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Abstract

In the classical traveling salesperson problem (TSP), we need to find a shortest
possible tour that visits all points of a finite metric space. This constitutes one of
the most extensively studied problems in combinatorial optimization. In this thesis,
we study the TSP under additional restrictions such as incomplete information or
restricted computational complexity. We consider several such settings and study
online and offline approximation algorithms for them.

In the online graph exploration problem, a single agent needs to find a TSP tour
in an initially unknown weighted graph, which is gradually learned over time. We
prove a constant competitive ratio for this problem when restricted to minor-free
graphs. This result encompasses and significantly extends the graph classes that
were previously known to admit a constant competitive ratio. The main ingredient
of our proof is that we find a connection between the particular exploration algo-
rithm Blocking and the existence of light spanners. We also exploit this connection
in the opposite direction to construct light spanners of bounded-genus graphs. More-
over, we prove that the competitive ratio of the online graph exploration problem
is at least 4, even when restricted to subcubic planar graphs. This improves on the
previously best known lower bound of 10/3. Additionally, we study the collabora-
tive tree exploration problem, which is a variant of the exploration problem with
multiple agents. We give a slightly improved bound on the competitive ratio of the
classical algorithm Yo*.

In the tricolored Euclidean traveling salesperson problem, we are given three
sets of points in the Euclidean plane and need to find three non-crossing tours,
each covering one of the sets. In this problem, we address restrictions in com-
putational complexity rather than on information. Our main contribution is a
polynomial-time (5/3+ ε)-approximation algorithm. For this, we generalize Arora’s
famous PTAS for the Euclidean TSP. One of its key ingredients is the “Patching
Lemma”, which is known to generalize to two non-crossing tours but not to three
or more. We circumvent this issue by combining a conditional patching scheme for
three tours and an alternative approach based on a weighted solution for two colors.

In the open online dial-a-ride problem, a single agent is tasked to serve trans-
portation requests arriving online, subject to minimizing the completion time. We
introduce the algorithm Lazy and give a tight analysis, proving that its competitive
ratio is 2.457 on general metric spaces, and 2.366 on the half-line. This improves on
the previously best known bound of 2.696 in these metric spaces.
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Zusammenfassung

Im klassischen Problem des Handlungsreisenden (TSP) soll eine kürzestmögliche
Rundtour gefunden werden, die alle Punkte eines endlichen metrischen Raums be-
sucht. Es zählt zu den am intensivsten untersuchten Problemen der kombina-
torischen Optimierung. In dieser Arbeit betrachten wir Varianten des TSP unter
zusätzlichen Einschränkungen, etwa unvollständiger Information oder begrenzter
Rechenressourcen. Wir betrachten verschiedene solcher Szenarien und analysieren
Online- und Offline-Approximationsalgorithmen.

Im Online-Graphenexplorationsproblem muss ein Agent eine TSP-Tour in einem
anfangs unbekannten, gewichteten Graphen finden, der während der Exploration
sukzessive erlernt wird. Wir beweisen, dass der kompetitive Faktor des Prob-
lems konstant ist, wenn es auf minorenfreie Graphen eingeschränkt wird. Dieses
Resultat umfasst und erweitert die Graphenklassen, für die bisher ein konstanter
kompetitiver Faktor bekannt war, signifikant. Die Kernidee des Beweises ist ein
Zusammenhang zwischen dem Explorationsalgorithmus Blocking und der Exis-
tenz leichter Spanngraphen. Diese Verbindung nutzen wir auch in umgekehrter
Richtung, um leichte Spanngraphen für Graphen mit beschränktem Genus zu kon-
struieren. Darüber hinaus zeigen wir, dass der kompetitive Faktor des Online-
Graphenexplorationsproblems mindestens 4 beträgt, auch wenn das Problem auf
subkubische planare Graphen eingeschränkt wird. Dies verbessert die bisherige un-
tere Schranke von 10/3. Zudem untersuchen wir das kollaborative Explorationsprob-
lem, eine Variante mit mehreren Agenten, und geben hierbei eine leicht verbesserte
Schranke für den kompetitiven Faktor des klassischen Algorithmus Yo* an.

Im dreifarbigen Euklidischen TSP sind drei Punktmengen in der Euklidischen
Ebene gegeben, und es müssen drei sich nicht kreuzende Rundtouren gefunden
werden, die jeweils eine der Mengen abdecken. Anstelle der Informationsverfüg-
barkeit betrachten wir hier Einschränkungen bezüglich der Berechnungskomplexität.
Unser Hauptresultat ist ein (5/3+ ε)-Approximationsalgorithmus mit polynomialer
Laufzeit. Hierfür verallgemeinern wir Aroras berühmtes PTAS für das Euklidi-
sche TSP. Eine seiner Kernideen ist das sogenannte “Patching Lemma”, das sich auf
zwei nicht kreuzende Touren verallgemeinern lässt, jedoch nicht auf drei oder mehr.
Wir umgehen dieses Problem, indem wir entweder ein bedingtes Patching-Schema
für drei Touren anwenden oder einen alternativen Ansatz auf Basis einer gewichteten
Lösung für zwei Farben verwenden.

Im offenen Online-Dial-a-Ride-Problem müssen online eintreffende Transportan-
fragen so bedient werden, dass die Gesamtabschlusszeit minimiert wird. Wir führen
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dafür den Algorithmus Lazy ein und geben eine scharfe Schranke für seinen kom-
petitiven Faktor an: 2.457 in allgemeinen metrischen Räumen sowie 2.366 auf der
Halbgeraden. Damit verbessern wir die bisher beste bekannte Schranke von 2.696
in diesen metrischen Räumen.
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Chapter 1

Introduction

In the classical traveling salesperson problem (TSP), we are given a finite set of
cities along with the distances between each pair. The task is to find a shortest
route that visits all of them and returns to the starting city. The TSP is one
of the most famous and extensively studied problems in combinatorial optimiza-
tion [5, 17, 70, 76, 79, 111], and the strategies developed to solve it are crucial in
logistics, planning, and vehicle routing. Importantly, the problem is NP-hard [78],
that is, no polynomial-time algorithm exists that computes an optimal tour in gen-
eral, unless P=NP. This connection to foundational questions such as P vs NP,
together with its elegant formulation and wide applicability, makes the TSP a cen-
tral and particularly intriguing problem in discrete mathematics and theoretical
computer science.

In practice, one often faces additional challenges such as incomplete information
or limited computational resources. This can make finding an optimum solution
impossible. For example, one might not have access to a complete or correct map
of the cities. Even when full information is available, the inherent computational
hardness of problems like the TSP often makes finding optimum solutions within
an acceptable time infeasible. In such scenarios, it is reasonable to seek an approx-
imation instead, that is, a route that visits all cities and may not be optimal, but
whose length is close to that of an optimal tour.

In this work, we study approximation guarantees for the TSP when optimal
solutions cannot be found due to various restrictions. Specifically, we study two
types of additional challenges for the TSP. On the one hand, we consider limitations
on the computational power, specifically on time complexity. For this, we investigate
a variant of the TSP with multiple agents in the Euclidean plane, that is, the cities
lie in R2 and their distances are given by the corresponding Euclidean distance. We
analyze approximation guarantees for this problem achievable by polynomial-time
algorithms. On the other hand, we study restrictions in information, considering
scenarios where the problem instance is revealed piece by piece and decisions must
be made without knowledge of the full instance. Specifically, we consider two such
settings: one where no complete map is available and only local information about
the problem’s structure can be accessed, and another involving navigation strategies

1



2 Chapter 1. Introduction

for a taxi driver responding to spontaneous transportation requests.
We measure the quality of an approximation as follows. Consider an optimization

problem where the objective is to minimize some cost function. In the case of TSP,
this is the length of a tour. For an instance I, we denote by Opt(I) the cost of an
optimum solution. Given α ∈ R≥1, a valid solution for I is an α-approximation if
its cost is at most α ·Opt(I). An α-approximation algorithm is an algorithm that,
for every possible input instance, produces an α-approximation. When consider-
ing problems with full information but restricted time complexity, we are typically
looking for the smallest possible value for α ≥ 1 such that there exists a polynomial-
time α-approximation algorithm.

Optimization problems with incomplete information fall into the field of online
optimization. More precisely, in an online (minimization) problem, the input in-
stance is revealed piece by piece, and typically, after each new piece is revealed, we
have to make an irrevocable decision, incurring some cost. The objective is to min-
imize the total incurred cost. The challenge in developing a good online algorithm
is to efficiently handle the revealed instance while also anticipating future scenarios
for the unrevealed part.

We measure the quality of a deterministic online algorithm by the worst-case ap-
proximation factor that it achieves, using a framework called competitive analysis.
More formally, we denote by Opt(I), similarly as before, the cost of an optimum
solution for instance I, when full information is available. In the context of online
algorithms, this is referred to as the offline optimum cost. When we refer to the
offline optimum, we mean an offline algorithm that, given an instance I with com-
plete information, computes a valid solution of cost Opt(I). In contrast, an online
algorithm Alg receives information gradually over time, and we denote its incurred
cost on instance I by Alg(I). For ρ ≥ 1, we say that Alg is ρ-competitive if there
exists a constant C ∈ R≥0 such that

Alg(I) ≤ ρ ·Opt(I) + C

for every instance I. If C = 0 is possible, we say that Alg is strictly ρ-competitive.
The (strict) competitive ratio of the algorithm is defined as

inf{ρ ≥ 1 : Alg is (strictly) ρ-competitive},

and the (strict) competitive ratio of the problem is defined as

inf{ρ ≥ 1 : there exists a (strictly) ρ-competitive algorithm}.

While the strict competitive ratio of a problem can, in general, be larger than
its competitive ratio, in all online problems considered in this work, these values
coincide. Therefore, we often refer simply to the competitive ratio.

1.1 Variants of TSP and our results
We now introduce the online and offline variants of the traveling salesperson problem
that we study in this work and give an overview of the main results.
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Single-agent online graph exploration

Consider a cartographer tasked with creating a map of all towns in a rural state.
For better orientation, each town’s residents have placed a road sign on every road
leaving their town. The signs indicate the name and the distance to the next town
down the road. This is the only information available, and the cartographer can read
a road sign only when visiting the corresponding town. We assume they can take
notes and never forget learned information. The cartographer wants to complete the
task as efficiently as possible, minimizing the total traveled distance, including the
distance to return to the starting position. In a more formal way, we think of the
state as a graph, with the vertices representing the towns and the edges representing
the roads.

This is called the online graph exploration problem and is formally defined in
Chapter 2. Apart from cartography, natural applications include navigation of
robots or searching data structures. The key question that we study is the fol-
lowing: Is there a constant-competitive algorithm for the online graph exploration
problem? In other words, is there a strategy for the cartographer such that their
total traveled distance is at most a constant factor times the length of a short-
est TSP tour? This question was proposed in 1994 [75] and despite extensive re-
search [23, 44, 47, 58, 68, 81, 92, 96, 107], it is still open.

In this work, we make progress on this problem in the following respects. First,
we prove that on a large class of graphs, the so-called minor-free graphs, the problem
admits a constant-competitive algorithm (Section 2.2). This result subsumes and
significantly extends other graph classes previously known to admit a constant-
competitive algorithm, such as planar [75] and bounded-genus graphs [92]. The
main ingredient is a newfound connection between the performance of the particular
exploration algorithm Blocking and the existence of so-called light graph spanners,
which, roughly speaking, provide a strategy for approximating the distances between
the towns using fewer roads. We complement this by giving lower bounds for the
algorithm Blocking (Section 2.4) and use the connection in the opposite direction
to give improved results for the existence of light graph spanners (Section 2.3).

Second, we give a lower bound of 4 on the competitive ratio of the online graph
exploration problem (Section 2.5), improving on a previously known lower bound
of 10/3 [23]. An important ingredient for this is that we identify several restrictions
on the agent’s behavior that do not affect the competitive ratio (Section 2.1.3). As
a byproduct, we also identify several graph properties that can be assumed without
loss of generality.

Collaborative tree exploration

Consider the same scenario as before, but with a team of cartographers collaborat-
ing to create the map. We assume that each cartographer carries a walkie-talkie,
allowing them to share all gathered information. For simplicity, we further assume
that there is a central coordinator to whom all cartographers report their findings,
and this coordinator determines the movements of each team member. We assume
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that each cartographer can move with unit speed, and the objective in this setting
is to minimize the overall completion time, rather than the total traveled distance.
Thus, having team members remain stationary provides no benefit in decreasing the
cost.

Finding a good strategy to coordinate the team is a highly non-trivial problem,
even when the underlying graph is as simple as an unweighted tree. For instance,
consider a situation where there are two roads leading out of the starting town, and
the team consists of ten cartographers. A straightforward approach would be to
send five cartographers down each road. However, if one of these roads turns out
to lead to a dead end, in hindsight, it would have been preferable to send only a
single team member there. More generally, the objective is to allocate more car-
tographers to regions with more towns, but determining which areas have more
towns is challenging when information is only revealed during the course of explo-
ration. For this reason, research typically revolves around the case of unweighted
trees [37, 38, 41, 43, 56, 67, 98], which is called the collaborative tree exploration
problem and is formally defined in Chapter 3.

In this work, we study a classical algorithm for the problem, called Yo* [98]. The
main idea in this algorithm is to partition the tree into layers of smaller depth and
then recursively apply an algorithm that performs well on trees of small depth. We
give a refined version of this approach called RecYoYo and prove that it achieves
a slightly better competitive ratio (Section 3.2.2), where our bound is independent
of the number of vertices.

Colored Euclidean TSP

Next, we consider an offline variant of the TSP, which is a fundamental problem
in geometric network optimization [94]. Given a set of factories, each requiring one
of k available goods, we need to establish k roundtrip supply routes to serve them.
To avoid constructing bridges, we adopt the restriction that these routes must be
non-crossing. The goal is to minimize the total length of the routes.

More formally, in the k-colored Euclidean traveling salesperson problem, we are
given a finite set of points in the Euclidean plane, each assigned one of k colors.
For each color, we have to find a tour that covers all points of that color, with
the objective of minimizing the sum of the tour lengths. Importantly, we require
these tours to be non-crossing. Note that, without the non-crossing requirement,
the problem would decompose into k instances of the Euclidean TSP that can be
solved independently. However, the non-crossing constraint introduces significant
complexity: Even small modifications to one tour can necessitate major changes in
others, creating strong interdependencies across tours.

In this setting, we have full information about all point locations and colors be-
forehand, but are restricted to solutions computable in polynomial time. Note that
the problem is NP-hard, which follows directly from the fact that the Euclidean TSP
with a single agent is a special case. In this work, we examine a well-known ap-
proximation scheme by Arora for the single-agent Euclidean TSP [5] and study to
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what extent it generalizes to the multi-agent setting. While it has been recently
shown that Arora’s approach can be extended to two colors [45], we will see that
it does not generalize to three or more colors. For the specific case of three colors,
we propose an alternative method building upon Arora’s framework, resulting in
a (5/3)-approximation algorithm (Chapter 4).

Online dial-a-ride

Last, we consider the problem of navigating a taxi that receives transportation re-
quests over time in an online fashion. In contrast to the other online problems
studied here, we assume time to be continuous, and at any point in time, a trans-
portation request can appear, consisting of a starting point and a destination. We
assume that the driver travels at unit speed and the objective is to minimize the
completion time. This is a classical and well-studied problem in online optimiza-
tion [21, 22, 24, 86, 83, 90, 89] and is called online dial-a-ride. A formal definition
is given in Chapter 5.

The challenge for the taxi driver is not only to decide in which order to serve
requests, but also when to serve them. It can often be beneficial for the driver to
wait some amount of time before starting a journey. For example, assume that the
underlying metric space is the real line, the driver is located at 0, and they receive
a transportation request from 1 to 2. If the driver decides to immediately serve this
request, then upon reaching point 1, a new request from 0 to 1 may appear. In
hindsight, it would have been better to wait at position 0 until the second request
appears.

In this work, we introduce an algorithm called Lazy for the online dial-a-ride
problem that anticipates situations as the one described above and may choose to
wait, even when unserved requests are available. We give a tight analysis of this al-
gorithm, proving that its competitive ratio is 2.457 on general metric spaces (Chap-
ter 5). This improves on the previously best known bound of 2.696 [21] on the
competitive ratio of the problem. In addition, we also obtain improvements when
the metric space is the half-line.

We remark that the results presented in Sections 2.2–2.4 were published in [12],
the results in Chapter 4 were published in [11], and the results in Chapter 5 were
published in [13, 14]. The results presented in Section 2.5 are currently under review.



6 Chapter 1. Introduction



Chapter 2

Single-agent online graph exploration

In this chapter, we study the online graph exploration problem proposed by Kalyana-
sundaram and Pruhs [75]. In this setting, a single agent has to traverse an ini-
tially unknown, undirected, connected graph G = (V,E,w) with non-negative edge
weights w : E → R≥0. We assume that every vertex and every edge has a unique
identifier. Upon visiting a vertex for the first time, the agent learns the identifiers
of the adjacent vertices as well as the identifiers and weights of the corresponding
edges. The cost incurred when traversing an edge is simply its weight. The objective
is to visit all vertices and return to the starting position, while minimizing the total
cost. An example is illustrated in Figure 2.1.

The arguably most important question for this problem is the following.

Problem 2.1 (Kalyanasundaram and Pruhs 1994). Is there a deterministic constant-
competitive algorithm for online graph exploration?

Several algorithms were proposed with a competitive ratio of O(log(n)) [92, 107],
where n is the number of vertices, but better competitive ratios are only known for
restricted classes of graphs, such as so-called bounded-genus graphs and graphs
only using a constant number of different weights [75, 92]. Prior to our work, the
best known lower bound on the competitive ratio was 10/3 [23]. In particular, the
question of Kalyanasundaram and Pruhs remains open.

In this chapter, we make progress on the online graph exploration problem in two
respects. First, we extend the classes of graphs admitting a constant-competitive
algorithm to so-called minor-free graphs (formally defined in Section 2.1.1). More
precisely, we prove the following result.

Theorem 2.2. For every graph H, there is a constant c such that there exists
a c-competitive algorithm for online graph exploration on H-minor-free graphs.

Second, we improve on the lower bound on the competitive ratio as follows. Here,
a graph is subcubic if all vertices have degree at most 3.

Theorem 2.3. The competitive ratio of the online graph exploration problem is at
least 4, even when restricted to subcubic planar graphs.

7
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23 23
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Figure 2.1: Example of an online graph exploration instance with four vertices.
Filled vertices are explored, unfilled vertices are learned but not yet explored, and
the dashed edges indicate boundary edges (see Section 2.1 for a definition). The
red triangle marks the agent’s current position, and red arrows indicate the edges
it will traverse next. In the third step, two edges need to be traversed to reach the
unexplored vertex. In the final step, all vertices are explored, and the agent returns
to the starting position. Vertex and edge identifiers are omitted in the figure. In
this example, the online agent incurs a cost of 26, whereas the offline optimum cost
is 3 + 4 + 2 · 7 + 2 = 23.

Chapter outline. In Section 2.1, we establish all preliminaries necessary for our
further study of the online graph exploration problem. Specifically, we introduce
the required notation, define the graph classes on which we consider the problem,
provide an overview of existing algorithms for online graph exploration, and show
that several further assumptions can be made on the setting without loss of gen-
erality. Next, in Section 2.2, we prove our main result (Theorem 2.2). The key
ingredient is a new-found connection between the exploration algorithm Blocking
and the existence of so-called light spanners. In Section 2.3, we demonstrate how
this connection can also be used in the opposite direction to derive improved bounds
for the existence of graph spanners. In Section 2.4, we establish lower bounds for the
algorithm Blocking, which show that Theorem 2.2 cannot be extended to the class
of all graphs. Finally, in Section 2.5, we study lower bounds for general algorithms
and prove Theorem 2.3.

2.1 Preliminaries
Let us introduce the notation used throughout this chapter. We consider weighted
graphs of the form G = (V,E,w), where w : E → R≥0 assigns every edge a non-
negative weight. We write n := |G| := |V |, V (G) := V , and E(G) := E. By slight
abuse of notation, we often identify subgraphs of G with their sets of edges. For
example, this allows us to work with intersections and unions of subgraphs.

During the course of exploration, we say that a vertex is explored if it was visited
by the agent and it is learned if one of its neighbors or the vertex itself was visited,
and thus the agent knows of its existence. An edge is a boundary edge if one of
its endpoints is explored and the other endpoint is unexplored. By convention, we
denote boundary edges by e = (u, v) with u explored and v unexplored. Other-
wise, we denote edges by e = {u, v} as customary for undirected graphs. For an
algorithm Alg, we denote by Alg(G, v) the total cost of the algorithm incurred on
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graph G when starting on vertex v. For two learned vertices u and v, we denote
by d(u, v) the length of a shortest path from u to v whose internal vertices are ex-
plored. In other words, this is the smallest upper bound on the distance between u
and v in G that the agent is aware of. In particular, d(u, v) may decrease over time,
but never increase.

By Opt(G), we denote the length of a shortest TSP tour, i.e., the cost incurred
by the offline optimum. Note that the length of a shortest TSP tour is independent
of the starting position, but this does not hold for an online algorithm in general.
By MST(G), we denote the total weight of a minimum spanning tree of G. Note
that, for every graph G, we have

MST(G) ≤ Opt(G) ≤ 2 ·MST(G).

In particular, if we have Alg(G, v) ≤ ρ ·MST(G) for every graph G and starting
vertex v, we obtain that the algorithm is strictly ρ-competitive. Conversely, if we
have Alg(G, v) > ρ ·MST(G) for some choice of G and v, the strict competitive
ratio of the algorithm is at least ρ/2. Therefore, we often estimate an algorithm’s
cost using a minimum spanning tree instead of the offline optimum.

2.1.1 Restrictions to graph classes

To make the question by Kalyanasundaram and Pruhs more tractable, a classical
approach is to restrict the exploration problem to some graph class G, where a
graph class is simply a (typically infinite) set of graphs. For example, it is known
that the competitive ratio of online graph exploration is 2 when restricted to un-
weighted graphs (i.e., all edges have the same weight, which we can assume to be 1)
and (1+

√
3)/2 on cycles [96]. While the first property provides a restriction on the

edge weights, the second property provides a restriction on the underlying graph
independent of the edge weights. Another way of formulating the latter result is as
follows: There is an algorithm that is (1 +

√
3)/2-competitive on every cycle with

every possible choice for the edge weights.
Interestingly, it is possible to give strong approximation guarantees for online

graph exploration by only assuming some very general properties on the underlying
graph and allowing every possible choice for the edge weights. It is a non-trivial
problem to identify such properties. For examble, we will see later that restricting
exploration to graphs of maximum degree 3 does not simplify the problem (Corol-
lary 2.6) but restricting to planar graphs does. In this subsection, we introduce
some graph classes that we study later in this respect. Note that the metric space
induced by a weighted graph can be modeled by a complete graph by simply setting
edge weights of non-present edges to be sufficiently large. Therefore, we consider
graph classes that exclude complete graphs, as otherwise, the problem remains as
hard as on general graphs. For example, it makes sense to assume some sparsity
properties.

