̂ i⌋}, P̂

≥← {x ∈ P̂ : x i ≥ ⌈ x̂ i⌉} (or use Chapter 5)
A← A∪ {P̂≤, P̂≥}

A← A\ {P̂}
return (x̄ , z)

Remark 3.6. The grayed out part of the algorithm is optional and intended for acceleration – it is not necessary
for correct execution. Techniques from Chapter 7 can be used here.

The key observation for correctness of branch-and-bound is that the algorithm maintains the following
invariants.

Lemma 3.7. Branch-and-bound maintains the invariants that

(a) if z > −∞, then x̄ is feasible for (3.1) with c⊤ x̄ = z, and

(b) for every optimum solution x ⋆ of (3.1), either z = c⊤x ⋆, or there is an active node P̂ ∈ A with x ⋆ ∈ P̂.
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Proof. The first part of the invariant follows since z and x̄ are only updated in unison and only when x̄ is a
feasible solution of value z.
For the second part, observe that only fractional solutions are eliminated when branching. This means that
every optimum solution x ⋆ remains in some active node P̂ until this node can be solved without branching,
which only happens when the corresponding LP relaxation yields an integral optimum solution. This solution
cannot be better than x ⋆ since the integral solutions in P̂ are a subset ofX , and it cannot be worse than x ⋆, since
x ⋆ ∈ P̂. By the first part of the invariant and optimality of x ⋆, we have z ≤ c⊤x ⋆. Hence, after considering P̂,
we have z = c⊤x ⋆ (with or without update).

This immediately yields the following bounds.

Corollary 3.8. The branch-and-bound method maintains the invariant that z is a lower bound and

z̄ :=max
�

z, max{c⊤x : x ∈ P̂ , P̂ ∈ A}
	

is an upper bound on the optimum value of (3.1).

We show that the branch-and-bound method computes the correct result in finite time.

Theorem 3.9. If P is bounded, then the branch-and-bound method terminates after a finite number of steps
and the final value of z is equal to the optimum value of the MIP (3.1).

Proof. Assume that branch-and-bound terminates. For the case that (3.1) is infeasible, Lemma 3.7 (a) implies
that the correct value z = −∞ is maintained. If (3.1) is feasible, Lemma 3.7 (b) implies that branch-and-bound
can only terminate once z = c⊤x ⋆ for every optimum solution x ⋆ and that, at this point, x̄ must be optimal.
We now show that the algorithm terminates. Since P = P(A, b) is bounded, there is a constant ϕ ∈N so that

P ⊆ {x ∈Rn : −ϕ1≤ x ≤ ϕ1}.

Every LP relaxation that occurs during branch-and-bound is defined by Ax ≤ b and constraints on the variables
of the form

x i ≥ ξ with ξ ∈ {−ϕ + 1, . . . ,ϕ} or (3.3)
x i ≤ ξ with ξ ∈ {−ϕ, . . . ,ϕ − 1} (3.4)

for i ∈ {1, . . . , p}. Because x̂ is not feasible for either of the two subproblems generated when branching, and
since all active subproblems have disjoint feasible regions, all LP relaxations encountered by the algorithm are
different. This means that the LP relaxations use different subsets of inequalities of the type in (3.3) and (3.4).
However, there are only 4pϕ different inequalities, i.e., 24pϕ different combinations, and thus subproblems, to
consider.

Remark 3.10. For binary programs, the height of the branch-and-bound tree is bounded by the dimension n,
hence it has at most 2n leaves and thus there are at most 2n+1 − 1 subproblems to consider.

Remark 3.11. If P is unbounded, the method may not terminate (exercise). However, an estimation of the
absolute values of the components of an optimum solution, as in Lemma 3.4, can be used to constrain the
problem without losing all optimum solutions.

Thus, we can say that the branch-and-bound method terminates. However, it may encounter exponentially
many subproblems, even for infeasible binary programs (exercise). This performance is not surprising, since it
is NP-hard to find a feasible solution (Theorem 3.1).
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3.2.3 Practical considerations

Dual simplex

A key insight for an efficient implementation is that the dual simplex algorithm is ideally suited to solve the LP
relaxations. This is because when a subproblem is subdivided and an additional constraint on the variable x i is
imposed, the current basis remains dually feasible (not primally, of course). The same is true for the addition
of further inequalities in the branch-and-cut method. The dual simplex can resume directly with the optimum
basis of the parent node. This is particularly efficient when moving on to a child in subproblem selection, but
is still useful otherwise if the information about the final basis every parent node is stored in memory.

Selection rules

So far, we have discussed a generic version of the branch-and-bound method. Two degrees of freedom remain:
The selection of the next active subproblem and the selection of the variable x̂ i /∈ Z to branch on, i.e., the
variable whose domain is subdivided.

Subproblem selection When selecting the next subproblem, there are, e.g., the following options.
• With depth-first search, the active node created most recently is selected next, i.e., in particular, one of

the children of the previously considered node if possible. Depth-first search has the advantage that
consecutive subproblems differ only slightly from one another and thus the required modification is
small. Furthermore, the chance of finding an integral solution (and possibly improving the bound z)
increases with increasing depth, as long as the problems are feasible and are not pruned.

• With breadth-first search, the active node created least recently is processed next, i.e., a node of smallest
depth in the tree. This method systematically works through the tree level by level. Under the assumption
that the local upper bounds z̄(P̂) of the nodes P̂ decrease with increasing depths, this method primarily
reduces the upper bound z̄ of Lemma 3.8.

• With best-bound search, the active node P̂ of maximum local upper bound z̄(P̂) :=max{c⊤x : x ∈ P̂} is
selected next. The idea is to attempt to reduce z̄ as quickly as possible. The disadvantage of this variant
(and of breadth-first search) lies in the fact that feasible integral solutions are found relatively late, i.e.,
that the lower bound z has no effect in the beginning.

In practice, best-bound search is typically used, but a few depth-first steps are carried out from time to time to
find feasible integral solutions a bit sooner.

Variable selection – branching rule For the selection of the variable x̂ i /∈ Z, there are various options,
including the following.

• Choose i ∈ argmax
�

min{ x̂ j − ⌊ x̂ j⌋, ⌈ x̂ j⌉ − x̂ j}, j ∈ {1, . . . , p}
	

, i.e., the variable of largest distance to the
next integer, or a maximally infeasible variable with respect to integrality. The hope is that the values of
such variables must change considerably in both subproblems and therefore cause large changes in the
objective function value.

• Choose i = argmin
�

min{ x̂ j − ⌊ x̂ j⌋, ⌈ x̂ j⌉ − x̂ j}, x̂ j /∈ Z, j ∈ {1, . . . , p}
	

, i.e., the variable of smallest
distance to the next integer, or a minimally infeasible variable with respect to integrality. The hope is
that these variables only need little change to become integral.
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• Pseudo-cost branching uses historical information about the change in the objective function when a
certain variable is selected as the branching variable. If, in the past, branches with variable j changed
the objective function value by ∆−j or ∆+j in the children whose subproblems were rounded down,
respectively up, we set

ζ−j :=
∆−j

x̂ j − ⌊ x̂ j⌋
and ζ+j :=

∆+j

⌈ x̂ j⌉ − x̂ j
.

Then, we calculate the arithmetic means ζ̄−j and ζ̄+j of these values, which provide an estimator for
the change of the objective function value per unit, similarly to reduced costs in the simplex method
(see Introduction to Optimization). In the current node, we select a variable j of largest valuation
B
�

( x̂ j − ⌊ x̂ j⌋) · ζ̄
−
j , (⌈ x̂ j⌉ − x̂ j) · ζ̄

+
j

�

. The valuation function could, for example, be B(q−, q+) = (1−µ) ·
min{q−, q+}+ µ ·max{q−, q+} (where µ ∈ [0,1]). An alternative is B(q−, q+) = max{q−,ϵ} ·max{q+,ϵ}
(with ϵ > 0).
This branching rule works particularly well if a lot of information about the variables is already available,
especially if there has been a lot of branching. In the beginning, the selection is essentially random.

• Strong branching generates the two subproblems for all possible candidates i ∈ {1, . . . , p} and calculates
the corresponding changes in objective function value. It then selects the variable that causes the largest
change. This procedure is very time-consuming, but almost always yields small trees. In practice, it is
often accelerated by limiting the number of simplex iterations and the number of candidates.

• Reliability branching combines pseudo-cost and strong branching. In the beginning, the pseudo-costs
are initialized via strong-branching. Later, when the values are more reliable, the pseudo costs are used.

For details on the last three rules, we refer to the literature (see, e.g., [1]). It turns out that the first two rules
– although intuitively good – perform very poorly in practice: They are about as good as a random selection
rule. The last rule, on the other hand, yields significantly better results.

Presolving

Presolving is essential for the practical performance of the branch-and-bound method. It tries to simplify
the MIP with the aim of making the resulting problem easier. Typically, presolving focuses on reducing the
number of variables and constraints. We list examples of presolving steps:

• Eliminate trivial constraints, e.g., 0⊤x ≤ 1.
• Eliminate duplicate constraints.
• Eliminate redundant constraints, e.g., 2 x1 + x2 ≤ 3; x1, x2 ∈ {0,1}.
• Simplify constraints, e.g., 2 x1 + 2x2 = 2→ x1 + x2 = 1.
• Strengthen coefficients, e.g., 2 x1 + x2 ≥ 1; x1, x2 ∈ {0,1} → x1 + x2 ≥ 1.
• Aggregate variables: Consider α1 x1+ · · ·+αk xk = β with αi ̸= 0. Then the equation can be solved for x i

and be eliminated together with x i. The objective function must be adapted accordingly. Note that
aggregation can make the coefficient matrix of a MIP denser, i.e., introduce more non-zero elements.
This can have a negative impact on the the solving speed for the LP relaxations.

• Recognize special types of constraints, e.g., knapsack inequalities, set-packing constraints etc. For these,
we can then, for example, generate the inequalities of Section 5.

• Presolve dual: E.g., if the only constraints involving x2 are 2x1+ x2 ≥ 3 and x2 ≤ 5, the objective function
coefficient of x2 is non-negative, and x1 ≥ 0, we can fix x2 = 5 and eliminate the first inequality.
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• Use probing: Fix binary variables to 0 or 1 and test for consequences, e.g., for x1 + x2 ≤ 1, x1 − x2 ≤ 0,
and x1, x2 ∈ {0,1}, trying x1 = 1 yields x2 = 0, which yields x1 = 0 – a contradiction. So we can safely
set x1 = 0. Similarly, implications such as, e.g., x i = 1⇒ x j = 0 can be recognized. These implications
then lead to set-packing conditions (e.g., x i + x j ≤ 1).

Such presolving steps can dramatically decrease the size of MIPs, especially those generated by modeling
languages.

Fixing reduced costs

During the branch-and-bound procedure, it is possible to use the reduced costs of the solution to the LP
relaxation. To simplify notation, let us consider the problem

max {c⊤x : Ax = b, x ≥ 0, x ∈Zn}.

Let x̂ be an optimum basis solution of the relaxation max{c⊤x : Ax = b, x ≥ 0} with associated basis B and
non-basis N = {1, . . . , n} \ B, i.e., x̂ B = A−1

·B b, x̂ N = 0. Let z be a lower bound on the optimum value. For every
feasible integral solution x with objective function value at least z, we have

z − c⊤ x̂ ≤ c⊤x − c⊤ x̂ = c⊤N(xN − x̂ N) + c⊤B (xB − x̂ B)

= c⊤N xN + c⊤B (A
−1
·B b− A−1

·B A·N xN − A−1
·B b)

= c⊤N xN − c⊤B A−1
·B A·N xN

= (c⊤N − c⊤B A−1
·B A·N )xN = z⊤N xN ≤ z j x j ,

for all j ∈ N . For the reduced costs, we have zN ≤ 0, because the basis B is optimal. If now z j < 0, then

x j ≤
z − c⊤ x̂

z j
=

c⊤ x̂ − z

|z j|
.

This results in an upper bound on the value of x j. If, for example, (c⊤ x̂ − z)/|z j|< 1, the integer variable x j
can be fixed to 0. The same procedure can be used for lower bounds.

Branch-and-cut

The combination of the branch-and-bound method with the generation of cutting planes to eliminate half-
spaces is called branch-and-cut (see [38]). Here, the inequalities from Chapter 5 can be used. There are many
possibilities for variation: The exact configuration must be empirically evaluated for each application. We
are still far away from a true theoretical understanding of the advantages and disadvantages of the different
variants. In general, the branch-and-cut method works very well in practice, but requires careful tuning of the
parameters.
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4 Integral Polyhedra

In this chapter we deal with polyhedra whose faces always contain integer points. Vertex solutions of the
corresponding linear programs are therefore integral. For these special cases, the integer optimization problem
can be solved via its LP relaxation, and thus in polynomial time (see Introduction to Optimization).

4.1 Total unimodularity

We first examine sufficient conditions on the constraint matrix A∈Zm×n for the polyhedron {x ∈Rn : Ax ≤
b, x ≥ 0} to be integral for every integral right-hand side b ∈ Zm. In particular, this allows to solve the
corresponding MIP in polynomial time, since it is sufficient to solve its LP relaxation.

Definition 4.1. A matrix A∈Zm×n is called

(a) unimodular if A has full row rank, and the determinant of every (m×m)-submatrix of A is in {−1,0, 1}.

(b) totally unimodular (TU) if the determinant of every square submatrix of A is in {−1,0, 1}.

Note that all entries (the square submatrices of size size 1) of a totally unimodular matrix are either −1, 0,
or 1. Furthermore, the property of a matrix being TU is closed under taking submatrices.

Remark 4.2. Every totally unimodular matrix of full row rank is also unimodular. The converse does not hold:
The integer matrix

⎛

⎝

2 3 2
4 2 3
9 6 7

⎞

⎠

has determinant 1 (and therefore also full rank), so it is unimodular, but not totally unimodular, since its
entries are not in {−1, 0,1}:

Total unimodularity can be characterized in various ways that will prove useful later on.

Proposition 4.3. The following are equivalent:

• A is totally unimodular

• [A, I] is unimodular

•
� A
−A
I
−I

�

is totally unimodular.

•
�

A 0
I I
�

is totally unimodular.

• A⊤ is totally unimodular.
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Proof. exercise.

Proposition 4.4. The vertex-arc incidence matrix of a directed graph G = (V, E) (i.e., A= (av,e)v∈V,e∈E with
av,e = 1, if e ∈ δ+(v), av,e = −1 if e ∈ δ−(v), and av,e = 0 otherwise) is totally unimodular.

Proof. exercise.

The following three results exhibit that a linear program with a (totally) unimodular constraint matrix always
has an integral optimum solution, provided one exists at all.

Theorem 4.5. An integer matrix A ∈ Zm×n of full row rank is unimodular if and only if the polyhedron
{x ∈Rn : Ax = b, x ≥ 0} is integral for all b ∈Zm.

Proof. Assume that A is unimodular and let b ∈ Zm be an arbitrary integer vector. First observe that, since
every minimal face F defines an affine space aff(F) = F and since {x ∈ Rn : x ≥ 0} does not contain any
affine spaces that consist of more than a single point, every face of P=(A, b) = {x ∈ Rn : Ax = b, x ≥ 0}
contains some vertex. By Lemma 2.33, it therefore suffices to show that every vertex x̄ of P=(A, b) is integral.
Since A has full row rank, there is a basis B ⊆ {1, . . . , n}, |B|= m, such that x̄ B = (A·B)−1b and x̄ N = 0, where
N := {1, . . . , n} \ B (see Introduction to Optimization). By Cramer’s rule, for i ∈ B we have

x̄ i =
det(A·d1

, . . . , A·di−1
, b, A·di+1

, . . . , A·dm
)

det A·B
,

where {d1, . . . , dm} := B. Since A is unimodular, x̄ B is integral (the numerator is an integer and the denominator
is ±1) and therefore also x̄ .
Conversely, assume that P=(A, b) is integral for all integer vectors b ∈ Zm. Let B ⊆ {1, . . . , n}, |B| = m be
chosen arbitrarily such that A·B ∈Zm×m is invertible, i.e., det A·B ̸= 0. We need to show that det A·B ∈ {−1,1}.
We claim that (A·B)−1z ∈Zm for all z ∈Zm. Note that this immediately follows from integrality of P=(A, z) in
case (A·B)−1z ≥ 0.
Applying the claim for z = e j , j ∈ {1, . . . , m}, yields that (A·B)−1e j ∈ Zm, i.e., the j-th column of (A·B)−1 is
integral, and thus the entire matrix (A·B)−1 is integral. Because then det(A·B) and det((A·B)−1) are integers,
det(A·B) · det((A·B)−1) = 1 implies that det(A·B) ∈ {−1,1}. Since we have chosen A·B as an arbitrary invertible
(m×m)-submatrix, it follows that A is unimodular.
To show the claim, take y ∈ Zm such that t := y + (A·B)−1z ≥ 0 and set b := A·B t = A·B y + z ∈ Zm. Then,
xB := (A·B)−1b = t ≥ 0 and xN := 0 for N := {1, . . . , n} \ B defines a vertex x of P=(A, b) (see Introduction to
Optimization). Since P=(A, b) is integral, x and thus t are also integral, implying (A·B)−1z ∈Zm.

Corollary 4.6. For every square, unimodular matrix U ∈Zm×m, we have U−1 ∈Zm×m, and, in particular, U−1

is unimodular as well.

Proof. First note that U is invertible, since it has has full (row) rank. The proof that U−1b ∈ Zm for every
b ∈Zm is analogous to the proof of Theorem 4.5 via Cramer’s rule applied to U (instead of A·B). Since this also
applies for b = ei and all i ∈ {1, . . . , m}, we have U−1 ∈Zm×m. From det(U) ·det(U−1) = 1 and det(U) ∈ {−1, 1}
(since U has full row rank) it follows that det(U−1) ∈ {−1,1}, hence U−1 is unimodular.
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Example 4.7. The inverse of the matrix of Remark 4.2 is
⎛

⎝

−4 −9 5
−1 −4 2
6 15 −8

⎞

⎠

with determinant 1. △

Corollary 4.8 ([25]). An integer matrix A ∈ Zm×n is totally unimodular if and only if the polyhedron
{x ∈Rn : Ax ≤ b, x ≥ 0} is integral for all integer vectors b ∈Zm.

Proof. Proposition 4.3 (a) states that A is totally unimodular if and only if [A, I] is unimodular. Furthermore,
for an integer vector b it holds that {x ∈Rn : Ax ≤ b, x ≥ 0} is integral if and only if {z ∈Rn+m : [A, I]z =
b, z ≥ 0} is integral, since the slack variables s = b− Ax ≥ 0 can be chosen integral if x , b and A are integral.
The application of Theorem 4.5 for the matrix [A, I] completes the proof.

By simple transformations that preserve integrality and total unimodularity (by Proposition 4.3), we can
extend Corollary 4.8 as follows.

Corollary 4.9. An integer matrix A∈Zm×n is totally unimodular if and only if the polyhedron {x ∈Rn : a ≤
Ax ≤ b, l ≤ x ≤ u} is integral for all integer vectors a, b ∈Zm and l, u ∈Zn.

We mention a similar extension of Theorem 4.5 without proof.

Corollary 4.10. An integer matrix A ∈ Zm×n of full row rank is unimodular, if and only if the polyhedron
{x ∈Rn : Ax = b,0≤ x ≤ u} is integral for all integer vectors b ∈Zm and u ∈Zn.

Note that we need bounds on the variables to obtain a characterization.

Proposition 4.11. If an integer matrix A∈Zm×n is totally unimodular, then the polyhedron P(A, b) is integral
for all integer vectors b ∈Zm. The converse does not hold.

Proof. Consider any minimal face1 F := {x ∈Rn : AR·x = bR} of P(A, b), where R ⊆ {1, . . . , m} can be chosen
such that AR· has full row rank. By Lemma 2.33, it is sufficient to show that F contains an integer point. By
rearranging the variables, we can assume that AR· = [U , V ] with U invertible. Because A is totally unimodular,
so is its submatrix U , and by Corollary 4.6, U−1 is integral as well. Thus

�U−1bR
0

�

is an integer point of F .
For the second part of the statement, consider the matrix

A=

⎛

⎝

1 1 1
−1 1 0
1 0 0

⎞

⎠ .

This matrix is unimodular, since it has determinant −1, but not totally unimodular, since the determinant of
the upper left (2×2)-submatrix is 2. For every b ∈Z3, {x ∈R3 : Ax = b}= {A−1b} ⊂Z3 is contained in every
face of P(A, b). Thus, by Lemma 2.33, the rational polyhedron P(A, b) is integral for every b ∈ Z3, but A is
not totally unimodular.
1Note that a minimal face is a affine space (see exercise).
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Importantly, total unimodularity allows to extend strong duality to integer optimization problems.

Corollary 4.12 (integral duality). If A∈Zm×n is totally unimodular, then, for all integer vectors b ∈Zm and
c ∈Zn, both sides of

max {c⊤x : Ax ≤ b, x ≥ 0}=min {b⊤y : A⊤y ≥ c, y ≥ 0}, and
max {c⊤x : Ax ≤ b}=min {b⊤y : A⊤y = c, y ≥ 0}

have integral optimum solutions, provided the optima exist.

Proof. For the first version, by Corollary 4.8 and Lemma 2.33, it follows that A is totally unimodular if, for
all integer vectors c ∈ Zn and b ∈ Zm, the optimum of the linear program max {c⊤x : Ax ≤ b, x ≥ 0} is
attained by an integer point, if at all. Since A is totally unimodular if and only if −A⊤ is totally unimodular
(Proposition 4.3), the same applies for the dual linear program min {b⊤y : A⊤y ≥ c, y ≥ 0}.
For the second version, by Proposition 4.11 and Lemma 2.33, if A is totally unimodular, then, for all integer
vectors c ∈Zn and b ∈Zm, the optimum of the linear program max {c⊤x : Ax ≤ b} is attained by an integer
point, if at all. For the dual LP, integrality follows from Theorem 4.5 with Lemma 2.33, because A⊤ is totally
unimodular (Proposition 4.3). Here, by possibly omitting redundant rows of A⊤, we may assume that the
matrix has full row rank; the resulting matrix is then unimodular.

A very useful characterization of total unimodularity is mentioned next.

Theorem 4.13 ([18]). A matrix A ∈ Zm×n is totally unimodular if and only if for every subset of rows
I ⊆ {1, . . . , m} a vector r ∈ {−1,1}I exists, with

∑︁

i∈I ri Ai· ∈ {−1,0, 1}n.

Proof. For a proof see [39].

4.1.1 Applications in combinatorial optimization

Total unimodularity yields an different perspective on the max-flow min-cut theorem (see Algorithmic Discrete
Mathematics).

Theorem 4.14. Let ((V, E),µ, s, t) be a flow network with integer capacities µ. Then, an integral maximum
s-t-flow f ⋆ exists and its value is equal to the minimum capacity over all s-t-cuts, i.e.,

| f ⋆|= min
S⊆V\{s,t}

∑︂

e∈δ+(S∪{s})

µ(e).

Proof. Let A be the vertex-arc incidence matrix of the directed graph G = (V, E ∪ {(t, s)}) with µ((t, s)) :=∞,
and define µ ∈ ZE

≥0 by µe := µ(e). Every s-t-flow in (V, E) corresponds to a circulation in G, i.e., a flow
satisfying flow conservation also at s and t (see Combinatorial Optimization). Accordingly, a maximum s-t-flow
is defined by the solution of the linear program

max {x(t,s) : Ax = 0, 0≤ x ≤ µ}=max {x(t,s) :
� A
−A
I

�

x ≤
� 0

0
µ

�

, x ≥ 0}.
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This LP is feasible (e.g., x = 0) and bounded by x(t,s) =
∑︁

e∈δ−(t) xe ≤
∑︁

e∈δ−(t)µe. By Propositions 4.4 and 4.3
and Corollary 4.12, the LP and its dual

min {µ⊤y : A⊤z+ − A⊤z− + y ≥ e(t ,s); y , z+, z− ≥ 0}=min {µ⊤y : A⊤z + y ≥ e(t ,s), y ≥ 0}

therefore have integral optimum solutions x̄ , ȳ and z̄. In other words, the value x̄ (t,s) of a maximum s-t-flow
is equal to the minimum value µ⊤ ȳ , where ȳ fulfills

z̄v − z̄w + ȳ(v,w) ≥ 0, for (v, w) ∈ E \ {(t, s)}
z̄ t − z̄s + ȳ(t,s) ≥ 1,

ȳ ≥ 0.

By weak complementary slackness (see Introduction to Optimization), and since µ(t,s) =∞, we conclude that
ȳ(t,s) = 0, and therefore z̄ t ≥ 1+ z̄s. Since s /∈W := {w ∈ V : z̄w ≥ z̄ t} and t ∈W , it follows that δ−(W ) is an
s-t-cut. Furthermore, (v, w) ∈ δ−(W ) implies z̄w ≥ z̄ t > z̄v, and thus

ȳ(v,w) > z̄v − z̄w + ȳ(v,w) ≥ 0 ∀(v, w) ∈ δ−(W )

yields, together with integrality of ȳ , that ȳδ−(W) ≥ 1. From this, and ȳ ,µ≥ 0, we conclude

x̄ (t,s) = µ
⊤ ȳ ≥
∑︂

e∈δ−(W )

µe.

In other words, there is an s-t-cut δ−(W ) whose capacity is not larger than the maximum flow value. Since
there there cannot be a cut of capacity smaller than the maximum flow value (see Algorithmic Discrete
Mathematics), the theorem follows.

Totally unimodular matrices also naturally occur for undirected graphs. Let G = (V, E) be an undirected graph
and let A∈ {0,1}E×V be its edge-vertex incidence matrix. In the following, we investigate sufficient conditions
for the polyhedron P = {x : Ax ≤ b, x ≥ 0} to be integral. This is interesting, e.g., because for the case b = 1
the integral points of P correspond to stable sets in G (i.e., a subset S of the vertices, with e ⊈ S for all e ∈ E)
or, more generally, feasible solutions of the set packing problem from Example 1.7 (with ground set U = E
and subsets Sv = δ(v) for all v ∈ V ).

Theorem 4.15. The edge-vertex incidence matrix A of an undirected graph G is totally unimodular if and only
if G is bipartite.

Proof. First assume that G is not bipartite. Then, G contains a cycle C ⊆ E of odd length. We may assume
that C does not contain any chords, i.e., edges between vertices not adjacent along the cycle, since every
odd cycle with a chord contains a smaller odd cycle. The submatrix of A that belongs to the edges E(C) and
vertices V (C) of C is (after suitable permutation of rows and columns)

M :=

⎛

⎜

⎜

⎜

⎜

⎝

1 1 0 . . . 0 0
0 1 1 . . . 0 0
... . . . 0 0
0 0 0 . . . 1 1
1 0 0 . . . 0 1

⎞

⎟

⎟

⎟

⎟

⎠

∈ {0, 1}|C |×|C |.
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To see that this matrix is not totally unimodular, consider the Leibniz formula for the determinant

det(M) =
∑︂

σ∈S|C |

�

sgn(σ) ·
|C |
∏︂

i=1

Miσ(i)

�

,

where S|C | denotes the symmetric group of all permutations of {1, . . . , |C |}. There are exactly two permutations
with non-vanishing contributions to the sum, namely the identity (diagonal) and the cyclic map σ(1) = 2,
σ(2) = 3, . . . , σ(|C |) = 1. The number of inversions of the latter permutation is |C | − 1, and therefore it has a
positive sign since |C | is odd. Hence, the determinant of M is 2 and, consequently, A is not totally unimodular.
Now, conversely, assume that G is bipartite. We let {V1, V2}= V denote the corresponding partition of the vertex
set. We arbitrarily fix b ∈Zm and c ∈Rn and show that the linear program max {c⊤x : Ax ≤ b, x ≥ 0} has an
integral solution, provided it is bounded. This is sufficient because of Lemma 2.33 (d) and Corollary 4.8.
Let x ⋆ be an optimum solution of the linear problem max {c⊤x : Ax ≤ b, x ≥ 0}. Let τ ∼ U(0,1) be drawn
uniformly at random from the interval (0,1). For v ∈ V , define z ∈ZV

≥0 via

zv :=

⎧

⎪

⎨

⎪

⎩

⌊x⋆v⌋+ 1 if v ∈ V1 and x⋆v − ⌊x
⋆
v⌋ ≥ τ,

⌊x⋆v⌋+ 1 if v ∈ V2 and x⋆v − ⌊x
⋆
v⌋> 1−τ,

⌊x⋆v⌋ otherwise.

We claim that z is feasible, i.e., Az ≤ b. To see this, consider e = {u, v} ∈ E with u ∈ V1 and v ∈ V2 and the
corresponding row Ae· = (eu + ev )⊤ of A. We need to show that z satisfies Ae·z ≤ be, i.e., that zu + zv ≤ be. We
distinguish three cases.

• If ⌊x⋆u⌋+ ⌊x
⋆
v⌋= be, then x⋆u, x⋆v ∈Z and zu = ⌊x⋆u⌋ and zv = ⌊x⋆v⌋ (because 0< τ < 1), hence zu + zv = be.

• If ⌊x⋆u⌋+ ⌊x
⋆
v⌋ ≤ be − 2, then ⌊x⋆u⌋+ 1+ ⌊x⋆v⌋+ 1≤ be and therefore zu + zv ≤ be.

• Otherwise, ⌊x⋆u⌋+ ⌊x
⋆
v⌋= be−1 holds. Then, x⋆u−⌊x

⋆
u⌋+ x⋆v−⌊x

⋆
v⌋= x⋆u+ x⋆v− (be−1)≤ 1. If x⋆u−⌊x

⋆
u⌋ ≥ τ,

then x⋆v − ⌊x
⋆
v⌋ ≤ 1 − τ and vice versa. So not both values x⋆u and x⋆v are rounded up, resulting in

zu + zv ≤ be.
Now, for u ∈ V1 we obtain Prτ[zu = ⌊x⋆u⌋+ 1] = Prτ[τ ≤ x⋆u − ⌊x

⋆
u⌋] = x⋆u − ⌊x

⋆
u⌋ and for v ∈ V2 that Prτ[zv =

⌊x⋆v⌋+1] = Prτ[1−τ < x⋆v−⌊x
⋆
v⌋] = 1−Prτ[1−τ≥ x⋆v−⌊x

⋆
v⌋] = 1−Prτ[U ≤ 1−(x⋆v−⌊x

⋆
v⌋)] = 1−(1−(x⋆v−⌊x

⋆
v⌋)) =

x⋆v − ⌊x
⋆
v⌋. Overall, we have shown

Prτ[zv = ⌊x⋆v⌋+ 1] = x⋆v − ⌊x
⋆
v⌋ ∀v ∈ V.

Let cIP denote the largest objective function value of a feasible integer vector with respect to c. By feasibility
of z ∈ZV we obtain for the expectation that

c⊤x ⋆ ≥ cIP ≥ Eτ[c⊤z] =
∑︂

v∈V

cv ⌊x⋆v⌋+
∑︂

v∈V

cv Prτ[zv = ⌊x⋆v⌋+ 1]

=
∑︂

v∈V

cv ⌊x⋆v⌋+
∑︂

v∈V

cv (x
⋆
v − ⌊x

⋆
v⌋) = c⊤x ⋆.

It follows that c⊤x ⋆ = cIP. Thus, by Lemma 2.33 (d), the polyhedron {x ∈ Rn : Ax ≤ b, x ≥ 0} is integral.
Corollary 4.8 implies that A is totally unimodular.

Remark 4.16. The technique used in the second half of the proof of Theorem 4.15 is often called randomized
rounding.
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Corollary 4.17. Consider the assignment problem from Example 1.5. The LP-relaxation of the binary program
(obtained by replacing x i j ∈ {0,1} by x i j ∈ [0, 1]) always has an integral optimum solution.

Proof. Let A be the edge-vertex incidence matrix of the bipartite graph in Example 1.5. The LP relaxation of
the assignment problem can be formulated as

min {c⊤x : A⊤x = 1, x ≥ 0},

where the constraint x ≤ 1 is implied. According to Theorem 4.15, Proposition 4.3 (third and fifth item), and
Corollary 4.8, this LP has an integral optimum solution.

4.2 The Hermite normal form

In this section we show that every rational matrix can be brought into so-called Hermite normal form. This
form will help us to prove an integer analogue of the Farkas lemma. We will later need this lemma to show
the integrality of polyhedra.

Definition 4.18. A matrix with full row rank is in Hermite normal form if it has the form [B, 0], where B is a
non-negative lower triangular matrix and each row has a unique maximum entry that is on the main diagonal.

Note that [B, 0] being in Hermite normal form implies that B is invertible, since it is lower triangular and its
determinant thus is the product of its strictly positive diagonal entries. Crucially, we can bring matrices into
this form without disturbing too much the structural properties of matrices that we aim to establish. It suffices
to allow the following operations.

Definition 4.19. The (elementary) unimodular column operations on a matrix are

• swapping two columns,

• multiplication of a column by −1,

• addition of an integer multiple of a column to another column.

The name of these operations is justified because they can be encoded as multiplications with unimodular
matrices.

Observation 4.20. The unimodular column operations of Definition 4.19 can be performed by multiplying
the following unimodular matrices from the right:

⎛

⎝

1

0 1

1 0

1

⎞

⎠ ,

⎛

⎝

1

−1

1

⎞

⎠ ,

⎛

⎝

1

1 0

k 1

1

⎞

⎠ .

With this, we can show how to bring matrices into the desired form.

Theorem 4.21. Every matrix A ∈ Qm×n of full row rank can be converted to Hermite normal form using
unimodular column operations.
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Proof. Let A be a rational matrix of full row rank. We may assume that A∈Zm×n is integral: Otherwise, we
scale the matrix by a suitable positive factor before carrying out the following operations and by its reciprocal
afterwards. This is possible, since all unimodular column operations commute with scalar multiplication.
We first show that A can be transformed into a matrix [B, 0], where B is a lower triangular matrix and Bii > 0
for all i ∈ {1, . . . , m}. Suppose we have already transformed A into the form

�

B 0
C D

�

,

where B is a lower triangular matrix with a positive diagonal. Using unimodular column operations, we
establish D11 ≥ D12 ≥ · · · ≥ D1k ≥ 0 for the first row of D ∈ Zℓ×k by multiplying columns by −1 and then
reordering them. Iterative subtraction of the j-th column from the i-th column for i < j and reordering can be
used to bring the first row of D into non-decreasing order in such a way that, additionally,

∑︁k
i=1 D1i cannot

further be reduced.
Since A has full row rank, we have D11 > 0. We claim that D1i = 0 for i ∈ {2, . . . , k}. Otherwise, D12 > 0. If we
subtract the second column from the first one and rearrange these columns if needed, we maintain that the
first row of D is in non-increasing order, but we decreased

∑︁k
i=1 D1i, in contradiction its minimality. Overall,

we have brought one more row of the matrix into the desired form.
After we have performed this procedure m times, we have transformed A into a matrix [B, 0], where B is a
lower triangular triangular matrix with a positive main diagonal.
In order to reach Hermite normal form, we need to establish 0≤ Bi j < Bii for every j < i. This can be achieved
by considering for i ← 2, . . . , m every j ∈ {1, . . . , i − 1} and adding an integer multiple (positive if Bi j < 0,
negative if Bi j ≥ Bii) of the i-th column to the j-th column, such that Bi j ∈ {1, . . . , Bii − 1}. In this way, the
entries above row i are not affected and we achieve Hermite normal form.

Example 4.22. Consider the matrix

A=

⎛

⎝

4 8 0 −4 4
3 −6 6 9 0
2 −2 0 4 −4

⎞

⎠ .

Multiplication of the first column by −2, 1, −1 and addition to the columns 2,4, 5 yields
⎛

⎝

4 0 0 0 0
3 −12 6 12 −3
2 −6 0 6 −6

⎞

⎠ .

Negating and swapping the last column forward yields
⎛

⎝

4 0 0 0 0
3 3 −12 6 12
2 6 −6 0 6

⎞

⎠ .

Addition of the third column to column 5 and multiplication of the second column by 4 and −2 and addition
to columns 3 and 4 yields

⎛

⎝

4 0 0 0 0
3 3 0 0 0
2 6 18 −12 0

⎞

⎠ .

36



Addition of the fourth column to column 3 yields
⎛

⎝

4 0 0 0 0
3 3 0 0 0
2 6 6 −12 0

⎞

⎠ .

Addition of twice the third column to column 4 yields
⎛

⎝

4 0 0 0 0
3 3 0 0 0
2 6 6 0 0

⎞

⎠ .

Subtraction of the second column from first column yields
⎛

⎝

4 0 0 0 0
0 3 0 0 0
−4 6 6 0 0

⎞

⎠ .

Finally, subtraction of the third column from column 2 and addition to column 1 yields a matrix in Hermite
normal form:

⎛

⎝

4 0 0 0 0
0 3 0 0 0
2 0 6 0 0

⎞

⎠ .

△

The product of the unimodular matrices of Observation 4.20 involved in the proof of Theorem 4.21 results in
a unimodular matrix U , because of the multiplicative property det(AB) = det(A) · det(B) of the determinant.

Corollary 4.23. For every matrix A∈Qm×n of full row rank, there is a unimodular matrix U ∈Zn×n such that

[B, 0] = AU ,

is in Hermite normal form and is integral if A is.

Remark 4.24. For every rational matrix of full row rank, the Hermite normal form is unique. (U is unique if A
is also regular). Furthermore, the Hermite normal form can be computed in polynomial time (see [39]).

We are now ready to prove an integer analogue of the Farkas lemma.

Theorem 4.25. For A∈Qm×n and b ∈Qm exactly one of the systems

Ax = b,
x ∈Zn or

y⊤A∈Zn

y⊤b /∈Z
y ∈Qm

has a solution.

Proof. Both systems of equations cannot have a solution at the same time, because otherwise integrality of x
and y⊤A would imply integrality of y⊤b = y⊤Ax .
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Assume that the second system has no solution, i.e., for all y ∈ Qm for which y⊤A is integral, y⊤b is also
integral. We have to show that Ax = b, x ∈Zn has a solution.
First, observe that Ax = b is (fractionally) feasible, since otherwise a rational vector y ∈ Qm with y⊤A= 0
and y⊤b ̸= 0 would exist by Gaussian elimination. After appropriate rescaling, there would then be a y with
y⊤A= 0 and y⊤b = 1

2 – a contradiction to our assumption.
We may therefore assume that A has full row rank (after eliminating redundant rows from Ax = b). According
to Corollary 4.23, there is a unimodular matrix U ∈Zn×n with AU = [B, 0] is in Hermite normal form. Since
B−1AU = B−1[B, 0] = [I, 0] ∈Zm×n and, by Corollary 4.6, U−1 ∈Zn×n, we have B−1A∈Zm×n. It follows from
our assumption (with y = (B−1)⊤i· for i ∈ {1, . . . , m}) that B−1b ∈ Zm. Hence, x̂ := U

�B−1b
0

�

∈ Zn is integral.
Because of

Ax̂ = AU
�

B−1b
0

�

= [B, 0]
�

B−1b
0

�

= b,

we obtain that x̂ is an integral solution of Ax = b.

Corollary 4.26. We can in polynomial time find an integer solution of Ax = b with A ∈ Qm×n, b ∈ Qm or a
certificate that none exists.

Proof. We first solve Ax = b fractionally via Gaussian elimination. If no solution exists, we obtain a vector y
with y⊤A= 0 and y⊤b = 1

2 , that certifies that no integral solution exists according to Theorem 4.25. If a solution
exists, we eliminate redundant rows and compute the Hermite normal form [B, 0] in polynomial time via
Remark 4.24, and invert B via Gaussian elimination. Now, either x̂ = U

�

B−1b
0

�

is an integer solution of Ax = b
or a certificate y = (B−1)⊤i· with (B−1b)i /∈Z for infeasibility has been found according to Theorem 4.25.

Remark 4.27. Corollary 4.26 only holds for systems of equations of the form Ax = b. If, additionally, x is
constrained, i.e., via x ∈ {0,1}n, the hardness result of Theorem 3.1 carries over.

4.3 Total dual integrality

In Section 4.1, we saw that total unimodularity of an integer matrix A ensures that, for every integral right-hand
side b, the polyhedron PI = conv({x ∈ Zn : Ax ≤ b}) is completely described by the original inequalities
Ax ≤ b. If, on the other hand, we decide on a particular right-hand side b, then TDI (total dual integrality) is
the right concept to guarantee integrality of a polyhedron.

Definition 4.28. The system of inequalities Ax ≤ b with A∈Qm×n, b ∈Qm is called totally dual integral (TDI)
if, for every integer vector c ∈Zn, there is an integral optimum solution of the LP min {b⊤y : A⊤y = c, y ≥ 0}
if an optimum exists.

The TDI property of a system Ax ≤ b has a geometric interpretation: Let c be an integer vector in the cone
spanned by the rows of A, i.e., there is y ≥ 0 with A⊤y = c. Among all the possibilities to express c as a conic
combination of the rows of A, let S be the set minimum conic combinations with respect to b, i.e.,

S := arg min{b⊤y : A⊤y = c, y ≥ 0}.

Then, Ax ≤ b is TDI if and only if S contains an integer vector. In other words, this means that among all
shortest ways to express c as a conic combination of the rows of A, there is one that is an integer. We will later
express this interpretation in terms of Hilbert bases, which play an important role in integer programming.
Total dual integrality is directly connected to total unimodularity as in Corollary 4.12, but even for b ∈Qm.
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Observation 4.29. If A∈Zm×n is totally unimodular, then Ax ≤ b is TDI for all b ∈Qm.

Proof. If A is totally unimodular, by Corollary 4.8, we have that

{y ∈Rm : A⊤y = c, y ≥ 0}= {y ∈Rm :
�

A⊤

−A⊤
�

y ≤
�

c
−c
�

, y ≥ 0}

is integral for all c ∈Zn. Lemma 2.33 then implies that

min{b⊤y : A⊤y = c, y ≥ 0}= −max{−b⊤y : A⊤y = c, y ≥ 0}

has an integral optimum solution for all b ∈Rm for which an optimum exists. By definition, Ax ≤ b is TDI.

Note also that TDI is a property of a system of inequalities and not a property of the polyhedron P = {x ∈
Rn : Ax ≤ b}. We will see that there are many ways to describe P, but there are only a few that also possess
the TDI property. To obtain such a description, it may be necessary to add many redundant inequalities to the
initial formulation.
We now establish a connection between Ax ≤ b being TDI and the integrality of the corresponding polyhedron
P(A, b). We first strengthen Lemma 2.33.

Lemma 4.30. If max {c⊤x : Ax ≤ b} is an integer for all c ∈Zn for which it is finite, then P(A, b) is integral.

Proof. LetF ̸= ∅ be aminimal face ofP(A, b). By Lemma 2.33, it suffices to show thatF contains integral points.
Since F is minimal, it follows that F = {x ∈ P(A, b) : Aeq(F)·x = beq(F)}= {x ∈Rn : Aeq(F)·x = beq(F)}.

If F does not contain any integral points, then, by Theorem 4.25 there exists y ∈Qeq(F) with c⊤ := y⊤Aeq(F)· ∈
Zn and γ := y⊤beq(F) ̸∈Z. We may assume that y is non-negative, otherwise choose s ∈Zeq(F)

≥0 large enough
so that y + s ≥ 0, (y + s)⊤Aeq(F)· ∈Zn and (y + s)⊤beq(F) ̸∈Z, and use y ′ := y + s instead of y . We claim that
max {c⊤x : Ax ≤ b} exists and is assumed by every x̂ ∈ F . This is the case since F ̸= ∅ and, for all x ∈ P(A, b)
it holds that

c⊤x = y⊤Aeq(F)·x
y≥0
≤ y⊤beq(F) = y⊤Aeq(F)· x̂ = c⊤ x̂ .

It also follows that γ = y⊤beq(F) = max {c⊤x : Ax ≤ b}. By assumption, the right-hand side is an integer,
which contradicts our choice of γ. Therefore, F contains integral points.

We can now weaken the condition of Prop 4.11 for the case where we have a specific right-hand side b ∈Zm.

Theorem 4.31. If Ax ≤ b is TDI and b ∈Zm, then P(A, b) is integral.

Proof. By definition of Ax ≤ b being TDI, and since b is an integer vector, the value min {b⊤y : A⊤y = c, y ≥ 0}
is an integer for all c ∈Zn for which it is finite. Due to strong duality (see Introduction to Optimization), this
number coincides with max {c⊤x : Ax ≤ b}. The statement thus follows from Lemma 4.30.

We have already hinted at the connection between the geometric interpretation of TDI and Hilbert bases. We
now make this precise.
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Figure 4.1: Hilbert basis of a polyhedral cone.

Definition 4.32. A Hilbert basis of a rational polyhedral cone C = P(A,0) ⊆Rn is a finite subset H ⊆ C such
that every z ∈ C ∩Zn is a non-negative integral linear combination of elements from H, i.e.,

z =
∑︂

h∈H
λ(h)h with λ: H→Z≥0.

The Hilbert basis H is integral if H ⊆Zn.

Example 4.33. Consider C = cone({
�1

3

�

,
�2

1

�

}) (see Figure 4.1). An integer Hilbert basis of C is given by
H = {
�1

3

�

,
�1

2

�

,
�1

1

�

,
�2

1

�

}. △

For proofs of the following facts see [39, Chapter 16.4].

Remark 4.34.
(a) For every rational polyhedral cone there exists an integral Hilbert basis.
(b) If the cone has a vertex, the minimal integral Hilbert basis is uniquely determined.

We derive a characterization for Ax ≤ b to be TDI.

Theorem 4.35. Let A∈Qm×n, b ∈Qm and P(A, b) ̸= ∅. Then, the system of inequalities Ax ≤ b is TDI, if and
only if the rows of Aeq(F)· form a Hilbert basis of cone((Aeq(F)·)⊤) for every (minimal) face F of P(A, b).

To understand the proof of Theorem 4.35, the following geometric interpretation may be helpful. Let
c ∈ cone(A⊤) be an integer vector such that min {b⊤y : A⊤y = c, y ≥ 0} is finite. Then, we know that c⊤x
assumes its optimum on a face of P . By complementary slackness (see Introduction to Optimization), it follows
that if c⊤x assumes the optimum on face F , then c lies in the cone spanned by the rows of Aeq(F)·. The
condition that the rows induced by F form a Hilbert basis is equivalent to the fact that c is a non-negative
integer combination of the rows induced by F . Formally, there is an integer vector y⋆ ∈Zm, A⊤y⋆ = c, y⋆ ≥ 0
with b⊤y⋆ =min {b⊤y : A⊤y = c, y ≥ 0}. This corresponds exactly to the TDI property of the system Ax ≤ b.

Proof. Let Ax ≤ b be TDI. Further, let F ̸= ∅ be a face of P := P(A, b) and c ∈ cone((Aeq(F)·)⊤)∩Zn. We need
to show that c is a non-negative integer combination of the row vectors of Aeq(F)·. By assumption, c is a
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non-negative linear combination of the row vectors of Aeq(F)·, i.e., there is ŷ ≥ 0 with ŷ i = 0 for all i ̸∈ eq(F)
and c⊤ = ŷ⊤A.
We now claim that max {c⊤x : Ax ≤ b} exists and is assumed for every x̂ ∈ F . This follows since F ̸= ∅ and,
for all x ∈ P and x̂ ∈ F , it holds that

c⊤x = ŷ⊤Ax ≤ ŷ⊤b = ŷeq(F)
⊤beq(F) = ŷeq(F)

⊤ Aeq(F)· x̂ = ŷ⊤Ax̂ = c⊤ x̂ ,

because ŷ i = 0 for all i /∈ eq(F). By strong duality (see Introduction to Optimization), we conclude that the
value min {b⊤y : A⊤y = c, y ≥ 0} is finite. Using that Ax ≤ b is TDI, we obtain

min {b⊤y : A⊤y = c, y ∈Zm, y ≥ 0}=max {c⊤x : Ax ≤ b}.

Let y⋆ be an integer optimum solution of min {b⊤y : A⊤y = c, y ≥ 0}. For every x̂ ∈ F we have Ai· x̂ = bi
for all i ∈ eq(F) and, by minimality of F , Ai· x̂ < bi for all i ̸∈ eq(F). Since x̂ ∈ F is an optimal solution
of max {c⊤x : Ax ≤ b}, it follows from weak complementary slackness that y⋆i = 0 for all i /∈ eq(F). This
completes the first part of the proof, since y⋆ is integral, y⋆i = 0 for all i /∈ eq(F), y⋆i ≥ 0 for all i ∈ eq(F),
and c is a non-negative integer combination of the rows of Aeq(F)·.
Now, let c ∈ Zn such that γ := min {b⊤y : A⊤y = c, y ≥ 0} exists. By strong duality, we know that γ =
max {c⊤x : Ax ≤ b} exists. Let F be a minimal face of P on which the optimum value of c⊤x is attained.
Note that c ∈ cone((Aeq(F)·)⊤): Due to weak complementary slackness, there is a vector y⋆ ≥ 0 with y⋆i = 0 for
all i /∈ eq(F) and c⊤ =

∑︁

i∈eq(F) Ai· y⋆i .
Since the rows of Aeq(F)· are a Hilbert basis of cone((Aeq(F)·)⊤), there is a non-negative integer vector ỹ with
c⊤ =
∑︁

i∈eq(F) Ai· ỹ i . We can set yi := 0 for all i /∈ eq(F) and yi := ỹ i for all i ∈ eq(F) and obtain an integer
vector y with A⊤y = c and y ≥ 0. Furthermore, for x̂ ∈ F , we have

b⊤y =
∑︂

i∈eq(F)
yi bi =
∑︂

i∈eq(F)
yi Ai· x̂ = c⊤ x̂ = γ.

Hence, Ax ≤ b is TDI.

We apply Theorem 4.35 to show that the TDI property of a system Ax ≤ b of inequalities is preserved if we
restrict ourselves to subsystems corresponding to faces of the polyhedron P(A, b).

Corollary 4.36. If the system Ax ≤ b, c⊤x ≤ d with A ∈ Qm×,n, b ∈ Qm, c ∈ Qn and d ∈ Q is TDI, then the
system Ax ≤ b, c⊤x ≤ d, −c⊤x ≤ −d is TDI as well.

Proof. Let F ̸= ∅ be a face of the polyhedron {x ∈Rn : Ax ≤ b, c⊤x ≤ d, −c⊤x ≤ −d}. Then, F is also a face
of the polyhedron {x ∈ Rn : Ax ≤ b, c⊤x ≤ d}. Since the system Ax ≤ b, c⊤x ≤ d is TDI, by Theorem 4.35
that ((Aeq(F)·)⊤, c) is a Hilbert basis of cone((Aeq(F)·)⊤, c). Let z ∈ cone((Aeq(F)·)⊤, c,−c)∩Zn. Then, z is of the
form

z =
∑︂

i∈eq(F)
λiAi·

⊤ +µc −σc

with λi ≥ 0, i ∈ eq(F), µ ≥ 0, σ ≥ 0. This is equivalent to z +σc ∈ cone((Aeq(F)·)⊤, c). Let σ′ ∈ Z≥0, σ′ ≥ σ
be chosen such that σ′c ∈Zn. It follows that z+σ′c ∈ cone((Aeq(F)·)⊤, c)∩Zn. Since ((Aeq(F)·)⊤, c) is a Hilbert
basis of cone((Aeq(F)·)⊤, c), we can write z +σ′c as

z +σ′c =
∑︂

i∈eq(F)
λ′iAi·

⊤ +µ′c,
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where λ′i ≥ 0 is an integer for all i ∈ eq(F), and µ′ ≥ 0 is also an integer. It follows that

z =
∑︂

i∈eq(F)
λ′iAi·

⊤ +µ′c −σ′c.