A planar graph is a graph that can be embedded into the plane. Less formally
speaking, this means that the graph can be drawn in the plane without crossing
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Figure 2.2: A graph embedded on an ori-
entable surface of genus 2.

planar

bounded genus

bounded treewidth

minor-free

Figure 2.3: Overview of
graph classes.

edges. For example, trees and cycles are planar. The smallest non-planar graph is
the complete graph on five vertices K5.

A generalization of planar graphs are bounded-genus graphs. Here, the genus of a
graph G is the smallest integer g ≥ 0 such that G can be embedded on an orientable
surface of genus g, i.e., can be drawn on a torus with g handles without crossing
edges (see Figure 2.2). It can be shown that, for every graph, such a value for g exists
and we have g ≤ ⌈(n−3)(n−4)/12⌉ for n ≥ 3, where the bound is tight for complete
graphs [104]. Since the plane has genus 0, we obtain that planar graphs are precisely
the graphs of genus 0, or in other words, the graphs of genus at most 0. The term
bounded-genus graphs should be understood here as a family of graph classes, i.e.,
it collectively refers to the graph classes of genus at most k for every k ∈ N0. For
example, when we say that an algorithm is constant-competitive on bounded-genus
graphs, we mean that, for every k, there exists a constant c (depending on k) such
that the algorithm is c-competitive on graphs of genus at most k.

A further generalization is provided by minor-free graphs. A minor of a graph G
is obtained by a sequence of edge deletions, vertex deletions, and edge contractions.
Here, a contraction of an edge {u, v} is obtained by introducing a new vertex w,
letting all vertices adjacent to u or v be adjacent to w, and deleting u and v. For a
fixed graph H, the class of H-minor-free graphs is the set of all graphs that do not
contain H as a minor. For example, it is easy to see that the K3-minor-free graphs
are precisely the forests: If a graph contains a cycle, we can delete every vertex
outside of the cycle and then contract edges until we obtain a cycle of length 3,
i.e., K3 is a minor of the graph. Further, it is easy to see that applying a vertex
deletion, edge deletion, or edge contraction does not increase the genus of a graph.
Therefore, if H is a graph of genus g, every graph of genus at most g−1 is H-minor-
free. Thus, the class of H-minor-free graphs contains the class of graphs of genus at
most g− 1. Similarly, note that our main result (Theorem 2.2) can be reformulated
as follows: Let G be a non-trivial graph class (i.e., not the class of all graphs) that
is closed under taking minors. Then there exists a constant c such that there exists
a c-competitive algorithm for online graph exploration on graphs in G.

More generally, one can precisely describe every graph class G that is closed un-
der taking minors by giving a set of excluded minors H. This means that G ∈ G
if and only if G does not contain any of the graphs in H as a minor. For example,
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one can simply set H to be the set of all graphs that are not contained in G. A
groundbreaking result by Robertson and Seymour states that H can always be cho-
sen to be finite [105]. A prominent special case is Kuratowski’s theorem [87], which
states that the planar graphs are precisely the graphs that exclude the minors K5

and K3,3.
The term minor-free graphs should again be understood as a family of graph

classes, i.e., it collectively refers to the H-minor-free graph classes for every graph H.
When we say that an algorithm is constant-competitive on minor-free graphs, we
mean that, for every graph H, there exists a constant c (depending on H) such that
the algorithm is c-competitive on H-minor-free graphs.

Finally, we remark that there are numerous other graph classes one could consider
that lie outside the scope of this work. For instance, one could consider graphs
with some bounded width parameter such as treewidth, pathwidth or tree-depth.
However, these classes are all contained in minor-free graph classes (Figure 2.3).
An example of a more general class of graphs that still excludes complete graphs is
given by so-called graphs of bounded expansion.

2.1.2 Algorithms for online graph exploration

In this subsection, we survey algorithms for the online graph exploration problem
from the literature, providing an overview of the state-of-the-art. We put a particular
emphasis on their performance guarantees on different graph classes. An overview
is given in Table 2.1.

Nearest Neighbor (NN). A natural strategy for online graph exploration is
the Nearest Neighbor algorithm (NN), sometimes also referred to as the greedy
algorithm. In this algorithm, in each step, the agent greedily selects a closest unex-
plored vertex to its current location. Note that even though distances may decrease
during the course of exploration, for NN it makes no difference whether distances are
measured in the partially explored graph or in the final graph: If there are no edges
of weight 0, all vertices closest to the agent’s position are indeed learned because,
if a vertex v is not yet learned, the shortest path from v to the agent’s location
contains an even closer unexplored vertex. If there are edges of weight 0, we obtain
that at least one such vertex is learned.

This algorithm has been extensively studied as a simple approach for approx-
imating TSP, long before the online graph exploration problem was introduced.
Rosenkranz, Stearns, and Lewis showed that its approximation ratio, i.e., its com-
petitive ratio, is in Θ(log n) [107]. Interestingly, the lower bound of Ω(log n) is
already achieved on trees [58], and on unweighted ladder graphs, assuming that
ties are broken adversarially [68]. In particular, the competitive ratio of NN is at
least Ω(log n) on planar graphs.

Depth-First Search (DFS). Depth-first-search is a well-studied classical offline
algorithm for traversing a connected unweighted graph. Here, the agent chooses in
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NN DFS hDFS [92] Blockingδ

general Θ(log n) [107] ∞ Θ(log n) Ω(n1/(δ+4))
unweighted Θ(log n) [68] 2 [96] 2 2
k weights Θ(log n) ∞ ≤ 2k Ω(n1/(δ+4)) [92]
trees Θ(log n) [58] 1 Θ(log n) Θ(1)
planar/minor-free Θ(log n) ∞ Θ(log n) Θ(1) [75, 92] (Thm. 2.7)

Table 2.1: Overview of the performance of different algorithms on different graph
classes. Results without a citation are either inherited (e.g., planar for NN) or
folklore (e.g., DFS on trees). For hDFS, all results were proven in the same paper,
which is cited in the header. For planar, bounded-genus, and minor-free graphs, the
same bounds are known, which are summarized in the last line.

every step a neighboring unexplored vertex (ignoring the edge weights) or backtracks
if none exists. This strategy is obviously also applicable in the online setting, as its
execution only requires information available to the agent.

Note that DFS is 1-competitive on trees. Moreover, it is 2-competitive on un-
weighted graphs: To see this, observe that the cost of DFS is 2(n−1) and the weight
of an MST is n−1. In [96], it was shown that no algorithm with a better competitive
ratio on unweighted graphs exists. In particular, DFS outperforms NN on the class
of unweighted graphs since the competitive ratio of NN on this class is Ω(log n) [68].
More generally, the aspect ratio of a graph G is max{w(e)/w(e′) : e, e′ ∈ E(G)}
and it is ∞ if G contains an edge of weight 0. Note that DFS is 2a-competitive on
graphs where the aspect ratio is bounded by a ≥ 1: This follows from the fact that
the cost of DFS is at most 2a times the cost of an MST.

However, note that DFS does not outperform NN in general. For the general
problem, the competitive ratio of DFS cannot even be bounded by a graph param-
eter independent of the edge weights: To see this, consider a cycle with a single
heavy edge e and all other edges having weight 1. Choosing a suitable starting
position, DFS will always traverse the heavy edge. Letting w(e) → ∞, this shows
that the competitive ratio of DFS cannot be bounded by any function independent
of the edge weights.

Hierarchical Depth-First Search (hDFS). In the graph that is to be explored,
let comp(w, u) denote the connected component of vertex u in the subgraph only
containing edges of weight at most w. The key idea of the algorithm hDFS is to
choose, for current location u, the smallest weight w such that comp(w, u) contains
a boundary edge and explore comp(w, u) using DFS. Whenever a smaller weight
with that property is found, the execution of DFS is interrupted and we begin a
new execution of the procedure using the smaller weight. This algorithm was intro-
duced by Megow, Mehlhorn, and Schweitzer [92], and the authors prove that hDFS
is 2k-competitive on graphs that only use k distinct edge weights.

Note that rounding edge weights to powers of 2 only distorts every edge weight
by at most a factor of 2, and therefore, the cost of an algorithm and the cost of
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the offline optimum by a factor of at most 2. For hDFS, this is beneficital because
it might reduce the number of distinct edge weights. In [92], the authors prove
that hDFS applied on a graph with rounded edge weights is Θ(log n)-competitive.
In this, the lower bound is already achieved on a path.

We remark that, for the development of exploration algorithms, it is often sen-
sible to assume that edge weights are rounded to powers of 2. This distorts the
competitive ratio by a factor of at most 4, which is irrelevant for Problem 2.1.

Blocking. Kalyanasundaram and Pruhs introduced the algorithm ShortCut
and showed that it is 16-competitive on planar graphs [75]. Later, Megow, Mehlhorn
and Schweitzer [92] revisited the algorithm, addressed some technical intricacies and
proposed their reinterpretation Blockingδ, which we also consider in this work.
The main idea is to execute DFS ignoring all edges considered too heavy, where the
threshold for an edge to be considered too heavy depends on the parameter δ of the
algorithm. A full description of Blockingδ is given in Section 2.2.2. In [92], the
authors expand the result in [75] and show that the algorithm is constant-competitive
on bounded-genus graphs. Moreover, they prove that its competitive ratio is at
least Ω(n1/(δ+4)). This implies that, for constant choices of the parameter δ, the
performance of Blockingδ on general graphs is worse than that of NN or hDFS.
Interestingly, their lower bound construction uses only two different edge weights.

In Section 2.2, we further study the algorithm Blockingδ. We extend the
result in [92] and prove that the algorithm is constant-competitive on graphs ex-
cluding some fixed minor (Theorem 2.2). We also prove that, if the parameter δ is
adapted to the number of vertices using a doubling strategy, the algorithm can be
made O(log n)-competitive on general graphs (Theorem 2.8).

Lower bounds. Prior to our work, the best known lower bound for the graph
exploration problem was 10/3 which was shown by Birx, Disser, Hopp, and Ka-
rousatou [23]. Their construction builds on a previously known lower bound of 2.5
shown by Dobrev, Královič, and Markou [44]. Since the construction by Birx et
al. is planar, the lower bound of 10/3 even holds when the problem is restricted
to planar graphs. In this chapter, we further build on the work in [23, 44] and
give a planar lower bound construction implying that the competitive ratio is at
least 4 (Theorem 2.3). We also prove that the construction can be made subcubic.

Other related work. In addition to the above, the online graph exploration
problem has been studied on a variety of specific graph classes. These include
tadpole graphs [31], unicyclic graphs [58, 81], and cactus graphs [58]. Another
approach to tackle the exploration problem was given in [47], where the authors
revisited NN with learning augmentation.

Several other settings of exploration with a single agent have been studied, such
as exploration of directed graphs [1, 40, 54, 55] or when the agent has limited mem-
ory [57, 103] but can use pebbles [42].
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2.1.3 Equivalent problems

In this subsection, we prove that we can impose several restrictions on the agent’s
behavior without affecting the competitive ratio of the graph exploration problem.
As a byproduct, we identify certain graph classes for which restricting the explo-
ration problem to those classes does not make the problem easier. As a first step,
we elaborate on the setting of online graph exploration by studying its “adversary”,
that is, the problem of creating bad instances for algorithms. The model that we
describe here will serve as the foundation for proving our equivalence results and
our lower bounds on the competitive ratio (Theorem 2.3).

The adversary model

It is often useful to view an online optimization problem as a game: One player
selects an instance and reveals it piece by piece to the other player, who must make
online decisions. In this setting, the latter player is the online algorithm, and the
first player is referred to as the adversary. For deterministic online algorithms, it
does not matter whether the adversary chooses the entire instance beforehand and
gradually reveals it, or whether the adversary adapts the unrevealed parts based
on the algorithm’s decisions. By definition, if a deterministic algorithm is presented
with the same instance I twice, it will make the same decisions in both runs. If there
exists another instance I ′ that differs only in parts not yet revealed, the algorithm
cannot distinguish between I and I ′, and thus behaves identically on both. Since
a ρ-competitive algorithm must be ρ-competitive on every instance, the adversary
can choose whether the algorithm is operating on I or I ′ once the distinction becomes
relevant.

Finding strategies for the adversary can be seen as a “dual” online problem,
called the adversary problem: Here, we have to construct an instance for the given
online problem, while receiving information about the algorithm’s decisions over
time in an online fashion, without being able to modify the parts of the instance
already revealed. The objective is to maximize the ratio Alg(I)/Opt(I), where I
is the instance construced by the adversary. It is immediate that the optimal value
achievable in the adversary problem coincides with the strict competitive ratio of
the online problem. Importantly, note that this model of an adaptive adversary is
only applicable when considering deterministic algorithms.

In the context of online graph exploration, the adversary problem can be stated as
follows: We have to construct a weighted graph G adaptively and the counterplayer
is an agent that, in each step, moves to a new unexplored vertex. Once a vertex v
is explored, we have to irrevocably determine the identifiers of its adjacent vertices
as well as the identifiers and weights of the corresponding edges. The objective is
to maximize the ratio of the total distance traveled by the agent and the length of
a shortest TSP tour.

Throughout this chapter, we often use this adversarial perspective to prove lower
bounds and equivalences between online problems.
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Competitive ratio and strict competitive ratio

As a warm-up, we show, using the adversarial perspective, that there is no difference
between the competitive ratio and the strict competitive ratio of the online graph
exploration problem.

Observation 2.4. Let ρ ∈ R≥1. There is a ρ-competitive algorithm for online graph
exploration if and only if there is a strictly ρ-competitive algorithm.

Proof. By definition, every strictly ρ-competitive algorithm is also ρ-competitive.
For the other direction, assume that there is no strictly ρ-competitive algorithm.
Then there exists an adversarial strategy A that constructs, for every exploration al-
gorithm Alg, a graph G with starting vertex v, such that Alg(G, v) ≥ ρ·Opt(G)+ε
for some ε > 0. Consider the following adversarial strategy: Let the starting ver-
tex v be adjacent to M vertices v1, . . . , vM via edges of weight 0. Treat each vi as the
starting vertex of a separate exploration instance and, for each, apply strategy A.
Let G1, . . . , GM denote the resulting graphs. Note that they are not necessarily
equal because the algorithm might choose to follow a different strategy when facing
the same situation multiple times and, in our adversarial strategy, we adapt the
graph according to the agent’s decisions. However, the adversary is able to build a
suitable graph for every possible change of strategy.

Observe that we can treat these as M instances of the exploration problem
because, during exploration of Gi, the agent does not gain any information about Gj

for j ̸= i. We charge the cost incurred in graph Gi on the i-th problem and let Algi

denote the strategy followed in graph Gi. We obtain a graph G with

Alg(G, v) =
M∑
i=1

Algi(Gi, vi) ≥ ρ ·
M∑
i=1

Opt(Gi) +Mε = ρ ·Opt(G) +Mε.

Letting M →∞, this shows that no ρ-competitive algorithm exists.

In the remainder of the chapter, we therefore only refer to the competitive ratio
for simplicity.

The restricted online graph exploration problem

We prove that we can impose several restrictions on the agent’s behavior without
affecting the competitive ratio of the graph exploration problem. This will later be
useful for our lower bound construction. In addition, these restrictions can serve as
a “sanity check” when developing new algorithms: A sensible algorithm should not
rely on any information or capabilities that we restrict in the following.

More precisely, we define the restricted online graph exploration problem as the
online graph exploration problem, where the agent is additionally restricted, and
the adversary is relaxed, as follows.

R1) Upon visiting a new vertex, the agent only learns the unique identifiers and
weights of incident edges (but not the identifiers of neighboring vertices).
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R2) The graph may have parallel edges.

R3) When the agent traverses a boundary edge e = (u, v), a new boundary edge e′

of weight w(e) may appear incident to u.

R4) If there are two boundary edges e = (u, v), e′ = (u′, v′) with d(u′, v) < w(e′),
the agent must not traverse edge e′.

R5) If there are two boundary edges e = (u, v), e′ = (u, v′) incident to the same
vertex u with w(e) = w(e′), the adversary may decide which of the two edges
the agent traverses first.

Note in the above that none of these restrictions applies to the agent in the
offline optimum, that is, the offline optimum is allowed to traverse edge e′ in the
situation of R4) and, if the adversary decides in situation R5) that the online agent
must traverse e′ before e, the offline optimum may traverse e before e′.

Although one might expect that these restrictions increase the competitive ratio
of the problem, we actually prove that these can be assumed without loss of gener-
ality. While some of the next result is folklore (R1 has already been noted in other
works [92]), we provide a proof for the sake of completeness. In the following, if
no ρ ∈ R exists such that the problem is ρ-competitive, we say for convenience that
the competitive ratio is ∞ and the result still applies.

Observation 2.5. If the competitive ratio of online graph exploration is ρ ∈ R ∪ {∞},
the competitive ratio of restricted online graph exploration is also ρ.

Proof. It is immediate that a ρ-competitive algorithm for the restricted online graph
exploration problem is also ρ-competitive for online graph exploration. For the other
direction, assume there exists an adversarial strategy A, constructing, for every
algorithm for the restricted problem, a multigraph G with starting vertex v such
that Alg(G, v) > ρ · Opt(G). We give an adversarial strategy that achieves the
same lower bound of ρ in the classical online graph exploration setting. For this, we
construct a graph that mimics the multigraph constructed by A and argue that, in
this graph, any movement of an agent for exploration mimics a movement of some
agent for restricted exploration.

First, we argue that R1) and R2) can be assumed without loss of generality. The
main idea is to replace each vertex v that A introduces by a suitable graph Gv called
a gadget, in which we set all edge weights to 0, and connect all edges incident to v to
different vertices of Gv (see Figure 2.4). For instance, we can set Gv to be a binary
tree with at least dv leaves, where dv is the degree of v, and connect the edges to its
leaves.

From the perspective of the induced metric space of the resulting graph, all
vertices in Gv represent essentially the same vertex v because their pairwise distances
are 0. In particular, we can assume that, if the agent explores any vertex of Gv, it
immediately explores all vertices of Gv and thus, learns about all edges incident to
vertices of Gv. Moreover, this construction does not affect the offline optimum cost.
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Figure 2.4: Construction for proving that we can assume R1) and R2). All edges
without label have weight 0. We have replaced every vertex by a binary tree. If, in
the left graph, vertices b and c are explored and vertex d is unexplored, the agent of
the classical exploration problem knows that the boundary edges of weight 3 and 7
lead to the same vertex d. In the corresponding situation in the right graph, the
agent does not have this information.

The key difference is the following: In the resulting graph, the agent cannot tell
whether two boundary edges lead to the same gadget Gv. In other words, learning
the identifiers of the endpoints of boundary edges effectively reduces to learning
only the identifiers of the boundary edges themselves. Moreover, parallel edges
between vertices u and v in the graph constructed by A can be modeled as multiple
edges between leaves of Gu and Gv. This shows that we can assume without loss of
generality R1) and R2).

In the following, we argue that the remaining properties can also be assumed
without loss of generality using that we have already established this for R1) and R2).
Since we can assume R1), we denote boundary edges in the remainder of the proof
by e = (u, ·). The adversary only needs to decide the identifier of the second vertex
once the agent traverses e.

The statement that we can assume R5) now immediately follows from R1): Both
edges have the form e = (u, ·) of the same weight, so the agent cannot distinguish
between them.

For R3), we use the following construction: For every boundary edge e = (u, ·)
introduced by A, we instead introduce a sufficiently large number of boundary edges
of weight w(e), each incident to u, which we call a bundle. If the agent traverses e,
this corresponds to traversing one of the edges of the corresponding bundle. Upon
the traversal of an edge e = (u, v) in the bundle, the adversary can decide whether
either, all edges of the bundle lead lead to vertex v, or only e leads to vertex v and
all other edges of the bundle lead to other vertices with not yet known endpoints,
i.e., they remain boundary edges. Note that the latter corresponds to the additional
capability R3) of A.

For property R4), if the agent traverses a boundary edge e′ = (u′, ·) even though
a boundary edge e = (u, ·) exists with d(u′, u) + w(e) < w(e′), the adversary lets e′

and e have the same endpoint v and it introduces a new boundary edge incident to u′

of weight w(e′) (using R3). This corresponds to forcing the agent not to traverse e′:



18 Chapter 2. Single-agent online graph exploration

If the agent decides otherwise, the outcome remains the same as if it had chosen to
traverse e, but it incurs a higher cost.

The main idea for the proof of Observation 2.5 was to replace each vertex by a
binary tree and connect the edges to its leaves (see Figure 2.4). If a graph class is
closed under this operation, we say that it is closed under tree replacement. This
property holds, for example, for the classes of all graphs, planar graphs, bounded-
genus graphs, graphs excluding a non-planar minor, and graphs only using a bounded
number of different edge weights including 0. Building on the last observation,
we obtain equivalence for further variants of the problem, which we summarize in
the following result. While one might expect that conditions R1)-R5) increase the
competitive ratio, we now introduce additional properties that might be expected
to decrease it. However, we show that all of the following properties can be assumed
without loss of generality.

Corollary 2.6. The competitive ratios (∈ R ∪ {∞}) of the following problems co-
incide.

a) online graph exploration

b) restricted online graph exploration,

c) restricted and classical online graph exploration on subcubic graphs,

d) restricted and classical online graph exploration on graphs fulfilling the triangle
inequality, that is, w({u, v}) ≤ d(u, v) for all {u, v} ∈ E,

e) each of the above problems with the relaxation that the agent is given the total
number of vertices at the beginning of exploration.

If G is a graph class closed under tree replacements, the equivalence still holds when
restricting all of the problems to G.

Proof. Equivalence of a) and b) is precisely Observation 2.5 and c) follows from
the fact that the graphs constructed in the proof of Observation 2.5 are subcubic.
For d), assume that an input graph contains an edge e = {u, v} not fulfilling the
triangle inequality, i.e., w(e) > d(u, v), where the distance is measured here in the
final graph. As long as e is a boundary edge, there exists another boundary edge
on the shortest path from u to v that is cheaper for the agent to traverse. Due to
property R4), e is never traversed so we can assume that the graph does not contain
such edges.

For part e), let AlgN be the strategy that the agent follows when given the
information that the final graph consists of N vertices and assume that AlgN

is ρ-competitive on every graph on N vertices. Then AlgN is also ρ-competitive on
every graph G on n ≤ N vertices: The adversary can attach to the last explored ver-
tex of G a path of N−n vertices using edges of weight 0 so that the agent technically
operates in a graph on N vertices, however, its incurred cost on G equals the incurred
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cost in the modified graph. This shows that AlgN is also ρ-competitive on every
graph G on n ≤ N vertices. For this reason, we can assume that AlgN−1 = AlgN

for every N ∈ N≥2. We obtain that we can assume that the agent’s strategy is inde-
pendent on the number of vertices, even when this information is given beforehand.

The last statement follows immediately from the fact that such a graph class is
closed under the constructions in Observation 2.5 and under attaching paths.

Another way of stating the last result is that we can assume (any subset of) the
listed properties (i.e., triangle inequality, subcubic, agent learns n, agent fulfills any
subset of R1)-R5)) without changing the competitive ratio.

We note that the results in this subsection are not applicable when proving super-
constant bounds on the competitive ratio. For example, if one aims to prove that
an algorithm has competitive ratio f(n) on graphs on n vertices for some function f
depending on n, one loses generality when assuming the above restrictions. This is
because the constructions in the proof increase the number of vertices.

2.2 A constant-competitive algorithm on
minor-free graphs

In this section, we significantly expand the class of graphs on which the online
graph exploration problem is known to admit a constant-competitive algorithm and
prove Theorem 2.2. We start by reformulating the statement tailored to the algo-
rithm Blockingδ.

Theorem 2.7. For every graph H and constant δ > 0, there is a constant c (de-
pending on H and δ) such that Blockingδ is c-competitive on H-minor-free graphs.

Prior to our work, the largest class of graphs which was known to admit a
constant-competitive algorithm was the class of bounded-genus graphs [92].

Previous works only studied Blockingδ for constant choices of the parameter δ,
i.e., independent of the number of vertices n. It is known that competitive ratio of
the algorithm is at least Ω(n1/(δ+4)) if δ is a constant [92]. This naturally raises the
question of whether improvement is possible if the agent is given n in advance and δ
may depend on n. We also obtain the following result for Blockingδ.

Theorem 2.8. If the agent is given the number of vertices n in advance, the algo-
rithm Blockinglog(n) is O(log(n))-competitive.

This shows that Blockinglog(n) achieves the best previously known competi-
tiveness.

The key ingredient in our analysis of Blockingδ is a new-found connection to
the existence of so-called light spanners. We begin by introducing this concept.
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2.2.1 Graph spanners

Spanners were introduced in 1989 by Peleg and Schäffer [100] and have been instru-
mental in the development of approximation algorithms, particularly for TSP [5, 29,
30]. Here, a subgraph H = (V,E ′) of a connected, undirected graph G = (V,E) with
edge weights w : E → R≥0 is called a (1+ε)-spanner of G if dH(u, v) ≤ (1+ε) dG(u, v)
for all u, v ∈ V , where dH and dG denote the shortest-path distance in H and G,
respectively. Then H has stretch at most (1+ε) and its lightness is w(H)/w(MST),
where MST denotes a minimum spanning tree of G and, by slight abuse of notation,
we write w(H̃) :=

∑
e∈E(H̃) w(e) for a graph H̃.

We show that the online graph exploration algorithm Blockingδ has a constant
competitive ratio on every class of graphs that admits spanners of constant lightness
for a fixed stretch. Examples of graph classes where the worst-case lightness does
not depend on the number of vertices include planar graphs [4], bounded-genus
graphs [60], apex graphs [62], bounded pathwidth graphs [61], bounded treewidth
graphs [39], and, encompassing all of these results, minor-free graphs [30]. Our
results rely on the existence of light spanners for minor-free graphs [30] and improve
on the lightness for bounded-genus graphs (Theorem 2.19). There are also strong
bounds for general graphs. Given a graph G with n vertices, an integer k ≥ 1
and ε ∈ (0, 1), G contains a (2k−1)(1+ε)-spanner of lightness Oε

(
n1/k

)
[34], where

the notation Oε indicates that the constant factor hidden in the O-notation depends
on ε. This will allow us to give an improved bound on general graphs.

In terms of lower bounds on the lightness of spanners, most constructions in the
literature are unweighted graphs of high girth, where the girth of a graph is the length
of its shortest cycle. For example, it is known that, for every k ≥ 3, there exists a
graph on n vertices with Ω(n1+1/k) edges and girth at least k [95][Theorem 6.6]. In
such a graph, no proper subgraph is a (k− 1− ε)-spanner for any ε > 0 because the
removal of an edge {u, v} distorts the distance between u and v by a factor of at
least (k − 1). Since a (minimum) spanning tree has weight Θ(n), this implies that
the minimum lightness of a (k−1−ε)-spanner in this graph is Ω(n1/k). Even further,
a famous conjecture by Erdős asserts that there exist graph of girth at least 2k + 1
with Ω(n1+1/k) edges [49]. This is equivalent to a lower bound of Ω(n1/k) on the
best lightness of a (2k − ε)-spanner in unweighted graphs. While this conjecture
remains unresolved, a nearly matching upper bound on the spanner lightness was
proven in [34].

2.2.2 The algorithm Blocking

In this subsection, we introduce the algorithm Blocking that we will later show
to be constant-competitive on minor-free graphs.

Recall that, during the execution of an online graph exploration algorithm, d(x, y)
denotes the length of a shortest internally explored path from x to y. In particular,
the distance may decrease during execution.
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Definition 2.9 (Kalyanasundaram and Pruhs [75]). Given some δ > 0, we say that
a boundary edge e = (u, v) is δ-blocked if there is another boundary edge e′ = (u′, v′)
such that w(e′) < w(e) and d(u, v′) ≤ (1 + δ)w(e).

It is worth noting that not allowing the agent to traverse 0-blocked edges corre-
sponds to condition R4) of restricted online graph exploration.

The rough idea of Blockingδ is to perform a depth-first-traversal while ignor-
ing all δ-blocked edges. Whenever a previously blocked edge turns unblocked, the
agent moves to and explores one such edge, and initiates a DFS-traversal from its
new position. Blockingδ is formally specified in Algorithm 1. It is executed on
an undirected, weighted, connected, and initially unexplored graph G = (V,E,w)
and takes as input a vertex v of G, denoting the current position of the agent.
The parameter δ is fixed and not part of the input. The algorithm follows a recur-
sive DFS-like structure and the input of the initial invocation is the start vertex.

Algorithm 1: Blockingδ[v] [75, 92]
1 while there is a boundary edge e = (y, x) that is not δ-blocked and such

that y = v or e was previously blocked by some edge (u, v) do
2 traverse a shortest internally explored path from v to y
3 traverse e
4 Blockingδ[x]
5 traverse a shortest internally explored path from x to v

Observe that the algorithm is correct, i.e., every vertex is explored: Assume, for
the sake of contradiction, that some vertex remains unexplored when the algorithm
terminates, i.e., there are still boundary edges. Let e = (u, v) be a boundary edge
of minimum weight. Then e is not δ-blocked. Therefore, either the exploration of u
should have triggered the exploration of v, or v should have been explored at the
last point in time the edge turned unblocked.

Key properties of Blocking

Throughout the remainder of this section, let G = (V,E,w) be a weighted graph, n
be its number of vertices, v the given start vertex of G, and δ > 0. We analyze the
performance of Blockingδ on G, i.e., we estimate its total cost Blockingδ(G, v).
To this end, let B be the set of boundary edges taken by Blockingδ, i.e., the edges
traversed during the execution of line 3.

Observation 2.10 (Megow et al. [92]). We have

Blockingδ(G, v, δ) ≤ 2(δ + 2)w(B).

Proof. We charge all cost incurred in lines 2, 3, and 5 to the corresponding boundary
edge e ∈ B. Note that the cost in line 2 is at most (1 + δ)w(e), because either we
have y = v such that dG(v, y) = 0, or e was blocked by an edge (u, v), which
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implies dG(y, v) ≤ (1 + δ)w(e). The cost in line 3 is w(e) and the cost in line 5 is at
most the sum of the cost in lines 2 and 3. Therefore, each edge e in B is charged at
most 2(δ + 2)w(e).

In our subsequent analysis, we will frequently use a minimum spanning tree with
a particular property. For this, in what follows, let MSTB be a minimum spanning
tree of G that maximizes the number of edges shared with B, i.e.,

MSTB ∈ argmax{|MST ∩B| : MST is a minimum spanning tree of G}.

As pointed out in [92], cycles in B ∪MSTB are long relative to the weight of the
edges they contain. Specifically, the following holds.1

Lemma 2.11. Let C be a cycle in B ∪MSTB and e be an edge of C. Then

w(C \ {e}) > (1 + δ)w(e).

Proof. It suffices to show the assertion for an edge of maximum weight in the cy-
cle C. As a first step, we show that such an edge must be in B, i.e., we show
that argmax{w(e) : e ∈ C} ⊆ B: For the sake of contradiction, assume other-
wise and let e = (u, v) ∈ argmax{w(e) : e ∈ C} ∩ (MSTB \ B). Removing e
from MSTB separates MSTB into two connected components. In particular, u
and v are in different components. Start walking in C \ {e} from u to v and
let e′ be the first edge that leads from u’s connected component in MSTB \ {e}
to v’s connected component. Then e′ ∈ B \ MSTB and by maximality of e, we
have w(e′) ≤ w(e). Therefore, replacing e by e′ in MSTB gives another spanning
tree of weight at most w(MSTB). This new spanning tree has one more edge in
common with B than MSTB has. This contradicts the choice of MSTB, so that we
can assume from now on argmax{w(e) : e ∈ C} ⊆ B. This means that every edge
in argmax{w(e) : e ∈ C} is charged, i.e., is traversed in some execution of line 3 of
the algorithm.

Let e = (u, v) be the edge in argmax{w(e) : e ∈ C} that is charged last. At
the time e is traversed, it is a boundary edge, so that u is explored but v is not
yet explored. Start walking in C \ {e} from u to v and let e′ = (u′, v′) be the first
edge leading from an explored vertex u′ to an unexplored vertex v′, i.e., e′ is another
boundary edge in C (cf. Figure 2.5).

Next, we show that w(e′) < w(e): Assume otherwise. By maximality of w(e), this
means w(e′) = w(e) so that e′ ∈ argmax{w(e) : e ∈ C}. But then we also have e′ ∈ B
(i.e., e′ is charged) because we have already shown that argmax{w(e) : e ∈ C} ⊆ B.
This contradicts the fact that e is the edge in argmax{w(e) : e ∈ C} that is charged
last.

1Lemma 2.11 is closely related to and directly implies the assertion of Claim 1 in [92] (which
is only stated for e ∈ C \ MSTB). We give here a new version because, on the one hand, we
need this more general statement later on, and on the other hand, there is a subtle flaw in the
proof of Claim 1 in [92]: In the notation of that proof, when we modify MST by replacing an edge
from C ∩MST by the edge e′, it is not clear that we again obtain a tree.
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u v
e

u′ v′
e′

Figure 2.5: Illustration of Lemma 2.11. The green vertices (v and v′) are unexplored
and the black vertices are explored. The blue edges (e and e′) are boundary edges.

Summing up, we have shown the following facts: Upon exploration of e = (u, v),
there is another boundary edge e′ = (u′, v′) in C with w(e′) < w(e). Since e is not
blocked, this implies

w(C \ {e}) ≥ d(u, v′) > (1 + δ)w(e).

2.2.3 Connection to spanners

Next, we investigate how the performance of Blockingδ is related to graph span-
ners. For this, note that Lemma 2.11 can be reformulated as follows.

Lemma 2.12. No proper subgraph of B∪MSTB is a (1+ δ)-spanner of B∪MSTB.

The lemma relates spanners to the behavior of Blockingδ. However, we need
to take note that the lemma applies to B ∪MSTB rather than the original graph G.

A monotone graph class is a class of graphs G closed under taking subgraphs,
i.e., if G ∈ G and H is a subgraph of G, then also H ∈ G. Given a graph G, we
define OptSpanδ(G) as the minimum lightness of a (1+δ)-spanner of G. Moreover,
given a graph class G, we set OptSpanδ(G) := sup{OptSpanδ(G) : G ∈ G} to be
the supremum over all graphs in G. By slight abuse of notation, we also allow δ to be
a function δ : N→ R>0 and write OptSpanδ(G) := sup{OptSpanδ(|G|)(G) : G ∈ G}.

In the following result, when we allow δ to depend on n, this requires that the
agent is given the number of vertices beforehand. However, the theorem also applies
to the case where δ(n) is a constant independent of n. In that case, the agent does
not need to know the number of vertices beforehand.

Theorem 2.13. For every monotone graph class G and every δ = δ(n) > 0, the
algorithm Blockingδ is (2(δ + 2) ·OptSpanδ(G))-competitive on G.
Proof. Let G ∈ G. We have

Blockingδ(G, v, δ)
Obs 2.10
≤ 2(δ + 2)w(B) ≤ 2(δ + 2)w(B ∪MSTB). (2.1)

Since B ∪MSTB is a subgraph of G, we have B ∪MSTB ∈ G. By Lemma 2.12, the
only (1 + δ)-spanner of B ∪MSTB is B ∪MSTB itself. Therefore,

w(B ∪MSTB) ≤ OptSpanδ(B ∪MSTB) · w(MSTB)

≤ OptSpanδ(G) · w(MSTB), (2.2)
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where we have used that MSTB is also a minimum spanning tree of MSTB ∪ B.
Combined, we obtain

Blockingδ(G, v, δ)
(2.1)
≤ 2(δ + 2)w(B ∪MSTB)

(2.2)
≤ 2(δ + 2) ·OptSpanδ(G) · w(MSTB).

Recall that the total cost of the offline optimum is bounded from below by the weight
of a minimum spanning tree. Therefore, this completes the proof.

The theorem puts us in a position to leverage results on the lightness of spanners
in order to draw conclusions regarding the competitive ratio of Blockingδ. For
example, it has been shown that every planar graph contains a (1 + δ)-spanner
of lightness at most 1 + 2

δ
[4]. Feeding this into Theorem 5.1, we conclude that

Blockingδ is 2(δ+2)(1+2/δ)-competitive on planar graphs. This agrees with the
bound proven in [75]. More generally, bounded-genus graphs have light spanners.
In fact, in Section 2.3.3, we show that every graph of genus at most g contains
a (1 + δ)-spanner of lightness at most

(
1 + 2

δ

)(
1 + 2g

1+δ

)
(Theorem 2.19). From this,

we obtain the following.

Corollary 2.14. Blockingδ is 2(δ + 2)
(
1 + 2

δ

)(
1 + 2g

1+δ

)
-competitive on graphs of

genus at most g.

Even more generally, it is known that H-minor-free graphs have light span-
ners [30]. Specifically, every H-minor-free graph contains a (1 + δ)-spanner of light-
ness O

(
σH

δ3
log
(
1
δ

))
where σH := |V (H)|

√
log |V (H)|. This yields a constant com-

petitive ratio for Blockingδ on H-minor-free graphs as follows.

Corollary 2.15. Blockingδ is 2(δ+2)·O
(
σH

δ3
log
(
1
δ

))
-competitive on H-minor-free

graphs.

For the case of general graphs, it is known that every graph G contains, for
every k ≥ 1 and ε ∈ (0, 1), a (2k−1)(1+ ε)-spanner of lightness Oε

(
n1/k

)
[34]. This

gives us the following.

Corollary 2.16. Given k = k(n) ∈ N≥1 and ε ∈ (0, 1), Blocking(2k−1)(1+ε) is
2((2k − 1)(1 + ε) + 2) · Oε

(
n1/k

)
-competitive on every graph on n vertices.

By suitably choosing δ in the Corollaries above, we obtain the following improved
bounds.

Corollary 2.17.
a) Blocking2 is 16(1 + 2

3
g)-competitive on graphs of genus at most g.

b) For every constant δ > 0 and every graph H, Blockingδ is constant-competitive
on H-minor-free graphs.

c) Blockinglog(n) is O(log(n))-competitive on every graph on at most n vertices.
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Proof. Part a) follows from Corollary 2.14 by setting δ = 2. For part b), observe
that the bound in Corollary 2.15 only depends on H and δ so that we obtain a
constant competitive ratio when H and δ are constant.

For part c), consider the cost incurred by Blockinglog(n) on a graph on n′ ≤ n
vertices. Note that one can choose an integer k ∈ Θ(log(n)) and ε ∈ (0.5, 1) such
that we have (2k−1)(1+ε) = log(n). For the competitive ratio from Corollary 2.16,
we then obtain

2((2k − 1)(1 + ε) + 2) · Oε((n
′)1/k) = O

(
log(n) · (n′)1/ log(n)

)
= O(log(n)),

where we have used (n′)1/ log(n) ≤ n1/ log(n) = 2log(n)·(1/ log(n)) = 2 in the last equality.

In particular, this completes the proof of Theorem 2.7 and Theorem 2.8. For the
case of planar graphs, part a) matches the best known bounds on planar graphs [75,
92]. For general surfaces, it slightly improves on the best known bound of 16(1+2g)
on bounded-genus graphs [92]. Part b) is the first constant bound on minor-free
graphs, and part c) is the first O(log(n)) bound for Blocking.

Note that Colollary 2.17 c) gives an O(log n)-competitive algorithm if we as-
sume that n is given beforehand. Since this bound depends on n, the equivalence
proven in Corollary 2.6 cannot be applied here. Next, we demonstrate how one
can use a doubling-strategy to obtain an O(log n)-competitive algorithm relying
on Blocking, even if n is not known beforehand. The strategy is to “guess” the
number of vertices and whenever we learn that our guess was not high enough, we
restart the algorithm and increase our guess.

More precisely, we define Blocking′ as follows: The algorithm is executed in
phases. In each phase i, we are given a number ni (the guess for the number of
vertices) and, at the beginning of a phase, the agent is located in the starting vertex.
Recall that we call a vertex learned when one of its neighbors or the vertex itself was
visited. In phase i, we execute Blockinglog(ni) until the number of learned vertices
exceeds ni or the entire graph is explored. Then, we return to the starting position.
If the guess ni was exceeded, we start the next phase with ni+1 = n2

i and the first
phase is started with n1 = 2. In other words, we have ni = 22

i−1 .

Lemma 2.18. Blocking′ is O(log n)-competitive.

Proof. Let G be a graph on n ≥ 2 vertices and we analyze the performance of
Blocking′ on G. Let Algi denote the cost incurred during phase i and let k be
the total number of phases.

Note that, when a vertex v is visited for the first time, the total number of
learned vertices is increased by the number of new neighbors of v, i.e., by the number
of neighbors of v that are not neighboring any of the other visited vertices. If
phase i ends upon the visit of v (i.e., the total number of visited and learned vertices
exceeds ni), we call the new neighbors of v the threshold vertices of phase i. Now,
we define the graph Gi as follows: Take the subgraph of G that is induced by all
vertices that were visited or learned during phase i, remove the threshold vertices of
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phase i, remove all edges between unexplored vertices, and add an edge of weight 0
between every pair of unexplored vertices.

Note that Gi has the following properties: First, we have |V (Gi)| ≤ ni. Second,
observe that the weights of the minimum spanning trees fulfill MST(Gi) ≤ MST(G)
(note that we used here that edges of weight 0 were added between unexplored
vertices). And third, the cost incurred during phase i is precisely the cost of
Blockinglog(ni) executed on Gi. Using Corollary 2.17 c), we obtain that the cost
incurred during phase i is at most

O(log(ni)) ·Opt(Gi) ≤ O(log(ni)) · 2MST(Gi) ≤ O(log(ni)) · 2MST(G)

≤ O(log(ni)) · 2Opt(G) = O(log(ni)) ·Opt(G).

Note that

k∑
i=1

log(ni) =
k−1∑
i=0

log(22
i

) =
k−1∑
i=0

2i = O(2k) = O(log(nk)) = O(log(n2))

= O(log n),

where we have used that nk ≤ n2. Together, we obtain that the total cost of
Blocking′ is at most

k∑
i=1

O(log(ni)) ·Opt(G) = O

(
k∑

i=1

log(ni)

)
·Opt(G) = O(log(n)) ·Opt(G).

2.3 Interlude: Graph spanners in
bounded-genus graphs

Next, we exploit the connection between spanners and exploration in the opposite
direction to derive the existence of good spanners in bounded-genus graphs. More
precisely, we show the following result about the so-called greedy spanner and our
proof for this will use ideas from the exploration literature [92]. This will also allow
us to derive better approximation guarantees for Blockingδ, which we used for
Corollary 2.14.

Theorem 2.19. For every ε > 0, the greedy (1 + ε)-spanner of a graph of genus g
has lightness at most

(
1 + 2

ε

)(
1 + 2g

1+ε

)
.

Prior to our work, the best known bound was due to Grigni [60] who showed
that every graph of genus g ≥ 1 contains a (1+ε)-spanner of lightness 1+ 12g−4

ε
. Let

us briefly comment on how our bound compares to this. Observe that, for g ≥ 1,(
1 +

2

ε

)(
1 +

2g

1 + ε

)
= 1 +

2

ε
+

2g

1 + ε
+

4g

ε(1 + ε)
< 1 +

2g

ε
+

2g

ε
+

4g

ε
= 1 +

8g

ε
.



2.3. Interlude: Graph spanners in bounded-genus graphs 27

Therefore, our bound is stronger than Grigni’s bound for every g ≥ 1. Moreover,
in the planar case (i.e., g = 0), we obtain a lightness of 1 + 2

ε
. It was shown by

Althöfer et al. [4, Theorem 5] that this is best possible, i.e., our bound is tight for
planar graphs. This means that Theorem 2.19 gives a tight bound in the case g = 0
and extrapolates this bound to graphs of larger genus.

Note that the worst-case lightness for spanners of graphs of genus g has to in-
crease in g, since not every graph admits a light spanner [95, Theorem 6.6].

2.3.1 The greedy spanner

The greedy (1+ε)-spanner was suggested by Althöfer et al. [4] and is formally defined
as the output of Algorithm 2. After ordering the edges by weight, it iteratively adds
edges if they are short in comparison to the distance of their endpoints in the graph
constructed so far. It was shown by Filtser and Solomon [53] that this spanner
construction is existentially optimal for every monotone graph class, which means
that the optimal lightness guarantee on any such class is achieved by the greedy
spanner.

Algorithm 2: GreedySpanner(G = (V,E,w), ε)
1 sort E = {e1, . . . , em} such that w(e1) ≤ w(e2) ≤ · · · ≤ w(em)
2 H ← (V, ∅)
3 for i← 1, . . . ,m do
4 if dH(ui, vi) > (1 + ε)w(ei), where ei = (ui, vi) then
5 H ← H ∪ {ei}

6 return H

Note that the resulting graph H is indeed a (1 + ε)-spanner of G. The output
of the algorithm actually depends on the chosen order of the edges. In particular,
when edge weights appear multiple times, there may be several possible outputs.
However, this will not be important in our context. When we refer to the greedy
spanner, we mean that we arbitrarily fix some output of the algorithm.

The greedy spanner fulfills the following two key properties: First, the algorithm
implicitly executes Kruskal’s algorithm for finding a minimum spanning tree, i.e.,
it adds all edges to H that Kruskal’s algorithm adds. With this, we obtain the
following.

Observation 2.20. There exists a minimum spanning tree of the input graph that
is contained in the greedy spanner.

The second key property, in fact, resembles the property of Blockingδ in
Lemma 2.11.