That is, z can be defined as a non-negative integer combination of the generators of cone((Aeq(F)·)⊤, c,−c).
Hence, ((Aeq(F)·)⊤, c,−c) is a Hilbert basis of cone((Aeq(F)·)⊤, c,−c). Applying Theorem 4.35 completes the
proof.

We mention without proof a characterization of TDI via Hilbert bases that is helpful for algorithmically
checking whether an inequality system is TDI.

Theorem 4.37. Let A∈Zm×n and b ∈Qm with P(A, b) ̸= ∅. The system Ax ≤ b is TDI if and only if

• the rows of A form a Hilbert basis of the cone spanned by the rows of A, and

• for every S ⊆ {1, . . . , m} the linear program

min {b⊤y : A⊤y =
∑︂

i∈S

(Ai·)⊤, y ≥ 0}

has an integral optimum solution.

The following theorem shows that every rational polyhedron P can be described by a TDI system. The key idea
of the proof is to construct, for every minimal face F of P, a Hilbert basis of the cone spanned by inequalities
induced by F .

Theorem 4.38. For every rational polyhedron P there is a TDI system Ax ≤ b with integral matrix A such that
P = P(A, b).

Proof. Let D ∈ Qm×n, d ∈ Qm be such that P = P(D,d) and the rows in Dx ≤ d are not redundant. Let
F1, . . . ,Ft be all (minimal) faces of P and let Hi ⊆Zn be a minimal integer Hilbert basis of cone((Deq(Fi)·)

⊤)
for every i ∈ {1, . . . , t} (exists by Remark 4.34). Define A as the matrix whose rows are exactly the vectors in
⋃︁t

i=1 Hi and consider the k-th row vector Ak· of A. Then, Ak· is an element of some integer Hilbert basis Hi.
Consequently, A is an integral matrix. Let b be defined via bk :=max {Ak·x : x ∈ P}. Note that this maximum
exists because Ak·

⊤ =
∑︁

j∈eq(Fi)
λ j(Dj ·)⊤ ∈ cone((Deq(Fi)·)

⊤), and thus

bk =max {Ak·x : x ∈ P}= Ak· x̂ for all x̂ ∈ Fi . (4.1)

We claim that P = P(A, b).
Clearly, P ⊆ P(A, b), since, for every y ∈ P and row Ak· it holds that Ak·y ≤max {Ak·x : x ∈ P}= bk.
Conversely, if y /∈ P, then there is a row index ℓ ∈ {1, . . . , m} such that Dℓ·y > dℓ. Let i ∈ {1, . . . , t} such that
ℓ ∈ eq(Fi), which exists since Dx ≤ d is not redundant.
Now, let δ ≥ 0 be such that δ(Dℓ·)⊤ ∈ Zn. Since {a(1), . . . , a(s)} := Hi is a Hilbert basis of cone((Deq(Fi)·)

⊤),
there are non-negative integer multiples δ1, . . . ,δs of δ with

δDℓ·
⊤ =

s
∑︂

r=1

δr a(r ).
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Denote by kr the row of A with Akr ·
⊤ = a(r ) for all r ∈ {1, . . . , s}. Taking into account (4.1), we obtain for

x̂ ∈ Fi that
s
∑︂

r=1

δr Akr ·y =
s
∑︂

r=1

δr(a
(r ))⊤y = δDℓ·y > δdℓ = δDℓ· x̂ =

s
∑︂

r=1

δr(a
(r ))⊤ x̂ =

s
∑︂

r=1

δr bkr
.

So there is a r̂ ∈ {1, . . . , s} with Ak r̂ ·y > bkr̂
. Thus y /∈ P(A, b). This completes the proof that P = P(A, b).

Finally, the system Ax ≤ b is TDI as required: If Fi is a face of P and {a(1), . . . , a(s)} := Hi, then Akr · x̂ =
(a(r ))⊤ x̂ = bkr

for all x̂ ∈ Fi and r ∈ {1, . . . , s}, see (4.1). Thus (a(r ))⊤ is a row of Aeq(Fi)·. In addition,
{a(1), . . . , a(s)} is an (integer) Hilbert basis of cone((Deq(Fi)·)

⊤) = cone((Aeq(Fi)·)
⊤) because of P(D,d) = P(A, b).

Applying Theorem 4.35 completes the proof.

In fact, it is even true that P is integral if and only if b can be chosen as an integer vector. One direction is
obtained from the proof of Theorem 4.38, because P is integral if and only if every face contains an integer
point (Lemma 2.33). For the TDI system in the proof of Theorem 4.38, every integer vector z on a face
satisfies some of the inequalities of Ax ≤ b with equality. Due to (4.1), the associated components of b must
be integers. Conversely, Theorem 4.31 implies that integrality of b implies the integrality of P . We obtain the
following characterization.

Theorem 4.39. A rational polyhedron P ⊆ Rn is integral if and only if there is a TDI system Ax ≤ b
with A∈Qm×n and b ∈Zm and P = P(A, b).

4.3.1 Applications in combinatorial optimization

There are many examples where TDI systems naturally occur, two of which are presented below.

Example 4.40. A matrix A∈ {0, 1}m×n is called balanced if it does not have a (k× k)-submatrix for odd k and
with exactly two ones per row and column. For example, the matrix

⎛

⎜

⎝

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

⎞

⎟

⎠

is balanced, but not totally unimodular (its determinant is −2). It can be shown (see [16]) that A being
balanced implies that the system Ax ≤ 1, x ≥ 0 is TDI. △

Often, TDI systems are used to prove discrete min-max results, such as Theorem 4.14.

Example 4.41. Let G = (V, E) be a directed graph and r ∈ V . An r-arborescence is a subset A ⊆ E with
|A| = |V | − 1 such that every vertex is reachable from r in (V, A), i.e., in particular, |δ−(v) ∩ A| = 1 for all
v ∈ V \ {r} and |δ−(r)∩ A|= 0. An r-cut is a directed cut δ−(U) in G with ∅ ≠ U ⊆ V \ {r}.
Let M be the 0/1-matrix whose rows are the incidence vectors of all r-cuts in G. It can be shown (see [14])
that the system {M x ≥ 1, x ≥ 0} is TDI. The minimal x ∈ {0,1}A that satisfy M x ≥ 1 are exactly the
r-arborescences.
With this result, we can handily prove Fulkerson’s optimal arborescence theorem (see [17]): Let c ∈Zm

≥0 be a
non-negative integer cost vector. Because {x ∈Rm : M x ≥ 1, x ≥ 0} is TDI and because of LP duality, we get
that

min {c⊤x : M x ≥ 1, x ≥ 0}=max {1⊤y : M⊤y ≤ c, y ≥ 0}
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and both optima are assumed by integral points x ⋆ and y⋆, see Theorem 4.31. This means that the minimum
cost of an r-arborescence is equal to the maximum size of a set of r-cuts such that every e ∈ A is contained in
at most ca r cuts. △

Remark 4.42. It can be checked in polynomial time whether a matrix is is totally unimodular (see [40]). The
same applies to recognizing balanced matrices (see [11]). On the other hand, it is NP-complete to decide
whether a system is TDI, even for Ax ≤ 1, A∈ {0,1}m×n (see [13]).
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5 Cutting Planes

We consider a general mixed-integer program as introduced in Definition 1.1, i.e.,

max c⊤x
s.t. Ax ≤ b,

x ∈Zp ×Rn−p,
(5.1)

with A∈Qm×n, c ∈Qn, b ∈Qm and p ∈ {0, . . . , n}. Note that, to ensure that the integer hull is a polyhedron,
we restrict ourselves to rational data (see Chapter 2).
In Chapter 4 we investigated sufficient conditions for the LP-relaxation of (5.1) to have integral optima, and
Chapter 3 we saw how to treat the general case via branch-and-bound. In this chapter, we investigate how to
strengthen the LP-relaxation by adding additional constraints that shrink the feasible region of the LP without
excluding feasible solutions of the MIP.
In particular, if a computed optimum vertex solution x ⋆ of the LP-relaxation does not fulfill the integer
conditions (i.e., x ⋆ /∈ Zp ×Rn−p), there must be an inequality (since PI is a polyhedron by Theorem 2.30),
called cutting plane, that separates x ⋆ from PI = conv({x ∈Zp ×Rn−p : Ax ≤ b}) – finding such an inequality
amounts to solving a separation problem (see Introduction to Optimization). If we find such a separating
inequality, we can add it to strengthen the LP relaxation and repeat the process for as long as the LP relaxation
yields infeasible optima. This procedure is often referred to as the cutting plane method.
In this chapter, we will devise strategies for generating cutting planes that, under suitable conditions, provably
produce a feasible optimum solution. These approaches generally work for arbitrary IPs. Because (5.1) is
NP-hard to solve (Theorem 3.1) and the separation problem is polynomially equivalent to the optimization
problem (see Introduction to Optimization), we cannot hope for efficient procedures that are always successful
(assuming P ̸= NP).
We will also examine the generation of cuts that can be used to accelerate the branch-and-bound method.
Such cutting planes often exploit the underlying problem structure.

5.1 General cutting planes

In this section, we consider a class of inequalities that is valid for PI and which can be applied irrespective of
the specific problem structure. We will see that this class is rich enough to provide a complete description of PI.
We begin by introducing these inequalities from a geometric perspective and later assume a more algorithmic
approach.

5.1.1 Geometric approach: Chvátal-Gomory inequalities

We consider a rational polyhedron P := P(A, b), with A ∈ Qm×n, b ∈ Qm. Our goal is to describe PI :=
conv(P ∩Zn) by linear inequalities.
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Let c⊤x ≤ δ with integer vector c ∈Zn be a valid inequality, i.e., P ⊆ {x ∈Rn : c⊤x ≤ δ} (and PI ⊆ {x ∈Rn :
c⊤x ≤ δ}). Since c⊤x ∈Z for all x ∈ P ∩Zn, it follows that

PI ⊆ {x ∈Rn : c⊤x ≤ ⌊δ⌋}.

This observation suggests taking all valid inequalities with an integer normal vector and rounding down the
right-hand sides in order to obtain a stronger formulation. Of course, it suffices to take supporting inequalities,
i.e., those for which P ∩ {x ∈Rn : c⊤x = δ} ≠ ∅. To do this, define

P1 := {x ∈Rn : c⊤x ≤ ⌊δ⌋ for all valid supporting inequalities (5.2)
c⊤x ≤ δ of P with c ∈Zn}.

The resulting inequalities c⊤x ≤ ⌊δ⌋ are called Chvátal-Gomory inequalities and P1 is called elementary closure
of P.
At first glance, it is not clear whether P1 is a polyhedron again, because there are infinitely many supporting
hyperplanes. However, we will prove that P1 is indeed a polyhedron. This allows us to iterate and define

P0 := P and P t+1 := (P t)1 for t ∈N. (5.3)

Then P t is the Chvátal-Gomory closure of rank t. We immediately have

P = P0 ⊇ P1 ⊇ · · · ⊇ PI . (5.4)

This raises the question of whether this method is finite. We will show that, indeed, a t ∈ N exists with
P t = PI. The resulting P t provides the desired description of PI by linear inequalities.

Remark 5.1. By rounding the right-hand side, we move the hyperplane {x ∈Rn : c⊤x = δ} for c ∈Zn closer
to PI. If gcd(c1, . . . , cn) = 1, the resulting hyperplane then contains an integer point: Otherwise, according
to Lemma 4.25, we would have λ ∈ Q with λc ∈ Zn but λ⌊δ⌋ /∈ Z. Since gcd(c1, . . . , cn) = 1 and λc ∈ Zn, it
follows that λ ∈Z, a contradiction.

If the resulting hyperplanes define supporting hyperplanes for PI we have reached P = PI, since, by
Lemma 2.33, we have the following.

Observation 5.2. Every minimal face of a polyhedron P ⊆Rn contains an integer point if and only if every
supporting hyperplane of P contains an integer point of P.

We start with the proof that P1 is a polyhedron. According to Theorem 4.38, every rational polyhedron can
be represented by a TDI system of the form Ax ≤ b with integer matrix A. This allows to calculate P1 directly.

Theorem 5.3. Let P = P(A, b) ̸= ∅ with Ax ≤ b TDI and A ∈ Zm×n. Then, P1 = P(A, ⌊b⌋), i.e., P1 is a
polyhedron.a

a⌊b⌋ is to be understood component-wise.

Proof. We have P1 ⊆ P(A, ⌊b⌋), since Ai·x ≤ ⌊bi⌋ is a Chvátal-Gomory inequality.
To prove the converse, let c⊤x ≤ δ be a valid supporting inequality for P and c be integral. By strong duality,
we have

δ =max {c⊤x : Ax ≤ b}=min {y⊤b : A⊤y = c, y ≥ 0}.
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Since Ax ≤ b is TDI, there is an integral optimum solution y⋆ of the dual problem, i.e., c⊤x ≤ δ can be
expressed as integral linear combination of the rows of Ax ≤ b. For x̂ ∈ P(A, ⌊b⌋), we have

c⊤ x̂ = (A⊤y⋆)⊤ x̂ = (y⋆)⊤(Ax̂ )
y⋆≥0
≤ (y⋆)⊤⌊b⌋= ⌊(y⋆)⊤⌊b⌋⌋ ≤ ⌊(y⋆)⊤b⌋= ⌊δ⌋.

It follows that P(A, ⌊b⌋) ⊆ {x ∈ Rn : c⊤x ≤ ⌊δ⌋}. Let S ⊆ Zn ×R denote the set of all pairs (c,δ) such that
c⊤x ≤ δ is a valid supporting inequality. We obtain

P(A, ⌊b⌋) ⊆
⋂︂

(c,δ)∈S

{x ∈Rn : c⊤x ≤ ⌊δ⌋}= P1.

We show the useful fact that the operations of taking a face and taking the elementary closure of a polyhedron
commute.

Corollary 5.4. For every face F of P it holds that F1 = P1 ∩F .

Proof. By Theorem 4.38, we may let P = P(A, b) with Ax ≤ b TDI and A integral. Let F be a face of P and
let c ∈Zn, δ ∈Z such that F = {x ∈ P : c⊤x = δ} and c⊤x ≤ δ is valid for P . Theorem 4.35 implies that the
system Ax ≤ b, c⊤x ≤ δ is also TDI, since the corresponding polyhedron has no additional faces. Therefore,
by Corollary 4.36, the system Ax ≤ b, c⊤x ≤ δ, −c⊤x ≤ −δ is TDI as well. Since δ is an integer, Theorem 5.3
yields

P1 ∩F = P1 ∩P ∩ {x ∈Rn : c⊤x = δ}
Thm 5.3
= {x ∈Rn : Ax ≤ ⌊b⌋, c⊤x = δ}
δ∈Z
= {x ∈Rn : Ax ≤ ⌊b⌋, c⊤x ≤ ⌊δ⌋, −c⊤x ≤ ⌊−δ⌋}

Thm 5.3
= F1.

Observation 5.5.

(a) F1 is a (possibly empty) face of P1, since F1 = P1 ∩F = P1 ∩P ∩{x ∈Rn : c⊤x = δ}= P1 ∩{x ∈Rn :
c⊤x = δ} (note, that P1 ⊆ P ⊆ {x ∈Rn : c⊤x ≤ δ}).

(b) Therefore, F2 = (F1)1 = (P1)1 ∩F1 = P2 ∩P1 ∩F = P2 ∩F . Repeated application yields

F t = P t ∩P t−1 ∩ · · · ∩P1 ∩F = P t ∩F ∀t ∈N.

We now have everything in place to show the finiteness of the rounding scheme.

Theorem 5.6 ([9]). For every rational polyhedron P there exists t ∈Z≥0 with P t = PI.

We first sketch the proof of Theorem 5.6. It uses induction on the dimension of the polyhedron. We show, that
it suffices to consider the progress of supporting hyperplanes of a finite number of orientations – namely all
normal directions needed for a complete description of the polyhedra P and PI. For every fixed direction, we
argue that we can make progress until the corresponding supporting hyperplane contains an integer point
of P: As long as this is not the case, we know by induction that, after a finite number of iterations, the Chvátal-
Gomory closure no longer contains points of this supporting hyperplane. Eventually, all relevant supporting
hyperplanes contain an integer point of P and thus we have found a description of PI (cf. Observation 5.2).
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Proof of Theorem 5.6. If P = ∅, then P0 = P = PI follows. We may therefore assume P ̸= ∅ in the following.
We further prove that we may assume P to be full-dimensional. To that end, let {x ∈Rn : Ax = b} := aff(P) ̸=
Rn be the affine hull of P, i.e., P ⊆ {x ∈Rn : Ax = b}. We can assume that A is an integer matrix of full row
rank (otherwise we scale and eliminate redundant rows), i.e., A∈Z(n−d)×n with d := dim(P).
If {x ∈Rn : Ax = b} contains no integer point, then, according to Lemma 4.25, there is y ∈Qn−d with c :=
A⊤y ∈Zn and δ := b⊤y /∈Z. Every x̂ ∈ P satisfies Ax̂ = b and therefore c⊤ x̂ = (A⊤y)⊤ x̂ = y⊤Ax̂ = y⊤b = δ.
Thus {x ∈Rn : c⊤x = δ} is a supporting hyperplane of P. We conclude that

PI ⊆ P1 ⊆ {x ∈Rn : c⊤x ≤ ⌊δ⌋, −c⊤x ≤ ⌊−δ⌋}

= {x ∈Rn : c⊤x ≤ ⌊δ⌋, c⊤x ≥ ⌈δ⌉} δ/∈Z= ∅,

and thus PI = P1 = ∅.
Now let x̂ ∈ {x ∈Rn : Ax = b} be integral. Theorem 5.6 is invariant under translation by the vector x̂ , thus
we can assume aff(P) = {x ∈Rn : Ax = 0}. By Theorem 4.21 and Remark 4.24 (b), as well as the fact that
the row rank of A is n− d, a square unimodular matrix U with AU = [B, 0] in Hermite normal form exists. By
Corollary 4.6, U−1 is unimodular as well and UZn =Zn. Via the (bijective) variable transformation x = U z,
we can therefore assume that

aff(P) = {z ∈Rn : [B, 0]z = 0}= {0}n−d ×Rd .

Every supporting hyperplane H = {x ∈Rn : c⊤x = δ} of P can be transformed into the form

H′ = {x ∈Rn :
n−d
∑︂

i=1

0 x i +
n
∑︂

i=n−d+1

ci x i = δ}

by adding suitable multiples of the rows of [B, 0] to c (this is possible, because [B, 0]x = 0 for x ∈ P ⊆ aff(P);
δ and cn−d+1, . . . , cn are unaffected). In the construction of P1 we can restrict ourselves to support hyperplanes
of the form H′. We may therefore assume n− d = 0, i.e., P is full dimensional.
Towards the proof of the theorem, we employ induction over the dimension d of P . If d = 0, then P = {x̄} for
some x̄ ∈ Rn. If x̄ ∈ Zn, we obtain P0 = P = PI. Otherwise, P1 = ∅ = PI. Now, consider d > 0 and let the
theorem hold for all polyhedra of smaller dimensions.
By Theorem 2.30, by Corollary 2.21, and by scaling, we can find W ∈Zm×n and w ∈Zm with PI = P(W, w ).
We may further assume that Wi· ̸= 0⊤ and w′i := max{Wi·x : x ∈ P} is bounded for all i ∈ {1, . . . , m}:
If PI ̸= ∅, this holds since zero-rows are redundant and by Corollary 2.31. Now assume PI = ∅. Since
P ̸= ∅ is rational, Corollary 2.21 yields a representation P = V + E . We have dim(E) < n, otherwise P
would contain integral points (exercise). Hence, there is d ∈ Zn with d⊤r = 0 for all r ∈ E , and both
max{d⊤x : x ∈ P} = max{d⊤x : x ∈ V} and max{−d⊤x : x ∈ P} = −min{d⊤x : x ∈ V} are bounded.
We can thus set W :=

�

d⊤

−d⊤

�

and w =
�

−1
1

�

with PI = P(W, w ) = ∅. In either case, we can find w ′ with
P ⊆ P(W, w ′).
Now, consider an inequality a⊤x ≤ β of the system W x ≤ w with a ∈ Zn \ {0} and β ∈ Z and let a⊤x ≤ β ′

be the corresponding inequality of W x ≤ w ′ (feasible for P). We claim that we can find s ∈ N with
P s ⊆ {x ∈Rn : a⊤x ≤ β}. Suppose this was not the case, i.e., we cannot find any Chvátal-Gomory inequality
that implies a⊤x ≤ β . Then, P1 ⊆ {x ∈ Rn : a⊤x ≤ ⌊β ′⌋}, but, by assumption, P1 ⊈ {x ∈ Rn : a⊤x ≤ β}
holds. It follows that β < ⌊β ′⌋. Since w and therefore β is integral, there is β ′′ ∈Z and r ∈Z≥0 with

β < β ′′ ≤ ⌊β ′⌋,

P t ⊆ {x ∈Rn : a⊤x ≤ β ′′} for all t ≥ r, and
P t ̸⊆ {x ∈Rn : a⊤x ≤ β ′′ − 1} for all t ≥ r.

48



Due to the choice of r, we have that {x ∈ Rn : a⊤x = β ′′} is a supporting hyperplane for P r . Since a ̸= 0,
we have that F := P r ∩ {x ∈ Rn : a⊤x = β ′′} has lower dimension than n. We further conclude from
PI ⊆ {x ∈Rn : a⊤x ≤ β} and β ′′ > β that F ∩Zn = ∅. Therefore, by the induction hypothesis, there is r̃ ∈Z≥0
with F r̃ = FI = ∅. By Remark 5.5 (b),

∅= F r+r̃ = P r+r̃ ∩ {x ∈Rn : a⊤x = β ′′}.

Therefore, P r+r̃ ⊆ {x ∈ Rn : a⊤x < β ′′}, which means that P r+r̃+1 ⊆ {x ∈ Rn : a⊤x ≤ β ′′ − 1}, which is a
contradiction to the choice of β ′′ and r.
Since a⊤x ≤ β was chosen arbitrarily and the system W x ≤ w is finite, we can thus find s ∈ Z≥0 with
P s ⊆ P(W, w ) = PI. It follows that P s = PI as desired (see (5.4)).

Let us review what we have shown so far. The procedure to obtain a linear description of the integral
polyhedron PI = conv({x ∈Zn : Ax ≤ b}) proceeds as follows. We start with the linear relaxation P0 = P =
{x ∈Rn : Ax ≤ b} of PI. Next, we consider every supporting hyperplane of P whose left-hand side has integer
coefficients, and round the right-hand side down to the next integer. This operation, for all such supporting
hyperplanes results in the polyhedron P1. Theorem 5.3 shows that there is no need to consider all supporting
hyperplanes – all we need is a TDI system Dx ≤ d that describes P. For this TDI system, we need to round
down the vector d of right-hand sides. In the proof of Theorem 4.38, we explicitly constructed the TDI system
for a rational polyhedron P by explicitly constructing, for every face F of P a generating Hilbert basis of
cone((Aeq(F)·)⊤). Overall, the method for constructing a Hilbert basis for a polyhedral cone yields an algorithm
for computing P1. According to Theorem 5.6, this algorithm only needs to be performed a finite number of
times times in order to obtain a linear description of PI.
The entire procedure is hardly practicable. First of all, the number t ∈N in Theorem 5.6 is possibly exponential
in the coding length of the input variables A, b (see exercise). Secondly, in every iteration, we have to
determine Hilbert bases for all cones generated by the faces of P i−1. In general, not only is the number of
faces exponential, we cannot even compute a single Hilbert basis in polynomial time.
On the other hand, a complete description of PI = conv({x ∈Zn : Ax ≤ b}) is not necessary for solving (5.1).
We “merely” need to find an optimum solution. Put another way, we are only interested in one face, namely
the one that contains the optimum solutions. Even for this face, it is not necessary to find a Hilbert basis for
the corresponding cone. We only need to be able to find integral vectors in this cone.
More formally, assume we have the solution of the LP relaxation max {c⊤x : Ax ≤ b}. Let x ⋆ be an optimum
solution that is not integral. The challenge is to find an integral vector in cone((Aeq(x ⋆)·)⊤) that separates the
current fractional optimum solution x ⋆, i.e., to find d ∈Zn ∩ cone((Aeq(x ⋆)·)⊤) with d⊤x ⋆ /∈Z.

5.1.2 Algorithmic approach: Gomory inequalities

We can systematically find cutting planes by evaluating information gained during the course of the simplex
algorithm. We first consider the purely integral case (p = n) and assume that all coefficients are integers.
We can transform (5.1) into standard form by splitting x into x+, x− ≥ 0 with x = x+ − x− and introducing
(integral) slack variables (see Introduction to Optimization). We obtain a problem of the form

max c⊤x

s.t. Ax = b

x ≥ 0

x ∈Zn.

(5.5)
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with A∈Zm×n and b ∈Zm and the LP relaxation

max c⊤x

s.t. Ax = b

x ≥ 0.

Solving the latter via the simplex method, we obtain an optimum vertex solution x ⋆ and an optimum basis B
with B ⊆ {1, . . . , n}, |B| = m, and A·B regular. As usual, we denote the non-basis by N = {1, . . . , n} \ B. This
means that x ⋆N = 0 and x ⋆B = b̄− Ā·N x ⋆N = A−1

·B b and x ⋆N = 0 with b̄ := A−1
·B b and Ā := A−1

·B A. If x ⋆B is integral, we
have found an optimum solution of (5.5). Otherwise, there exists i ∈ B with x⋆i /∈Z.
For every feasible solution x of (5.5) it holds that xB = b̄− Ā·N xN or

x i = b̄i −
∑︂

j∈N

Āi j x j . (5.6)

With xN ≥ 0 we get
x i ≤ b̄i −
∑︂

j∈N

⌊Āi j⌋ x j .

Because x i ∈Z and ⌊Āi j⌋ x j ∈Z for j ∈ N , we can round the right-hand side to obtain

x i ≤ ⌊b̄i⌋ −
∑︂

j∈N

⌊Āi j⌋ x j . (5.7)

This valid inequality is called (fractional) Gomory cut. It cuts off x ⋆ from the current LP relaxation because
x ⋆N = 0 and x⋆i = b̄i /∈Z. Furthermore, (5.7) is an inequality of the form c⊤x ≤ ⌊δ⌋, c ∈Zn for a supporting
hyperplane c⊤x ≤ δ, thus it appears in the approach of the previous section.
The inequality (5.7) is converted by means of a slack variable into an equation and added to the system Ax = b,
x ≥ 0, maintaining the property that all coefficients are integers. Therefore, the slack variable introduced for
the new inequality can also be regarded as an integer and thus the procedure can be iterated. It can be shown
that, with a certain choice of optimum solution and choice of fractional basis element, we obtain a finite
algorithm (see [20]), i.e., after a finite number of inequalities have been added, an integral solution is found.
The inequality (5.7) can be rewritten as follows. Let fi ∈ (0, 1) be the fractional part of b̄i, i.e. b̄i = ⌊b̄i⌋+ fi.
Analogously, let fi j ∈ [0, 1) be the fractional parts of Āi j, i.e., Āi j = ⌊Āi j⌋+ fi j. From (5.6) we thus obtain

x i = fi −
∑︂

j∈N

fi j x j +
�

⌊b̄i⌋ −
∑︂

j∈N

⌊Āi j⌋ x j

�

.

If we subtract this equation from (5.7), we obtain the equivalent inequality
∑︂

j∈N

fi j x j ≥ fi . (5.8)

Example 5.7. Consider the IP
max x2

s.t. 4x1 +x2≤ 4
−4x1 +x2≤ 0

x1, x2≥ 0
x1, x2∈Z.
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x1

x2

1

2

3x1 ≥ x2

2x1 ≥ x2

x1 ≥ x2

PI0 1

x ⋆

Figure 5.1: Illustration of Examples 5.7 and 5.9.

See Figure 5.1 for an illustration. Adding slack variables results in

max x2
s.t. 4x1 +x2 +x3 = 4

−4x1 +x2 +x4 = 0
x1, x2, x3, x4 ≥ 0
x1, x2, x3, x4 ∈Z.

The optimal basis for the LP relaxation is B = {1, 2} with

A·B =

�

4 1
−4 1

�

, A·N =

�

1 0
0 1

�

, A−1
·B = Ā·N =

�

1/8 −1/8
1/2 1/2

�

.

Hence, x ⋆B = b̄ = (A·B)−1b =
�1/2

2

�

. The only fractional component is x1 and for i = 1 (5.6) becomes

x1 =
1
2 −

1
8 x3 +

1
8 x4 ∈Z,

which is true for all integral solutions x . Inequality (5.7) then becomes

x1 ≤ ⌊
1
2⌋ − ⌊

1
8⌋x3 − ⌊−

1
8⌋x4 = 0− 0x3 + x4,

which reduces to x1 − x4 ≤ 0. With respect to the original variables x1, x2, by replacing the slack variable
x4 = 4x1 − x2, we obtain

−3x1 + x2 ≤ 0.

This is a valid inequality for

PI = conv({x ∈Z2
≥0 : 4x1 + x2 ≤ 4, −4x1 + x2 ≤ 0}).

The alternative representation (5.8) is, with x3 = 4− 4x1 − x2,

1
8 x3 +

7
8 x4 ≥

1
2 ↔ 1

2 −
1
2 x1 −

1
8 x2 +

7
2 x1 −

7
8 x2 ≥

1
2 ↔ 3x1 − x2 ≥ 0. △

5.1.3 Gomory’s mixed-integer cuts

The fractional Gomory cuts presented in the last section are dominated by the so-called mixed-integer Gomory
cuts, which we now derive. We need the following observation.
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Observation 5.8. Let (a(k))⊤x ≥ β (k) be a valid inequality for the polyhedron P(k) ⊆Rn
≥0 for k ∈ {1,2}. Then,

n
∑︂

i=1

max(a(1)i , a(2)i ) x i ≥min(β (1),β (2))

is valid for P(1) ∪P(2) and conv(P(1) ∪P(2)).

As in the previous section, we start with (5.6) and split the sum on the right to obtain

x i = b̄i −
∑︂

j∈N : fi j≤ fi

Āi j x j −
∑︂

j∈N : fi j> fi

Āi j x j , (5.9)

where we again use the fractional values fi ∈ (0, 1) of b̄i (since x⋆i /∈Z) and fi j ∈ [0, 1) of Āi j. For j with fi j ≤ fi
we use Āi j = ⌊Āi j⌋+ fi j. For j with fi j > fi, and thus fi j > 0, we use Āi j = ⌈Āi j⌉ − 1+ fi j. Inserted in (5.9) these
yield that all feasible x satisfy

∑︂

j∈N : fi j≤ fi

fi j x j +
∑︂

j∈N : fi j> fi

( fi j − 1) x j = r + fi ,

where
r = ⌊b̄i⌋ −
∑︂

fi j≤ fi

⌊Āi j⌋ x j −
∑︂

fi j> fi

⌈Āi j⌉ x j − x i ∈Z.

Now, either r ≥ 0 or r ≤ −1 must hold. Therefore, every feasible point x ∈ Zn
≥0 with Ax = b either satisfies

the inequality
∑︂

j∈N : fi j≤ fi

fi j

fi
x j −
∑︂

j∈N : fi j> fi

1− fi j

fi
x j ≥ 1

or
−
∑︂

j∈N : fi j≤ fi

fi j

1− fi
x j +
∑︂

j∈N : fi j> fi

1− fi j

1− fi
x j ≥ 1.

According to Observation 5.8, we can combine both inequalities to obtain the Gomory mixed-integer cut
∑︂

j∈N : fi j≤ fi

fi j

fi
x j +
∑︂

j∈N : fi j> fi

1− fi j

1− fi
x j ≥ 1. (5.10)

We have just shown that this cutting plane is valid for all feasible x .
Because

1− fi j

1− fi
< 1<

fi j

fi
for fi j > fi ,

the cut (5.10) dominates the fractional Gomory cuts (5.8). In particular, (5.10) cuts off the current solution
of the LP relaxation.

Example 5.9. We consider the same IP as in Example 5.7 and again get

x1 =
1
2 −

1
8 x3 +

1
8 x4.

We have f13 =
1
8 , f14 =

7
8 , f1 =

1
2 , i.e., the two cases f13 ≤ f1 and f14 > f1 occur. We obtain the mixed-integer

Gomory cut (5.10) as
1
8
1
2

x3 +
1− 7

8

1− 1
2

x4 ≥ 1 ⇔
1
4

x3 +
1
4

x4 ≥ 1 ⇔ x3 + x4 ≥ 4.
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Elimination of x3 = 4− 4x1 − x2 and x4 = 4x1 − x2 results in

x3 + x4 ≥ 4 ↔ 4− 4x1 − x2 + 4x1 − x2 ≥ 4 ⇔ −2x2 ≥ 0 ⇔ x2 ≤ 0.

In this case, we directly reach the integer hull PI (see Figure 5.1).
For the two inequalities of the disjunction r ≥ 0 or r ≤ −1 we get x3 − x4 ≥ 4 or −x3 + x4 ≥ 4 respectively.
With regard to the original variables, this corresponds to x1 ≤ 0 and x1 ≥ 1. The mixed-integer Gomory cut is
exactly valid for this disjunction: In the left part, the intersection of the corresponding inequality with the
polyhedron is {

�

0
0

�

}, in the right part it is {
�

1
0

�

}. △

The name “mixed-integer Gomory cut” indicates that these inequalities were developed for the case in which,
in addition to integer variables, continuous variables may occur (i.e., p < n). If I = {1, . . . , p} ∩ N is the set of
indices of integer variables in the non-basis N , the general form of the cut is

∑︂

j∈I : fi j≤ fi

fi j

fi
z j +
∑︂

j∈I : fi j> fi

1− fi j

1− fi
z j +
∑︂

j∈N\I : Āi j>0

Āi j

fi
z j −
∑︂

j∈N\I : Āi j<0

Āi j

1− fi
z j ≥ 1. (5.11)

Remark 5.10. In the mixed-integer case, the ideas of the previous two sections do not work. Chvátal’s approach
does not work because the right-hand side in (5.3) cannot be rounded down. Gomory’s approach fails because
the argument for rounding (5.7) no longer holds.

It can be shown (see [19]) that an algorithm based on iterative addition of the inequalities (5.11) solves
min {c⊤x : x ∈ X } with X = {x ∈ Zp

≥0 ×R
n−p
≥0 : Ax = b} in a finite number of steps if c⊤x ∈ Z holds for all

x ∈ X . In general, it is currently not known whether a finite cutting plane method exists.
Various other inequalities have been considered independently of a specific problem structure. Among these
are for example, mixed-integer rounding cuts (MIR) (see [34]) and so-called lift-and-project cuts (see [3]).

5.2 Specialized cuts

After dealing with valid inequalities for general IPs and MIP’s let us focus our attention on a single or a small
subset of such constraints, where a problem might exhibit some local structure. For example, all variables in a
constraint might be binary, or a MIP may contain a network flow problem as a part of its constraints. We are
looking for ways to obtain stronger inequalities by exploiting such local structures.

5.2.1 Inequalities for knapsack problems

Every row of Ax ≤ b defines a knapsack problem (see Example 1.6). We first attempt to derive inequalities
for this problem that can then be used for the entire problem. To simplify the representation, we restrict
ourselves to binary problems, i.e., problems of the form

max c⊤x

s.t. Ax ≤ b

x ∈ {0, 1}n,

with A∈Qm×n, b ∈Qm, c ∈Qn.
Now, we select a row a⊤x ≤ β from Ax ≤ b and consider the polytope

R := {x ∈ [0, 1]n : a⊤x ≤ β}.
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We want to find valid inequalities for RI. Because

RI = conv({x ∈ {0,1}n : a⊤x ≤ β}) ⊇ conv({x ∈ {0,1}n : Ax ≤ b}),

these inequalities are also valid for the original problem.
To simplify presentation, we bring the knapsack problem into a specific format. Recall that the knapsack
problem is NP-hard (see Algorithmic Discrete Mathematics).

Observation 5.11. We may assume that

(a) a and β are integral, which can be achieved by multiplication by the least common multiple of the
denominators,

(b) a ≥ 0, otherwise we replace x j by 1− x j for all j with a j < 0,

(c) 0≤ β < 1⊤a, otherwise the problem is not interesting, because either β ≥ a1+ · · ·+an and all x ∈ {0, 1}n

are feasible, or β < 0 and no x is feasible because we ensured a ≥ 0 above.

(d) a j ≤ β for all j ∈ {1, . . . , n}, otherwise x j = 0 in every feasible solution and x j can be ignored,

(e) c ≥ 0 when determining max{c⊤x : a⊤x ≤ β}, otherwise x j = 0 for every optimum solution (because
of a ≥ 0) for all j ∈ {1, . . . , n} with c j < 0. Furthermore, we can assume by scaling that c is integral.

Definition 5.12. An index set C ⊆ {1, . . . , n} is a cover, if

a(C) :=
∑︂

j∈C

a j > β .

The cover C is minimal if no C ′ ⊊ C is a cover. The corresponding inequality

x(C) :=
∑︂

j∈C

x j ≤ |C | − 1

is called cover inequality.

Note that the cover inequality and is valid for RI, because for integral values it demands that x j = 0 for at
least one j ∈ C .
Two questions arise: How strong are these inequalities? How to find a (minimal) cover? We first focus on the
former question.
The potential of an inequality for accelerating the solution process is difficult to assess. Presumably, however,
facets of RI are particularly important, because once we know them, we can solve the integer optimization
problem easily. So we could hope that cover inequalities define facets of RI. It will turn out that this is not
always the case. We can show the following, however.

Theorem 5.13 ([2, 22, 36, 43]). A minimal cover inequality x(C)≤ |C | − 1 defines a facet of the restricted
knapsack polytope

RI(C) := conv({x ∈ {0,1}C : a⊤C x ≤ β}).
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Proof. We first need to determine dimRI(C). According to Observation 5.11, we may assume a j ≤ β for all
j ∈ C and thus the vectors e j are feasible for all j ∈ C . Together with 0 they form |C |+ 1 affine independent
vectors. Thus dimRI(C) = |C | follows.
For the cover inequality to define a facet, there must be a number of dimRI(C) = |C | affinely independent
vectors of RI(C) that satisfy it with equality. Vectors with this property are 1− e j ∈ZC for j ∈ C , which are
in RI(C), because C is a minimal cover.

As mentioned above, cover inequalities do not always define facets of the general knapsack polytope RI.
However, this can be addressed by lifting the inequalities. For this, we, in general, calculate the largest possible
coefficient dk for a variable xk with coefficient 0 in the inequality, i.e., in our case k /∈ C , and add it to the
inequality to obtain

∑︂

j∈C

x j + dk xk ≤ |C | − 1. (5.12)

The new coefficient dk must be chosen such that the inequality is valid. However, it should also be as large as
possible to strengthen the inequality as much as possible. The largest possible coefficient can be found by
solving

dk = |C | − 1−max{1⊤x : a⊤C x ≤ β − ak, x ∈ {0, 1}C}. (5.13)

If xk = 0 holds for some point x ∈RI, then it obviously satisfies (5.12). If xk = 1, then a⊤C x ≤ β−ak must hold.
We optimize exactly over these constraints while demanding that (5.12) remains satisfied. Note that (5.13)
again defines a knapsack problem.

Example 5.14. Let the inequality a⊤x ≤ β be

6 x1 + 5 x2 + 5 x3 + 5 x4 + 8 x5 ≤ 16.

The set C = {1,2, 3,4} forms a (minimal) cover because a(C) = 21> 16. The corresponding cover inequality
is x(C)≤ 3. We now consider the only candidate k = 5 and calculate

d5 = 3−max {{x1 + x2 + x3 + x4 : 6 x1 + 5 x2 + 5 x3 + 5 x4 ≤ 8, x1, . . . , x4 ∈ {0, 1}}.

The maximum is 1 and therefore d5 = 2. We obtain the lifted inequality

x1 + x2 + x3 + x4 + 2x5 ≤ 3. △

If we iterate the procedure described above, we obtain a set C ′ ⊆ {1, . . . , n} \ C and the valid inequality
∑︂

j∈C

x j +
∑︂

j∈C ′
d j x j ≤ |C | − 1. (5.14)

The lifting problem (5.13) changes for k /∈ C ∪ C ′ to

dk = |C | − 1−max{
∑︂

j∈C

x j +
∑︂

j∈C ′
d j x j :
∑︂

j∈C∪C ′
a j x j ≤ β − ak, x ∈ {0, 1}C∪C ′}. (5.15)

By construction, dk ∈ {0, . . . , |C | − 1} holds. We obtain the following theorem.

Theorem 5.15. The lifted inequality (5.14) defines a facet of RI(C ∪ C ′). If C ∪ C ′ = {1, . . . , n}, then (5.14)
defines a facet of RI.
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Proof. We proceed by induction over |C ′|. The result follows for |C ′| = 0 from Theorem 5.13. Now let k be
the index that is to be added to C ′. Because, by induction, (5.14) defines a facet of RI(C ∪ C ′), there are
affinely independent vectors v1, . . . , v t ∈ {0,1}C∪C ′ of RI satisfying it with equality, where t = |C |+ |C ′| since
RI(C ∪ C ′) is full-dimensional as in Theorem 5.13. Now we define vectors v̂1, . . . , v̂ t ∈ {0, 1}C∪C ′∪{k} via

v̂ j
i :=

¨

0 if i = k,

v j
i , otherwise,

for j′ ∈ {1, . . . , t} and i ∈ C ∪ C ′ ∪ {k}. Then, v̂1, . . . , v̂ t each fulfill the lifted inequality
∑︂

j∈C

x j +
∑︂

j∈C ′
d j x j + dk xk ≤ |C | − 1 (5.16)

with equality.
Now let x ⋆ be an optimum solution for the maximum in (5.15) when calculating dk. We define the vector x̂ ⋆

via

x̂⋆i :=

¨

1 if i = k,

x⋆i otherwise,

for i ∈ C ∪ C ′ ∪ {k}. By construction, x̂ ⋆ satisfies the inequality (5.16) with equality. Therefore v̂1, . . . , v̂ t , x̂ ⋆

together form t + 1 affinely independent vectors, which proves the theorem because of dimRI(C ∪ C ′ ∪ {k}) =
|C |+ |C ′|+ 1.

To summarize, from minimal covers we can, step-by-step, determine facets of RI. However, we have not yet
discussed how to find minimal covers or how to solve the lifting problems. Unfortunately, solving knapsack
problems is NP-hard (see Algorithmic Discrete Mathematics). However, we can use the dynamic program (DP)
given below. Note that, by Observation 5.11, we may assume to a, c ∈Nn, β ∈N.

Algorithm: Dynamic program for the knapsack problem.
input: a, c ∈Nn; β ∈N, upper bound c̄ ∈N on optimal value
output: optimum value of {c⊤x : a⊤x ≤ β , x ∈ {0,1}n}
z(0,0)← 0, z(0, k)←∞∀k ∈ {1, . . . , c̄}
for j← 1, . . . , n :

for k← 0, . . . , c j − 1 :
z( j, k)← z( j − 1, k)

for k← c j , . . . , c̄ :
z( j, k)←min{z( j − 1, k− c j) + a j , z( j − 1, k)}

return max {k ∈ {0, . . . , c̄} : z(n, k)≤ β}

We prove correctness of the DP.

Theorem 5.16. The above DP solves the knapsack problem in time O(n · c̄) when given an upper bound c̄ on
optimum value, e.g., c̄ = 1⊤c.
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Proof. The algorithm runs in pseudo polynomial timeO(n · c̄). It uses a DP table where entry z( j, k) is intended
to hold the smallest weight of a partial solution only using the first j variables and reaching objective function
value k ∈ {0, . . . , c̄}, and∞ if no such solution exists, i.e.,

z( j, k) =min {a(S) : a(S)≤ β , c(S) = k, S ⊆ {1, . . . , j}}.

We have z( j, k) ≤ z( j − 1, k), because it is always possible to discard item j. A solution of smaller weight is
available when using the j-th item if and only if k ≥ c j, z( j−1, k−c j)+a j ≤ β and z( j−1, k−c j)+a j < z( j−1, k).
Hence, the DP computes the entries of the table correctly and therefore obtains the correct result overall.
An optimum solution can be found, as usual, via backtracking (see Algorithmic Discrete Mathematics).

The smallest minimal cover can be found by solving the knapsack problem

min{1⊤x : a⊤x ≥ β + 1, x ∈ {0,1}n}

= n−max{1⊤y : a⊤y ≤ 1⊤a− β − 1, y ∈ {0,1}n},

where we substituted y := 1− x . Because in this case c̄ = n is polynomial in the input size, the DP runs in
polynomial time. Note that, we can also obtain minimal (but not always the smallest) cover by iteratively
removing elements as long as possible.
The lifting problem (5.15) again involves a knapsack problem, which can again be solved by our dynamic
program. The optimum objective function value is polynomially bounded by c̄ := |C | − 1. Overall, using
Theorem 5.16 we can lift cover inequalities in polynomial time.

Corollary 5.17. The computation of a fully lifted cover inequality is possible in time O(n2 |C |) ⊆O(n3).

However, it is difficult to guarantee that the corresponding inequality truncates a given fractional point, in fact
is NP-complete to decide whether a lifted cover inequality exists that excludes a given point (see [31]). Note
that this does not follow from the equivalence of optimization and separation for the NP-complete knapsack
problem (see Introduction to Optimization), since we restrict ourselves to inequalities of a specific type. The
hardness of the specific separation problem means that, in practice, we have to resort to heuristics for lifting
and have to terminate the lifting procedure after some number of lifting operations.

Remark 5.18. There are many other classes of inequalities for the knapsack polytope, e.g., the so-called
(1, k)-configuration or extended-weight inequalities (see [37, 42, 33]).

5.2.2 Inequalities for set-packing problems

Mixed-integer problems often contain constraints that only involve binary variables and coefficients. In
particular, many binary programs contain logical inequalities of the form x i + x j ≤ 1 or x i ≤ x j. Furthermore,
preprocessing routines (see Section 3.2.3) for integer problems can automatically extract implicit logical
conditions. Such conditions occur, for example, when the binary variables x i model whether a certain
combination of resources is used. Conflicts between two combinations x i and x j are then expressed by
x i + x j ≤ 1.
This leads to binary programs with binary coefficient matrices. The study of such problems and, in particular,
set-packing problems plays an important role in combinatorial optimization. A deep theory has been developed
for these problems, which deals with notions such as perfect, ideal, or balanced matrices, perfect graphs,
blocking and anti-blocking polyhedra, independence systems and semidefinite optimization.
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The focus of this section is on the (partial) description of the associated polyhedra by means of inequalities.
Since relaxations of many integer problems lead to set-packing problems, understanding these polyhedra can
often lead to improved formulations of the initial problem.

Definition 5.19. The set-packing problem is given by

max {c⊤x : Ax ≤ 1, x ∈ {0,1}n}

with A∈ {0,1}m×n and c ∈Rn, cf. Example 1.7.

Remark 5.20. Every column A· j of A can be viewed as the incidence vector of a subset F j ⊆ {1, . . . , m}, i.e.,
F j := {i ∈ {1, . . . , m} : Ai j = 1}. With this interpretation, the set-packing problem consists in finding a
maximum (wrt. c) selection of sets from F1, . . . , Fn that are pairwise disjoint.

Feasible solutions of the set-packing problem have a nice graph-theoretic interpretation. We introduce a vertex
for every column of A and an edge { j,ℓ} between two vertices j and ℓ if their corresponding columns have a 1
in the same row.

Definition 5.21. The (column) conflict graph G(A) = (V, E) of A∈ {0,1}m×n is defined by V := {1, . . . , n} and

E := {{ j,ℓ} : ∃ i ∈ {1, . . . , m}: Ai j = Aiℓ = 1}.

Obviously, every feasible x ∈ {0,1}n that satisfies the inequality Ax ≤ 1 is the incidence vector of a stable set in
the graph G(A). Conversely, the incidence vector of a stable set in G(A) is a feasible solution of the set-packing
problem Ax ≤ 1. In other words, the study of stable sets in graphs is equivalent to the study of the set-packing
problem.
Now consider A∈ {0,1}m×n and denote the set-packing polytope by

P(A) = conv({x ∈ {0, 1}n : Ax ≤ 1}).

Let G(A) = (V, E) be the conflict graph of A. From our previous considerations it follows that

P(A) = conv({x ∈ {0,1}n : x j + xℓ ≤ 1 ∀{ j,ℓ} ∈ E}) =: P(G),

where the set in the convex hull consists of the stable sets in G, and P(G) is the stable-set polytope. Expressed
differently, two matrices A and A′ yield the same set-packing problem if and only if their corresponding conflict
graphs coincide. We can therefore consider P(A) via the graph G and denote both the set-packing and the
stable set polytope by P(G).
First, we make a few simple observations regarding P(G).

Proposition 5.22.

(a) P(G) is full-dimensional, i.e., dim(P(G)) = n.

(b) P(G) is downwards monotone, i.e., x ∈ P(G) implies y ∈ P(G) for all 0≤ y ≤ x .

(c) All facets of P(G) that are not facets of [0,1]n have non-negative coefficients, i.e., if a⊤x ≤ β defines
such a facet, then a ≥ 0 and β ≥ 0.

(d) The non-negativity conditions x j ≥ 0 induce facets of P(G).
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i i + 1

: Si

: Ti

Figure 5.2: Illustration of the sets Si and Ti in the proof of Theorem 5.23. The sets differ only by the elements i
and i + 1 (modulo k).

Proof. exercise.

From Theorems 4.15 and 4.8 we know that if G is bipartite, then the edge and the non-negativity conditions
are sufficient to fully describe P(G). Conversely, non-bipartite graphs contain odd cycles generating new
valid inequalities that are not induced by linear combinations of edge inequalities. By lifting, similarly to
Theorem 5.15, we obtain facets of P(G).

Theorem 5.23 ([35]). Let K = (VK , EK) ⊆ G be a cycle of odd length in an undirected graph G. Then, the
odd-cycle inequality

∑︂

v∈VK

xv ≤
|EK | − 1

2
, (5.17)

is valid for P(G). It defines a facet of P(G[VK]) for the induced subgraph G[VK] if and only if K is a holea.
aA hole is an induced subgraph that is a cycle.

Proof. The validity of the inequality is clear.
Consider an odd hole K = (VK , EK)with, without loss of generality, VK = {0, . . . , k−1} and EK =

�

{0,1}, {1, 2}, . . . , {k−
2, k− 1}, {k− 1, 0}

	

.
We first observe that

F := {y ∈ P(G[VK]) : 1⊤y =
k− 1

2
}

is a nontrivial face of P(G[VK]). If it is not a facet, F is part of a facet F ′ := {y ∈ P(G[VK]) : b⊤y = β} ⊇ F
of P(G[VK]). We consider the following sets for i ∈ VK (see Figure 5.2):

S0 = {0,3, 5, . . . , k− 2}, Si = (S0 + i) mod k,

T0 = {1,3, 5, . . . , k− 2}, Ti = (T0 + i) mod k.
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ẽ

F ′

H

Figure 5.3: Example for the sets H and F ′ in the proof of Theorem 5.23. In the example, the cycle K has
length 13.