Observation 2.21 (Althöfer et al. [4]). For every cycle C in the greedy spanner H
and every edge e of C, we have w(C \{e}) > (1+ ε)w(e). In other words, no proper
subgraph of H is a (1 + ε)-spanner of H.
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Proof. Let C be a cycle in the greedy spanner. Let e = {u, v} be the edge in C that
is added last. At the time it is added, we have (1 + ε)w(e) < dH(u, v) ≤ w(C \ {e})
by definition of the algorithm. Since all other edges in C have lower or equal weight
than e, the property is fulfilled for them as well.

2.3.2 Spanners in planar graphs

Before investigating spanners in bounded-genus graphs, we illustrate our techniques
for the special case of planar graphs, giving an alternative proof of the following
result.

Theorem 2.22 (Althöfer et al. [4]). For every planar graph G and ε > 0, the
greedy (1 + ε)-spanner of G has lightness at most 1 + 2

ε
.

Our proof uses similar ideas as in [92, Theorem 1], i.e., we use techniques that
were used to show that Blockingδ is constant-competitive on planar graphs. The
outline of our proof is roughly as follows: Fix an embedding of the greedy spanner
in the plane and, in a suitable way, partition the greedy spanner into facial cycles,
i.e., cycles that form the boundary of a face. Then use the fact that none of these
cycles are short (cf. Observation 2.21).

Lemma 2.23. Let G be a planar graph, H be the greedy (1 + ε)-spanner of G
and MST be a minimum spanning tree of H. Fix an embedding of H in the plane.
Then we can associate with every edge e ∈ H \MST a facial cycle Ce containing e,
so that Ce ̸= Ce′ for e ̸= e′.

Proof. We show that it is possible to iteratively choose an edge e in H \MST that
closes a facial cycle Ce (of the fixed embedding of H) together with the edges of MST
and the edges chosen in previous iterations: We define a partial order on the edges
in H \ MST. Every edge e ∈ H \ MST closes a cycle C together with the edges
of MST. We let another edge e′ precede e in the partial order if it lies on the inside
of this cycle in the considered embedding (see Figure 2.6). In each iteration, we can
choose an edge which is minimal in this partial order amongst the edges to which
no cycle has yet been assigned. Note that, in this construction, no two edges are
assigned the same cycle.

Next, we combine this with the fact that the greedy spanner does not contain
short cycles (cf. Observation 2.21).

Lemma 2.24. Let G be a graph and H be the greedy (1 + ε)-spanner of G. Let D
be a subgraph of H such that we can associate with every edge e ∈ H \D a cycle Ce

of H containing e, with the property that
∑

e∈H\D w(Ce) ≤ 2w(H). Then we have

w(H) ≤
(
1 +

2

ε

)
w(D).
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e

e′

e′′
b

e′′′

Figure 2.6: Illustration of the partial order in Lemma 2.23: The red edges (without
label) denote MST, the black edge b has already been chosen in a previous iteration
and the blue edges e, e′, e′′, e′′′ have not yet been assigned a facial cycle. In this
example, e′, e′′, and e′′′ precede e. Moreover, e′′ precedes e′. The edges e′′ and e′′′

are both minimal. Note that e′′′ was not minimal before the black edge was chosen.
If e′′′ is chosen in this step, the facial cycle assigned to e′′′ consists of the black edge b,
the blue edge e′′′, and two red edges.

Proof. We obtain

w(H \D) =
∑

e∈H\D

w(e)
Obs 2.21
<

1

1 + ε

∑
e∈H\D

w(Ce \ {e})

=
1

1 + ε

 ∑
e∈H\D

w(Ce)−
∑

e∈H\D

w(e)


≤ 1

1 + ε
(2w(H)− w(H \D)) =

1

1 + ε
(2w(D) + w(H \D)).

Rearranging yields

w(H \D) ≤ 2

ε
· w(D) (2.3)

and thus

w(H) = w(D) + w(H \D)
(2.3)
≤
(
1 +

2

ε

)
w(D).

Next, we show how this implies Theorem 2.22.

Proof of Theorem 2.22. Let G be a planar graph, let H be the greedy (1 + ε)-
spanner of G, and let MST denote a minimum spanning tree of H. By Obser-
vation 2.20, MST is also a minimum spanning tree of G, so that it suffices to
show w(H) ≤

(
1 + 2

ε

)
w(MST). Since G is planar, its subgraph H is planar as

well. Let us fix an embedding of H on the plane such that no two edges cross.
By Lemma 2.23, there is a facial cycle Ce for every edge e ∈ H \ MST such
that Ce ̸= Ce′ for e ̸= e′. As every edge of H is contained in at most two facial
cycles, we have

∑
e∈H\MST w(Ce) ≤ 2w(H). Therefore, we can apply Lemma 2.24

with D = MST and obtain w(H) ≤
(
1 + 2

ε

)
w(MST).



30 Chapter 2. Single-agent online graph exploration

Figure 2.7: Surface of genus 2 with 4 non-separating cycles bounding a topological
disk.

2.3.3 Generalization to bounded-genus graphs

In this subsection, we study light spanners for the class of bounded-genus graphs
and prove Theorem 2.19.

Our proof is based on similar arguments as in [92, Theorem 2] for bounding
the cost of Blockingδ on bounded-genus graphs and the main idea is roughly as
follows: Given an embedding of the greedy spanner on a surface of genus g, first cut
the surface along several edges such that we obtain a disk. Then we can proceed
along similar lines as we did for planar graphs (cf. Theorem 2.22). In this work,
we estimate more carefully the weight of the edges along which we cut so that we
obtain a slightly improved bound than in [92]. We will use the following topological
lemma for the first step.

Lemma 2.25. Let G be an unweighted connected graph of genus (exactly) g ≥ 1.
Fix an embedding of G on an orientable surface of genus g and let T be a spanning
tree of G. Then there is a subgraph D of G with T ⊆ D and |E(D) \ E(T )| ≤ 2g
such that, in the inherited embedding of D, there is only a single face and the edges
in D bound a topological disk.2

Proof. It is a standard fact from topology that, on a surface of genus g, one can em-
bed precisely 2g closed curves that are non-separating, i.e., it is possible to draw 2g
cycles on the surface such that cutting along all of them does not disconnect the
surface. Every collection of 2g curves that are non-separating bounds a topological
disk (see Figure 2.7).3

We construct the set D greedily as follows (see Figure 2.8): Initially, let D := T .
Ignoring all edges in G\D, we have only a single face. Note that every edge in G\D
closes a cycle with D. If we find an edge which only closes non-separating cycles, i.e,
does not separate the surface into two faces, we add it to D. After this, the edges
of D still only bound a single face. We repeat this step until we cannot find further
edges whose addition would separate the surface into multiple faces.

We show that the resulting set of edges D is as desired. First, observe that we
have |E(D) \ E(T )| ≤ 2g, since there are at most 2g cycles on a surface of genus g
that are non-separating.

2A topological disk is a surface homeomorphic to a 2-dimensional disk. Intuitively, a topological
disk is a continuous deformation of a 2-dimensional disk.

3This can be proven as follows: The Euler characteristic of a surface of genus g is 2 − 2g [64,
Section 2.2] and cutting along a non-separating closed curve increases the Euler characteristic by 1.
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Figure 2.8: The two columns show the construction of D for the same graph with two
different embeddings. The black edges belong to T , the green edges to D\T , and the
blue edges ({u, v}, {x, y}, {x, z}) to G\D. In each column, the first subfigure shows
the embedding on the torus. The second subfigure shows a different representation:
The torus is obtained by gluing together the opposite sides of the rectangle. The
last subfigure shows the disk obtained by cutting the surface along D. Note that it
contains every edge of D twice and therefore, every vertex up to 4 times. However,
note that the embedding specifies between which copies of the vertices the blue edges
have to be drawn. The capital letters A,B,C,D denote areas of the torus and are
included for better orientation: Leaving area A to the left leads to area D, leaving A
to the top leads to B and so on.

It is left to show that D bounds a disk. By maximality of D, every edge e ∈ G\D
is separating when added to D, i.e., in the inherited embedding of D ∪ {e}, the
edge e is incident to two faces. In particular, e is incident to two faces in the
inherited embedding of every supergraph of D. Consider again the embedding of
the entire graph G. It is known from topological graph theory that a minimal genus
embedding of a connected graph is cellular, i.e., every face of the embedding of G is
a topological disk [113] (see [97, Proposition 3.4.1]). Since every edge e ∈ G \D is
incident to two distinct faces, its removal merges the two corresponding disks along
a connected part of their common boundary, which yields another disk. Iteratively
removing all edges in G \D in this way, we thus obtain a cellular embedding of D.
Since, by construction, D induces only a single face, we obtain that D bounds a
topological disk.

For an illustration of the construction, consider Figure 2.8. In the example in
the left column, the two green edges enclose non-separating cycles, whereas all blue
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edges close separating cycles. In the example in the right column, the half-dotted
green edge in D could be replaced by the blue edge between u and v.

Now, we have all the prerequisites in place to prove Theorem 2.19. The main
idea is to give a similar construction as in Lemma 2.23 to partition the greedy
spanner into facial cycles. Before delving into the proof, let us briefly comment on
why Lemma 2.25 is not a reduction to the planar case, i.e., we cannot use the same
construction as in Lemma 2.23.

Recall that the key ingredient of Lemma 2.23 was to define a partial order in
which an edge e′ precedes another edge e if e′ is embedded on the inside of the cycle
that e closes with MST. In the bounded-genus case, if the cycle closed by e is non-
separating, there is no such thing as “the inside” of the cycle. For example, consider
the edge {u, v} in the right column of Figure 2.8 and the cycle it closes with MST.
This cycle does not have an “inside” and cannot be decomposed into multiple faces.
However, it separates the disk bounded by D into two parts. Therefore, we have
to consider cycles that include edges of D \MST and we will use that these cycles
partition the disk bounded by D.

Proof of Theorem 2.19. Let G be some graph of genus g. Let H be the greedy
(1 + ε)-spanner of G and let MST denote a minimum spanning tree of H. By
Observation 2.20, we know that MST is also a minimum spanning tree of G, so that
it suffices to show w(H) ≤

(
1 + 2

ε

)(
1 + 2g

1+ε

)
w(MST).

Let g′ be the genus of H. If g′ = 0, the assertion follows directly by Theorem 2.22.
Therefore, we assume from now on g′ ≥ 1. Note that g′ ≤ g because H is a subgraph
of G. Fix an embedding of H on an orientable closed surface of genus g′ such that
no two edges cross. By Lemma 2.25, there is a subgraph D of H with MST ⊆ D
such that

|E(D) \ E(MST)| ≤ 2g′ ≤ 2g (2.4)

and such that the edges of D induce only one face and bound a topological disk.
Next, observe that, for every edge e in H\MST, we have w(e) ≤ w(MST)/(1+ε):

Every edge e in H \MST closes a cycle C together with the edges of MST. Using
Observation 2.21, we obtain

w(e) <
w(C \ {e})

1 + ε
≤ w(MST)

1 + ε
.

In particular, this is fulfilled for edges in D \MST. Combining this with (2.4), we
obtain

w(D) = w(MST) + w(D \MST) ≤
(
1 +

2g

1 + ε

)
w(MST). (2.5)

The next step is to bound the weight of H by (1 + 2/ε)w(D). For this, we use
a similar construction as in Lemma 2.23 and show that it is possible to iteratively
choose an edge e in H \ D which, together with the edges of D and the edges
chosen in previous iterations, closes a facial cycle Ce in the embedding of H. In
each iteration, we find a suitable edge as follows: Pick an arbitrary edge e of H \D.
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If it defines a facial cycle together with D and edges chosen in previous iterations,
we can simply choose e. Assume this is not the case. Note that e cuts the disk
bounded by D in two parts and both contain edges in H \D to which no cycles have
been assigned yet (otherwise e would close a suitable facial cycle). Pick the part
whose boundary with D contains fewer edges (breaking ties arbitrarily) and pick a
new edge e′ in H \ D which lies inside this half and has not yet been chosen in a
previous iteration. Note that e′ again cuts the disk in two parts and the boundary
of the smaller part contains fewer edges of D than in the step before. Therefore, by
repeating the steps above, we will end up with a suitable edge after finitely many
steps. For example, on the left side of Figure 2.8, if we pick e = (x, z), we will
set e′ = (x, y) and this edge is suitable. After this, we can assign a facial cycle
to (x, z) and then to (u, v). In the instance on the right, we can assign the cycles to
the blue edges in any order.

Note that, in this construction, no two edges are assigned the same facial cycle.
As every edge is contained in at most two facial cycles, we have∑

e∈H\D

w(Ce) ≤ 2w(H).

Therefore, we can now apply Lemma 2.24 and obtain

w(H)
Lem 2.24
≤

(
1 +

2

ε

)
w(D)

(2.5)
≤
(
1 +

2

ε

)(
1 +

2g

1 + ε

)
w(MST).

2.4 Lower bounds for Blocking

We turn back to studying the performance of Blockingδ. Prior to our work, the
algorithm was only studied for constant choices of the parameter δ. We have already
established that a better competitive ratio of O(log n) can be achieved when δ is
adapted according to the number of vertices (Theorem 2.8). In this section, we
complement this by giving lower bounds for the algorithm when δ is a function
depending on n. Recall that the case where δ is a constant was already covered
in [92], where a lower bound of Ω(n1/(4+δ)) was proven. In this section, we extend
this as follows.

Theorem 2.26. The competitive ratio of Blockingδ, where δ = δ(n) > 0, is at
least

a) Ω(log(n)/ log(log(n))),

b) Ω(log(n)) for δ ∈ o(log(n)/ log(log(n))) as well as for δ ∈ Ω(log(n)).

In particular, this shows that there is no δ such that Blockingδ is constant-
competitive, but it remains open, whether there is a choice of δ for which the al-
gorithm is o(log(n))-competitive. Our lower bounds also suggest that one cannot
achieve a better competitive ratio for the classical setting where n is not known
beforehand by using a doubling strategy for Blocking as in Lemma 2.18.
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We begin by observing that, with slight adaptations to the construction given
in [92], the lower bound of Ω(n1/(δ+4)) carries over to non-constant δ that grow
sufficiently slowly.

Observation 2.27. Let δ = δ(n) > 0 such that δ = o(log(n)). Then the competitive
ratio of Blockingδ is lower bounded by Ω

(
n

1
δ+4

)
.

Proof. We use precisely the same graph as in the proof of the lower bound for
Blockingδ for constant δ in [92, Section 4] with slight modifications of some pa-
rameters. Therefore, we do not repeat the construction, but only give an overview
and present the calculations to verify the claim.

We begin by choosing d̄ = d̄(n) such that δ · d̄δ+4 = Θ(n). Note that this is
possible because δ = o(log(n)) and we obtain d̄ = ω(1). For the following computa-
tion, we additionally assume that δ = ω(1), as the case δ = O(1) is already covered
in [92, Theorem 3].

The outline of the construction in [92, Section 4] is roughly as follows: First,
we choose an unweighted graph H with Θ(d̄δ+2) vertices and Θ(d̄δ+3) edges (that is
bipartite and satisfies some additional conditions on the girth and the degree). From
this, we build a new graph G consisting of edges of weight 1 and edges of a larger
weight w, called heavy edges. Here, we set w = d̄2. This new graph G is obtained
by replacing the vertices of H by gadgets, each consisting of O(d̄2 + δw) = O(δd̄2)
vertices. Therefore, the size of G is O(δd̄2 · |H|) = O(δd̄δ+4) = O(n) as desired.
The edges within a gadget are all of weight 1 and the edges originating from the
graph H (i.e., connecting different gadgets) are all of weight w, i.e., the number of
heavy edges of weight w is Θ(|E(H)|) = Θ(d̄δ+3).

In [92], it is shown that, when Blockingδ is performed on G, each of the edges
of weight w is first blocked and turns unblocked when the agent is at distance Θ(δw)
from the edge, and only one of the heavy edges is unblocked at a time. Therefore, the
agent traverses all of the heavy edges and the incurred cost for each of these edges
is Θ((δ + 1)w) = Θ(δw). It follows that the overall incurred cost of Blockingδ

on G is at least4 Ω(δw · |(E(H)|) = Ω(δd̄δ+5).
The graph G is chosen such that there is a spanning tree only using edges of

weight 1. Hence, the cost of the offline optimum on G is O(|G|) = O(δd̄δ+4). To-
gether, we obtain that the competitive ratio of Blockingδ on G is at least

Ω(δd̄δ+5)

O(δd̄δ+4)
= Ω(d̄) = Ω

((n
δ

) 1
δ+4

)
= Ω

(
n

1
δ+4

)
,

where the last equality follows from the fact that δ1/(δ+4) → 1 as δ →∞.

Note that if δ + 4 ≤ log(n)/ log(log(n)), then n
1

δ+4 ≥ elogn·
log logn
logn = log n.

This means that Observation 2.27 implies that Blockingδ has competitive ratio
in Ω(log(n)) whenever δ = o(log(n)/ log log(n)). In particular, this shows the first
part of Theorem 2.26 b).

4In the proof of [92, Theorem 3], the factor of δ is omitted because δ is treated as a constant.
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Figure 2.9: Illustration of the lower bound construction for Blockingδ

(Lemma 2.28). The light edges e1, . . . , ek (depicted in blue) are of weight 1 and
the heavy edges e′1, . . . , e

′
k (depicted in red) are of weight k+1

δ+1
.

The next two results show that the parameter δ cannot be chosen too large either
(the second part of Theorem 2.26 b).

Lemma 2.28. Suppose δ = δ(n) ∈ (0, n
4
). The competitive ratio of Blockingδ is

lower bounded by Ω(δ), even on trees.

Proof. Given a positive and large enough integer k, we construct a graph G as follows
(see Figure 2.9): We begin with a path of 2k vertices and edges of weight 1. The
first vertex v of this path is the start vertex. To the first k vertices, we attach leaves
by edges e1, . . . , ek of weight 1 and call these light edges. To the last k vertices, we
attach leaves by edges e′1, . . . , e′k of weight h := k+1

δ+1
and call these heavy edges. Note

that n = 4k and h > 1 as k is chosen large enough.
Next, observe that Blockingδ explores the graph in the following way: We can

adversarially assume that Blockingδ begins by exploring the path of n/2 vertices
(and none of the light edges). Then, the heavy edge e′i = (u′

i, v
′
i) is δ-blocked by the

light edges ei . . . , ek, because w(e′i) > 1 and the distance from u′
i to the unexplored

end vertex of ei is

k + 1 = (1 + δ)
k + 1

δ + 1
≤ (1 + δ)w(e′i).

But e′i is not blocked by the light edges e1, . . . , ei−1, because the distance from u′
i to

the end point of ei−1 is

k + 2 = (1 + δ)
k + 2

δ + 1
> (1 + δ)w(e′i).

Therefore, the agent explores, for i = 0, . . . , k− 1, the (k− i)-th light edge and then
the (k − i)-th heavy edge, forcing it to travel a distance of more than k at least k
times. Hence,

Blockingδ(G, v, δ) ≥ k2.

Since G is a tree, the length of the optimal tour is twice the total weight of the
edges, i.e.,

2w(G) = 2

(
(2k − 1) + k + k · k + 1

δ + 1

)
≤ 2

(
(k + 1)2

δ + 1
+ 3k

)
.

Therefore, the competitive ratio of Blockingδ is at least

Blockingδ(G, v, δ)

2w(G)
≥ k2

2
(

(k+1)2

δ+1
+ 3k

) → δ + 1

2
(k →∞).
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Figure 2.10: Illustration of the lower bound construction for hDFS from [92]. In
Observation 2.29, we use this construction to give a lower bound of Ω(log(δ)) for
Blockingδ.

Since k = n/4, we have that k →∞ is equivalent to n→∞. Therefore, this proves
the lower bound of Ω(δ).

To conclude our lower bound arguments for Blockingδ, observe that, for δ
large enough, the behavior of Blockingδ closely resembles the behavior of the
algorithm hDFS [92], which always explores the lightest boundary edge. With this,
we obtain the following.

Observation 2.29. For every δ = δ(n), the competitive ratio of Blockingδ is
lower bounded by Ω(min{log(n), log(δ)}), even on paths.

Proof. To prove the observation, we use the same graph as in the lower bound proof
for the algorithm hDFS in [92, Theorem 5]. We begin by describing this construction
(cf. Figure 2.10). Given n ∈ N, set k := ⌈log(n)⌉ and L := n − 2k − 1. Note
that L ≤ 2k and L = Θ(n) = Θ(2k). We build a graph G as follows: Let P be a path
of L edges of weight 1 and let u and v denote its endpoints. To both of these vertices,
we attach a path of k edges of weights 2i for i = 1, . . . , k (ordered increasingly in
weight such that the edges of weight 2 are incident to u, respectively v). The graph G
that we obtain is a path containing L+2k+1 = n vertices as desired and has total
weight L+ 2 · (2k+1 − 2) ≤ 5 · 2k. We define the starting position to be u.

Now, we turn to analyzing the behavior of Blockingδ on G. We claim that,
for each i ∈ {1, . . . , k} with i ≥ k− log((1 + δ)/5), no edge of weight 2i is traversed
before all of the lighter edges were traversed. To see this, let e be an edge of weight 2i
for such an i and observe that

(1 + δ)w(e) = (1 + δ)2i ≥ (1 + δ)2k−log((1+δ)/5) = (1 + δ) · 2k

(1 + δ)/5

= 5 · 2k ≥ w(G).

This implies that e is blocked as long as there is some lighter boundary edge.
The claim implies that, for each i ∈ {1, . . . , k} with i ≥ k − log((1 + δ)/5),

Blockingδ explores both edges of weight 2i before proceeding to heavier edges.
Thus, the path P is traversed at least min{log((1+δ)/5), k} = Ω(min{log(δ), log(n)})
times. Therefore, the total cost of Blockingδ on G is at least

Ω(min{log(δ), log(n)}) · w(P ) = Ω(min{log(δ), log(n)} · n).
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On the other hand, the cost of the offline optimum is 2w(G) = Θ(n). With this,
we obtain that the competitive ratio of Blockingδ is at least Ω(min{log(δ), log(n)).

We can now combine the lower bound constructions of this section to prove
Theorem 2.26.

Proof of Theorem 2.26. We begin by proving part b), i.e., a lower bound of Ω(log(n))
for δ ∈ o(log(n)/ log(log(n))) ∪ Ω(log(n)). In Observation 2.27 (and the short com-
ment after), we have covered the case δ ∈ o(log(n)/ log log(n)). By Lemma 2.28, we
obtain the lower bound of Ω(log n) for every δ in the range from Ω(log(n)) to n/4,
and by Observation 2.29, we obtain the lower bound for δ ≥ n/4. Together, this
completes the proof of Theorem 2.26 b).

We now turn to part a), i.e., a lower bound of Ω(log(n)/ log(log(n))) for every δ.
Note that part b) implies that a competitive ratio of o(log(n)) is only possible
for δ ∈ Ω(log(n)/ log log(n)) ∩ o(log(n)). Using Lemma 2.28 in this range implies
the assertion of Theorem 2.26 a).

2.5 A general lower bound of 4

In this section, we give a general lower bound construction for the online graph
exploration problem and prove Theorem 2.3. We begin by restating it.