(Example: For k = 7, S0 = {0, 3,5}, S1 = {1,4, 6}, S2 = {0,2, 5}, . . . , S6 = {2, 4,6}, T0 = {1, 3,5}, T1 = {2,4, 6},
T2 = {0, 3,5}, . . . , T6 = {1, 2,4}).
Since K has no chords, all sets are stable with respect to G and 1⊤χSi = 1⊤χTi = k−1

2 , where χS :=
∑︁

i∈S ei ∈
{0, 1}VK denotes the characteristic vector of the set S . From this it follows that χSi ,χTi ∈ F ⊆ F ′ and thus, for
i < k− 1,

0= b⊤χSi − b⊤χTi = b⊤χSi\Ti − b⊤χTi\Si = b⊤ei − b⊤ei+1 = bi − bi+1,

and 0= bi − b0 for i = k− 1. Since i was chosen arbitrarily, it follows that bi = b j for all i, j ∈ VK . This means
that b⊤x ≤ β is the odd-cycle inequality up to a positive factor, since both have the same left-hand side up to
a positive (by Proposition 5.22 (c)) factor and F ⊆ F ′. It follows that F = F ′, hence F is a facet of P(G′).
Now assume that the cycle K contains a chord ẽ ∈ G[VK]\ EK in G[VK] (see Figure 5.3). Then, EK ∪{ẽ} consists
of two cycles that have ẽ in common, where exactly one of the cycles has odd length. Let H = (VH , EH) be
this odd cycle and let EF = {e ∈ K : e ∩ VH = ∅}. Then, |EF | = (|EK |+ 1)− |EH | − 2 = |EK | − |EH | − 1 is odd.
Hence, there are pairwise disjoint edges, i.e., a matching, M ⊆ EF with |M | = |EF |+1

2 = |EK |−|EH |
2 . Now, the

odd-cycle inequality (5.17) is the the sum of the valid inequalities
∑︁

v∈V (H) xv ≤
|EH |−1

2 and xu + xv ≤ 1 for all
{u, v} ∈ M . The corresponding faces therefore each contain the face belonging to (5.17) (if (5.17) is satisfied
with equality, each of the other inequalities must also be satisfied with equality). Thus, (5.17) cannot induce
a facet of P(G[VK]).

Remark 5.24. Odd-cycle inequalities can be separated in polynomial time as follows (see [21, Lemma 9.1.11]).
We create from the conflict graph G(A) = (V, E) a bipartite auxiliary graph G′ = (V ∪ V ′, E′), where V ′ contains
a vertex v′ for every vertex v ∈ V and E′ := {{u, v′} : {u, v} ∈ E}}, i.e, we replace every edge {u, v} ∈ E by the
two edges {u, v′} and {v, u′}. Let x ⋆ ∈ [0,1]V be an optimum solution of the LP relaxation of the set-packing
problem. We define edge weights via w{u,v′} =

1
2(1− x⋆u − x⋆v)≥ 0 for all {u, v′} ∈ E′ with u ∈ V and v′ ∈ V ′.

Odd cycles K = (VK , EK) in G(A) correspond to minimal paths K ′ from a vertex s ∈ V to the corresponding
vertex s′ ∈ V ′ in G′, in particular, K ′ thus contains at most one of the vertices v, v′ for all v ∈ V \ {s}. The
weight of K ′ is

w(K ′) =
∑︂

e∈K ′
we =
∑︂

{u,v′}∈K ′

1
2(1− x⋆u − x⋆v) =

|EK |
2
−
∑︂

v∈VK

x⋆v ,

because every x⋆v occurs twice in the sum. This means that

w(K ′)< 1
2 ⇔

|EK | − 1
2

<
∑︂

v∈VK

x⋆v .
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We can therefore find a violated odd-cycle inequality by looking for a v-v′-path in G′ of weight less than 1
2 ,

e.g., using Dijkstra’s algorithm (see Algorithmic Discrete Mathematics).
Graphs G = (V, E), for which P(G) is completely characterized by the non-negativity constraints, the edge
inequalities x i + x j ≤ 1 for {i, j} ∈ E and the odd-cycle inequalities are called t-perfect (see [10]). The class of
t-perfect graphs contains a number of graphs, such as, e.g., series-parallel and bipartite graphs. In practice,
odd-cycle inequalities, however, are usually of little help in finding integral optima.
Another important class of valid inequalities for the stable set polytope are clique inequalities. Recall that a
clique is a complete subgraph.

Theorem 5.25. Let C be a clique in an undirected graph G. Then, the clique inequality
∑︂

j∈C

x j ≤ 1

is valid for P(G) and it defines a facet of P(G) if and only if C is maximal with respect to vertex inclusion.

Proof. exercise.

Graphs G, for which P(G) is completely described by the non-negativity conditions and the clique inequalities,
are called perfect (see [5]).
Unfortunately, the separation problem for the class of clique inequalities is NP-hard (see [21]). Surprisingly,
there is a larger class of inequalities, the orthonormal-representation inequalities, that generalize the clique
inequalities and can be separated in polynomial time. In addition to the cycle, clique and orthonormal-
representation inequalities, a number of other inequalities are known for the stable set polytope, e.g., the
blossom, odd antihole, wheel, antiweb and web, wedge, and many more inequalities (see [6]).
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6 Decomposition Methods

The idea of decomposition methods is to remove a part (constraints and/or variables) from the problem
and consider them separately in a so-called master problem. The remaining subproblem can often be solved
more efficiently. Decomposition methods now work alternatingly on the master problem and the subproblem
and iteratively exchange information in order to solve the initial problem optimally. In this section we look
at three well-known examples of this approach: the Lagrangian relaxation/decomposition, Dantzig-Wolfe
decomposition and Benders’ decomposition. In Lagrangian relaxation/decomposition, parts of the constraint
matrix are omitted and instead treated via the objective function. Dantzig-Wolfe decomposition and Benders’
decomposition also omit part of the constraint matrix, but instead of treating it via the objective function, it is
reformulated and reinserted into the constraints.

6.1 Lagrangian relaxation

In the previous chapter, we solved the mixed-integer problem by relaxing the integrality constraints and trying
to increase integrality of the solution by adding cutting planes. The method considered in this section employs
a different relaxation that relies on the so-called Lagrangian function.
The system of inequalities Ax ≤ b is divided into two parts A(1)x ≤ b(1) and A(2)x ≤ b(2) such that

A=
�

A(1)

A(2)

�

and b =
�

b(1)

b(2)

�

,

with A∈Qm×n, A(1) ∈Qm1×n, A(2) ∈Qm2×n, b(1) ∈Qm1 , b(2) ∈Qm2 and m1+m2 = m. The general mixed-integer
program (1.1) then becomes

max c⊤x

s.t. A(1)x ≤ b(1),

A(2)x ≤ b(2), (6.1)
x ∈Zp ×Rn−p.

The subdivision is chosen so that the part A(1)x ≤ b(1) contains the inequalities that are difficult to treat and
should therefore be relaxed. More specifically, the relaxed subsystem will be handled via a penalty term in the
objective rather than as constraints. The penalty will be set such that it ensures that the relaxed constraints
will be implicitly fulfilled by every optimum solution.
For a fixed λ ∈Rm1 , λ≥ 0, consider the Lagrangian function

L(λ) =max {c⊤x +λ⊤(b(1) − A(1)x ) : x ∈ X (2)}, (6.2)

where X (2) := {x ∈Zp ×Rn−p : A(2)x ≤ b(2)}. The value L(λ) is an upper bound for (6.1), since every feasible
solution x̄ of (6.1) satisfies

c⊤ x̄ ≤ c⊤ x̄ +λ⊤(b(1) − A(1) x̄ )≤ max
x∈X (2)

c⊤x +λ⊤(b(1) − A(1)x ) = L(λ),
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where the first inequality holds because A(1) x̄ ≤ b(1) and λ≥ 0 imply λ⊤(b(1) − A(1) x̄ )≥ 0, i.e., a violation of
A(1)x ≤ b(1) would decrease the objective function value and thus penalize it.
Since this applies for all λ≥ 0, the Lagrangian relaxation

min
λ≥0

L(λ) (6.3)

yields the smallest upper bound for (6.1) of this kind. Sometimes, (6.3) is referred to as the Lagrangian dual
(see Observation 6.4 for a motivation of the term).
But how can we compute an optimum solution λ⋆ of (6.3)? And how close is L(λ⋆) to the optimum value
of (6.1)? We first answer the latter question. In the following, observe that conv(X (2)) = P(A(2), b(2))I,p is the
integer hull of P(A(2), b(2)).

Theorem 6.1. It holds that

min
λ≥0

L(λ) =max {c⊤x : A(1)x ≤ b(1), x ∈ conv(X (2))}.

Proof. We obtain

L(λ) =max {c⊤x +λ⊤(b(1) − A(1)x ) : x ∈ X (2)}=max {c⊤x +λ⊤(b(1) − A(1)x ) : x ∈ conv(X (2))},

because the objective function is linear in x and conv(X (2)) = P(A(2), b(2))I,p is a polyhedron (Theorem 2.32),
i.e., the second maximum is attained at an extreme point, which cannot be a convex combination of other
points in X (2) (see Introduction to Optimization). It follows that

min
λ≥0

L(λ) =min
λ≥0

max {c⊤x +λ⊤(b(1) − A(1)x ) : x ∈ conv(X (2))}

=min
λ≥0

�

λ⊤b(1) +max{(c⊤ −λ⊤A(1)) x : x ∈ conv(X (2))}
	

.

If X (2) = ∅, the inner maximum is defined as −∞ for all λ and thus minλ≥0 L(λ) = −∞. Otherwise, by
Theorems 2.32 and 2.19, vectors v (1), . . . , v (k) ∈ Rn and r (1), . . . , r (ℓ) ∈ Rn exist such that conv(X (2)) =
conv({v (1), . . . , v (k)}) + cone({r (1), . . . , r (ℓ)}). This means that

max {(c⊤−λ⊤A(1)) x : x ∈ conv(X (2))}=

⎧

⎪

⎨

⎪

⎩

+∞ if ∃ i ∈ {1, . . . ,ℓ}: (c⊤ −λ⊤A(1)) r (i) > 0,

max
j∈{1,...,k}

(c⊤ −λ⊤A(1))v ( j) otherwise.

(6.4)
It follows that

min
λ≥0

L(λ) = min {λ⊤b(1) + max
j∈{1,...,k}

(c⊤ −λ⊤A(1))v ( j) : λ≥ 0, (c⊤ −λ⊤A(1))r (i) ≤ 0 ∀i ∈ {1, . . . ,ℓ}}. (6.5)

Note that if the problem is infeasible, i.e. no λ≥ 0 with (c⊤ −λ⊤A(1))r (i) ≤ 0 for all i ∈ {1, . . . ,ℓ} exists, then
the value of the minimum is∞ by convention, in accordance with (6.4). Otherwise, the value is finite and
attained in a vertex.
Using an additional variable η ∈R with η≥ c⊤v ( j) +λ⊤(b(1) − A(1)v ( j)) for all j ∈ {1, . . . , k}, we can reformu-
late (6.5) as

min
λ≥0

L(λ) = min
λ≥0,η∈R

η (6.6)

s.t. η−λ⊤(b(1) − A(1)v ( j))≥ c⊤v ( j) ∀ j ∈ {1, . . . , k},

λ⊤A(1)r (i) ≥ c⊤r (i) ∀i ∈ {1, . . . ,ℓ}.
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P(A(1), b(1)) P(A(1), b(1))I,p P(A(2), b(2))I,p P(A(2), b(2))

Figure 6.1: Illustration of the feasible region of the Lagrangian relaxation (blue). It contains the intersection of
the integer hulls of P(A(1), b(1)) and P(A(2), b(2)) (crosshatch pattern) which contains the feasible
region of the MIP. Conversely, the feasible region of the Lagrangian relaxation is contained in the
feasible region of the LP relaxation (line pattern).

By strong duality, we finally obtain

min
λ≥0

L(λ) =max c⊤
�

k
∑︂

j=1

v ( j)α j +
ℓ
∑︂

i=1

r (i)βi

�

s.t.
k
∑︂

j=1

α j = 1,

A(1)
�

k
∑︂

j=1

v ( j)α j +
ℓ
∑︂

i=1

r (i)βi

�

≤ b(1)
k
∑︂

j=1

α j ,

α j ≥ 0 ∀ j ∈ {1, . . . , k},
βi ≥ 0 ∀i ∈ {1, . . . ,ℓ}.

Since
∑︁k

j=1α j = 1, this is equivalent to

min
λ≥0

L(λ) =max{c⊤x : A(1)x ≤ b(1), x ∈ conv({v (1), . . . , v (k)}) + cone({r (1), . . . , r (ℓ)})}

=max{c⊤x : A(1)x ≤ b(1), x ∈ conv(X (2))}.

Because of

{x ∈Rn : Ax ≤ b} ⊇ {x ∈Rn : A(1)x ≤ b(1), x ∈ conv(X (2))} ⊇ conv({x ∈Zp ×Rn−p : Ax ≤ b}),

Theorem 6.1 implies the following, see Figure 6.1.

Corollary 6.2. It holds that zMIP ≤minλ≥0 L(λ)≤ zLP, where zMIP and zLP denote the optimum solution values
of the MIP (6.1) and its LP relaxation, respectively.

In particular, when p = 0, we have zMIP = zLP and the Lagrangian relaxation coincides with the LP-relaxation.
The latter is also true if the non-relaxed part of the problem induces an integral feasible region.

Observation 6.3. If P(A(2), b(2)) is integral, i.e., conv(X (2)) = P(A(2), b(2)), Theorem 6.1 yields that the
Lagrangian relaxation coincides with the LP relaxation, i.e.,

min
λ≥0

L(λ) =max {c⊤x : x ∈ P(A(1), b(1))∩P(A(2), b(2))}=max {c⊤x : Ax ≤ b}.
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We justify why minλ≥0 L(λ) is called the Lagrangian dual.

Observation 6.4. If p = 0 and all inequalities are relaxed, i.e., P(A(1), b(1)) = P(A, b), then

L(λ) =max {c⊤x +λ⊤(b− Ax ) : x ∈Rn}=max {(c⊤ −λ⊤A)x +λ⊤b : x ∈Rn}.

This problem is only bounded if c = A⊤λ, since x is unconstrained. The Lagrangian relaxation thus can be
rewritten as

minλ≥0L(λ) =min {λ⊤b : A⊤λ= c, λ≥ 0},

which corresponds exactly to the LP dual of max {c⊤x : Ax ≤ b}.

Remark 6.5. Of course, the utility of the Lagrangian relaxation very much depends on the set of constraints
being relaxed. On the one hand, we need to be able to compute L(λ) reasonably quickly, which makes it
desirable to relax as many difficult constraints as possible. On the other hand, the more constraints are relaxed,
the worse the bound L(λ⋆) becomes.

We still need to address the computation of min L(λ). From a theoretical point of view, the equivalence of
separation and optimization can be used to compute min L(λ) in polynomial time, provided that min{c̃⊤x :
x ∈ conv(X (2))} can be computed in polynomial time for every c̃ (see [39]). In practice, the subgradient
method is often employed to compute min L(λ).

6.1.1 Subgradient method

The subgradient method solves a general minimization problem min { f (λ) : λ ∈ S} for a convex function
f : S →R and a convex and closed set S ⊆Rr . It is particularly suited for the case when f is not differentiable.
The subgradient method is based on the following generalization of a gradient for convex functions.

Definition 6.6. A vector h ∈Rr is a subgradient of a convex function f : Rr →R at point λ̂ if, for all λ ∈Rr ,

f (λ)≥ f (λ̂) + h⊤(λ− λ̂).

In other words, subgradients are linear underestimators. Importantly, subgradients still allow to characterize
global minima of convex functions.

Lemma 6.7. The point λ⋆ ∈Rr minimizes a convex function f : Rr →R if and only if 0 is a subgradient of f
at λ⋆.

Proof. We have that f (λ⋆) is a (global) minimum if and only if, for all λ ∈ Rr , it holds that f (λ)− f (λ⋆) ≥
0= 0⊤(λ−λ⋆), i.e., if and only if 0 is a subgradient of f at λ⋆.

Much like simple gradient descent, the subgradient method relies on the fact that if λ⋆ ∈ S is a global minimum
of f , then, for every subgradient h ∈Rr at every point λ ∈ S,

0≥ f (λ⋆)− f (λ)≥ h⊤(λ⋆ −λ),

i.e., h points in opposing direction of the vector (λ⋆ − λ), which means that −h points from λ (vaguely)
towards λ⋆.
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With this in mind, the subgradient method starts with a point λ(0) ∈Rr and then iteratively computes λ(k+1)

for k← 1, 2, . . . via λ(k+1)← ΠS(λ(k) −µk h(k)/∥h(k)∥). Here, h(k) is a subgradient of f at point λ(k), the step
size µk > 0 is chosen such that it limits the overshoot in each step and thus improves convergence of the
method, and ΠS is a projection onto the closed set S defined by

ΠS(λ̂) := argmin
λ∈S
∥λ− λ̂∥.

Overall, we obtain the following general method.

Algorithm: subgradient method
input: convex function f : S →R with S ⊆Rr convex and closed
output: arg min { f (λ) : λ ∈ S}
choose λ(0) ∈ S; set k← 0
compute subgradient h(0) of f at λ(0)

while h(k) ̸= 0 :
choose step size µk
λ(k+1)← ΠS(λ(k) −µk

h(k)

∥h(k)∥)
k← k+ 1
compute subgradient h(k) of f at λ(k)

return λ(k)

We have already seen (Introduction to Optimization) that convex functions are continuous in the interior of
their domains. We need the following strengthening (see lecture Nonsmooth Optimization).1

Lemma 6.8. Every convex function f : U →R on a convex and open set U ⊆Rr is locally Lipschitz-continuous.

Note that it is crucial to require an open domain U , since a convex functions may be discontinuous at the
boundary. With this, we obtain the following convergence theorem.

Theorem 6.9. Let f be convex on an open set U ⊇ S, let
∑︁∞

k=0µk =∞ and let
∑︁∞

k=0µ
2
k <∞. Then, the

subgradient method either returns a minimum point of f or converges to one, provided any exists.

Proof. The statement for the case that the subgradient method terminates follows from Lemma 6.7.
We use (without proof) that projections onto convex sets are non-expansive, i.e., ∥ΠS(x )−ΠS(y)∥ ≤ ∥x − y∥
for all x , y ∈Rr . For every minimum point λ⋆ ∈ S of f , we have ΠS(λ⋆) = λ⋆ and thus

∥λ(k+1) −λ⋆∥2 = ∥ΠS(λ
(k) −µk

h(k)

∥h(k)∥)−ΠS(λ
⋆)∥2

≤ ∥λ(k) −µk
h(k)

∥h(k)∥ −λ
⋆∥2

= ∥λ(k) −λ⋆∥2 − 2 µk

∥h(k)∥(λ
(k) −λ⋆)⊤h(k) +µ2

k

≤ ∥λ(k) −λ⋆∥2 − 2 µk

∥h(k)∥( f (λ
(k))− f (λ⋆)) +µ2

k, (6.7)

1Recall that a function is locally Lipschitz-continuous if it is Lipschitz-continuous on every compact subset of its domain.
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where the last inequality follows by definition of h(k) being a subgradient of f at λ(k). By applying this
inequality iteratively, and because f (λ(i))≥ f (λ⋆) and µi > 0, we obtain, for all k ∈N,

∥λ(k+1) −λ⋆∥2 ≤ ∥λ(0) −λ⋆∥2 − 2
k
∑︂

i=0

µi

∥h(i)∥( f (λ
(i))− f (λ⋆)) +

k
∑︂

i=0

µ2
i ≤ ∥λ

(0) −λ⋆∥2 +
k
∑︂

i=0

µ2
i <∞. (6.8)

Thus, the sequence (λ(k))k∈N is bounded, and we can find a compact setL ⊆ U with λ(k) ∈ L in its interior for all
k ∈N. Lemma 6.8 now implies Lipschitz-continuity on L with some Lipschitz-constant H ≥ 0. This means that
the subgradients are bounded via ϵ

∥︁

∥︁h(k)
∥︁

∥︁

2
= ((λ(k)+ϵh(k))−λ(k))⊤h(k) ≤ f (λ(k)+ϵh(k))− f (λ(k))≤ H

∥︁

∥︁ϵh(k)
∥︁

∥︁,
i.e., ∥h(k)∥ ≤ H, for ϵ > 0 sufficiently small to stay within U .
Now, let f ⋆ := f (λ⋆) and fk̄ := min { f (λ(0)), . . . , f (λ(k))}. Because of ∥λ(k+1) − λ⋆∥2 ≥ 0, rearranging (6.8)
yields

2
�

k
∑︂

i=0

µi

∥h(i)∥

�

( fk̄ − f ⋆)≤ 2
k
∑︂

i=0

µi

∥h(i)∥( f (λ
(i))− f (λ⋆))≤ ∥λ(0) −λ⋆∥2 +

k
∑︂

i=0

µ2
i ,

which implies that, for every minimum point λ⋆ ∈ S of f ,

fk̄ − f ⋆ ≤
∥λ(0) −λ⋆∥2 +
∑︁k

i=0µ
2
i

2
�

∑︁k
i=0

µi

∥h(i)∥

� ≤
H
2
·
∥λ(0) −λ⋆∥2 +
∑︁k

i=0µ
2
i

∑︁k
i=0µi

.

Because of
∑︁∞

i=0µ
2
i <∞ and
∑︁∞

i=0µi =∞ it follows that fk̄→ f ⋆ for k→∞.
It remains to show that (λ(k))k∈N also converges. Since the subgradient method does not terminate and since
( fk̄)k∈N converges to f ⋆, there is an infinite subset K ⊆ N such that ( f (λ(k)))k∈K converges to f ⋆. Because
(λ(k))k∈N and thus (λ(k))k∈K is bounded, there is a convergent subsequence (λ(k))k∈K ′ . Since ( f (λ(k)))k∈K ′

converges to f ⋆ and f is continuous on U ⊇ S (Lemma 6.8), (λ(k))k∈K ′ converges to a minimum point λ⋆.
For every ϵ > 0 there exists k0 ∈ K ′ such that ∥λ(k0) −λ⋆∥< ϵ/2 and

∑︁∞
k=k0
µ2

k < ϵ/2. We obtain that, for all
k ≥ k0,

∥λ(k+1) −λ⋆∥2
(6.7)
≤ ∥λ(k0) −λ⋆∥2 +

k
∑︂

i=k0

µ2
i < ϵ.

Thus, limk→∞λ
(k) = λ⋆.

Remark 6.10. We give some additional information pertaining to the subgradient method.
(a) The function values f (λ(k)) are typically not monotone.
(b) A possible choice for µk is 1

k .
(c) Requiring
∑︁∞

k=0µk =∞ and µk→ 0 is, in general, insufficient for (λ(k))k∈N or ( f (λ(k)))k∈N to converge.
(d) The method is often aborted early when no more significant progress is made.

The subgradient method is easy to implement and well suited when subgradients can be efficiently calculated.
However, the step size must be chosen carefully. A disadvantage of the method is that it does not provide
an indication as to the progress of convergence towards the optimum value. More advanced methods are
discussed in the lecture Nonsmooth Optimization.
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6.1.2 Solving the Lagrangian relaxation

We now describe how the subgradient method can be used to compute the Lagrangian relaxation minλ≥0 L(λ).
To apply the method, we need to establish that L is a convex function that can be extended convexly to an
open set.

Lemma 6.11. The function L(λ) is piecewise (affine) linear and convex on the domain where it is bounded.

Proof. First, we recall that L(λ̂) = max{c⊤x + λ̂
⊤
(b(1) − A(1)x ) : x ∈ X (2)} and again consider (6.4) with

conv(X (2)) = conv({v (1), . . . , v (k)}) + cone({r (1), . . . , r (ℓ)}). We can see that L(λ̂) is finite if and only if λ̂ falls
in the polyhedron {λ ∈ Rm1

≥0 : λ⊤A(1)r (i) ≥ c⊤r (i) ∀i ∈ {1, . . . ,ℓ}}, and that, in this polyhedron, we have
L(λ) =max j∈{1,...,k}{c⊤v ( j)+λ⊤(b(1)−A(1)v ( j))}, i.e., L(λ) is the maximum over a finite number of affine linear
functions. In particular, L(λ) is convex.

The key ingredient of the subgradient method is the computation of subgradients. For the Langrangian
relaxation, we can obtain subgradients by finding optimum solutions x ⋆ of L(λ) for fixed λ.

Lemma 6.12. Consider λ̂ ∈Rm1
≥0 and an optimum solution x̂ of L(λ̂). Then, h = b(1) − A(1) x̂ is a subgradient

of L at λ̂.

Proof. Let λ ∈Rm1
≥0 and x (λ) be an optimum solution of L(λ). Then,

L(λ)− L(λ̂) = c⊤x (λ) +λ(b(1) − A(1)x (λ))− (c⊤ x̂ + λ̂
⊤
(b(1) − A(1) x̂ ))

≥ c⊤ x̂ +λ(b(1) − A(1) x̂ )− (c⊤ x̂ + λ̂
⊤
(b(1) − A(1) x̂ )) = h⊤(λ− λ̂),

where the inequality follows because x (λ) is an optimum solution with respect to λ.

Finally, we have S =Rm1
≥0 in the subgradient method and the projection ΠS is given by Π(λ)i =max{λi , 0} for

all i ∈ {1, . . . , m1}.
In the following, we describe applications where the Lagrangian relaxation has successfully been used in
combination with the subgradient method. In these applications a good balance between efficiency of the
subgradient method and strength of the relaxation can be achieved.

Example 6.13. If the constraint matrix has (almost) block diagonal form, see Figure 6.2, we can choose
A(1)x ≤ b(1) as the the coupling conditions. Relaxing them in a Lagrangian relaxation decomposes the
remaining matrix into k independent blocks. In this case, L(λ) is the sum of k independent terms that can
separately be determined.
Often, each individual block M (i) represents a network flow problem, a knapsack problem, or the like, and
can therefore be solved using specialized combinatorial algorithms. Other examples are multicommodity
flow problems, which arise, for example, in vehicle routing or in decompositions of stochastic mixed-integer
problems. △
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coupling conditions
M (1)

M (2)

. . .
M (k)

Figure 6.2: Matrix mostly in block diagonal form, except for a coupling part.

6.1.3 Application in stochastic optimization*

Two-stage stochastic optimization problems give rise to a constraint matrix with a structure as in Figure 6.2.
In these problems, we consider a finite set Ω of mutually disjoint random events called scenarios. Each scenario
ω ∈ Ω occurs with some probability pω. Furthermore, mixed-integer first-stage decisions x ∈ Zp ×Rn−p

are to be made, that are unaffected by stochasticity. Once a certain scenario ω occurs, then second-stage
decisions y = y(x ,ω) have to be made based on the predetermined first-stage decisions and the event at hand.
The goal is to minimize the total cost, consisting of the costs for x and the expected cost for y . If the constraints
on the second-stage decisions are linear, the problem can be formulated as its so-called deterministic equivalent

min c⊤x +
∑︂

ω∈Ω
pω (d

(ω))⊤y (ω)

s.t. W (ω)y (ω) ≤ h(ω) − T (ω)x ∀ω ∈ Ω,

Ax ≤ b,

x ∈Zp ×Rn−p.

Here, the second term in the objective function specifies the expected costs for the second-stage decisions,
where d(ω) denotes the costs for scenario ω. The coupling between the first and second stage for a ω ∈ Ω is
done by means of the recourse matrix W (ω) and technology matrix T (ω).
For fixed first-stage decision x , the problem decomposes into |Ω| independent subproblems. In order to use a
Lagrangian relaxation we introduce a copy x (ω) of x for every scenario ω and constrain them to be all of equal
value through coupling conditions x (ω) = x (ω′). We formulate these coupling conditions as

∑︁

ω∈ΩH(ω)x (ω) = 0
and obtain the equivalent problem

min
∑︂

ω∈Ω

�

c⊤x + pω (d
(ω))⊤y (ω)
�

s.t.
∑︂

ω∈Ω
H(ω)x (ω) = 0,

Ax (ω) ≤ b, ∀ω ∈ Ω,

x (ω) ∈Zp ×Rn−p, ∀ω ∈ Ω,

W (ω)y (ω) ≤ h(ω) − T (ω)x (ω), ∀ω ∈ Ω.

The constraint matrix of this problem has the structure of Figure 6.2. A Lagrangian relaxation of the coupling
conditions then leads to a decomposition. The equality of the different xω is established step by step (see [7]).

6.1.4 Application in combinatorial optimization

Another application of Lagrangian relaxation is the famous traveling salesperson problem (TSP) (see Algorithmic
Discrete Mathematics). Recall that an instance of TSP is given by an undirected complete graph G = (V, E)
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with edge weights c ∈QE
≥0, and the problem consists in finding a cycle (called a tour) R that visits all vertices

(exactly once) and minimizes c(R) :=
∑︁

e∈R ce. The problem is NP-hard via reduction from Hamiltonian cycle.
We consider a particular relaxation for this problem that relates to graphs containing exactly one cycle.

Definition 6.14. A 1-tree with respect to vertex v1 ∈ V in graph G = (V, E) is a subset of edges B ⊆ E such that

• B \δ(v1) is a spanning tree of G \ {v1}, and

• the degree of v1 in (V, B) is 2.

In the following, we fix a vertex v1 ∈ V . Because every tour is a 1-tree, we have

min
B 1-tree

c(B)≤ min
R tour

c(R). (6.9)

This lower bound for TSP can be improved as follows. We consider a vertex potential π ∈RV and define the
reduced costs with respect to this potential as (see Combinatorial Optimization)

cπe := ce −πv −πu ∀ e = {u, v} ∈ E.

Let π(V ) :=
∑︁

v∈V πv and cπ(B) :=
∑︁

e∈B cπe . We obtain a stronger inequality.

Theorem 6.15 ([24]). For f (π) := 2π(V ) +minB 1-tree cπ(B) it holds that

max
π∈RV

f (π)≤ min
R tour

c(R).

Proof. Let π ∈RV be arbitrary and R be a TSP tour. Then,

f (π) = 2π(V ) + min
B 1-tree

cπ(B)
(6.9)
≤ 2π(V ) + cπ(R)

= 2π(V ) + c(R)− 2π(V ) = c(R).

Here, the first inequality uses that R is a 1-tree, and the next equality holds because every vertex occurs
exactly twice in the edges of R.

The function f is the sum of an affine part and the minimum of affine (i.e., concave) functions, hence it is
concave. This means that the subgradient method can be applied to the convex function − f . We can determine
a subgradient as follows.

Lemma 6.16. Let π̃ ∈RV and B̃ ∈ arg minB 1-tree cπ̃(B). Then, a subgradient h for − f at point π̃ is defined by

hv = deg(V,B̃)(v)− 2 ∀ v ∈ V.

Proof. We need to show that − f (π)≥ − f (π̃) + h⊤(π− π̃) holds for all π ∈RV . We have

f (π̃) = 2 π̃(V ) + min
B 1-tree

cπ̃(B)

= 2 π̃(V ) + c(B̃)−
∑︂

v∈V

deg(V,B̃)(v) · π̃v

= c(B̃) +
∑︂

v∈V

(2− deg(V,B̃)(v)) · π̃v

= c(B̃)− h⊤π̃.
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Moreover,
f (π) = 2π(V ) + min

B 1-tree
cπ(B)≤ 2π(V ) + cπ(B̃) = c(B̃)− h⊤π.

Overall, we obtain
− f (π) + f (π̃)≥

�

h⊤π− c(B̃)
�

+
�

c(B̃)− h⊤π̃
�

= h⊤(π− π̃).

This means that we can apply the subgradient method, provided that we can efficiently compute minimum cost
1-trees. This can easily be accomplished by computing a minimum spanning tree of G \ {v1} (see Algorithmic
Discrete Mathematics) and then adding the two edges of smallest weight incident to vertex v1 to the result.
To relate this approach to a Lagrangian relaxation, we need the following result (without proof). Here
χB ∈ {0,1}E denotes the incidence vector of a set B ⊆ E, i.e., χB

e = 1⇔ e ∈ B.

Lemma 6.17 ([23]). It holds that

conv({χB : B ⊆ E is a 1-tree wrt. v1}) =
�

x ∈ [0,1]E :
∑︂

e∈δ(v1)

xe = 2

∑︂

e∈G[S]

xe ≤ |S| − 1 ∀S ⊆ V \ {v1}, S ̸= ∅,

∑︂

e∈E

xe = |V |
	

.

In particular, the polyhedron on the right-hand side is integral.

Together with Theorem 6.1 we can show a characterization of the strength of the lower bound of Theorem 6.15.

Theorem 6.18 ([23]). It holds that

max
π∈RV

f (π) =min
∑︂

e∈E

ce xe

s.t.
∑︂

e∈δ(v)

xe = 2 ∀ v ∈ V (degree constraints)

∑︂

e∈G[S]

xe ≤ |S| − 1 ∀S ⊂ V, S ̸= ∅ (subtour-elimination)

x ∈ [0,1]E .

Proof. Let A(2)x ≤ b(2) be the system of Lemma 6.17 and let A(1)x = b(1) describe the degree conditions

∑︂

e∈δ(v)

xe = 2 ∀ v ∈ V \ {v1}.

We observe that, together, A(1)x = b(1) and A(2)x ≤ b(2) yield the system in the statement of the theorem:
The degree conditions are all present, the equation

∑︁

e∈E xe = |V | is redundant (sum of all degree conditions
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divided by 2), and the missing subtour elimination constraints for S ⊆ V with v1 ∈ S are implied via
∑︂

e∈G[S]

xe =
∑︂

e∈G[S]

xe +
∑︂

e∈E

xe − |V |

= 2
∑︂

e∈G[S]

xe +
∑︂

e∈δ(S)

xe +
∑︂

e∈G[V\S]

xe − |V |

=
∑︂

v∈S

∑︂

e∈δ(v)

xe +
∑︂

e∈G[V\S]

xe − |V |

v1∈S
≤ 2|S|+ (|V \ S| − 1)− |V |
= |S| − 1,

where the inequality uses the degree constraints and the subtour elimination constraints for v1 /∈ S.
In order to inspect the Lagrangian relaxation, we consider the negated integer program

max − c⊤x

s.t. A(1)x = b(1)

A(2)x ≤ b(2)

x ∈ {0, 1}E ,

where A(1) is the vertex-edge incidence matrix of G and b(1) = 2 · 1. Note that the system is rational.
Since we relax a system of equations A(1)x = b(1), the Lagrangian function (6.2) may be considered without
requiring non-negativity and may be written as

L(π) = max{−c⊤x +π⊤(A(1)x − b(1)) : x ∈ P(A(2), b(2))∩ {0, 1}E}
6.17
= max{−c⊤x +π⊤(A(1)x − b(1)) : x ∈ conv({χB : B ⊆ E is a 1-tree wrt. v1})}
2.7
= −2π(V )−min{(c⊤ −π⊤A(1))χB : B ⊆ E is a 1-tree wrt. v1}
= −2π(V )− min

1-treeB

∑︂

e={u,v}∈E

(ce −πu −πv)χ
B
e

= − f (π).

Lemma 6.17 implies that P(A(2), b(2)) is integral, and Observation 6.3 thus yields

max
π∈RV

f (π) = − min
π∈RV

L(π)

6.3
= −max{−c⊤x : A(1)x = b(1), A(2)x ≤ b(2), x ∈ [0,1]E}
= min{c⊤x : A(1)x = b(1), A(2)x ≤ b(2), x ∈ [0,1]E}.

The proof of Theorem 6.18 shows that the 1-tree relaxation is a Lagrangian relaxation of the system in the
theorem, where the degree constraints are relaxed for all vertices except v1. Note that L(π) = − f (π) also
implies that Lemma 6.16 follows immediately from Lemma 6.12.

Remark 6.19. If we add to the LP in Theorem 6.18 the condition x ∈ {0,1}E , we obtain an IP formulation of
the TSP problem. The degree conditions guarantee that every vertex has degree 2 in the solution. The subtour
elimination constraints exclude partial tours that are disconnected from the remaining graph. Theorem 6.18
shows that the Lagrangian relaxation of this formulation is as good as the corresponding LP relaxation.
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6.2 Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition (see [12]) is a different method for treating MIPs with two parts, i.e., of
the form

max c⊤x

s.t. A(1)x ≤ b(1)

A(2)x ≤ b(2) (6.10)
x ∈Zp ×Rn−p,

with A(1) ∈Qm1×n, A(2) ∈Qm2×n, b(1) ∈Qm1 , b(2) ∈Qm2 and m1 +m2 = m.
We first assume that p = 0, i.e., we have an LP. Consider the polyhedron P(2) = P(A(2), b(2)). By Theorem 2.19,
there exist vectors v (1), . . . , v (k) and r (1), . . . , r (ℓ) with P(2) = conv({v (1), . . . , v (k)}) + cone({r (1), . . . , r (ℓ)}). In
other words, x ∈ P(2) can be expressed in the form

x =
k
∑︂

i=1

λi v
(i) +

ℓ
∑︂

j=1

µ j r
( j) (6.11)

with λ,µ≥ 0 and 1⊤λ= 1. With (6.11), we can rewrite (6.10) as

max c⊤(
k
∑︂

i=1

λi v
(i) +

ℓ
∑︂

j=1

µ j r
( j))

s.t. A(1)(
k
∑︂

i=1

λi v
(i) +

ℓ
∑︂

j=1

µ j r
( j))≤ b(1),

1⊤λ= 1,

λ,µ≥ 0,

which is equivalent to

max
k
∑︂

i=1

(c⊤v (i))λi +
ℓ
∑︂

j=1

(c⊤r ( j))µ j

s.t.
k
∑︂

i=1

(A(1)v (i))λi +
ℓ
∑︂

j=1

(A(1)r ( j))µ j ≤ b(1), (6.12)

1⊤λ= 1,

λ≥ 0,µ≥ 0.

The formulation (6.12) is called the master problem of (6.10). When comparing the two formulations, we
realize that we reduced the number of constraints from m to m1 + 1, but we now have k+ ℓ variables instead
of n. The number k+ ℓ can be very large compared to n, even exponential, e.g., for the unit cube in Rn with
2n constraints and 2n vertices. At first glace, the advantage of using (6.12) is not apparent.
The key insight is that we can use the simplex method to solve (6.12) without having to create all variables
explicitly. We abbreviate (6.12) by

max {c̃⊤z : Dz = d, z ≥ 0},
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where (including additional slack variables)

D =

�

A(1)v (i) A(1)r ( j) I
1⊤ 0⊤ 0⊤

�

∈Q(m1+1)×(k+ℓ+m1), c̃ =

⎛

⎝

c⊤v (i)

c⊤r ( j)

0

⎞

⎠ ∈Qk+ℓ+m1 , d =

�

b(1)

1

�

∈Qm1+1.

Recall that the simplexmethod (for LPs in standard form) works with a feasible basis B ⊆ {1, . . . , k+ℓ+m1}, |B|=
m1+1, where D·B is regular and yields a feasible solution z⋆B = D−1

·B d and z⋆N = 0 with N = {1, . . . , k+ℓ+m1}\B.
Note that D·B ∈R(m1+1)×(m1+1) is smaller than a basis for the original system (6.10) would have to be, and
that only a part of the variables (m1 + 1 of k + ℓ+m1) are non-zero. In addition, the only operation in the
simplex method that uses all columns is the pricing step, which checks whether the reduced costs satisfy
c̃N
⊤ − ỹ⊤D·N ≤ 0, where ỹ = (D·B)−1 c̃B is the solution of y⊤D·B = c̃B

⊤. Recall that ỹ is the dual solution, and
the condition on the reduced costs asks whether ỹ is dually feasible. We need to find a variable of positive
reduced cost that can enter the basis, or, equivalently, we are looking for a violated inequality of the dual.
This can be accomplished via the following pricing problem:

max (c⊤ − ȳ⊤A(1)) x
s.t. A(2)x ≤ b(2),

x ∈Rn,
(6.13)

where ȳ represents the first m1 components of the solution ỹ =
� ȳ

ỹm1+1

�

. The following cases can occur.
(a) A slack variable has positive reduced cost. In that case, we can let the variable enter the basis. This can

be checked directly, because there are only m1 + 1 slack variables.
(b) (6.13) has a vertex solution x̄ with (c⊤ − ȳ⊤A(1)) x̄ > ỹm1+1.

In this case, x̄ = v (i) for some i ∈ {1, . . . , k}, corresponding to λ= ei and µ= 0 in (6.12). The associated
column D·i has reduced costs

c̃ i − ỹ⊤D·i = c⊤v (i) − ỹ⊤
�

A(1)v (i)

1

�

= c⊤v (i) − ȳ⊤A(1)v (i) − ỹm1+1 > 0.

In other words, D·i =
�A(1)v (i)

1

�

can be used as the entering column in the simplex algorithm (in particular,
i ∈ N).

(c) (6.13) is unbounded.
Here we obtain a feasible extreme ray r̄ = r ( j) with (c⊤ − ȳ⊤A(1)) r̄ > 0 for some j ∈ {1, . . . ,ℓ}, corres-
ponding to λ= 0 and µ= e j in (6.12). The corresponding column D·(k+ j) has reduced costs

c̃k+ j − ỹ⊤D·(k+ j) = c⊤r ( j) − ỹ⊤
�

A(1)r ( j)

0

�

= c⊤r ( j) − ȳ⊤(A(1)r ( j))> 0.

Thus, D·(k+ j) =
�A(1)r ( j)

0

�

can be chosen as the entering column.
(d) (6.13) has an optimum solution x̄ with (c⊤ − ȳ⊤A(1))⊤ x̄ ≤ ỹm1+1.

In this case, using the same arguments as in (b) and (c), we obtain that c̃ i − ỹ⊤D·i ≤ 0 for all i ∈
{1, . . . , k+ℓ}. Since no slack variable has positive reduced cost either, c̃N

⊤− ỹ⊤D·N ≤ 0 holds, and thus z⋆

is an optimum solution of the master problem (6.12).
With these arguments, a variable of positive reduced costs can be computed, if any exists, without having to
evaluate the reduced costs of all (non-basis) variables.
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x1

x2

Figure 6.3: Example for the extension of the Dantzig-Wolfe decomposition to ILPs in in Remark 6.20. The
integral optimum solution

�

1
1

�

cannot be written as an integer linear combination of the vertices
of P(2) (blue).

Note that the whole problem (6.1) is split into two subproblems, i.e., into (6.12) and (6.13) and the approach
alternates between working at the higher level (6.12) and at the lower level (6.13). The procedure starts
with a feasible solution for (6.12) and generates new promising columns on demand by solving (6.13). Such
methods are called (delayed) column-generation algorithms.
The approach can also be applied to ILPs with some caution. In this case, the problem (6.13) changes from an
LP to an ILP. In addition we have to make sure that in (6.11) all feasible integral solutions x of (6.1) can be
generated by linear combinations of the vectors v (1), . . . , v (k) and r (1), . . . , r (ℓ) with

conv({x ∈Zn : A(2)x ≤ b(2)}) = conv({v (1), . . . , v (k)}) + cone({r (1), . . . , r (ℓ)}).

On the other hand, we need to restrict to linear combinations that yield integer vectors x .

Remark 6.20. It is not sufficient to require that λ and µ be integral. As a counterexample, consider

A(1) =

�

1 0
0 1

�

b(1) =

�3
2
3
2

�

A(2) =

⎛

⎝

1 1
−1 0
0 −1

⎞

⎠ b(2) =

⎛

⎝

2
0
0

⎞

⎠ ,

and the problem
max{x1 + x2 : A(1)x ≤ b(1), A(2)x ≤ b(2), x ∈Z2}.

Then, P(2) = conv({
�0

0

�

,
�2

0

�

,
�0

2

�

}), see Figure 6.3. But the optimum solution
�1

1

�

of the integer problem is not
an integer linear combination of the vertices of P(2). Thus, we loose optimum solutions if we do not handle
the integrality of the variables in the master problem in some other way.

However, if all variables are binary, this difficulty does not arise, since every binary solution of the LP relaxation
of a binary MIP is a vertex of the corresponding polyhedron (as it is an extreme point even for the hypercube
and can thus not be written as nontrivial convex combination). In this case, it suffices to require λ ∈ {0,1}k

(no variables µ occur, since binary programs have a bounded feasible region). In fact, column-generation
algorithms are not only used for solving large linear problems, but especially for large binary problems.
Of course, the Dantzig-Wolfe decomposition for linear or binary integer problems is only one possibility for a
column-generation algorithm. Other algorithms do not solve the lower-order problem using general techniques
for LPs or ILPs, but by combinatorial algorithms or exhaustive enumeration. Furthermore, the problems are
often not modeled via (6.1), but rather directly as in (6.12). This is the case, for example, when the feasible
region allows for a concise interior representation.
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6.2.1 Application in combinatorial optimization*

As an example for the application of the Dantzig-Wolfe decomposition, we consider the the bin-packing problem:
How many bins of fixed size W ≥ 0 do we need to fit n items of sizes wi > 0, i ∈ {1, . . . , n}? For clarity, let
m := n denote an upper bound on the number of bins required.
We can model this problem as a binary problem using variables z ∈ {0,1}m with z j = 1 if and only if the j-th
potential bin is used, and x ∈ {0, 1}{1,...,n}×{1,...,m} with x i j = 1 if and only if item i is packed in bin j. We obtain
the following assignment problem (see Example 1.5):

min 1⊤z

s.t.
m
∑︂

j=1

x i j = 1 ∀i ∈ {1, . . . , n}, (6.14)

n
∑︂

i=1

wi x i j ≤W z j ∀ j ∈ {1, . . . , m}, (6.15)

x ∈ {0, 1}n×m, z ∈ {0,1}m.

However, this model can only be solved very inefficiently. The reason for this is the weakness of the LP
relaxation: Optimum solutions (x⋆, z⋆)⊤ of the LP relaxation satisfy (6.15) with equality, therefore

1⊤z⋆ =
m
∑︂

j=1

n
∑︂

i=1

wi x⋆i j

W
=

n
∑︂

i=1

wi

W

m
∑︂

j=1

x⋆i j =
n
∑︂

i=1

wi

W
→ 0 for W →∞. (6.16)

So, if W becomes very large, the optimum value of the LP relaxation is small (value 0) and says almost nothing
about the integral solution (value 1 for W ≥

∑︁n
i=1 wi).

As a remedy, we can use Dantzig-Wolfe decomposition to eliminate the knapsack conditions (6.15). Every
opened bin yields the same knapsack polytope

P := conv({y ∈ {0, 1}n : w⊤y ≤W}) = conv({0, v (1), . . . , v (k)}) ⊂Rn,

where 0, v (1), . . . , v (k) ∈ {0,1}n are the vertices of the (bounded) polytope P, while every unopened bin only
allows the vector 0. Each such vertex describes one configuration of items that can be packed into a bin.
We introduce variables λ j1, . . . ,λ jk for every bin j ∈ {1, . . . , m}, that indicate, which vertex/configuration is
selected for each bin, i.e., x· j =

∑︁k
ℓ=1λ jℓv (ℓ). We obtain the master problem

min
m
∑︂

j=1

k
∑︂

ℓ=1

λ jℓ

s.t.
m
∑︂

j=1

k
∑︂

ℓ=1

λ jℓv
(ℓ)
i = 1 ∀i ∈ {1, . . . , n} (6.17)

k
∑︂

ℓ=1

λ jℓ ≤ 1 ∀ j ∈ {1, . . . , m} (6.18)

λ ∈ {0,1}n×k.

Note that in (6.18) we did not require equality to allow the vertex 0. Furthermore, we replaced the variable z j

by
∑︁k
ℓ=1λ jℓ, as it makes no sense to use a bin that does not contain any items, i.e., we encode unopened bins j
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via
∑︁k
ℓ=1λ jℓ = 0. Similarly, we can observe that, because of v (ℓ) ̸= 0, it follows from (6.17) that

∑︁

j

∑︁

ℓλ jℓ ≤ n,
since each λ jℓ belongs to a single bin and occurs in exactly one row of (6.17). Therefore, in each feasible
solution, a maximum of n vertices (except 0) are used. Because of m≥ n, we can therefore omit (6.18), since
we can convert every solution in such a way that no bin is used by more than one vertex by introducing
separate bins for every vertex.
In addition, we define the set Si := {ℓ : v(ℓ)i = 1} of the indices of all vertices that contain item i, and introduce
the variables

δℓ :=
m
∑︂

j=1

λ jℓ,

which indicate whether or not the vertex v (ℓ) is used. Because of (6.17) we have δ ∈ {0,1}k. Using

m
∑︂

j=1

k
∑︂

ℓ=1

λ jℓv
(ℓ)
i =

k
∑︂

ℓ=1

v(ℓ)i

m
∑︂

j=1

λ jℓ =
∑︂

ℓ∈Si

δℓ,

we obtain

min 1⊤δ

s.t.
∑︂

ℓ∈Si

δℓ = 1 ∀i ∈ {1, . . . , n} (6.19)

δ ∈ {0, 1}k.

Here δ encodes a partition of the items into configurations. The exact assignment to the bins is implicit.

Example 6.21. Let m= n= 4, w1 =
3
4 , w2 =

1
4 , w3 =

1
2 , w4 =

1
2 and W = 1. A possible solution with two bins

is

(x i j) =

⎛

⎜

⎝

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0

⎞

⎟

⎠
.

The vertices of the knapsack polytope are
⎛

⎜

⎝

0
0
0
0

⎞

⎟

⎠
, v (1) =

⎛

⎜

⎝

1
0
0
0

⎞

⎟

⎠
, v (2) =

⎛

⎜

⎝

0
1
0
0

⎞

⎟

⎠
,

⎛

⎜

⎝

0
0
1
0

⎞

⎟

⎠
,

⎛

⎜

⎝

0
0
0
1

⎞

⎟

⎠
,

⎛

⎜

⎝

1
1
0
0

⎞

⎟

⎠
,

⎛

⎜

⎝

0
1
1
0

⎞

⎟

⎠
,

⎛

⎜

⎝

0
1
0
1

⎞

⎟

⎠
, v (8) =

⎛

⎜

⎝

0
0
1
1

⎞

⎟

⎠
.

Thus, S1 = {1, 5}, S2 = {2, 5,6,7}, S3 = {3, 6,8} and S4 = {4,7, 8}. The solution is obtained by combining the
vertices v (5) and v (8), i.e.,

δ = ( 0 0 0 0 1 0 0 1 )⊤,

which corresponds to opening 2 bins, one containing the items {1, 2} (since 5 ∈ S1 ∩ S2), the other containing
the items {3, 4} (since 8 ∈ S3 ∩ S4). △

The pricing problem aims to find a configuration to include in the current basis, or, equivalently, a violated
constraint of the dual of (6.19). The dual is given by

max{1⊤y :
∑︂

i : ℓ∈Si

yi ≤ 1∀ℓ ∈ {1, . . . , k}},
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where {i : ℓ ∈ Si} are the items used by the configuration corresponding to vertex v (ℓ). We can find a vertex
violating its constraint for the current dual solution ỹ via

max ỹ⊤x

s.t. w⊤x ≤W

x ∈ {0,1}m.

This problem is bounded. If the optimum vertex solution x̄ satisfies ỹ⊤ x̄ > 1, it yields a column to add to the
basis for the master problem, otherwise ỹ is dually feasible and the current solution of the master problem is
optimal.
In practice, this Dantzig-Wolfe formulation results in a very strong bound: Often the rounded value of the LP
relaxation of the master problem (at the root of the branch-and-bound tree) already gives the optimum number
of bins for currently allowed configurations (cf. (6.16) for the LP relaxation of the original formulation).

6.3 Benders’ decomposition

Finally, we consider the Benders’ decomposition (see [4]). Benders’ decomposition also eliminates part of the
constraint matrix, but, unlike the Dantzig-Wolfe decomposition, where we delete a part of the constraints and
reinsert them by means of column generation, we now delete part of the variables and reinsert them using
cutting planes. From this perspective, Benders’ decomposition is equivalent to Dantzig-Wolfe decomposition
applied to the dual problem (see Section 6.4). Consider a MIP of the form

max (c(1))⊤x (1) + (c(2))⊤x (2)

s.t. A(1)x (1) + A(2)x (2) ≤ b, (6.20)

x (1) ∈Zn1 , x (2) ∈Rn2 ,

where A= [A(1), A(2)] ∈Qm×n, A(1) ∈Qm×n1 , A(2) ∈Qm×n2 , c(1) ∈Qn1 , c(2) ∈Qn2 with n1+ n2 = n. Note that, for
the sake of simplicity, we assume that all integer variables are in x (1). We want to eliminate the variables x (2)

via projection.
To apply projection we start by reformulating (6.20) to

max z (+ 0⊤x (2))

s.t. z ≤ (c(1))⊤x (1) + (c(2))⊤x (2)

A(1)x (1) + A(2)x (2) ≤ b

z ∈R, x (1) ∈Zn1 , x (2) ∈Rn2 .