Theorem 2.3. The competitive ratio of the online graph exploration problem is at
least 4, even when restricted to subcubic planar graphs.

Prior to our work, the best known lower bound was 10/3 [23], where the con-
struction was also planar.

Overview of the proof of Theorem 2.3

To prove Theorem 2.3, we have to do the following: We give an adversarial strategy
that, given an algorithm Alg fulfilling properties R1)-R5) of the restricted online
graph exploration problem and ε > 0, constructs a planar graph G with starting
vertex v such that Alg(G, v)/Opt(G) ≥ 4−ε. This implies that the strict compet-
itive ratio of the restricted exploration problem on planar graphs is at least 4. Using
the fact that the competitive ratio and strict competitive ratio coincide (Observa-
tion 2.4) and that assuming properties R1)-R5) and restriction to subcubic graphs is
without loss of generality (Corollary 2.6), this implies the statement of Theorem 2.3.

Before giving the adversarial strategy in detail, let us introduce the main ideas
behind it. Fix an algorithm Alg for the restricted online graph exploration problem.
When we refer to the agent, we mean the agent of this online algorithm. In contrast,
the offline agent denotes the agent in an offline optimum solution. The graph G
that we construct consists of subgraphs serving as building blocks, which we refer to
as blocks. The agent will be forced to traverse almost every block in order to reach
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Figure 2.11: An adversarially constructed instance for the block traversal problem.
The blue edges are entry edges and the red edges are exit edges. The dashed edge
is only present if the agent does not travel back to s. The figure shows a block
construced by A1 (defined in Lemma 2.32) when identifying vertices at distance 0
with each other and omitting parallel edges.

every vertex of the graph. Note that the cost incurred by the agent to traverse
a block for the first time might differ from the cost of a second traversal, as the
agent gains information during the first traversal that can be used later. Roughly
speaking, we will arrange blocks such that every block is traversed once by the offline
agent and twice by the online agent. Moreover, blocks will be built such that the
agent pays three times as much as the offline agent for the first traversal.

We want to emphasize that the strategy of a block structure was already used in
previous works on lower bounds for online graph exploration [23, 44]. Here, we use
the same strategy for arranging the constructed blocks in the graph G as in [23].
The blocks that we define are based on the same ideas as in [23, 44], but we give a
refined structure that allows for a stronger, and arguably simpler, analysis.

We informally describe the idea for the construction of a (single) block: Consider
Figure 2.11. The agent starts at vertex s and we estimate its incurred cost until
it traverses a red edge (without requiring it to visit all vertices). We can assume
that the agent starts by exploring uAlg (using R5), where it finds itself somewhere
along a path of edges of weight 1. It then explores some of this path until the
adversary decides to stop the process and we let wk be the last explored vertex
of the path. The other endpoint is then vi, which is not yet explored, but vi−1

is. The value of i depends on the algorithm’s behavior. Note that i ̸= 1 only
occurs if the agent explores the path in “zigzag movements”, that is, if the agent
changes direction before reaching an endpoint of the path. By R5), we can assume
that the agent has to explore vi before it can traverse a red edge. Therefore, the
agent has to travel along the edge of weight k to vi and back before traversing
a red edge. In contrast, the offline agent can visit all vertices by following the
path (s, vi, . . . , v1, uAlg, w1, . . . , wk, t1).

When focusing on the red edges only, we observe the following behavior: Once
the agent is located at wk, it incurs a cost of 3k to traverse a red edge, whereas the
offline agent only incurs a cost of k because it has explored vi before wk. Intuitively
speaking, this means that the agent pays three times as much for traversing a red
edge as the offline optimum. Next, we recursively replace all edges of weight 1 in
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this graph by blocks of the same structure (with edge weights scaled down). This
increases the fraction of edges for which the agent pays three times as much as the
offline agent. In the limit, the agent incurs three times the cost of the offline agent
for traversing the block.

Importantly, note that, during a second traversal, the agent does not have to
use vertices v1, . . . , vi, which makes the second traversal shorter. However, the cost
incurred during the first traversal increases with i, i.e., if the agent explores the
path in “zigzag movements”. Therefore, in the analysis, we will carefully track these
values. This is one of the key improvements over the work in [23]. In Section 2.5.1,
we formally establish the notion of a block, the problem of traversing it, and the
key values that need to be tracked. In Section 2.5.2, we then construct the blocks
described above and prove that the agent incurs three times the cost of the offline
optimum when traversing them.

Once we have established blocks, we arrange them in a graph as illustrated in
Figure 2.15, which is already used in [23]. The structure of this graph is motivated
by a lower bound construction for the exploration problem on unweighted graphs,
which can be used to prove a lower bound of 2 on this class. In this graph, the
agent travels on some walk from vs to v1 (Figure 2.15), where it encounters three
paths of blocks. Since it cannot distinguish between these paths, we may assume
that the first path that is completely explored is the one that leads back to vs. The
agent then has to backtrack to v1 to make further progress. This behavior occurs in
every cycle of the graph. The agent completes visiting all vertices at some position
in the last cycle C∗. After this, it has to return to the starting position, incurring
additional cost. In total, we obtain that it traverses (almost) every block twice.
By contrast, the offline agent traverses the upper half of each cycle first and then,
starting from the last cycle, traverses the lower half of each cycle. It thus traverses
every block precisely once. This construction is formalized in Section 2.5.3.

2.5.1 The block traversal problem

In this subsection, we formalize the problem of traversing a block, for which we
introduce a new online problem, called the block traversal problem. Intuitively, it is
a variant of online graph exploration, where the task is only to find the exit of a
maze instead of exploring all of it.

An instance of the block traversal problem (see Figure 2.11 for an example)
consists of a weighted connected graph B, called a block, together with a starting
vertex s and two target vertices t1, t2 (where s, t1, t2 are not considered to be part
of B). The vertex s is connected to two different vertices of B, called its algorithmic
entry vertex uAlg and its optimal entry vertex uOpt, via two edges of the same
weight and we call these edges the algorithmic entry edge and optimal entry edge.
The target vertices t1 and t2 are connected to the same vertex of B, called its exit
vertex uEx and we call the corresponding edges the exit edges. By slight abuse of
notation, by B we sometimes refer to the instance of the block traversal problem,
instead of only the graph. In the block traversal problem, an exploration agent
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obeying restrictions R1)-R5) is initially located in s and is tasked to reach t1 or t2
minimizing the total traveled distance.

Later, a block will be part of our graph in the lower bound construction and
we will ensure that the agent needs to traverse almost all blocks in order to reach
every vertex. Note that with the relaxed requirement that blocks only need to be
traversed, instead of the requirement that all vertices are explored, we obtain a safe
lower bound on the cost incurred by the agent. However, for the offline optimum,
we still require to visit all vertices to obtain an upper bound on the cost incurred
by the offline agent.

As already hinted at in the previous section, we keep track of multiple values for
an instance B of the block traversal problem that turn out to be useful later on. In
our constructions, we will often connect blocks where the exit edges of one block B
correspond to the entry edges of the subsequent block B′. We will charge the cost
of traversing these on the block B′. For this reason, when studying B in isolation,
we never charge the cost of traversing an exit edge in the following values.

• The algorithm’s cost AlgB is the cost incurred by the agent for the block
traversal problem on B, excluding the cost of traversing an exit edge.

• The block length is lB := d(s, uEx). In other words, this is the cost incurred by
the online or offline agent in a second traversal.

• The optimal exploration cost OptB is the length of a shortest walk from s
to uEx that visits all vertices in B. In other words, this is the cost incurred by
the offline agent.

• The zigzag length is zB := OptB − lB. Intuitively, this is the “discount” that
the offline or online agent obtains for a second traversal. The name is inspired
by the fact that, in the instances that we construct, this value is larger if the
agent prefers to travel in “zigzag movements”.

• The algorithm’s core cost AlgCB is defined by AlgCB := AlgB − zB.

The definition of the last value is motivated as follows: In our final construction,
blocks will be traversed twice by the agent and we will be able to show that during the
first traversal, the incurred cost is 3OptB+zB, and during the second traversal, the
incurred cost is OptB − zB. In a similar spirit to potential function arguments, the
adversary “saves” zB in the first traversal and charges it only in the second traversal,
i.e., the core cost is the cost charged during the first traversal. As explained in
Section 2.5, our goal is to prove the following result, which we will do in the next
subsection. While this is closely related to [23, Theorem 3.1], the key difference is
that we estimate the core cost instead of the total algorithm cost.

Theorem 2.30. There exists an adversarial strategy that, for every ε > 0 and
every block traversal algorithm Alg, constructs an instance B of the block traversal
problem with AlgCB/OptB ≥ 3− ε.
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s
t∗1

t∗2

B1 B2 B3 B4

Figure 2.12: A chain of 4 blocks. The construction is obtained by identifying the
exit vertex of Bj with the starting vertex of Bj+1. The algorithmic and optimal
entry vertices are depicted in blue, the exit vertices are depicted in red. All other
vertices inside the blocks are omitted. The dashed lines indicate that blocks are
connected.

Before proving this result, we need to introduce the concept of connecting blocks
to each other, which will be crucial for our proof. We define a chain of blocks (see
Figure 2.12) as a sequence of blocks B1, . . . , Bi where all entry and exit edges have
the same weight by identifying the exit vertex of block Bj with the starting vertex
of block Bj+1 (j ∈ {1, . . . , i − 1}). In particular, we identify the target vertices of
block j with the algorithmic and optimal entry vertex of block j + 1. Let s be the
starting vertex of B1 and t∗1, t

∗
2 be the target vertices of the last block Bi. Consider

the block traversal problem on the chain, which we call in the following P , with s
as the starting vertex and t∗1, t

∗
2 as the target vertices. Note that, while Alg does

not learn anything during the traversal of a block Bj about another block Bj′ , the
traversal of Bj can still affect the strategy followed in Bj′ : Indeed, the agent may
change strategy when facing the same situation multiple times. Let AlgBj

denote
the strategy followed in block Bj.

Observation 2.31. In the block traversal problem on chain P , we have

a) AlgP =
∑i

j=1 AlgBj
,

b) OptP =
∑i

j=1 OptBj
,

c) lP =
∑i

j=1 lBj
.

Proof. When the online or offline agent traverses an edge leading from Bj to Bj+1,
we charge this cost on Bj+1. The statements now follow from the fact that every
path from s to t∗1 or t∗2 contains the exit vertices of all blocks (where the exit vertex
of one block is the starting vertex of the subsequent block).

2.5.2 Recursive block construction

We now turn to proving Theorem 2.30. As explained in Section 2.5, we construct
the blocks for this recursively using similar ideas as in [23], but estimate the core
cost instead of the total algorithm’s cost. One of the key differences is that our
blocks have a fixed block length and variable optimum costs, whereas in [23], the
block length is variable and the optimum cost is fixed. In our final construction,
when the agent has to backtrack, it will have the choice along two different chains
containing the same number of blocks. It will be beneficial for us that these have
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Figure 2.13: Block for the adversary strategy A0 of level 0.

the same length. Another key difference is that we construct only one type of block,
where in [23], the beginnings and ends of chains of blocks have a special form so
that three types of blocks are needed. This is not necessary for our construction,
which makes it simpler.

Fix a sufficiently large and even integer k. For every d ∈ N0, we recursively
define an adversarial strategy Ad that constructs an instance B of the block traversal
problem with the following properties.

B1) The block length is lB = 2kd.

B2) The optimal cost is bounded by OptB ≤ (d+ 2)kd.

B3) The weight of the entry edges and exit edges is kd.

We say that d is the level of the adversarial strategy, which corresponds to its
recursion depth.

Lemma 2.32. For every d ∈ N0, there exists an adversarial strategy Ad of level d
that, for every block traversal algorithm Alg, constructs a planar instance B of the
block traversal problem fulfilling B1)-B3) with the following property: Let rd be the
infimum of AlgCB/OptB over all algorithms Alg, where B is the block constructed
by Ad for Alg. Letting k ∈ Ω(d2) and d→∞, we have rd → 3.

Proof. For d = 0, we define A0 to output the block traversal instance illustrated
in Figure 2.13 for every algorithm Alg. It is straightforward that lB = OptB =
AlgB = 2 so that properties B1)-B3) are fulfilled and we have r0 = 1.

Next, we define the strategy Ad for d ≥ 1 assuming that Ad−1 is already given.

Construction. The construction is illustrated in Figure 2.14. The starting ver-
tex s is incident to the two entry edges of weight kd and we may assume that the
agent traverses the algorithmic entry edge (using property R5)). Then it is at po-
sition uAlg, which we identify with the starting vertices of two blocks in which we
use Ad−1, i.e., uAlg is incident to four edges of weight kd−1. From here, we build two
chains of blocks starting from uAlg, i.e., whenever the agent traverses for the first
time an exit edge of a block, we present it with a new block, where we identify the
exit vertex of the previous block with the starting vertex of the new block. In each
of these blocks, we apply strategy Ad−1. Note that we use here property B3) to be
able to build these chains. In the chain, we say that a block is explored if the agent
has traversed its exit edge. This procedure stops if either (1) the agent travels back
to s or (2) one of the two chains consists of (k/2)− 1 explored blocks.
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Figure 2.14: Recursive block construction (of level d). B1, . . . , B(k/2)−1, B
′
1, . . . , B

′
i

are blocks constructed by Ad−1. The thick edges (depicted in orange) have weight kd

and the edges depicted in green have weight kd−1. The dashed edge between uOpt

and uEx is only present in case (2), i.e., if the agent does not travel back to s. From
this drawing, we obtain that the block is planar.

In case (1), let B′
i, . . . , B

′
1, uAlg, B1, . . . , Bj be the chains of blocks, where we

have 1 ≤ i, j ≤ (k/2) − 1 and all blocks except for B′
i, Bj are explored (but B′

i, Bj

have been entered at some point). When the case is triggered, the agent is located at
vertex s. Then we complete block B′

i to some valid block constructed by Ad−1 and
connect its two exit edges both to the same vertex uOpt, which we define to be the
optimal entry vertex. The chain of blocks uAlg, B1, . . . , Bj is extended into a chain
of (k/2) − 1 blocks. Importantly, we only fix here the number of these blocks but
do not reveal the structure of the new blocks to the agent. This will be determined
when the agent traverses them, where we will again use strategy Ad−1. The two exit
edges of block B(k/2)−1 are then connected to a vertex w, and w is connected to a
vertex uEx by an edge of weight kd−1, which we define to be the exit vertex.

In case (2), let B′
i, . . . , B

′
1, uAlg, B1, . . . , B(k/2)−1 be the chains of blocks, where

we have i ≤ (k/2) − 1 and all blocks but B′
i are explored. The case is triggered

when the agent traverses an exit edge of block B(k/2)−1. Then we let both exit edges
of B(k/2)−1 lead to the same vertex w. This is connected by an edge of weight kd−1 to
the exit vertex uEx. Block B′

i is completed to some valid block construced by Ad−1

and both of its exit edges lead to the same vertex uOpt, which we define to be the
optimal entry vertex. Additionally, we introduce an edge of weight kd between uOpt

and uEx. The case d = 1 is illustrated in Figure 2.11.
Block properties and analysis. Note that B3) is obviously fulfilled in the con-
struction and one can observe from Figure 2.14 that the constructed block is planar,
using that, by induction, the blocks constructed by Ad−1 are planar as well. Using
Observation 2.31 and that blocks constructed by Ad−1 fulfill properties B1)-B3), we
obtain that a shortest path from s to uEx is given by first traversing the algorithmic
entry edge, then blocks B1, . . . , B(k/2)−1 and then the edges to w and uEx. We obtain

lB = kd +

(k/2)−1∑
j=1

lBj
+ 2kd−1 = kd + (k/2) · 2kd−1 = 2kd, (2.6)

so that property B1) is fulfilled (note that, in case (2), the existence of the additional
edge {uOpt, uEx} does not lead to a shorter path). In both cases (1) and (2), observe
that

OptB = kd +
i∑

j=1

OptB′
j
+ kd−1 +

(k/2)−1∑
j=1

OptBj
+ 2kd−1. (2.7)
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Using that OptBj
≤ (d+ 1)kd−1, we obtain

OptB ≤ kd +

(
i+

k

2
− 1

)
· (d+ 1)kd−1 + 3kd−1

3≤2(d+1)

≤ kd +

(
i+

k

2
+ 1

)
· (d+ 1)kd−1

i≤ k
2
−1

≤ kd + (d+ 1)kd = (d+ 2)kd,

so that property B2) is fulfilled as well.
By definition, we have zB = OptB − lB and plugging in our findings from (2.6)

and (2.7), we obtain

zB =

(k/2)−1∑
j=1

(OptBj
− lBj

) +
i∑

j=1

OptB′
j
+ kd−1

=

(k/2)−1∑
j=1

zBj
+

i∑
j=1

(zB′
j
+ lB′

j
) + kd−1. (2.8)

Next, we analyze the cost incurred by the agent. We say that a block is back-
tracked if the agent traverses it — either from s to uEx or in the other direc-
tion — after the block was explored. In case (1), the agent traverses 3 times
an entry edge of weight kd and, before the case was triggered, it explores and
backtracks the blocks B′

1, . . . , B
′
i−1. To reach uEx, Alg also has to traverse the

blocks B1, . . . , B(k/2)−1, where we use that the edge {uOpt, uEx} is not present in
this case. Traversing the exit edge of B(k/2)−1 and {w, uEx}, the agent incurs an-
other cost of 2kd−1. Using our findings for chains (Observation 2.31), we obtain

AlgB ≥ 3kd +

(k/2)−1∑
j=1

AlgBj
+

i−1∑
j=1

(AlgB′
j
+ lB′

j
) + 2kd−1. (2.9)

In case (2), the agent traverses one entry edge, explores and backtracks the
blocks B′

1, . . . , B
′
i−1 and explores blocks B1, . . . , B(k/2)−1 before the case was trig-

gered. Then, the agent is located at w and, by property R5), the agent is not able
to traverse an exit edge before exploring uOpt. Traveling from w to uOpt and then
to uEx costs at least 2kd + kd−1. Therefore, we obtain the same bound (2.9) for
case (2) as in case (1). By (2.8) and (2.9), we obtain a core cost of

AlgCB = AlgB − zB

≥ 3kd +

(k/2)−1∑
j=1

(AlgBj
− zBj

) +
i∑

j=1

(AlgB′
j
− zB′

j
)−AlgB′

i
− lB′

i︸︷︷︸
=2kd−1

+kd−1

= 3kd +

(k/2)−1∑
j=1

AlgCBj
+

i∑
j=1

AlgCB′
j
−AlgB′

i
− kd−1

≥ 3kd +

(k/2)−1∑
j=1

AlgCBj
+

i∑
j=1

AlgCB′
j
− (3d+ 4)kd−1, (2.10)
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where we have used for the last inequality that AlgB′
i
≤ 3OptB′

i
≤ 3(d + 1)kd−1

because otherwise, the statement of the Lemma is clear.

Ratio analysis. For d > 1, we obtain for a suitable choice of i ∈ {1, . . . , (k/2)− 1}
using (2.7) and (2.10) that

rd ≥
3kd +

∑(k/2)−1
j=1 AlgCBj

+
∑i

j=1 AlgCB′
j
− (3d+ 4)kd−1

kd +
∑(k/2)−1

j=1 OptBj
+
∑i

j=1 OptB′
j
+ 3kd−1

≥
3kd + rd−1

(∑(k/2)−1
j=1 OptBj

+
∑i

j=1 OptB′
j

)
− (3d+ 4)kd−1

kd +
∑(k/2)−1

j=1 OptBj
+
∑i

j=1 OptB′
j
+ 3kd−1

≥ 3kd + rd−1k(d+ 1)kd−1 − (3d+ 4)kd−1

kd + k(d+ 1)kd−1 + 3kd−1
=

3 + rd−1(d+ 1)− (3d+ 1)/k

1 + (d+ 1) + 3/k
,

where we have used for the inequality in the last line that OptBj
≤ (d + 1)kd−1

by B2), i < k/2, and the fact that x+z
y+z
≤ x

y
for x ≥ y ≥ 0 and z ≥ 0. From this

recursive expression, it is easy to see that, if k ∈ Ω(d2) and we let d → ∞ (and
therefore also k → ∞), we have rd → 3. (This can be seen from that fact that the
terms with k in the denominator can be neglected and r = 3 is the only solution
of r = (3 + r(d+ 1))/(1 + d+ 1).)

Choosing d large enough in the Lemma, we obtain Theorem 2.30.

2.5.3 Block arrangement

Now that we have established the necessary preliminaries on block traversal, we
turn to proving our main result (Theorem 2.3) in this section. For this, we use the
same block arrangement as in [23], but we give a refined analysis using our stronger
results on the block traversal problem.

Proof of Theorem 2.3. As a first step, we give the construction for the block ar-
rangement as in [23].

Construction. Let ε > 0 be arbitrary and choose d, k large enough (depending
on ε) with k ∈ Ω(d2). Fix an online graph exploration algorithm Alg. Whenever,
we refer to a block in this proof, we mean a block construced by Ad. Moreover,
let M and N be a large enough integers.

We construct a graph G (adaptively depending on the behavior of Alg) as
follows (see Figure 2.15). Let vs denote the starting position and identify it with the
starting vertices of two blocks, i.e., vs is incident to four boundary edges of weight kd

and the first two such traversed boundary edges are the algorithmic entry edges of
two different blocks. Whenever the agent succesfully explores and leaves a block, its
exit vertex is identified with the starting vertex of a new block, so that we obtain
two chains of blocks P1 and P ′

1 and, in each block, we employ strategy Ad. This
procedure ends when one of the chains consists of M blocks construced by Ad and
we assume w.l.o.g. that this occurs for chain P1. We let the exit edges of the last
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Figure 2.15: The block arrangement from [23] used here in the proof of Theorem 2.3.
Rectangle shapes represent blocks and circle shapes represent single nodes. All
drawn edges have weight kd, where we have omitted edges inside the blocks. Pairs
of edges beginning at the same point inside a block are its exit edges and a pair of
edges leading to two different points in a block are its entry edges. Observe that the
construction is planar, using that the blocks are planar.

explored block lead to a vertex v1. This vertex is identified with the starting vertex
of three further blocks, i.e., v1 is incident to 8 edges of weight kd (two exit edges
and 6 entry edges). The agent starts exploring these and, similarly as before, we
build chains of blocks. Let M ′ denote the number of blocks in P ′

1, i.e., P ′
1 consists

of M ′−1 explored blocks and one partially explored block. Let M ′′ be the maximum
number of blocks contained in any of the three chains starting from v1. We stop the
process when M ′ + M ′′ = M and the agent traverses a new exit edge. Let P ′′

1 be
the chain starting from v1 of length M ′′. When the process stops, there is exactly
one block that was entered, but not explored: If the last block that was traversed is
in P ′

1, this partially explored block is in P ′′
1 , and if the last block that was explored

is in P ′′
1 , the partically explored block is in P ′

1. We complete it to some valid block
that Ad constructs (for some algorithm) and call this block B∗

1 . We let the edges of
the last blocks in P ′

1 and P ′′
1 lead to the same vertex u1.

We obtain a cycle of blocks consisting of P1, P
′
1, P

′′
1 , which we refer to as C1 and,

from vertex v1, there are two chains of blocks with unexplored ends of length less
than M . We iterate the procedure by ignoring the explored cycle C1 and inter-
preting v1 as the new starting vertex vs. This is repeated until we obtain N such
cycles of blocks. Then, we have two chains of blocks with unexplored ends beginning
from vN . As soon as their total numbers of blocks sum up to 2M , we let the exit
edges of the last blocks in these chains be connected to a closing vertex vt. We call
this last cycle of blocks between vN and vt cycle C∗. Observe that the construction
is planar using that the blocks constructed by Ad are planar.

Analysis. First, note that every block, except for the blocks B∗
i for each i, was

only entered via an entry edge before it was explored. For each of these blocks B,
the agent incurs a cost of AlgB during the first exploration. Next, we will argue
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that almost every block will be traversed a second time. More precisely, we claim
the following, where we use that all blocks have the same block length 2kd.

Claim 2.33. The agent incurs a total cost of at least N(2M−1)·2kd for backtracking
blocks.

Proof. We only argue that the algorithm incurs a cost of (2M−1)·2kd for backtrack-
ing in C1 and it will be clear that this holds similarly for all other cycles C2, . . . , CN

(but not for C∗). We distinguish two cases: M ′ + M ′′ = M was triggered by (1)
exploration of a block in P ′

1 or (2) by exploration of a block in P ′′
1 .

In case (1), observe that the agent already backtracked all M blocks in P1 at the
time when M ′+M ′′ = M was triggered, so that it incurred a cost of at least M ·kd.
Then, the agent has to travel to v1 to reach cycle C2. Since it has to return to the
starting position when all vertices were explored, it needs to traverse a path from v1
to vs at the end. The shortest such path is to again traverse all blocks in P1 so that
the agent incurs another cost of M · 2kd for backtracking in C1.

In case (2), observe that the agent backtracked all blocks in P ′
1\{B∗

1} at the time
when M ′ +M ′′ = M was triggered. To proceed with the exploration, the agent has
to travel to v1 and the shortest way for this is by backtracking all blocks in chain P ′′

1 ,
so we can charge this cost by assuming that these blocks were backtracked. At the
end, the agent has to return to the starting position, for which it needs to travel
from v1 to vs and the shortest way for this is by backtracking all blocks in chain P1.
Together, we obtain that, in either case, we can assume that the agent backtracks
all blocks in C1 \ {B∗

1} and we have |C1 \ {B∗
1}| = (2M − 1).

The claim implies that, for every block, except for B∗
i (j ∈ {1, . . . , N}) and the

blocks in C∗, the agent incurs a cost of AlgB for the first traversal, and a cost
of kd = lB for backtracking. We obtain

Alg(G) ≥
N∑
j=1

∑
B∈Cj\{B∗

j }

AlgB + lB =
N∑
j=1

∑
B∈Cj\{B∗

j }

AlgCB + OptB

≥ (4− ε) ·
N∑
j=1

∑
B∈Cj\{B∗

j }

OptB, (2.11)

where we have use Lemma 2.32 and that k and d are large enough (depending on ε).
At the same time, in the offline optimum, the agent only needs to explore every

block once and never backtracks a block. We obtain

Opt(G) =
N∑
j=1

3kd +
∑
B∈Cj

OptB

+
∑
B∈C∗

OptB + 2kd

≤
N∑
j=1

 ∑
B∈Cj\{B∗

j }

OptB

+ (2N + 2M + 1)(d+ 2)kd−1, (2.12)
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where, for the last inequality, we have estimated each of OptB, 3k
d, 2kd by (d+2)kd

(for B = B∗
j and B ∈ C∗) and used that C∗ consists of 2M blocks.

Note that

(2N + 2M + 1)(d+ 2)kd

Alg(G)
≤ (2N + 2M + 1)(d+ 2)kd

N · (2M − 1)2kd
→ 0 (M,N →∞),

where we have used the safe lower bound Alg(G) ≥ N(2M−1)lB = N(2M−1)2kd.
By (2.11) and (2.12), we obtain together with the last inequality for the com-

petitive ratio that Alg(G)/Opt(G) → (4 − ε) as M,N → ∞. Since ε > 0 was
chosen arbitrary, we obtain that the competitive ratio is at least 4 on planar graphs.
Combining with the fact that any planar construction can be made subcubic (Corol-
lary 2.6), this completes the proof of Theorem 2.3.

Remark 2.34. It is easy to see that any algorithm that only backtracks when
there is no boundary edge incident to the agent’s position, is 4-competitive on the
constructed graph. By careful observation, one can see that, for such algorithms, we
have zB = Θ(kd−1), in particular, OptB = 2kd+Θ(kd−1), and we have AlgB ≤ 6kd

for every block construced by Ad. In G, then every block is backtracked at most
once, so that we obtain in total an upper bound of 4 ·Opt(G).

Note that, for example, DFS fulfills this property on the constructed graphs.
This shows that our analysis for this construction is tight.

2.6 Outlook
The key question in online graph exploration is whether the problem admits a
constant-competitive algorithm [75]. While this problem remains open, our results
suggest steps towards resolving this question.

First, we have shown that several assumptions can be made about the problem
without affecting its competitive ratio (Corollary 2.6). These include restrictions
on the agent, such as learning only the identifiers of boundary edges rather than
their endpoints, as well as restrictions to subcubic graphs and to graphs satisfying
the triangle inequality. This understanding can serve as a “sanity check” in future
research: If one aims to develop a new algorithm, the agent should not rely on
information or abilities that it does not possess under these restrictions. Conversely,
if one aims to establish a lower bound, one can impose these restrictions on the
agent to simplify the construction. However, for example, relying on violations of
the triangle inequality is not a promising approach.

Second, we have established a general lower bound of 4 on the competitive ratio
of the online graph exploration problem (Theorem 2.3). Our construction primarily
builds on ideas already present in the literature [23, 44]. We believe that we have
pushed these ideas to their limits, and that overcoming the barrier of 4 requires new
approaches. Roughly speaking, the approach in [23] and in our work is to take the
blocks constructed in [44], reuse them recursively, and arrange these blocks within
an unweighted graph. The unweighted graph used for the block arrangement is
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structured such that (almost) every block must be traversed twice by the online
agent, but only once by the offline agent. Since the competitive ratio of exploration
on unweighted graphs is at most 2, there is no further room for improvement in this
part of the construction. Moreover, because the blocks themselves are already con-
structed using recursion, with the recursion depth taken to infinity, there is likewise
no further room for improvement within the block construction. Also, it is impor-
tant to note that our construction is planar, and it is known that the competitive
ratio on planar graphs is at most 16 [75], so a substantially different construction
would be needed for a non-constant lower bound.

If one aims to prove a non-constant lower bound on the competitive ratio of
online graph exploration, our results for minor-free graphs (Theorem 2.2) imply that
it is necessary to consider graph classes that include all minors. This suggests that
studying dense high-girth graphs or expanders [82] could be a promising direction.

In terms of upper bounds for the online graph exploration problem on general
graphs, not even a competitive ratio of o(log n) has been achieved so far, and our
results eliminate Blockingδ as a candidate for this for most values of δ (The-
orem 2.26). It only remains to close the gap between δ ∈ o(log(n)/ log log(n))
and δ ∈ Ω(log(n)). Moreover, the lower bound constructions for Blockingδ in our
work and in [92] rely heavily on unfavorable tie-breaking by the algorithm: When-
ever an edge is unblocked, we assume that the agent explores it immediately, even if
lighter boundary edges are available at its current position. An interesting question
for future research is whether handling unblocked edges more effectively could lead
to an algorithm with a competitive ratio of o(log n).

However, we believe that proving such a result requires ideas beyond those pre-
sented in this work. Our main approach for establishing a constant competitive
ratio on minor-free graphs relied on the fact that these graphs contain light span-
ners. Since it is known that general graphs and graphs of bounded expansion do not
admit light spanners [95, Theorem 6.6], new techniques are necessary to generalize
this result.

Regarding spanners, we gave an improved upper bound on the lightness of span-
ners in bounded-genus graphs. It is a natural question whether our bound is already
tight for g ≥ 1 or can further be improved. In particular, it is unclear whether the
worst-case lightness for a fixed stretch must depend linearly on g.
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Chapter 3

Collaborative tree exploration

We now turn to studying the online graph exploration problem with multiple agents.
More precisely, in the collaborative graph exploration problem, we are coordinating a
team of k agents tasked with traversing an initially unknown, undirected, connected
graph G = (V,E,w) with non-negative edge weights w : E → R≥0. Similarly as in
the single-agent setting, we assume that every vertex and every edge has a unique
identifier. Upon visiting a vertex for the first time, the identifiers of the adjacent
vertices as well as the identifiers and weights of the corresponding edges are revealed.
Importantly, we assume here that agents can communicate globally, i.e., all agents
have the same information. For simplicity, we simply say that there exists a central
coordinator that gathers all information and determines each agent’s movements.
Initially, they are all located at the same starting vertex and we say that a vertex is
explored if it has been visited by at least one of them. We assume that each agent
can move at unit speed and the time needed to traverse an edge is simply its weight.
The task is to explore all vertices, subject to minimizing the completion time. An
example of an instance where all edges have weight 1 is illustrated in Figure 3.1. Note
that, in the case k = 1, the completion time equals the total traveled distance since
waiting does not serve any benefit in this case. Therefore, collaborative exploration
is indeed a generalization of the single-agent graph exploration problem.

In the collaborative exploration problem, we usually denote competitive ratios
using asymptotic notation. Therefore, we do not make a difference between the
strict and non-strict competitive ratio. For simplicity, we do not require the agents
to return to the starting position after exploring the tree. Note that this does not
make a difference for the competitive ratio either when using asymptotic notation
because returning to the starting position takes at most Opt(G) time units.

It turns out that finding a good strategy in the collaborative case is highly
non-trivial. Recall that, for the single-agent online graph exploration problem,
DFS is 1-competitive on trees and 2-competitive on general graphs, where no al-
gorithm with a better competitive ratio exists [96]. By contrast, for the collabora-
tive case, it is already unclear how to coordinate the agents on a graph as simple
as an unweighted tree. Already our small example in Figure 3.1 shows that the
strict competitive ratio on unweighted trees is at least 2. In fact, a lower bound
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Figure 3.1: Example of an instance for collaborative tree exploration with k = 7
agents. The filled vertices are explored and the unfilled vertices are learned but not
yet explored. The numbers in the vertices indicate the number of agents located in
that vertex. The red arrows together with the numbers indicate where the agents
move in the next step. The illustrated online algorithm requires 4 time steps and it
is easy to see that the offline optimum requires only 2 time steps.

of Ω(log(k)/ log log(k)) is known for the competitive ratio of collaborative explo-
ration on an unweighted tree on n vertices with k ≤ n logc n agents for any con-
stant c [43, 46].

For this reason, research typically revolves around finding good strategies for
unweighted trees. Recall that unweighted means here that all edges have weight 1.
This special case is called the collaborative tree exploration problem. In this chapter,
we study a classical algorithm for the problem called Yo* introduced by Ortolf and
Schindelhauer [98]. We give a refined version called RecYoYo and give a slightly
improved bound on its competitive ratio.

Theorem 3.1. The algorithm RecYoYo is log(k) · 2O(
√

log(D)·log log(k))-competitive
for collaborative tree exploration on trees of depth D.

Note that, for k ≥ Dε for some ε > 0, we have log(D) = O(log(k)) so that we ob-

tain O(
√
log(D) · log log(k)) = O(

√
log(k) · log log(k)) = o

(√
log2(k)

)
= o(log(k)).

Therefore, for k ≥ Dε, the given bound in the Theorem is in 2o(log(k)) = ko(1).
Our result improves on the bound of 2O(

√
log(D)·log log(k)) · log(k) · (log(k)+ log(n))

for Yo* proven in [98]. The strength of our result is that we eliminate the de-
pendency on n in the competitive ratio. However, we remark that this should
be understood as an improvement on Yo*, but not on the best known competi-
tive ratio for the problem in general. More precisely, observe that, for k ≥ nε, we
have log(n) = O(log(k)), so in this range for k, our improvement is a factor of log(k).
If k is polylogarithmic in n, i.e., k ≤ logC(n) for some constant C, consider the fol-
lowing two cases: First, if D ≥ nε for some ε > 0, we obtain that the exponent
in our bound is

√
log(D) log log(k) ≥ Ω(

√
log(n)) ≥ ω(log(k)), so that our bound

is 2ω(log k) = kω(1). Thus, the bound is weaker than the trivial O(k) bound on the
competitive ratio (we explain in the following section how the O(k) bound is ob-
tained). Second, assume that D is also polylogarithmic in n. An algorithm is known
that explores trees in O((n/k) + kD) rounds [38]. When both k and D are at most
polylogarithmic in n, this algorithm is even constant-competitive.
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3.1 Preliminaries

When considering collaborative graph exploration on unweighted graphs, we con-
sider time to be discrete and, in every time step, each agent may traverse an edge.
We also refer to a time step as a round. Throughout this chapter, T denotes a tree
that is to be explored, n denotes its number of vertices, and k denotes the number
of agents. We consider T to be rooted in the starting position of the agents and we
denote its depth by D.

First, note that we have Opt(G) ≥ D because no agent can reach a vertex of
depth D in less than D rounds. In addition, we have Opt(G) ≥ n/k because, in
every round, at most k new vertices are explored. Next, note that the following
offline algorithm explores T in at most D + ⌈2n/k⌉ rounds: Consider a depth-first-
search traversal on T . The length of such a traversal is 2(n− 1) ≤ 2n. We equally
partition this tour into k paths and assign an agent to each of them. For each agent,
traveling to the starting vertex of the path takes at most D rounds and exploring
the path takes at most ⌈2n/k⌉ rounds. Together, we obtain that

D + ⌈2n/k⌉ ≥ Opt(G) ≥ max{D,n/k} ≥ 1

2
· (D + n/k).

In particular, we have Opt(G) = Θ(D + n/k).
Next, observe that the online algorithm that performs a DFS traversal with a

single agent and leaves all other agents idle in the root takes at most 2n rounds. Us-
ing that Opt(G) ≥ n/k, we obtain that its competitive ratio is at most 2k = O(k).
Considerable efforts have been made to improve upon this bound [37, 38, 41, 43, 46,
56, 67], which we summarize in the following.

State-of-the-art. It is important to note that, when considering the competitive
ratio of the collaborative tree exploration problem for some fixed n and different
values for k, it turns out that the competitive ratio first increases in k and then
decreases again. In fact, it is known that, for k ≥ Dn1+ε, a constant-competitive
algorithm exists [41]. On the other hand, it is known that the competitive ratio is
at least Ω(log(k)/ log log(k)) for k ≤ n logc n for any constant c [43, 46].

It is in general challenging to derive upper bounds on the competitive ratio with-
out additional constraints on the number of agents. The first improvement over the
trivial bound of O(k) was achieved in [56], where a O(k/ log(k))-competitive algo-
rithm was given. In [37], an algorithm with competitive ratio O(k/ exp(

√
log(k)))

was given and this was later improved to a O(
√
k)-competitive algorithm [38].

When allowing additional constraints on the number of agents, the already
mentioned results give the following. We obtain a constant-competitive algorithm
when k ≥ Dn1+ε [41]. For k ≥ nε for some fixed ε > 0, the bound in [98] gives a
competitive ratio of 2O(

√
log(D)·log log(k)) · log(k) · (log(k) + log(n)) = 2o(log(k)) = ko(1).

To summarize, the domain where no upper bound of ko(1) on the competitive
ratio is known yet, is given when k ≤ no(1) and D ≥ n1−o(1).
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3.2 A slightly improved bound for Yo*

We give an improved version of the algorithm Yo* introduced in [98] and we call our
reinterpretation RecYoYo. Similarly to [98], the main idea is to do a recursion over
algorithms. This means that, given an algorithm Alg, called the base algorithm,
we construct a new algorithm Alg′ with a better competitive ratio. We then apply
this repeatedly until we obtain no further improvement on the competitive ratio.
The “base case” can be, for example, the simple algorithm Yo-yo introduced in [98]:
Let mi denote the number of nodes at depth i. In the Yo-yo algorithm, we execute,
for each i = 1, . . . , D, ⌈mi/k⌉ phases, where in a phase for depth i, every agent
travels from the root to an unexplored vertex at depth i and then back to the root.
In [98], it was proven that this algorithm is 4D-competitive.

Before diving into the algorithm RecYoYo, let us introduce the notation needed
for this. Recall that we consider T to be rooted at the starting vertex. For a vertex v
of T , we denote by d(v) the depth of v in T , that is, the length of the unique path
from v to the root. By T (v), we denote the subtree of T rooted at v, and for d ∈ N,
we denote by Td the subtree of T only containing vertices of depth at most d.

Similarly as in the case for single-agent graph exploration, we say that a vertex is
learned if its parent was explored. Note that, in the case of trees, the distance of two
learned vertices u and v does not decrease during the course of exploration because
the unique path connecting them is internally explored if u and v are learned.

3.2.1 The algorithm RecYoYo

We turn to defining our procedure of obtaining the algorithm Alg′ given a base
algorithm Alg. Before we give the formal description, we outline the main ideas
for the algorithm.

Intuitive description of Alg′

Given a base algorithm Alg with competitive ratio depending on the depth (such
as Yo-yo), we aim to decrease this dependence on D by dividing the tree into several
layers (see Figure 3.2) and apply the base algorithm on several trees of smaller depth.
We divide a tree of depth D into b layers, each of depth a, where the last layer may
have depth less than a, i.e., we have ⌈D/b⌉ = a. In the first layer, we apply the base
algorithm. Then, we explore the tree layer by layer. Importantly, we handle every
new layer together with the previously explored one. These two layers build a forest
of partially explored subtrees of depth at most 2a (cf. Figure 3.2).

If there are more such subtrees than agents, we assign every agent to a subtree
and they explore these in parallel using DFS, which is optimal for exploration with
a single agent. Since the size of the subtrees may substantially differ, it does not
make sense that agents who were assigned a smaller subtree, and therefore finish
exploration earlier, wait for too long for the other agents to complete exploring their
subtree. Therefore, when half of the agents are done, the idle ones are redistributed
to subtrees to which no agent has been assigned yet. For simplicity of the analysis,



3.2. A slightly improved bound for Yo* 55

R

nb nodes

n1 nodes

n2 nodes

≤ a

a

a

a

a

a

b layers

unexplored

unexplored

explored

explored

explored

explored

Figure 3.2: Illustration of the algorithm RecYoYo. The figure shows the set R
with j = 4. The set R consists of vertices at depth (j − 1) · a that have unexplored
descendents. The triangles in the fifth layer indicate the unexplored subtrees. Those
drawn in the same color are part of the same subtree T

(v)
2a for some v ∈ R.

we assume that the non-idle agents do not move during the redistribution of the
agents that have finished their DFS traversal.

If there are less subtrees than agents, some subtrees are assigned multiple agents
and then it is non-straightforward how to explore these. In this case, we use the base
algorithm. Similarly as before, we redistribute agents when a large enough portion
of them have finished exploration. The difference of our algorithm to Yo* in [98]
lies in this step: We choose a slightly different rule for when to redistribute, which
allows us to spend less rounds in this step.

Note that, since each new layer is handled together with the previously explored
one, some parts of each layer (except for the last one) will actually be explored
twice. In Figure 3.2, the green paths are already explored but need to be traversed
again for the exploration of the subsequent layer. However, the strength of handling
multiple layers together is that this decreases the numer of connected components in
the forest of unexplored subtrees. This property is captured later in Observation 3.3.
The smaller number of trees allows to redistribute the agents less often.

Formal definition of Alg′

The algorithm Alg′ given a base algorithm Alg is formally defined in Algorithm 3.
Note that, in this formulation of the algorithm, we require that only trees of a given
depth D are used as input, which we think of as a parameter of the algorithm. We
remark that one can eliminate the assumption that the depth is known beforehand
using a doubling-strategy. That is, one starts executing the algorithm setting D to
some constant and whenever we learn that the actual depth of the tree exceeds D,
we double the value and restart the algorithm. Note that the algorithm is then
restarted at most log(D) times (where D refers here to the actual depth of the tree)
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and that an additional factor of log(D) = 2log log(D) in the bound 2O(
√

log(D) log log(k))

can be hidden in the constant factor of the O-notation.
In addition, the algorithm is parameterized by a and b, which are chosen such

that ⌈D/b⌉ = a. The algorithm uses the subroutine DistributeAgents(A, S),
where A is a set of agents and S is a set of learned vertices. This routine distributes
the agents evenly on S, i.e., every agent in A is assigned precisely one vertex of S
such that each vertex v ∈ S is assigned ⌊|A|/|S|⌋ or ⌈|A|/|S|⌉ many agents. Then
the routine moves the agents to their assigned vertices (on the unique path in the
tree). The invocation DistributeAgents(S) only giving a set of vertices S cor-
responds to DistributeAgents(A, S) with A being the set of all agents. The
subroutine ParallelDFS2a will only be invoked when no agent is located in a
descendant of another agent’s position. Then the agents perform in parallel depth-
first-search on the subtrees T (vi)

2a , where vi is the position of the i-th agent when this
routine is invoked. We say that agent i is done when it has explored T

(vi)
2a .

Algorithm 3: Alg’(D, a, b)
input: unexplored tree T of depth D

1 explore Ta using base algorithm Alg
2 for j = 1, . . . , b− 1 do
3 R← {v ∈ T : d(v) = (j − 1)a, v has an unexplored descendant}
4 A← set of all agents// set of idle agents
5 R′ ← R // set of vertices in R that were not yet assigned an agent
6 while |R| > k do
7 DistributeAgents(A,R′)
8 perform ParallelDFS2a until ⌈k/2⌉ of the agents are done
9 A← done agents

10 R← R \ {v ∈ R : T
(v)
2a is explored}

11 R′ ← R \ {v ∈ R : an agent is located in T (v)}
12 while R ̸= ∅ do
13 DistributeAgents(R)

14 perform in parallel base algorithm Alg on T
(v)
2a for each v ∈ R until

⌈|R|/2⌉ of these subtrees are explored
15 R← R \ {v ∈ R : T

(v)
2a is explored}

First, we observe that the algorithm indeed explores all vertices. The fact that
it terminates will become clear from the runtime analysis.

Observation 3.2. After iteration j of the for-loop (j ∈ {1, . . . , b− 1}), all vertices
of depth at most (j + 1) · a are explored. All vertices of larger depth are unexplored.
In particular, Alg′ is correct (if it terminates).