(6.21)

By strong duality, this is equivalent to

max
x (1)∈Zn1 ,z∈R

¦

z + max
x (2)∈Rn2

{0⊤x (2) : −(c(2))⊤x (2) ≤ (c(1))⊤x (1) − z, A(2)x (2) ≤ b− A(1)x (1)}
©

= max
x (1)∈Zn1 ,z∈R

¦

z + min
γ∈R,v∈Rm

{γ
�

(c(1))⊤x (1) − z
�

+ v⊤(b− A(1)x (1)) :
�

γ

v

�

∈ C}
©

, (6.22)

with
C = {
�

γ

v

�

∈Rm+1 : v⊤A(2) − γ(c(2))⊤ = 0⊤, γ≥ 0, v ≥ 0}. (6.23)
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Since the primal objective function is 0⊤x (2) = 0, we have that (6.21) is feasible for some z if and only if the
value of the inner minimization problem in (6.22) is 0. Otherwise, since 0 ∈ C ̸= ∅ the inner minimum is
unbounded. Thus, (6.22) is equivalent to

max
x (1)∈Zn1 ,z∈R

{z : γ
�

(c(1))⊤x (1) − z
�

+ v⊤(b− A(1)x (1))≥ 0 ∀
�

γ

v

�

∈ C}. (6.24)

Since C is a polyhedral cone, by Theorem 2.17, there are vectors
� γ1

v (1)
�

, . . . ,
� γs

v (s)
�

with

C = cone(
�� γ1

v (1)
�

, . . . ,
� γs

v (s)
�	

).

Because C ⊆Rm
≥0, we can assume by rescaling, that γ ∈ {0,1}s, i.e.

C = cone({
�

0
v (k)
�

: k ∈ K}) + cone({
�

1
v ( j)
�

: j ∈ J}),

with K ∪ J = {1, . . . , s} and K ∩ J = ∅. With this description of C, (6.24) can be rewritten as

max z

s.t. z ≤ (c(1))⊤x (1) + (v ( j))⊤(b− A(1)x (1)) ∀ j ∈ J ,

0≤ (v (k))⊤(b− A(1)x (1)) ∀k ∈ K ,

z ∈R, x (1) ∈Zn1 .

(6.25)

The problem (6.25) is the Benders’ master problem. It arises from (6.21) by orthogonal projection in the
sense that z, x (1) are feasible for (6.25) if and only if x (2) exists, so that z, x (1), x (2) are feasible for (6.21).
The master problem only has n1 + 1 variables instead of the n1 + n2 variables in (6.20). Furthermore, the
MIP (6.20) has been converted into an integer program (6.25) with an additional continuous variable z.
Nevertheless, (6.25) contains a large number of constraints – generally exponentially many in n.
To circumvent this problem, we solve Benders’ master problem by means of an iterative procedure as follows:
We start with a small subset of extreme rays of C (possibly with the empty set) and optimize (6.25) over this
subset (e.g., via Branch-and-Bound, see Chapter 3). We obtain an optimum solution x̂ (1), ẑ of the relaxed
problem and have to check whether this solution satisfies all other inequalities in (6.25). This can be done
using the Benders’ subproblem (see (6.23) and (6.24))

min v⊤(b− A(1) x̂ (1))− γ(ẑ − (c(1))⊤ x̂ (1))

s.t. v⊤A(2) − γ(c(2))⊤ = 0⊤ (6.26)
γ≥ 0, v ≥ 0.

This problem is feasible since 0 ∈ C, and has an optimum solution of value 0 or is unbounded (see discussion
of (6.22)). In the first case, (x̂ (1), ẑ) satisfies all inequalities in (6.25) and we have solved (6.25) optimally and
thus (6.20). In the other case, we obtain (e.g., via the Simplex method) an extreme ray

�γ̂
v̂

�

from (6.26) with

v̂⊤(b− A(1) x̂ (1))− γ̂(ẑ − (c(1))⊤ x̂ (1))< 0,

which, after rescaling to γ̂ ∈ {0,1}, yields an inequality for (6.25), which is violated by x̂ (1), ẑ. We add this
cut to the Benders master problem (6.25) and iterate.
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6.3.1 Application in stochastic optimization*

We return to the example of stochastic optimization from Section 6.1.3 and apply Benders’ decomposition
directly. Here, A(1)x (1) + A(2)x (2) ≤ b consists of all blocks T (ω)x +W (ω)y (ω) ≤ h(ω) for all ω ∈ Ω. This leaves
x (1) = x in the master problem and x (2) = (y (ω))ω∈Ω goes to the subproblem. The master problem can then
be written as

min c⊤x +
∑︂

ω∈Ω
pω zω

s.t. zω ≥ (ν(ω, j))⊤(h(ω) − T (ω)x ), ∀ω ∈ Ω, j ∈ Jω,

0≤ (ν(ω,k))⊤(h(ω) − T (ω)x ), ∀ω ∈ Ω, k ∈ Kω,

Ax ≤ b, x ∈Zp ×Rn−p.

Note that we minimize, which leads to slight adjustments. The vectors (ν(ω, j)) j∈Jω and (ν(ω,k))k∈Kω are the
extreme rays and vertices of

Cω := {
�

γ

v

�

∈Rm+1 : v⊤W (ω) − γ(d(ω))⊤ = 0⊤, γ≥ 0, v ≥ 0}.

The resulting L-method (see [41]) can be accelerated using various techniques and is very effective in many
applications. However, it is applicable in the presented form only if the second-stage variables are all continuous.

6.3.2 Application in combinatorial optimization*

We consider the maximum feasible subsystem problem: Given an infeasible system Ãx ≤ b̃ (Ã∈Rm×n, b̃ ∈Rm),
identify a feasible subsystem of largest possible size. This can be expressed as MIP via

max 1⊤x (1) + 0⊤x (2)

s.t. Ãx (2) ≤ b̃+M(1− x (1))

x (1) ∈ {0, 1}m, x (2) ∈Rn.

(6.27)

Here, M is a very large number that guarantees the following: If x (1)i = 0, then Ã·i x−b̃i ≤ M for all interesting x .
This means that the binary variables x (1) activate/deactivate the respective inequalities. Note that the auxiliary
variable z is not used here, because c(2) = 0.
We can now reformulate (6.27) to

max
x (1)∈{0,1}m

¦

1⊤x (1) + max
x (2)∈Rn

{0⊤x (2) : Ãx (2) ≤ b̃+M (1− x (1))}
©

= max
x (1)∈{0,1}m

¦

1⊤x (1) + min
v∈Rm
{v⊤(b̃+M (1− x (1))) : v⊤Ã= 0⊤, v ≥ 0}

	

.

We then have the cone C = {v : v⊤Ã= 0⊤, v ≥ 0} with rays (v (k))k∈K , and therefore C = cone({v (k) : k ∈ K}).
The Benders’ master problem (6.25) is then

max 1⊤x (1)

s.t. 0≤ (v (k))⊤(b̃+M (1− x (1))) ∀k ∈ K ,

x (1) ∈ {0, 1}m,
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and the Benders’ subproblem (6.26) becomes

min v⊤(b̃+M (1− x̂ (1)))

s.t. v⊤Ã= 0⊤, v ≥ 0.

This can then be used to apply the solution scheme described above. We discuss this implementation further.
Let x̂ (1) ∈ {0, 1}m be the solution of the (incomplete) Benders’ master problem and v̂ be the solution of the
corresponding Benders’ subproblem. If the optimum value of the subproblem is 0, we are done. Otherwise it
is smaller 0 and the following applies.

Lemma 6.22. If v̂⊤(b̃+M (1− x̂ (1)))< 0, then the rows of Ãx ≤ b̃ form an invalid subsystem with respect to
S := {i : v̂ i > 0}.

Proof. According to the Farkas lemma, it holds that ÃS·x ≤ b̃S is infeasible (exactly) if y ≥ 0 exists with
y⊤ b̃S < 0 and y⊤ÃS· = 0⊤. With y := v̂S we have y ≥ 0 and y⊤ÃS· = 0⊤, because of feasibility of v̂ for the
Benders’ subproblem. By assumption, v̂⊤ b̃+M v̂⊤(1− x̂ (1))< 0. Because M is sufficiently large, x̂ (1)S = 1 must
hold. It follows that 0> v̂⊤ b̃+M v̂⊤(1− x̂ (1)) = v̂⊤ b̃ = v̂⊤ b̃S = y⊤ b̃S, which proves infeasibility.

A corresponding ray v̂ of the Benders’ subproblem thus yields an infeasible subsystem in the part of Ãx ≤ b̃ in
which v̂ i > 0 holds. The corresponding inequalities in the master problem can therefore be reduced to

∑︂

i∈S

x (1)i ≤ |S| − 1,

because at least one x (1)i must be set to 0 (i.e., must be removed from the system).

6.4 Connections between these approaches

At first glance, Lagrangian relaxation, Dantzig-Wolfe decomposition and Benders’ decomposition seem to
be different approaches relying on different relaxations. However, they are strongly related to each other.
Consider again (6.13), which, for a fixed ȳ ≤ 0, can be written as

max (c⊤ − ȳ⊤A(1))x = max c⊤x + ȳ⊤(b(1) − A(1)x )− ȳ⊤b(1) = L( ȳ)− ȳ⊤b(1),

s.t. x ∈ P(2) s.t. x ∈ P(2)

i.e., (6.3) and (6.13) define the same problems except for a constant shift − ȳ⊤b in the objective. Furthermore,
by replacing P(2) with conv({v (1), . . . , v (k)})+ cone({r (1), . . . , r (ℓ)}), it can be shown that (6.12) coincides with
the right-hand side in Theorem 6.1 and thus with min ȳ L( ȳ). In other words, the Dantzig-Wolfe decomposition
and the Lagrangian relaxations compute the same bound. The only differences are that, for the update of the
dual variables, i.e., λ in the Lagrangian relaxation and ȳ in the Dantzig-Wolfe decomposition, subgradient
methods are used in the former case, whereas LP techniques are applied in the latter.
Analogously, Benders’ decomposition is nothing other than the Dantzig-Wolfe decomposition applied to the
dual of (6.20). To see this, consider its dual LP

min y⊤b

s.t. y⊤A(1) = (c(1))⊤, (6.28)

y⊤A(2) = (c(2))⊤,

y ≥ 0.
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Now we write
P̄(2) = {y ∈Rm : y⊤A(2) = (c(2))⊤, y ≥ 0}

as
P̄(2) = conv({v ( j) : j ∈ J}) + cone({v (k) : k ∈ K}),

where K, J and v (ℓ) for ℓ ∈ K ∪ J are exactly the quantities of (6.25) (set v = γy , and note that hog(P̄(2)) :=
{
�

1
y
�

: y ∈ P̄(2)}◦◦ = C (exercise)), and write (6.28) as

min
∑︁

j∈J ((v
( j))⊤b)λ j +
∑︁

k∈K((v
(k))⊤b)µk

s.t.
∑︁

j∈J ((v
( j))⊤A(1))λ j +
∑︁

k∈K((v
(k))⊤A(1))µk= (c(1))⊤,

∑︁

j∈J λ j = 1,

λ ∈RJ
≥0,µ ∈RK

≥0.

(6.29)

We now conclude from the results of Section 6.2 that (6.29) is the master problem of (6.28). Dualization
of (6.29) results in

max (c(1))⊤x (1) + z
s.t. (v ( j))⊤(A(1)x (1) − b) ≤ −z ∀ j ∈ J ,

(v (k))⊤(A(1)x (1) − b) ≤ 0 ∀ k ∈ K ,

which is equivalent to (6.25), i.e., to Benders’ master problem (6.20). In other words, for LPs, Benders’ and
Dantzig-Wolfe decomposition result the same bound, which, according to the considerations above, is equal to
the value of the Lagrangian relaxation (6.3).
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7 Heuristics

In this chapter, we tackle the question how to quickly find good feasible solutions for a mixed integer program,
e.g., for the acceleration of the branch-and-bound method (see Chapter 3). Also, the size of practical instances
often does not allow for exact but exponential-time solution methods. In both cases, we are willing to sacrifice
optimality for the sake of efficiency. Fast algorithms that come without guarantees regarding solution quality
are called heuristics. In contrast, in Chapter 8, we will see approximation algorithms, which, similiarly, sacrifice
optimality for the sake of efficieny, but come with a provable solution quality.
Heuristics are usually tailored to exploit the specific structure of the problem at hand and to the distribution of
the instances that we can expect. That being said, in the following we present some general methods, which
are used as a basis for many heuristics in practice.

7.1 The greedy algorithm

The greedy algorithm constructs a solution incrementally by iteratively adding an element to the solution that
increases the objective function the most / the least. In order for this approach to be applicable, we need that
every feasible solution can be constructed incrementally. This can elegantly be expressed by considering set
systems of feasible solutions that are closed under taking subsets.

Definition 7.1. An independence system is a pair (E,I) consisting of a finite ground set E and a family of
subsets I ⊆ 2E such that I ̸= ∅ and I ∈ I for all I ⊆ J ∈ I. A set I ⊆ E is independent if I ∈ I, and a basis
of J ⊆ E if I ′ /∈ I for all I ⊊ I ′ ⊆ J .

This abstract framework captures many classical optimization problems.

Example 7.2. The following are independence systems with the set of bases of E denoted by B ⊆ I.
• linear independence: E = {v (1), . . . , v (k)} ⊆Rn and I consists of all sets of linearly independent vectors.

Then, maxI∈I |I | is the problem of finding a basis of lin(v (1), . . . , v (k)).
• knapsack: E = {1, . . . , n} and I = {I ⊆ E :

∑︁

i∈I ai ≤ β}. Then, maxI∈I
∑︁

i∈I ci is the knapsack problem
(see Example 1.6).

• stable sets: E = V are the vertices of a graph G and I = {I ⊆ E : G[I] = (I ,∅)}. Then, maxI∈I |I | is the
stable set problem (see Algorithmic Discrete Mathematics).

• cycles: E are the edges of a graph and I = {I ⊆ E : I has no cycle}. Then, minB∈B
∑︁

e∈B c(e) is the
minimum spanning tree problem (see Algorithmic Discrete Mathematics).

• tours: E are the edges of a complete graph and I = {I ⊆ E : ∃ tour T ⊇ I in the graph}. Then,
minB∈B
∑︁

e∈B c(e) is the traveling salesperson problem (see Section 6.1.4). △

The greedy algorithm can abstractly be formulated as follows.
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Algorithm: greedy algorithm for maximization or minimization
input: independence system (E,I), objective c : E→R≥0
output: basis of (E,I)
I ← ∅, E0← ∅, j← 0
while E j ̸= E :

e← arg max [or min]{c(e′) : e′ ∈ E \ E j}
E j+1← E j ∪ {e}, j← j + 1
if I ∪ {e} ∈ I :

I ← I ∪ {e}

return I

By definition, the greedy algorithm maintains the invariant that, no previously considered element can be
included in the solution.

Observation 7.3. The solution computed by the greedy algorithm contains a basis of E j for all j ∈ {1, . . . , |E|}.

In some cases, the greedy algorithm computes an optimum solution, as we will see in more detail in the next
section.

Example 7.4. In the cycle-system of Example 7.2, the greedy algorithm is equivalent to Kruskal’s algorithm
for computing a minimum spanning tree (see Algorithmic Discrete Mathematics). △

On the other hand, the greedy algorithm sometimes performs very poorly.

Example 7.5. In the knapsack-system of Example 7.2 with costs c = (n− 1)1+ e1, weights a = 1+ (n− 2)e1

and capacity β = n−1, the greedy algorithm finds the solution I = {1} of value n, while the optimum solution
I⋆ = {2, . . . , n} has value (n− 1)2. △

7.1.1 Matroids

We have seen that the quality of the solutions produced by the greedy algorithm can vary wildly, depending
on the application (see Examples 7.4 and 7.5). Remarkably, the cases when the greedy algorithm finds an
optimum solution have an elegant characterization in terms of the following structure.

Definition 7.6. An independence system (E,I) is a matroid if for all F ⊆ E with bases B(F) it holds that

r(F) :=max{|B| : B ∈ B(F)}=min{|B| : B ∈ B(F)}=: ρ(F),

where r(F) is the rank of F and ρ(F) is its lower rank.

In particular, the independence system underlying the minimum spanning tree problem is a matroid.

Example 7.7. The following independence systems of Example 7.2 are matroids.
• vector matroid: E = {v (1), . . . , v (k)} ⊆Rn and I consists of all sets of linearly independent vectors, since

all bases of a subset F ⊆ E have cardinality dim(lin(F)).
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• cycle matroid: E are the edges of a graph and I = {I ⊆ E : I has no cycle}, since all bases of a subset F ⊆ E
have cardinality |F | − k, where k is the number of connected components of F . △

Recall that the greedy algorithm is optimal for the cycle matroid (see 7.4). On the other hand, the knapsack
system, where the greedy algorithm does not yield a good solution (see 7.5), is not a matroid, and neither is
the system for TSP.

Example 7.8. The following independence systems of Example 7.2 are not matroids.
• knapsack system: Not all maximal packings involve the same number of items, i.e., not all bases of E

have the same cardinality.
• tours system: While all bases of E have the same cardinality, the same is not true for the bases of subsets

of E. To see this, consider the complete graph on 4 vertices. The subgraph obtained by ommitting an
arbitrary edge has a cycle of length 4 and a path of length 3 as its bases. △

We now more generally characterize the solution quality of the greedy algorithm via the rank quotient
q :=maxF⊆E : r(F)>0 r(F)/ρ(F).

Theorem 7.9 ([27]). Let (E,I) be an independence system, c : E → R≥0 be an objective to be maximized,
I⋆ ∈ argmaxI∈I c(I) be an optimum solution with c(I⋆)> 0, and I be the solution found by the greedy algorithm.
Then,

c(I⋆)
c(I)

≤ q := max
F⊆E : r(F)>0

r(F)
ρ(F)

,

and there exists c : E→ {0,1} such that equality holds.

Proof. For all j ∈ {1, . . . , |E|}, Observation 7.3 implies that |I∩E j| ≥ ρ(E j) and I⋆∩E j ∈ I implies |I⋆∩E j| ≤ r(E j).
Hence, we obtain (even if r(E j) = 0)

|I ∩ E j| ≥ (1/q) · |I⋆ ∩ E j|. (7.1)

Let {e j} := E j\E j−1 for j ∈ {1, . . . , |E|} and c(e|E|+1)≡ 0. By definition of the greedy algorithm and since c(e|E|)≥
0, we have c(e j)≥ c(e j+1) for all j ∈ {1, . . . , |E|}. This allows to apply (7.1) to obtain

c(I) =
|E|
∑︂

j=1

(|I ∩ E j| − |I ∩ E j−1|) c(e j)

=
|E|
∑︂

j=1

|I ∩ E j| (c(e j)− c(e j+1))

(7.1)
≥ (1/q) ·

|E|
∑︂

j=1

|I⋆ ∩ E j| (c(e j)− c(e j+1)

= (1/q) ·
|E|
∑︂

j=1

(|I⋆ ∩ E j| − |I⋆ ∩ E j−1|) c(e j)

= (1/q) · c(I⋆),

as claimed.
For the second part of the statement, observe that c(I⋆) > 0 implies that F ⊆ E exists with q = r(F)

ρ(F) . Set
c(e) = 1 for e ∈ F and c(e) = 0 for e /∈ F . Since the greedy algorithm does not specify how to break
ties in argmax, we may assume that Eρ(F) is a basis of F . But because c(e) = 0 for all e /∈ F , we have
c(I) = ρ(F) = (1/q) · r(F) = (1/q) · c(I⋆).
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With this we obtain that matroids capture exactly the independence systems for which the greedy algorithm is
optimal.

Corollary 7.10. The following are equivalent for an independence system (E,I):

(a) (E,I) is a matroid.

(b) For all c : E→R≥0, the greedy algorithm yields an optimum solution to max{c(I) : I ∈ I}.

(c) For all c : E→ {0, 1}, the greedy algorithm yields an optimum solution to max{c(I) : I ∈ I}.

(d) For all c : E→R≥0, the greedy algorithm (for minimization) yields an optimum solution to min{c(B) :
B ∈ B}.

Proof. The equivalence of the first three points is immediate from Theorem 7.9.
For the last point, observe that max{

∑︁

e∈I c′(e) : I ∈ I} with c′(e) := −c(e) +
∑︁

e∈E c(e) ≥ 0 has optimum
solutions that are a bases of E (this may not be true for all optima, since c(e) = 0 is permitted). If (E,I) is a
matroid, all bases have the same cardinality, hence c(B) and c′(B) differ by the same constant for all bases B
of E. This means that a basis is optimal for the maximization problem if and only if it is optimal for

max{−c(B) : I ∈ I}= −min{c(B) : B ∈ B}.

Finally, observe that the minimization version of the greedy algorithm for c produces the same solution as
the maximization version for c′ and vice-versa. Hence, the greedy algorithm is optimal for minimization for
all c : E→ R≥0 if and only if it is optimal for maximization for all c′ : E→ R≥0.

It is remarkable that we obtain a full characterization for the optimality of the greedy algorithm. In particular,
Corollary 7.10 yields an alternate proof for the correctness of Kruskal’s algorithm for the minimum spanning
tree problem (see Algorithmic Discrete Mathematics). Note that the bound of Theorem 7.9 only carries over to
minimization problems on matroids. The TSP problem has bounded rank quotient, but the greedy algorithm
can produce arbitrarily bad solutions (exercise).
We further give a sufficient condition for an independence system to have bounded rank quotient, namely,
when it arises as an intersection of matroids.

Theorem 7.11. Let (E,I1), . . . , (E,Ik) be matroids. Then, (E,I) := (E,
⋂︁k

i=1 Ii) is an independence system
with rank quotient q =maxF⊆E : r(F)>0 r(F)/ρ(F)≤ k.

Proof. The fact that (E,I1), . . . , (E,Ik) are independence systems immediately implies that (E,I) is an inde-
pendence system. Let F ⊆ E and let B, B′ ⊆ F be any two bases of F with respect to (E,I). It is sufficient to
show that |B′| ≤ k · |B|.
Since B ∈ I =

⋂︁k
i=1 Ii, we can choose bases B̄i with B ⊆ B̄i ⊆ B ∪ B′ with respect to (E,Ii) for i ∈ {1, . . . , k}.

We claim that
⋂︁k

i=1 B̄i = B. To see this, suppose there exists e ∈
⋂︁k

i=1 B̄i \ B. Then, B ∪ {e} ⊆
⋂︁k

i=1 B̄i ∈ I j for
all j ∈ {1, . . . , k} and thus B ∪ {e} ∈ I. Because of B ∪ {e} ∈ B ∪ B′ ⊆ F , this contradicts B being a basis of F .
Now, our claim implies that every e ∈ B′ \ B is contained in at most k− 1 of the sets B̄i \ B, which means that

� k
∑︂

i=1

|B̄i|

�

− k |B|=
k
∑︂

i=1

|B̄i \ B| ≤ (k− 1) |B′ \ B| ≤ (k− 1) |B′|. (7.2)
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As before, we can choose additional bases B̄′i with B′ ⊆ B̄′i ⊆ B ∪ B′ with respect to (E,Ii) for i ∈ {1, . . . , k}.
Since (E,Ii) is a matroid, we have

|B̄i|= |B̄
′
i| ∀i ∈ {1, . . . , k}. (7.3)

Overall, we obtain

|B′| ≤ |B′|+
k
∑︂

i=1

|B̄′i \ B′|=

� k
∑︂

i=1

|B̄′i|

�

− (k− 1) |B′|
(7.3)
=

� k
∑︂

i=1

|B̄i|

�

− (k− 1) |B′|
(7.2)
≤ k |B|.

For most practical problems, the greedy algorithm can produce arbitrarily bad solutions. Nevertheless, due to
its simplicity and efficiency, it is a popular choice in practice.

7.2 Local search

Once we found some feasible solution, we can try to improve it by modifications. In other words, we search a
neighborhood for better solutions, update our solution, and iterate.

Algorithm: local search
input: feasible solutions F , neighborhoods N : F → F

objective c : F →R, initial solution S ∈ F
output: solution S′ ∈ F
while ∃S′ ∈ N(S) with c(S′)≷ c(S) :

S← S′

return S

The quality of this algorithm critically depends on the definition of the neighborhood N .

Example 7.12.
• 2-opt heuristic for TSP: Here F is the set of all tours and the neighborhood of a tour T consists of

the tours T ′ obtained from T via a pairwise exchange of two edges {u1, v1}, {u2, v2} by the edges
{u1, v2}, {u2, v1}.

• 1-exchange/2-exchange for the equipartition problem: We are given an undirected, edge-weighted
graph G = (V, E) with |V | even and are looking for S ⊆ V with |S|= |V \ S| = |V |/2, while maximizing
the weights of the cut δ(S). The neighborhood of a solution S ⊆ V could then, for example, be all
S′ = S \ {v} ∪ {v′} for v ∈ S, v′ /∈ S (2-exchange). Alternatively, we can add a penalty term of the form
α(|S| − |V \ S|)2 to the objective and allow 1-exchanges S′ = S \ {v}, v ∈ S or S′ = S ∪ {v′}, v /∈ S. △

A general problem of local search is that, inherently, it gets stuck in local extrema. We now discuss modifications
of local search that alleviate this flaw to some extent.