Proof. We inductively show the statement. First, note that by correctness of the
base algorithm, every node of depth at most a was explored before the first iteration
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of the for-loop. Now, assume that, given some j ∈ {1, . . . , b − 1}, all vertices until
depth at most j ·a are explored and let v be a vertex with d(v) ∈ [j ·a+1, (j+1) ·a].
Let v′ be its unique ancestor at depth (j − 1) · a. Then v ∈ T

(v′)
2a . The vertex v′ has

an unexplored descendent and, by induction hypothesis, v′ is explored. Therefore,
we have v′ ∈ R after the execution of line 3. A vertex u is only removed from R
if T

(u)
2a is explored. Since an iteration of the for-loop only ends when R = ∅, we

obtain that T (v′)
2a , and therefore also v, is explored at the end of the iteration of the

for-loop.

3.2.2 Analysis of RecYoYo

Throughout this section, fix a tree T of depth D and we analyze the number of
rounds that Alg’ takes on T . Later, we conclude our analysis of RecYoYo, which
we obtain by recursively applying the procedure.

For this, let nj denote the number of vertices in the j-th layer, that is, the number
of vertices of depth d(v) ∈ [(j − 1) · a, j · a − 1] (see Figure 3.2). Similarly, we say
that an edge is in the j-th layer if its parent vertex is in the j-th layer, where the
parent vertex of an edge is the endpoint that is closer to the root. Moreover, let

Rj := {v ∈ T : d(v) = (j − 1) · a, the depth of T (v) is at least a+ 1}.

Note that Rj is precisely the set R initialized in line 3 of the j-th iteration of the
for-loop. To see this, note that, by Observation 3.2, at the beginning of the j-th
iteration when R is initialized, no vertex of depth more than j ·a is explored, but all
vertices of depth at most j · a are. Therefore, a vertex v of depth (j − 1) · a has an
unexplored descendant if and only if it has a descendent at depth more than j · a.
This is the case if and only if the depth of T (v) is at least a+ 1.

We can link the sizes of the Rj to n and a as follows.

Observation 3.3. We have
∑b−1

j=1 |Rj| ≤ n/a.

Proof. Every vertex v ∈
⋃

j Rj has, by definition, a descendant at depth d(v) + a.
Let Pv be a path leading from v to such a descendant (these are depicted in green
in Figure 3.2). Note that these paths are edge-disjoint and have length at least a.
Using that T contains n− 1 edges, the statement follows.

Next, we estimate the number of rounds that Alg′ takes depending on the
competitive ratio of the base algorithm Alg.

Theorem 3.4. Assume that the base algorithm Alg is f(D, k)-competitive on
trees of depth D using k agents, where f is monotonically increasing in D and k.
Then Alg′ is O(log(k) · (b+ f(2a, k)))-competitive. Importantly, the constant fac-
tor hidden in the O-notation is independent of n, k,D, a, b.

Proof. For each line of the algorithm, we estimate the number of rounds that are
spent during execution of that line. Note that lines 3–5, 9–11, and 15 are each
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carried out in zero time steps, so we only estimate the number of rounds spent during
execution of the other lines. The invocation in the first line takes, by assumption,
at most f(a, k) · (a+2|Ta|/k) ≤ f(a, k) · (a+2n/k) rounds, where we have used that
the offline optimum for Ta is at most a+ 2|Ta|/k.

Next, we estimate for j ∈ {1, . . . , b}, the number of rounds spent in the first
while-loop, i.e., in lines 6–11. After each iteration of the while-loop, the size of R is
decreased by at least k/2 so that the loop is executed at most |Rj|/(k/2) = 2|Rj|/k
times. In each of these iterations of the while-loop, the cost incurred in line 7 is at
most 2D. Therefore, the number of rounds spent in line 7 is at most 4D · |Rj|/k.

During the execution of line 8, only edges in layers j and j + 1 are traversed.
Note that none of the edges is traversed by two different agents because, in this
while-loop, no two agents are assigned to explore the same subtree. Since in a
DFS traversal, an edge is traversed twice, we obtain that at most 2(nj + nj+1) edge
traversals occur, where we have used that there are at most nj edges in each layer j.
Moreover, during each round spent in line 8, at least k/2 agents make progress in
the sense that they traverse an edge. Therefore, the number of rounds spent in line 8
(over all iterations of the while-loop) is at most 2(nj+nj+1)/(k/2) = 4(nj+nj+1)/k.

Summing up over all j, we obtain that the overall time steps spent in the first
while-loop (lines 6–11) is at most

b−1∑
j=1

4
nj + nj+1

k
+ 4D · |Rj|

k
≤ 8

n

k
+ 4

D

k
·
b−1∑
j=1

|Rj|
Obs.3.3
≤ 8

n

k
+ 4

D

k
· n
a

=
n

k
·
(
8 + 4

D

a

)
≤ n

k
· (8 + 4b), (3.1)

where we have used for the last inequality that D/a = D/⌈D/b⌉ ≤ D/(D/b) = b.
We turn to estimating the number of rounds spent in the second while-loop, i.e.,

in lines 12–15. When the while-loop is entered, we have |R| ≤ k and, after each
iteration, the size of R is halved. Therefore, it is executed at most log(k) + 1 times.
In each iteration, line 13 is executed in at most 2D time steps. Therefore, we spend
at most 2D · (log(k) + 1) rounds during the execution of line 13.

Consider a single iteration of the second while-loop. To estimate the cost in
line 14, let T1, . . . , T|R| be the subtrees of depth 2a on which the base algorithm
is executed. On each of these subtrees, the base algorithm can explore the entire
subtree in at most f(2a, ⌊k/|R|⌋) · (2a+ 2|Ti|/⌊k/|R|⌋) rounds. In the following,
let mediani(|Ti|) denote the median of |T1|, . . . , |T|R||. The number of rounds until
half of the trees T1, . . . , T|R| are explored is at most

f(2a, ⌊k/|R|⌋) ·
(
2a+

2 ·mediani(|Ti|)
⌊k/|R|⌋

)
≤ f(2a, k) ·

(
2a+

4|R| ·mediani(|Ti|)
k

)
, (3.2)

where we have use that ⌊k/|R|⌋ ≥ k/(2|R|) and that f is increasing in the second
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variable. Further, observe that

|R|
2
·mediani(|Ti|) ≤

|R|∑
i=1

|Ti| ≤ nj + nj+1. (3.3)

Plugging this into (3.2), we obtain that the number of rounds spent in line 14 in
each iteration of the while-loop is at most

f(2a, k) ·
(
2a+ 8

nj + nj+1

k

)
. (3.4)

We obtain that the total cost incurred in lines 13 and 14 is at most
b−1∑
j=1

(log(k) + 1) ·
(
2D + f(2a, k) ·

(
2a+

8

k
(nj + nj+1)

))

≤ (log(k) + 1) ·

(
Db+ f(2a, k) ·

(
2ab+

8

k

b−1∑
j=1

nj + nj+1

))

≤ (log(k) + 1)︸ ︷︷ ︸
≤2 log(k)

·
(
Db+ f(2a, k) ·

(
2D +

16n

k

))
≤ 16 · log(k) · (b+ f(2a, k)) · (D + 2n/k)

Together with (3.1) and the fact that the first line takes at most f(a, k)·(a+2n/k)
time steps, we obtain that Alg′ terminates in the following number of time steps

(f(a, k) + 16 log(k) · (b+ f(2a, k))) · (D + 2n/k) + (8 + 4b) · n
k

≤ O(log(k) · (b+ f(2a, k))) · 1
2
(D + n/k).

Since the offline optimum is at least (D+n/k)/2 and the constant in the O-notation
is independent of n, k,D, a, b, this completes the proof of the Theorem.

Next, note that a = ⌈D/b⌉ ≤ 2D/b as long as b ≤ D. In particular, in the
algorithm Alg′, the base algorithm is invoced on trees of depth at most 4D/b
and the bound in the Lemma can be reformulated as O(log(k) · (b+ f(2a, k))) ≤
O(log(k) · (b+ f(4D/b, k))).

We now define RecYoYo as follows: Recall that we assume that D is known
beforehand. We set b = 2Θ(

√
log(D) log log(k)) and apply the procedure recursively.

Importantly, in every recursion, we use the same value for b (i.e., b is not adapted
for recursive invocation with lower depth). Note that, in every recursion, we decrease
the depth of the trees on which the base algorithm is invoced by at least a factor
of b/4. We let the recursion end when we reach trees of some constant depth and
then simply use Yo-yo as the base algorithm. Note that we obtain a recursion depth
of Θ(log(b/4)(D)) = Θ(log(D)/ log(b)).

In the analysis, we will use an arbitrary fixed value for b and then see that the
optimal choice is b = 2Θ(

√
log(D) log log(k)).
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Proof of Theorem 3.1. Let f(D, k) denote the competitive ratio of RecYoYo on
trees of depth D with k agents. By Theorem 3.4, there exists a constant C ≥ 1
independent of n, k,D, a, b such that f(D, k) ≤ C log(k)(b + f(4D/b, k)). Let C ′

denote the constant threshold such that RecYoYo on trees of depth at most C ′ is
simply Yo-yo. Note that we have f(C ′, k) = O(1) because Yo-yo is 4D-competitive
on trees of depth D. In the following, let r = Θ(log(D)/ log(b)) denote the obtained
recursion depth. We have

f(D, k) ≤ C log(k)

(
b+ f

(
D

(b/2)
, k

))
≤ C log(k) · b+ C2 log2 k

(
b+ f

(
D

(b/2)2
, k

))
≤ O(1) ·

r∑
i=1

b(C log(k))i ≤ O(1) · b · (C log(k))r+1

= log(k) · 2O(log(b)+log log(k)·log(D)/ log(b))

Setting b = 2Θ(
√

log(D) log log(k)), the assertion follows.



Chapter 4

Colored Euclidean TSP

We turn to studying an offline mutli-agent variant of the traveling salesperson prob-
lem. In short, in the k-colored Euclidean traveling salesperson problem (k-ETSP), k
sets of points have to be covered by k disjoint curves in the plane (see Figure 4.1 for
an example). This is a fundamental problem in geometric network optimization [94]
and generalizes the well-known Euclidean traveling salesperson problem (ETSP). It
captures applications ranging from VLSI design [50, 88, 110, 109] to set visualisation
of spatial data [3, 32, 48, 69, 102].

Formally, an instance of the k-ETSP is a partition (Tc)c∈C of a finite set of
terminals T ⊆ R2 in the Euclidean plane, where |C| = k. We consider every c ∈ C
to be a color and every point in Tc to be of color c. A solution to the instance is
a k-tuple Π = (πc)c∈C of closed curves in R2, also referred to as tours, such that
every curve πc visits all terminals of color c, i.e., Tc ⊆ πc, and the curves are pairwise
disjoint, i.e., πc ∩ πc′ = ∅ for c ̸= c′. In the notation used here, we identify curves
with their images. We will explain later why a solution always exists (Section 4.1).
The objective of the k-ETSP is to minimize the total length of the tours, i.e., to
minimize l(Π) :=

∑
c∈C l(πc), where l(π) denotes the Euclidean length of π.

Note that the ETSP corresponds to the k-ETSP with k = 1 and is thus a special
case of the k-ETSP for any k ≥ 1. Since the ETSP is known to be NP-hard [99], this
also holds for the k-ETSP. In this chapter, we study polynomial-time approximations
for the k-ETSP and prove the following result.

Theorem 4.1. For every ε > 0, there exists an algorithm that computes a(
5
3
+ ε
)
-approximation for the 3-ETSP in time

(
n
ε

)O(1/ε).

Since this is the first work to explicitly study the 3-ETSP, all previously known
bounds on the best possible approximation ratio are inherited from work on other
problems. The best such bound is 10/3 [18], which is inherited from the colored
Steiner tree problem (see Section 4.1 for a definition).

We believe that our approach is applicable for a wider range of non-crossing
problems, for instance for the red-blue-green-yellow separation problem (cf. [45]),
where the task is to draw curves that separate the points of different colors.
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Figure 4.1: An instance of the 3-ETSP together with two possible solutions. An
optimum solution does not exist: The curves can get arbitrarily close but must not
touch. Observe that, in the middle subfigure, the red and green tour are not δ-close
for any δ > 0, as the blue tour lies in between, but in the right subfigure, they are.

4.1 Preliminaries

The non-crossing Euclidean Steiner forest problem, introduced in [48], is closely re-
lated to the k-ETSP. In this setting, an instance is of the same form as in the k-ETSP,
and the goal is to find k non-crossing trees embedded in the Euclidean plane, each
covering all points of a color. The objective is to minimize the total weight of the
trees, that is, the sum of the lengths of the line segments in the forest. The case k = 1
is simply referred to as the Euclidean Steiner tree problem.

It is easy to see that every instance of the Euclidean Steiner forest problem admits
a solution. This follows from the fact that a tree embedded in the Euclidean plane
cannot separate any two points, as it contains no cycles. Moreover, any solution to
this problem can be transformed into a solution to the k-ETSP by having each agent
perform a DFS traversal of its corresponding tree. Since each edge is traversed twice,
the total length of the resulting tours is twice the weight of the forest. Conceptually,
instead of traversing each edge twice, one can think of replacing each edge with two
infinitesimally close edges leading to the same terminal, thereby creating a non-self-
intersecting cycle for each color. We refer to this transformation as “doubling” the
Steiner trees. In particular, this implies that every instance of the k-ETSP admits
a feasible solution.

Importantly, the Euclidean Steiner forest problem is NP-hard, and the best
known bound on the approximation factor achievable in polynomial time is 5/3 [18].
Since the optimum cost of the k-ETSP is lower bounded by the optimum cost of
the Steiner forest problem, the “doubling” approach of the Steiner forests yields
a 10/3-approximation algorithm for k-ETSP. In this work, we improve on this by
providing a (5/3 + ε)-approximation algorithm.

Next, we remark on the issue of the existence of an optimum for k-ETSP. It
is important to note that, for k > 1, an optimum does not always exist (cf. Fig-
ure 4.1). This is because the tours of different colors are not allowed to touch, that
is, in any valid solution, the tours need to keep some distance ε > 0, which can
be further decreased to still obtain a valid solution of potentially shorter length.
In order to still define an approximation, we follow the approach of [45] by defin-
ing the value Opt := inf{l(Π) : Π is a solution} and saying that a solution Π is
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an α-approximation if l(Π) ≤ αOpt. In this notation, we omit the dependence
of Opt on the given instance for brevity, as the specific instance will always be clear
from context.

In the study of approximation algorithms, a classical question is what the best-
possible approximation ratio is that can be achieved with a polynomial-time algo-
rithm. When any ratio can be achieved, we say that there exists a polynomial-time
approximation scheme (PTAS). More formally, this is an algorithm that receives as
input ε > 0 and an instance, and outputs a (1 + ε)-approximation in time nOε(1),
where the notation Oε indicates that the constant factor hidden in the O-notation
may depend on ε. In other words, for every fixed ε > 0, a (1 + ε)-approximation
algorithm exists. If, in the running time, ε does not appear in the exponent of n,
that is, the running time is of the form f(ε) · nO(1), we say that we even have an
efficient polynomial-time approximation scheme (EPTAS).

It is well-known that the ETSP admits a PTAS [5], which was gradually im-
proved [101, 15] to an EPTAS [80] with the running time proven tight under the
gap-ETH, that is, the exponential time hypothesis, which is the conjecture that NP-
hard problems cannot be solved in time 2o(1). The result was recently extended
to an EPTAS for 2-ETSP [45]. However, for k ≥ 3, the situation turns out to be
substantially more complicated and it is wide open what the optimal achievable
approximation ratio is. In particular, it is unclear whether a PTAS exists, which is
arguably the most important question for the k-ETSP.

Problem 4.2. Is there a PTAS for the k-ETSP for k ≥ 3?

Similarly, it is known that for the 2-colored Euclidean Steiner forest problem,
a PTAS exists [18], but the case for 3 or more colors is open.

Next, we give an overview of the key ideas and intermediate steps that we take
to prove Theorem 4.1.

Outline for the proof of Theorem 4.1

To prove Theorem 4.1, we adapt Arora’s algorithm for Euclidean TSP [5]. One of
the key ingredients of that algorithm is the so-called Patching Lemma, which allows
to locally modify any tour such that the number of crossings with a line segment is
bounded, without increasing the length of the tour too much. It was shown in [45]
that this is still possible for two tours, but it does not seem to be possible for more
than two non-crossing tours (see Figure 4.2, [18, 45]). We show how to circumvent
this issue by imposing an additional condition on the tours to be patched. For this,
we say that two tours are δ-close if they can be connected by a straight line segment
of length at most δ that is disjoint from the third tour (cf. Figure 4.1). We will only
modify the tours in a δ′-neighborhood of the segment, which is defined as the set of
all points that have distance at most δ′ to some point on the segment.

Lemma 4.3. Let s be a straight line segment and δ = l(s) be its length. Let a
solution to the 3-ETSP be given in which two of the three tours are not δ-close. For
every δ′ > 0, the solution can be modified inside a δ′-neighborhood of s such that it
intersects s in at most 18 points and its cost is increased by at most O(δ).
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Figure 4.2: A modified example from [18] that is presumably non-patchable.

For the case where patching is not possible, we take a different approach. For
this, we define a two-tour presolution to be a pair of disjoint tours (πcc′ , πc′′) such
that πcc′ visits all terminals colored c and c′, and πc′′ visits all terminals colored c′′.
Such tours can easily be transformed into a feasible solution to 3-ETSP by “dou-
bling” πcc′ (cf. Figure 4.3, Observation 4.7). We call the resulting solution an induced
two-tour solution. The following Lemma implies that, if the additional condition in
our patching lemma for three colors is not fulfilled, finding induced two-tour preso-
lutions is a valid approach.

Lemma 4.4. For every ε > 0, there exists δ > 0 such that, for every (1 + ε)-
approximate solution to 3-ETSP in which the two shorter tours are δ-close, we can
find a two-tour presolution (π1, π2) with 2l(π1) + l(π2) ≤

(
5
3
+ 2ε

)
·Opt.

Next, similarly as in [5], we place a suitable grid on the plane and place so-
called portals on the grid lines (cf. Section 4.3.1). Roughly speaking, a solution
to the k-ETSP is portal-respecting if it only intersects grid lines at portals and
intersects every portal at most a constant number of times (see Section 4.3.1 for a
formal definition). Combining the ideas in [5] with Lemmas 4.3 and 4.4, we obtain
the following result.

Theorem 4.5. For every instance of 3-ETSP and ε > 0, either, there is a solution
that is a (1+ε)-approximation and portal-respecting with respect to a suitable grid, or
there is a portal-respecting two-tour presolution that induces a

(
5
3
+ ε
)
-approximation.

Theorem 4.5 allows us to restrict ourselves to finding portal-respecting solutions.
The last step is to show that such solutions can be computed in polynomial time
using dynamic programming. For this, we generalize the approach in [45] to any
number of colors k while simultaneously allowing for weighted tours. We denote
this version of the problem by k-ETSP′ (see Section 4.4 for a formal definition). In
the following, Opt denotes the minimum cost of a solution to k-ETSP′, that is, the
shortest possible weighted length of a portal-respecting solution.

Theorem 4.6. For every k ∈ N, there is a polynomial-time algorithm that computes
a parametric solution Π(λ) to k-ETSP′ such that limλ→0 l(Π(λ)) = Opt.

Here, we work with parametric solutions because, as explained above, a solution
of length Opt does not necessarily exist. More precisely, a parametric solution is a
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function Π: (0,∞)→ {Π′ : Π′ is a solution} that continuously interpolates between
solutions. In this, continuously can be interpreted, e.g., with respect to the Fréchet-
distance on the space of curves, which is defined as follows: For π1, π2 : [0, 1]→ R2,
the Fréchet distance between π1 and π2 is dFr(π1, π2) := supt∈[0,1]∥π1(t)−π2(t)∥. Intu-
itively, the algorithm of Theorem 4.6 computes the optimal combinatorial structure
of a solution, i.e., the optimal order in which portals and terminals are visited or
bypassed, and the parameter λ > 0 sets the minimal spacing between the tours,
which we let converge to 0. Importantly, our solution allows to efficiently recover
the (non-parametric) solution Π(λ) for given λ > 0 and to compute Opt.

Further related work

Other problems in geometric network optimization include the following: In the
k-traveling repairperson problem, we can use k tours (that are allowed to intersect)
to cover the terminals, subject to minimizing the latency, i.e., the sum of the times
at which a terminal is visited [33, 35, 51]. In the traveling salesperson problem with
neighborhoods, the task is to find a shortest tour that visits at least one point in
each of a set of neighborhoods [63, 91, 93, 108].

Moreover, the TSP has been extensively studied for other metric spaces, apart
from the Euclidean case considered in this work. For example, it is known that
there is a PTAS in the case of a metric space of bounded doubling dimension [16,
59]. On the other hand, it is known that a PTAS for general metric spaces does
not exist with the best known lower bound on the achievable approximation factor
being 123/122 [79]. Currently, the best approximation algorithm known in general
metric spaces was suggested by Karlin et al. [76, 77], achieving an approximation
factor of 1.5− 10−36.

4.2 Two-tour presolutions

Recall that a two-tour presolution for 3-ETSP is a pair of non-crossing tours (πcc′ , πc′′)
such that πcc′ visits all terminals in Tc ∪ Tc′ and πc′′ visits all terminals in Tc′′ for
some {c, c′, c′′} = {R,G,B}, where {R,G,B} denotes throughout this chapter the
color set C in the case of 3-ETSP, standing for red, green, and blue. In this section,
let c′′ = B without loss of generality. We first investigate how two-tour presolutions
can be transformed into solutions to the 3-ETSP.

For this, note that, if we are given a single tour πRG that visits all red and
green terminals, it is possible to replace it by two parametrized disjoint tours πR(λ)
and πG(λ) that fulfill the following: They have Fréchet-distance at most λ from πRG,
the tour πR(λ) visits all red terminals and πG(λ) visits all green terminals, and we
have limλ→0 l(πR(λ)) = limλ→0 l(πG(λ)) = l(πRG) (cf. Figure 4.3). Choosing λ > 0
small enough and considering the constructed tours πR(λ), πG(λ), we obtain the
following.
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2λ

Figure 4.3: On the left, we have a single curve πRG visiting all red and green points.
On the right, we have replaced πRG by two parametrized disjoint curves πR(λ)
and πG(λ) with Fréchet-distance at most λ to πRG, visiting the terminals of the
corresponding color. In particular, the Fréchet-distance between πR and πG is at
most 2λ.

Observation 4.7. Fix an instance of the 3-ETSP and let πRG, πB be a two-tour
presolution. For every δ > 0, there exists a solution to the 3-ETSP of cost at
most 2 · l(πRG) + l(πB) + δ, called an induced two-tour solution.

Next, we show that, if the two shorter tours of a (1+ε)-approximation for 3-ETSP
are in some sense close to each other, then there is a good two-tour presolution.
However, note that this is not a reduction to 2-ETSP: In 2-ETSP, the objective
is to minimize l(πB) + l(πRG). In our case, we need to minimize l(πB) + 2 · l(πRG),
i.e., we need to solve a weighted variant of 2-ETSP. We will see later that we can
compute a (1+ ε)-approximation for this weighted variant of 2-ETSP in polynomial
time (cf. Theorem 4.17).