7.2.1 Tabu search

The idea of tabu search is to escape local minima by forcing, in every step, to switch to a solution in the
neighborhood that we didn’t already visit – even if that means getting worse in the objective. However, it is
generally computationally too expensive to track all previously encountered solutions, and we instead limit
ourselves to a tabu list of limited length that only contains recently encountered solutions.
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Algorithm: tabu search
input: feasible solutions F , neighborhoods N : F → F

objective c : F →R, initial solution S(0) ∈ F
output: solution S′ ∈ F
T ← ∅ (tabu list)
for i← 1,2, . . . :

S(i)← argmax or min{c(S) : S ∈ N(S(i−1)) \ T}
T ← (T2, T3, . . . )⊕ (S(i)) (discard oldest)

return argmax or min{S(0), . . . , S(i)}

Example 7.13. Consider the problem of, for given k ∈N, finding a coloring φ : V → {1, 2, . . . , k} of the vertices
of an undirected graph G = (V, E), such that φ(u) ̸= φ(v) for all edges {u, v} ∈ E. We minimize

c(φ) := |{{u, v} ∈ E : φ(u) = φ(v)}|,

and define the neighborhood of φ to consist of the colorings that differ from φ in the color of a single vertex,
i.e.,

N(φ) := {ϕ : V → {1, . . . , k} : |{v ∈ V : φ(v) ̸= ϕ(v)}|= 1}. △

The parameters of tabu search are the length of the tabu list and the stopping condition. A longer tabu list or
execution potentially improves the result, but comes at the cost of deteriorating the running time. Natural
stopping conditions are fixing the number of iterations without improvement or in total. The best choices of
the associated parameters are highly problem-dependent and usually determined by experimental tuning.

7.2.2 Simulated annealing

Simulated annealing also allows to deteriorate the objective, but does so probabilistically instead of using a
deterministic tabu list. More specifically, we allow worse solutions with a certain probability that depends
on how much worse they are and decreases over the course of the execution of the algorithm. The method
is inspired by the physics of crystal formation, which requires a gradual decrease in temperature to allow
time for the individual particles to find their place in the crystaline structure. Accordingly, it maintains a
temperature and uses a probability according to the Boltzmann distribution.

Algorithm: simulated annealing (for maximization)
input: feasible solutions F , neighborhoods N : F → F

objective c : F →R, initial solution S(0) ∈ F
initial temperature T ≥ 1, cooling rate θ

output: solution S′ ∈ F
for i← 1,2, . . . :

randomly pick S(i) ∈ N(S(i−1)) and α ∈ [0,1]

if c(S(i))− c(S(i−1))< 0 and e(c(S
(i))−c(S(i−1)))/T < α :

S(i)← S(i−1) (discard solution)
T ← T · θ

return argmax{c(S) : S ∈ {S(0), . . . , S(i)}}
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Remark 7.14. It can be shown that there always exists parameters for which, with high probability, simulated
annealing eventually finds an optimum solution (see [30]).

As for the previous heuristics, a lot of experimentation is required for tuning the parameters of simulated
annealing, such as the starting temperature, the cooling rate, and the stopping criterion.

7.2.3 Genetic algorithms

While simulated annealing is physics inspired, genetic algorithms take their inspiration from biology. The
basic idea is to simultaneously consider a set (called population) of candidate solutions and to improve that
set by combining individual solutions. In each iteration (called generation) the method selects a series pairs
of solutions (called parents) which are crossed to generate new solutions (called offspring). In addition, the
resulting solutions are randomly perturbed (mutated) with a small probability to avoid getting stuck in local
optima. A subset of the generated solutions is then selected, favoring solutions with better objective values
(their fitness).

Algorithm: genetic algorithm
input: feasible solutions F , objective c : F →R

initial population S(0) ⊂ F
output: solution S ∈ F
for generations i← 1,2, . . . :

for parents {S#, S } ⊆ S(i−1) :
SH#← S# × S (reproduction)

S̃H#←

¨

random perturbation of SH#, with low probability,
SH# otherwise.

(mutation)

S(i)← S(i) ∪ {SH#}
while |S(i)| too large :

choose S ∈ S(i) with probability depending on c(S) (selection)
S(i)← S(i) \ {S}

return argmax [or min]{c(S) : S ∈ S(0) ∪ · · · ∪S(i)}

As with the previous methods, the parameters such as choice of parents, crossing method, mutation rate and
process, selection criterion, stopping criterion, etc., are heavily problem dependent and require careful tuning.
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8 Approximation Algorithms

The solution methods for MIPs covered in Chapters 3, 5, and 6 generally require exponential running times, and
we cannot hope for more efficient methods due to the NP-hardness of solving integer programs (Theorem 3.1).
In practice, exponential runtimes are computationally infeasible except for very small problem instances, and
we can only hope that input instances are “friendly” in the sense that our methods terminate much faster
than their theoretical worst-case running times suggest. Otherwise, we have to abort the solution process
prematurely. In general, we cannot make any theoretical guarantees regarding the quality of a solution
obtained this way. The same applies to the heuristic solutions covered in Chapter 7.
In this chapter, we focus on approximation algorithms that provide (theoretically) efficient running times as
well as a provable solution quality.

Definition 8.1. For every instance I of an optimization problem, let Opt(I) denote the optimum solution
value and Alg(I) the objective function value of the solution computed by an algorithm Alg. Then, Alg is a
γ-approximation algorithm if it has polynomial running time and its solution is always within a factor of γ≥ 1
of the optimum solution, i.e., for all instances I ,

Alg(I)≤ γOpt(I) for minimization problems, and Alg(I)≥ (1/γ)Opt(I) for maximization problems.

In this sense, Theorem 7.9 gives us a solution guarantee for the greedy algorithm.

Example 8.2. The greedy algorithm is a q-approximation algorithm for independence systems (E,I) of rank
quotient q =maxF⊆E r(F)/ρ(F). △

In particular, we obtain the following approximation algorithm.

Theorem 8.3. The greedy algorithm is a 2-approximation algorithm for finding a bipartite matching of
maximum weight.

Proof. Let G = (V1 ∪ V2, E) be a bipartite graph. By Theorems 7.9 and 7.11, it suffices to show the existence of
two matroids (E,I1) and (E,I2) such that I = I1 ∩I2 is the set of matchings in G. Two sets with this property
are defined by, for ℓ ∈ {1, 2},

Iℓ := {M ⊆ E : |M ∩δG(v)| ≤ 1∀v ∈ Vℓ}.

Clearly, ∅ ∈ Iℓ holds, Iℓ is closed under taking subsets, and I = I1 ∩ I2. Also, for all F ⊆ E, the bases of F
in (E,Iℓ) have the same cardinality |{v ∈ Vℓ : F ∩δG(v) ̸= ∅}|. Hence, (E,Iℓ) is a matroid.
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8.1 Approximation for TSP

To prove lower bounds on the best possible approximation factor of an NP-hard problem, we obviously have
to assume P ̸= NP since otherwise even optimal algorithms with polynomial running time would be possible.1
Under this assumption we can show that TSP is not approximable in general.

Theorem 8.4. There is no γ-approximation algorithm for TSP for any γ= γ(n)≥ 1, provided that P ̸= NP.

Proof. We consider the Hamiltonian cycle problem in which an undirected graph G = (V, E) is given and we
have to decide whether G contains a Hamiltonian cycle, i.e., a cycle that visits every vertex exactly once. This
problem is one of the classical NP-complete problems (see Algorithmic Discrete Mathematics).
We construct a TSP instance on a complete graph G′ = (V, E′) with edge weights c : E′ → R≥0, such that
any γ-approximate solution of the TSP instance is sufficient to decide whether a Hamiltonian cycle exists
in G. Since approximation algorithms have polynomial running time by definition, and since G′ and c can be
generated in polynomial time, this construction immediately implies the statement of the theorem.
To do this, we set the edge weights for e ∈ E′ to

c(e) :=

¨

0, if e ∈ E,

1, otherwise.

Obviously, a Hamiltonian cycle in G corresponds to a tour of weight 0 in G′ and vice-versa. Moreover, every
tour in G′ that has edges from E′ \ E has weight at least 1. By definition, every γ-approximation algorithm
with γ≥ 1 must produce a solution of weight 0 if one exists, and thus decides whether a Hamiltonian cycle
exists.

Corollary 8.5. There is no γ-approximation algorithm for TSP for any constant γ≥ 1, provided that P ̸= NP,
even if edge weights must be strictly positive.

Proof. We proceed as in the proof of Theorem 8.4, but set

c(e) :=

¨

1
2γn , if e ∈ E,

1, otherwise.

Then, a Hamiltonian cycle in G corresponds to a tour of weight 1
2γ < 1 in G′ and, conversely, every tour of

weight less than 1 must Hamiltonian, since it cannot afford even a single edge of E′ \ E. Deciding whether a
Hamiltonian cycle exists in G thus amounts to deciding whether the lightest tour in G′ has weight 1

2γ or at
least 1. By definition, every γ-approximation algorithm for TSP can be used to distinguish these cases.

We have thus shown that we have to accept very bad solutions if we only want to invest polynomial computing
time to solve TSP. This result strongly relies on the fact that the edge weights can be arbitrary. Fortunately,
TSP instances often have additional structure: Most of the time the edge weights correspond to distances
(e.g., in a road network) and are therefore metric. In this case, we speak of metric TSP. In particular, the edge
weights (or lengths) fulfil the triangle inequality c({u, v})≤ c({u, w}) + c({w, v}) for all u, v, w ∈ V . Note that
metric TSP is still NP-hard (see for example [32, Theorem 21.2]).
1This statement assumes that the corresponding decision problem is in NP.
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8.1.1 Greedy algorithm

We first consider the greedy algorithm that proceeds as follows. We start with a cycle on two vertices v1, v2,
where {v1, v2} is a cheapest edge of the graph (the cycle uses this edge twice). We extend the cycle step by
step by choosing a cheapest edge e that connects a vertex v of our cycle with a vertex v′ outside. To obtain a
cycle again, we replace an edge {v, v′′} from our cycle with {v′, v′′}.

Algorithm: greedy algorithm for metric TSP
input: complete graph G = (V, E), metric edge weights c : E→R≥0
output: tour T

{v1, v2} ← argmine∈E c(e)
T = (VT , ET )← {(v1, v2), (v2, v1)}
while VT ̸= V :
(v, v′)← arg min{c({u, u′}) : (u, u′) ∈ VT × (V \ VT )} (edge selection)
take v′′ ∈ VT with (v, v′′) ∈ T
T ← T \ {(v, v′′)} ∪ {(v, v′), (v′, v′′)}

return T

Theorem 8.6. The greedy algorithm is a 2-approximation algorithm for metric TSP.

Proof. A closer look reveals that the edge selection {v, v′} in each iteration corresponds exactly to the edge
selection of Prim’s algorithm for finding a minimum spanning tree (see Algorithmic Discrete Mathematics). If F
is the set of all edges selected during the course of the algorithm, then F is therefore a minimum spanning
tree.
In each step the length of our cycle increases by

c({v, v′}) + c({v′, v′′})− c({v, v′′})≤ 2 c({v, v′}),

where we used the triangle inequality. The greedy algorithm thus ensures that c(T )≤ 2 c(F).
Now consider an optimum TSP tour T ⋆. If we remove any edge from T ⋆, we obtain a spanning tree F ′. It
follows that

c(T )≤ 2 c(F)≤ 2 c(F ′)≤ 2c(T ⋆).

8.1.2 Algorithm of Christofides

Starting from a minimum spanning tree F⋆, we can also construct a 2-approximation more directly: We double
every edge in F⋆ and obtain a Eulerian (multi)graph, i.e., a graph that has a cycle using every edge exactly once.
It is easy to see (cf. Algorithmic Discrete Mathematics) that a graph is Eulerian if and only if it is connected
and every vertex has even degree (start somewhere, move along unused edges until a cycle is closed; repeat
and join obtained cycles). A Eulerian cycle in the doubled spanning tree is of course not yet a tour, since it
uses vertices multiple times. However, the triangle inequality allows to eliminate redundant visits to vertices
without increasing the length of the tour, i.e., we skip all but the first occurrence of each vertex.
To summarise, we started from a minimum spanning tree and extended it to a Eulerian graph while doubling
its weight. We can improve this algorithm by finding the cheapest extension to a Eulerian graph. To this

95



end, we first observe that every graph has an even number of vertices of odd degrees, since the sum of all
vertex degrees must be even (namely 2|E|). We want to partition these vertices into pairs and join each
pair via the corresponding direct edge to obtain an Eulerian graph. The problem of finding such a partition
resulting in the minimum total weight of the corresponding edges is precisely the minimum weight perfect
matching problem, which can be solved using the algorithm of Edmonds [15] in polynomial time (cf. lecture
Combinatorial Optimization). The resulting algorithm is known as Christofides’ algorithm [8].

Algorithm: Christofides’ algorithm for metric TSP
input: complete graph G = (V, E), metric edge weights c : E→R≥0
output: tour T

F⋆← minimum spanning tree in G
V ′← {v ∈ V : v has odd degree in F⋆}
M⋆← perfect matching of minimum weight in G[V ′]
R← Eulerian cycle in (V, F⋆ ∪M⋆)
T ← eliminate redundant vertices in R (replace {u, v}, {v, w} by {u, w})
return T

Theorem 8.7 ([8]). Christofides’ algorithm is a 3/2-approximation algorithm for metric TSP.

Proof. As before, we have c(F⋆)≤ c(T ⋆), where F⋆ denotes a minimum spanning tree and T ⋆ an optimum TSP
tour. Let V ′ be the set of all vertices of odd degrees in F⋆, and let M⋆ ⊂ E be a perfect matching of minimum
weight in G[V ′]. Since, by the triangle inequality, the removal of redundant vertices does not increase the
length of the tour, it suffices to show that c(M⋆)≤ c(T ⋆)/2.
First, let T ′ be an optimum TSP tour in G[V ′]. We claim that c(T ′)≤ c(T ⋆). To see this, we start with T ⋆ and
gradually remove vertices that are not in V ′ by replacing consecutive edges with the direct connection. By the
triangle inequality the cycle does not become longer, which establishes the claim.
Now, since |T ′| is even, T ′ can be divided into two perfect matchings in G[V ′] which each have weight at
least c(M⋆), because M⋆ is optimal. It follows that c(M⋆)≤ c(T ′)/2≤ c(T ⋆)/2.

The state of the art in approximation guarantees for metric TSP is summarized below.

Theorem 8.8 ([28]). There exists a randomized algorithm for metric TSP that outputs a tour whose expected
weight is at most (3

2 − ϵ) · c(T
⋆), for some ϵ > 10−36 .

Theorem 8.9 ([29]). The metric TSP problem does not admit a γ-approximation algorithm with γ < 123/122,
provided that P ̸= NP.

Closing the gap between the best upper and lower bounds is an important open problem in the field of
approximation algorithms.

8.2 Polynomial-time approximation schemes

An approximation algorithm guarantees solutions of fixed approximation quality. We can view the best-possible
approximation factor as a measure of the difficulty of a (NP-hard) optimization problem. In that sense, the
easiest problems allow every fixed approximation factor γ > 1.
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Definition 8.10. A polynomial-time approximation scheme (PTAS) is a family {Aϵ} of algorithms, one for every
ϵ > 0, such that Aϵ is a (1+ ϵ)-approximation algorithm.

A PTAS therefore yields, for every fixed ϵ > 0, an algorithm with polynomial running time. However, our
definition allows an arbitrary dependence of the running time on ϵ, in particular the running time could
increase exponentially with increasing 1/ϵ. The following definition is more restrictive.

Definition 8.11. A fully polynomial-time approximation scheme (FPTAS) is a polynomial-time approximation
scheme {Aϵ} for which the running time of Aϵ can be bounded by a polynomial in 1/ϵ (as well as in the
instance size).

We first show that we cannot hope for a better dependence on ϵ for NP-hard problems.

Theorem 8.12. If an optimization problem with integral, non-negative objective function has a PTAS {Aϵ},
where Aϵ has polynomial running time in log(1/ϵ), the problem also has a polynomial-time exact algorithm.

Proof. We show the statement for minimization problems (the proof for maximization problems is analogous).
We construct a polynomial-time algorithm as follows. We first apply Aϵ with ϵ > 0 arbitrarily (e.g., ϵ = 1) to
the instance and obtain a solution of value cϵ ≥ cOpt. Since Aϵ has polynomial running time in the input size,
cϵ is at most simply exponential in the input size.
Set ϵ′ := 1

cϵ+1 . Since cϵ is at most simply exponential in the input size, log(1/ϵ′) ∈O(log cϵ) is polynomial in
the the input size. We apply Aϵ′ and return the computed solution of value cϵ′ . The outlined algorithm has
polynomial running time since the running time of Aϵ′ is polynomial in log(1/ϵ′).
It remains to show that cϵ′ = cOpt. Because cOpt and cϵ′ are integers by assumption, this follows from

cOpt ≤ cϵ′ ≤ (1+ ϵ′) cOpt =
�

1+ 1
cϵ+1

�

· cOpt <
�

1+ 1
cOpt

�

· cOpt ≤ cOpt + 1.

8.2.1 Example: knapsack problem

We now show that the knapsack problem can be approximated arbitrarily well, and that even an FPTAS exists.
In addition to the pseudopolynomial algorithm from Section 5.2.1, this is an indication that the knapsack
problem is an “easy” NP-hard problem.
We consider a knapsack problem of the form max{c⊤x : a⊤x ≤ β , x ∈ {0, 1}n} with a, c ∈Rn

≥0, β ∈R≥0, and
0< ai ≤ β for all i ∈ {1, . . . , n}. The idea of the FPTAS is simple: We round the entries of c to integer multiples
of some µ ∈R, and apply the dynamic program of Section 5.2.1 to the rounded instance. We choose µ in such
a way that (a) our algorithm has a polynomial running time and (b) our solution differs by at most a factor
of (1+ ϵ) from cOpt.

Algorithm: FPTAS for the knapsack problem.
input: a, c ∈Rn

≥0; β ∈R≥0, ϵ > 0
output: approximate solution to max {c⊤x : a⊤x ≤ β , x ∈ {0,1}n}
M ←maxi∈{1,...,n} ci, µ← ϵM/n
c′← ⌊c/µ⌋ (component-wise)
x ← argmax{(c′)⊤x : a⊤x ≤ β , x ∈ {0,1}n} (via DP of Section 5.2.1)
return x
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Theorem 8.13. There exists an FPTAS for the knapsack problem with running time O(n3/ϵ).

Proof. We first consider the rounding error. Rounding the entries of c to the nearest integer multiples of µ
influences the solution value by at most µn, so we need to ensure that µn≤ ϵcOpt. Because of M ≤ cOpt, it is
sufficient to set µn= ϵM , i.e. µ := ϵM/n.
The running time of the algorithm is determined by the running time of the dynamic program on the rounded
instance. According to Theorem 5.16, the latter is O(nZ), where Z :=

∑︁n
i=1⌊ci/µ⌋ ≤ n ⌊M/µ⌋ ∈ O(n2/ϵ).

Hence, the running time is polynomial in n and 1/ϵ, as desired.

8.3 LP Rounding

Many approximation algorithms are based on rounding a solution to some LP relaxation. The applicability of
this approach depends on whether we can ensure the rounded solution to be feasible and whether we are able
to estimate the quality of the rounded solution. Randomization often helps, especially for the latter aspect
(cf. the proof of Theorem 4.15). We illustrate the general approach on an example from machine scheduling.
Scheduling problems are generally concerned with assigning jobs j ∈ {1, 2, . . . , n} to machines i ∈ {1, . . . , m},
where assigning job j on machine i encurs a processing time of pi j ≥ 0. Many practical problems can be
expressed in this way, and, accordingly, there is a large number of variants of this problem, which differ in the
objective function, the processing times and other restrictions for valid solutions.
We consider a variant in which every job j ∈ {1, . . . , n} may be rejected (i.e., not processed at all) for a
cost s j. Machines can only process one job at a time, but jobs can be interrupted (preemption), transferred
to other machines while being processed (migration), and even run simultaneously on several machines
(parallelization). The objective is to reduce the sum of the completion time of the last job (the makespan) and
the rejection costs of the unprocessed jobs.
We can formulate this problem as a MIP with the following variables

x i j = proportion of job j processed by machine i

y j =

¨

1, if job j is processed,

0, otherwise
T =makespan.

The resulting MIP is

min T +
∑︁n

j=1 s j (1− y j),

s.t.
∑︁n

j=1 pi j x i j ≤ T ∀i ∈ {1, . . . , m},
∑︁m

i=1 x i j = y j ∀ j ∈ {1, . . . , n},

x i j ≥ 0 ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n},

y ∈ {0, 1}n.

It can be shown that the above scheduling problem is NP-hard, see [26]. We describe an algorithm that
determines a feasible solution by rounding the LP relaxation.

98



Algorithm: DeterministicRounding(α)
input: threshold α ∈ (0,1)
determine solution (x ⋆, y⋆, T ⋆) of the LP relaxation
for j ∈ {1, . . . , n} :

if y⋆j ≤ α :
ŷ j ← 0
x̂ i j ← 0 ∀i ∈ {1, . . . , m}

else (y⋆j > α)
ŷ j ← 1
x̂ i j ← x⋆i j/y⋆j ∀i ∈ {1, . . . , m}

T̂ ←maxi∈{1,...,m}
∑︁n

j=1 pi j x̂ i j

return (x̂ , ŷ , T̂ )

We establish an approximation guarantee for this rounding method.

Theorem 8.14. DeterministicRounding(1/2) is a 2-approximation algorithm.

Proof. The computed solution (x̂ , ŷ , T̂ ) is feasible since either ŷ j = 0=
∑︁m

i=1 x̂ i j or, by feasibility of (x ⋆, y⋆, T ⋆),
ŷ j = 1=
∑︁m

i=1 x⋆i j/y⋆j =
∑︁m

i=1 x̂ i j.
We claim that, for all i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, it holds that

(1− ŷ j)≤
1

1−α
(1− y⋆j ), and (8.1)

x̂ i j ≤
1
α

x⋆i j . (8.2)

For y⋆j ≤ α, we have ŷ j = x̂ i j = 0 and thus

1
1−α

(1− y⋆j )≥
1

1−α
(1−α) = 1= (1− ŷ j),

and
1
α

x⋆i j ≥ 0= x̂ i j .

For y⋆j > α, we have ŷ j = 1 and thus

1
1−α

(1− y⋆j )≥ 0= (1− y ĵ),

and

x̂ i j =
x⋆i j

y⋆j
<

1
α

x⋆i j .

Hence the claim holds.
Now, let i ∈ {1, . . . , m} be a machine with completion time T̂ in the solution (x̂ , ŷ , T̂ ), i.e., such that T̂ =
∑︁n

j=1 pi j x̂ i j. Then,
1
α

T ⋆ ≥
1
α

n
∑︂

j=1

pi j x
⋆
i j

(8.2)
≥

n
∑︂

j=1

pi j x̂ i j = T̂ . (8.3)
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It follows that

T̂ +
n
∑︂

j=1

s j (1− ŷ j)
(8.1),(8.3)
≤

1
α

T ⋆ +
1

1−α

n
∑︂

j=1

s j (1− y⋆j )

≤max
¦1
α

,
1

1−α

©�

T ⋆ +
n
∑︂

j=1

s j (1− y⋆j )
�

≤max
¦1
α

,
1

1−α

©

· cLP ≤max
¦1
α

,
1

1−α

©

· cMIP.

Setting α= 1
2 completes the proof.

By randomizing the selection of α we can further improve the (expected) approximation factor. We can
derandomize the resulting algorithm by testing a linear number of values for α.

Algorithm: DerandomizedRounding
S ← {DeterministicRounding(α) : α ∈ ((1

e , 1)∩ {y⋆1 , . . . , y⋆n})∪ {
1
e }}

return argmin{T̂ +
∑︁m

i=1 s j(1− ŷ j) : (x̂ , ŷ , T̂ ) ∈ S}

We obtain the following solution guarantee.

Theorem 8.15 ([26]). The derandomized rounding algorithm is a e
e−1 -approximation algorithm, where

e
e−1 ≈ 1.58.

Proof. First, consider the randomized procedure where α∼ U(1
e , 1) is selected uniformly at random from the

open interval (1
e , 1). Let (x̂ (α), ŷ(α), T̂ (α)) denote the resulting solutions. Then, using the arguments from

the proof of Theorem 8.14, we have

Eα[T̂ (α)] =
1

1− 1
e

∫︂ 1

1
e

T̂ (α) dα
(8.3)
≤

e
e− 1

∫︂ 1

1
e

1
α

T ⋆dα= e
e− 1

T ⋆ [lnα]11
e
=

e
e− 1

T ⋆. (8.4)

Furthermore, we have

Eα[
n
∑︂

j=1

s j (1− ŷ j(α))] =
n
∑︂

j=1

s j Prα[y
⋆
j ≤ α] =

n
∑︂

j=1

s j ·
1

1− 1
e

∫︂ 1

max{ 1
e ,y⋆j }

dα

≤
n
∑︂

j=1

s j ·
e

e− 1

∫︂ 1

y⋆j

dα= e
e− 1

n
∑︂

j=1

s j (1− y⋆j ). (8.5)

Hence,

Eα[T̂ (α) +
n
∑︂

j=1

s j (1− ŷ j(α))]
(8.4),(8.5)
≤

e
e− 1

(T ⋆ +
n
∑︂

j=1

s j (1− y⋆j )) =
e

e− 1
cLP ≤

e
e− 1

cMIP,

and thus we have proven an approximation factor of e
e−1 in expectation.

For derandomization, note that all possible solutions occur for α ∈ {y⋆1 , . . . , y⋆n} and thus it is sufficient to
compute rounded solutions for α ∈ (1

e , 1)∩ {y⋆1 , . . . , y⋆n} (and
1
e if this set is empty). Furthermore, the best of

these solutions must be at least as good as the expected value.

On the other hand, it is known that the scheduling problem cannot be approximated arbitrarily well. Such
problems are referred to as APX-hard.

Theorem 8.16 ([26]). There is no PTAS for the above scheduling problem, provided that P ̸= NP.
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