Recall that two tours are δ-close if they can be connected by a straight line
segment of length at most δ that does not intersect the third tour.

Lemma 4.8. Let Π = (πR, πG, πB) be a solution to a given instance of the 3-ETSP
and let δ > 0. W.l.o.g., let πB be the longest tour, i.e., l(πB) ≥ l(πR), l(πG). Assume
that πR and πG are δ-close. Then there is a two-tour presolution (πRG, πB) with

2 · l(πRG) + l(πB) ≤
5

3
· l(Π) + 8δ.

Proof. The construction is illustrated in Figure 4.4. Since πR and πG are δ-close and
terminals are finitely many distinct points, we can pick points x ∈ πR and y ∈ πG

such that they do not equal any terminal, i.e., x,y /∈ T , and the straight line
segment s := xy has length at most 1.5 · δ, and s does not intersect the tours in any
other points than its endpoints, i.e., s ∩ πB = ∅, s ∩ πR = {x}, and s ∩ πG = {y}.
(Observe that because of the additional condition that the endpoints of s do not lie
on terminals, there is not necessarily such a segment of length at most δ.)

In the following, given a closed curve π and two points x1,x2 ∈ π, by π[x1,x2],
we denote the shorter of the two subcurves of π that connects x1 with x2 (ties can be
broken arbitrarily). Observe that it is possible to pick two points x1,x2 ∈ πR close
enough to x and y1,y2 ∈ πG close enough to y such that πR[x1,x2] and πG[y1,y2]
do not contain any of the terminals, i.e., T ∩ (πR[x1,x2] ∪ πG[y1,y2]) = ∅, and the
straight line segments x1y1,x2y2 have length at most 2 · δ, are nonintersecting, do
not intersect πB, and only intersect πR, πG in x1,x2,y1,y2 (cf. left side of Figure 4.4).
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xx1 x2

y1 y2y

s

Figure 4.4: On the left, we are given a solution to 3-ETSP where the red and green
tour are δ-close. On the right, we see how the solution can be transformed into an
induced two-tour solution.

Therefore, the curve πRG := (πR \ πR[x1,x2]) ∪ x1y1 ∪ (πG \ πG[y1,y2]) ∪ x2y2,
which is illustrated on the right side of Figure 4.4, forms a closed curve that visits
all red and green points and does not intersect πB. Moreover, we have

l(πB) + 2l(πRG) ≤ l(πB) + 2l(πR) + 2l(πG) + 8δ

= (l(πR) + l(πG) + l(πB)) + (l(πR) + l(πG)) + 8δ

≤ 5

3
· (l(πR) + l(πG) + l(πB)) + 8δ,

where we have used in the last inequality that l(πB) ≥ l(πR), l(πG).

Note that applying Lemma 4.8 to a (1 + ε)-approximation with δ ≤ εOpt/24
gives a two-tour presolution (πRG, πB) with

2 · l(πRG)+ l(πB) ≤
5

3
· (1+ε) ·Opt+8δ =

(
5

3
+

5

3
ε

)
·Opt+8δ ≤

(
5

3
+ 2ε

)
·Opt,

which completes the proof of Lemma 4.4.

4.3 Our structure theorem

In this section, we prove our structure theorem for 3-ETSP (cf. Theorem 4.5) which,
roughly speaking, states the following: For every ε > 0, either, there is a two-tour
presolution that induces a

(
5
3
+ ε
)
-approximation, or there is a (1 + ε)-approximate

solution that fulfills some additional constraints (or both). Later, we will see that
it is possible to find a good solution that fulfills these additional constraints and a
good two-tour presolution in polynomial time.

Our final algorithm for the 3-ETSP will preprocess the input such that the termi-
nals remain distinct points and have integer coordinates. This allows us to assume
throughout this section that terminals lie in {0, . . . , L}2 for some integer L that is
a power of 2. As the problem is not interesting for small L, we also assume L ≥ 4
whenever necessary. In Section 4.5, we explain in more detail how we preprocess
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the input and show that a near-optimal solution to the preprocessed input can be
transformed in polynomial time to a near-optimal solution to the original input.

Following [45], we assume without loss of generality that, for every ε > 0
and δ > 0, there is a (1 + ε)-approximate solution to the 3-ETSP whose tours con-
sist of straight line segments, where each segment connects two points that each
are at distance at most δ from a terminal. To see this intuitively, interpret each
tour of a solution as a sequence of terminals to visit or bypass. The cheapest way
to realize such a sequence is by straight line segments with endpoints arbitrarily
close to terminals (cf. Figure 4.1). For this reason, we will assume from now on
that all tours that we work with consist of such straight line segments. Since we
assume in this section that terminals lie in {0, . . . , L}2, we have in particular, that
the straight line segments have endpoints in Nδ({0, . . . , L}2), where Nδ(A) denotes
the δ-neighborhood of a set A, that is, Nδ(A) := {x : ∥x−a∥ < δ for some a ∈ A}.

4.3.1 Dissection and portals

In this subsection, we place a suitable grid on the Euclidean plane and place some
portals on it through which the tours will later be allowed to cross the grid lines.
For this, we follow the definitions as in [5].

Fix an instance of k-ETSP with T ⊆ {0, . . . , L}2 where L is a power of two. We
pick a shift vector a = (a1, a2) ∈ {0, . . . , L− 1}2 and consider the square

C(a) :=

[
−a1 −

1

2
, 2L− a1 −

1

2

]
×
[
−a2 −

1

2
, 2L− a2 −

1

2

]
,

i.e., C(a) is the square [0, . . . , 2L]2 shifted by −a − (0.5, 0.5). Note that C(a)
contains every terminal.

The dissection D(a) is a full 4-ary tree defined as follows (illustrated in Fig-
ure 4.5): Each node is a square in R2. The root of D(a) is C(a). Given a node S of
the tree of side length more than one, we partition S into four smaller equal-sized
squares and these define the four children of S. If S has side length one, it is a leaf.
Note that this is well-defined because L is a power of two.1

Given a square S, we define its border edges to be the unique four straight line
segments bounding it and we define its border ∂S to be the union of the border
edges.

A grid line is either a horizontal line containing (0,−a2 − 0.5 + k) or a vertical
line containing (−a1 − 0.5 + k, 0) for some k ∈ {1, . . . , 2L − 1}. Note that every
border edge of a square in D(a) is either contained in a grid line or contained in a
border edge of C(a) (which is not on a grid line). Since terminals have coordinates
in Z and grid lines have coordinates in 0.5+Z, no terminal lies on a grid line. More
precisely, every terminal lies exactly in the center of a leaf of D(a).

A boundary is a border edge of a non-root node in D(a) not contained in another
border edge (see Figure 4.5 for an example). Observe that its length is 2L

2i
for

1In previous work, the well-known quad-trees are defined as a subtree of the dissection, on which
the dynamic program of [5] is based, which however we do not rely on in this work.
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2L

vertical grid lines

(
−a1 − 0.5
−a2 − 0.5

)

C(a)

level 1

level 2

level 2

level 3

level 3

level 3

level 3

Figure 4.5: The figure on the left illustrates the dissection D(a) with L = 4
and a = (1, 0). The dashed lines denote ∂[0, L]2. The three pink lines are examples
of boundaries of levels one, two, and three. The levels of all horizontal grid lines are
indicated. We have placed 4 portals on every boundary, represented as circles. For
better overview, we have drawn only one portal at endpoints of boundaries. Note
that the endpoint of a boundary is actually contained in up to four portals. This is
illustrated on the right hand side, where the exact portal placement of the marked
orange area is given.

some i ∈ {1, . . . , log(2L)}. Then we define its level as i. Note that a grid line only
contains boundaries of the same level so we can define the level of a grid line as the
level of the boundaries that it contains (cf. Figure 4.5). If two boundaries (or grid
lines) of level i and j are given with i < j, we say that level j is deeper than level i
(resembling the property that the corresponding boundary belongs to a node that
is deeper in the dissection), and level i is shallower than level j.

Observe that there is precisely one vertical (respectively horizontal) grid line of
level one and, for every i ∈ {1, . . . , log(2L)− 1}, there are twice as many grid lines
of level i+1 as grid lines of level i. In total, there are 2L− 1 horizontal and 2L− 1
vertical grid lines. With this, we immediately obtain the following property.

Observation 4.9. Let g be either a vertical line containing point (k − 0.5, 0) or
a horizontal line containing point (0, k − 0.5) for some k ∈ {1, . . . , L}. Consider
the dissection D(a) for a vector a ∈ {0, . . . , L − 1}2 chosen uniformly at random.
Then, g is a grid line with respect to D(a), and, for every i ∈ {1, . . . , log(2L)}, we
have

Pra(the level of g is i) =
2i−1

2L− 1
.

The next observation follows immediately from the fact that a square in D(a)
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only contains smaller squares of D(a) so that, in particular, it only contains bound-
aries of deeper levels (cf. Figure 4.5).

Observation 4.10. Let b = xy be a boundary of level i. If a grid line g crosses its
interior b◦ := b \ {x,y}, the level of g is at least i + 1. The levels of the grid lines
crossing b through x and y are at most i.

A δ-portal (or, in short, portal) on a straight line segment is a subsegment
of length δ ∈ (0, 1). Given a segment s, we define grid(s, k, δ) as the set of k
equispaced δ-portals on s such that the endpoints of s are contained in the first and
last δ-portal respectively.

We place portals on D(a) as follows: We will choose a large enough integer r ∈ N
(called the portal density factor) and δ > 0 (the portal length) small enough. Then,
for every boundary b, we place the portals grid(b, r log(L), δ) on b (cf. Figure 4.5).
Note hereby that log(L) ∈ N because L is a power of two. Observe that, on a
deeper level boundary, portals are placed more densely, which will turn out to be a
key property.

4.3.2 Snapping non-crossing curves to portals

In this subsection, we show that disjoint tours can be modified so that they only
intersect grid lines in portals, without increasing their lengths too much. To prove
this, we follow the same ideas as in [5, Section 2.2]. Nevertheless, the snapping
technique in [5, Section 2.2] needs some adaptation to work in the setting of non-
crossing curves. This technique was used in previous work for pairs of non-crossing
tours [45] and for Steiner trees [18]. Here, we provide a unified framework for this
technique, which may be of wider interest and can be applied to a variety of non-
crossing Euclidean problems.

In the following, if s = x1x2 is a straight line segment, we let s◦ := s \ {x1,x2}.
This allows us to specify more precisely where the segments are allowed to intersect.
In particular, if we require that s◦1 and s◦2 are disjoint for two segments s1 and s2,
they are allowed to share an endpoint.

Lemma 4.11. Let S = {s1, . . . , sm} be a finite set of straight line segments in
the Euclidean plane such that each si connects two points in N 1

4
({0, . . . , L}2) and

assume L ≥ 4. Choose a vector a ∈ {0, . . . , L− 1}2 uniformly at random and
consider the dissection D(a). For every portal density factor r ∈ N \ {0}, por-
tal length δ ∈ (0, 1), and δ′ > 0, there is a set of curves S ′ = {s′1, . . . , s′m} (not
necessarily straight line segments) such that

a) s′i differs from si only in Nδ′(G) where G denotes the union of all grid lines
in D(a),

b) if the segments s◦i are pairwise disjoint, then the curves (s′i)◦ are pairwise disjoint
as well,
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µ
µ

Figure 4.6: On the left, the red and blue tour cross a boundary outside of a portal
and the green tour crosses in an intersection of grid lines. On the right, the tours are
modified in a µ-Neighborhood of the grid line such that they are still non-crossing,
only cross boundaries at portals and do not cross in intersections of grid lines.

c) every s′i intersects every boundary b of D(a) only in the portals grid(b, r log(L), δ),
i.e., s′i ∩ b ⊆ grid(b, r log(L), δ),

d) no s′i contains an intersection point of two grid lines, i.e., g1 ∩ g2 ∩ s′i = ∅ for
every i ∈ {1, . . . ,m} and grid lines g1 ̸= g2,

e) the curves of S ′ intersect the grid lines in finitely many points,

f) Ea[l(S ′)− l(S)] ≤ 7
√
2 · l(S)

r
, where l(S) :=

∑
s∈S l(s).

Proof. Throughout this proof, the segments of S are gradually modified to obtain
the set of curves S ′ in the end. All the modifications satisfy the invariant that the
current set of curves only intersects grid lines in finitely many points that we refer to
as crossings. We use a parameter µ > 0 throughout the proof, that will be carefully
set later, in a way that the condition µ < min{δ, δ′, 0.25} is satisfied. We will modify
the segments inside Nµ(G). This implies then condition a) and that the segments
are not modified in N 1

4
({0, . . . , L}2), i.e., the segments are not modified in some

neighborhood around their endpoints. This makes it a bit easier to prove part d)
later because we can assume than that the segments are disjoint in the considered
area where we make modifications.

We obtain the set S ′ from S as follows: Consider every boundary b of D(a) one
by one (in arbitrary order) and apply the following modifications: (Type 1) Move
every crossing on b with S to the nearest portal on b as illustrated by the red and
blue segments in Figure 4.6. (Type 2) If a crossing on b with S lies precisely on the
intersection of two grid lines, move it inside the portal by at most µ as illustrated
by the green segment in Figure 4.6.

Observe that we only modify the tours in Nµ(b) and that the modifications can
be done such that we do not create additional crossings between the segments.
Therefore, it is immediate that conditions a), b), and e) are fulfilled after this
procedure.

To prove parts c) and d), we have to show that, once a boundary has been
considered, we neither create additional crossings on this boundary outside of portals
nor do we move existing crossings out of portals. Note that, when we apply a
modification of Type 1 on a boundary b, the new lines created for redirecting a
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crossing to a portal can create new crossings with grid lines perpendicular to b◦. We
argue that these new crossings lie in a portal: We have seen in Observation 4.10
that these lines are of deeper levels. In particular, if b′ is a boundary perpendicular
to b◦, b∩b′ is an endpoint of b′ and, therefore, lies in a portal of b′. The new crossings
created on b′ are at distance at most µ < δ from b, in particular from an endpoint
of b′, so that they are placed in a portal of b′.

In contrast, a modification of Type 2 on b can relocate a crossing on a boundary b′

perpendicular to b (not only b◦) but it does not increase the total number of crossings
on b′ (cf. green curve in Figure 4.6). We show that a boundary on which a crossing
is relocated, has not been considered yet: Let p be a crossing on b that needs to
be moved by a modification of Type 2. Then, p lies in the intersection of two or
more (at most four) boundaries. Let b′ be the last boundary considered before b
that contains p = b ∩ b′. By construction of the modification procedure, after b′

was considered, there were no crossings lying in the intersection of b′ with any grid
line. In particular, there was no crossing at b ∩ b′. Since b′ was the last boundary
considered before b that contains b ∩ b′, no crossing can be moved to b ∩ b′ in the
meantime. This gives a contradiction so that we obtain that no other boundary
containing the crossing p was considered yet. To summarize, when a boundary b is
considered, modifications of Type 1 and Type 2 do not create additional crossings
outside of portals or relocate crossings on boundaries that were already considered.
With this, we obtain that conditions c) and d) are fulfilled as well.

It is left to show that condition f) is satisfied. First, note that the cost of a
modification of Type 2 is at most µ. Since we apply finitely many modifications
of Type 2 (at most L2), µ can be chosen small enough such that the total cost of
modifications of Type 2 is at most l(S)/r. Next, as already explained, the new
crossings created by a modification of Type 1 already lie in portals so that they do
not need to be moved. Therefore, the total number of modifications of Type 1 we
need to apply is at most the number of crossings of the unmodified set S with grid
lines, i.e., |G ∩ S| where G ∩ S :=

⋃m
i=1 G ∩ si.

Consider some grid line g. Let i denote its level in D(a). Recall that the length
of a boundary lying on g is 2L

2i
and we place r log(L) portals on it. Therefore, the

distance between two portals on g is at most 2L/2i(r log(L)−1). Hence, the cost of
moving a crossing on g to the closest portal is also at most 2L

2i(r log(L)−1)
. Overall, the

total cost of modifications of Type 1 on boundaries on g is in expectation at most
log 2L∑
i=1

Pr(g has level i) · |g ∩ S| · 2L

2i(r log(L)− 1)

Obs. 4.9
=

log 2L∑
i=1

2i−1

2L− 1
· |g ∩ S| · 2L

2i(r log(L)− 1)

=
|g ∩ S|

r
· 1
2
· 2L

2L− 1︸ ︷︷ ︸
≤2

· log 2L

(log(L)− 1
r
)︸ ︷︷ ︸

≤3

≤ 3 · |g ∩ S|
r

,

where we have used in the last inequality that L ≥ 4. Summing up over all grid
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lines gives the following estimate on the total cost of modifications of Type 1∑
g is a grid line

3 · |g ∩ S|
r

= 3 · |G ∩ S|
r

. (4.1)

As the last step, we relate the number of crossings |S∩G| to the total length of S. For
this, consider a straight line segment si ∈ S between two points in N 1

4
({0, . . . , L}2).

Let (x1, y1), (x2, y2) ∈ {0, . . . , L}2 be the closest points to the endpoints of si and
consider the straight line segment s′′i := (x1, y1)(x2, y2). Note that |G∩s′′i | = |G∩si|.
If (x1, y1) = (x2, y2), we have G∩ si = G∩ s′′i = ∅, so assume that (x1, y1) ̸= (x2, y2)
and, in particular, l(s′′i ) ≥ 1. By choice of (x1, y1), (x2, y2), we have that the distance
between the endpoints of s and s′ is at most 1/4 so that we obtain with triangle
inequality

l(s′′i ) ≤ l(si) + 2 · 1
4

l(s′′)≥1

≤ l(si) +
1

2
· l(s′′i )

so that l(s′′i ) ≤ 2l(si). Therefore, it suffices to relate the number of crossings of s′′i
with grid lines to l(s′′i ).

Note that the length of s′′i is
√
|x1 − x2|2 + |y1 − y2|2. Moreover, s′′i crosses pre-

cisely |x1 − x2| vertical grid lines and |y1 − y2| horizontal grid lines. Hence,

|s′′i ∩G|2 = (|x1 − x2|+ |y1 − y2|)2

= 2
(
|x1 − x2|2 + |y1 − y2|2

)
− (|x1 − x2| − |y1 − y2|)2

≤ 2 ·
(
|x1 − x2|2 + |y1 − y2|2

)
= 2 · l(s′′i )2,

so that |si ∩G| = |s′′i ∩G| ≤
√
2 · l(s′′i ) ≤ 2

√
2 · l(si). Combining this with (4.1), the

total cost of modifications of Type 1 is at most

3 · |G ∩ S|
r

=
3

r

m∑
i=1

|si ∩G| ≤ 3

r

m∑
i=1

2
√
2 · l(si) = 6

√
2 · l(S)

r
. (4.2)

Recall that we have seen that the total cost of modifications of Type 2 is at
most l(S)/r. Together with (4.2), we obtain

Ea[l(S
′)− l(S)] ≤ 6

√
2 · l(S)

r
+

l(S)
r
≤ 7
√
2 · l(S)

r
.

4.3.3 The patching technique for three disjoint tours

In the previous section, we have seen that a (reasonable) solution to k-ETSP can be
modified such that it only intersects grid lines in portals. In this section, we inves-
tigate how the tours can further be modified to reduce the number of intersection
points per portal. This will be important for our algorithm because it considers all
possible ways that a solution can cross the squares of D(a) through the portals.
To obtain a reasonable running time, we need a constant bound on the number of
crossings. As briefly explained in the introduction, we cannot hope to show this for
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s s

Figure 4.7: Illustration of the patching scheme in [5] for a single tour: On the left,
we are given a tour π intersecting the segment s in six points. On the right, we see
how the tour can be modified such that the number of crossings is at most two and
the length is increased at most by 3 · l(s).

every solution, even for k = 3 (cf. Figure 4.2). Therefore, we restrict ourselves to
the 3-ETSP and show the desired properties for this problem under some additional
assumptions.

Before delving into the proof, let us introduce some useful notation and es-
tablish the prerequisites. Let πR, πG, πB be a solution to an instance of 3-ETSP
and s be a straight line segment such that πc ∩ s consists of finitely many dis-
tinct points for all c ∈ {R,G,B}. Then we say that s is non-aligned to the solu-
tion and we call the points in

⋃
c∈C πc ∩ s crossings. We define an order on the

crossings by rotating the plane such that s is parallel to the x-axis and then or-
dering them by their x-coordinates. This allows us to speak of a crossing to be
“next to” or “in between” other ones. The color of a crossing x, denoted c(x),
is d if x ⊆ s ∩ πd. With this, we can classify the occurring patterns by se-
quences of the three colors and we call this a crossing pattern. For example,
if x1, . . . , x6 denote the ordered crossings, by the crossing pattern RRGGBB, we
mean that c(x1) = c(x2) = R, c(x3) = c(x4) = G and c(x5) = c(x6) = B.

Our work builds on existing results for one and two tours. Arora [5] showed
that the number of crossings of a single tour with a line segment can be reduced as
follows (cf. Figure 4.7).

Lemma 4.12 (Arora [5]). Let π be a closed curve and s be a non-aligned straight
line segment. For every δ > 0, there is a curve π′ differing from π only inside Nδ(s)
such that |s ∩ π′| ≤ 2 and l(π′) ≤ l(π) + 3 · l(s).

Dross et al. [45] proved that the number of crossings between two disjoint tours
and a straight line segment s can be reduced to a constant number, at additional
cost O(l(s)). For our purposes, we only need the two-color patching scheme for
the special crossing pattern given in the following result. To see why the following
lemma holds, one can carefully investigate the proof in [45] or observe that the
scheme illustrated in Figure 4.8 works as desired.

Lemma 4.13 (Dross et al. [45]). Let πc, πd be disjoint closed curves and s be a
non-aligned straight line segment. Assume the crossing pattern is given by cddccdd.
For every δ > 0, there are disjoint closed curves π′

c, π
′
d differing from πc and πd only

inside Nδ(s) such that the new crossing pattern is cdd, and the total length of the
modified tours fulfills l(π′

c) + l(π′
d) ≤ l(πc) + l(πd) + 4 · l(s).
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Figure 4.8: Illustration of the patching scheme for the crossing pattern BRRBBRR,
see also [45]. Observe that the connections illustrated by dashed lines must exist
(up to symmetry).

Now, we have all the prerequisites in place to give a patching procedure in the
case that no red crossing is next to a green crossing on the considered segment (or
for any other other choice of two colors), i.e., to prove Lemma 4.3.

We remark that our work is closely related to [18] and [45]. The main result
of [18] is that Arora’s patching lemma can be adapted to two Steiner trees, and three
Steiner trees if one of them may use parts of another. The main contribution of [45]
is that Arora’s patching lemma can be adapted to two TSP tours. In contrast to
these two results, our patching procedure needs to be more involved: In our setting,
we have to deal with more complex crossing patterns whose mono-colored groups
cannot be reduced to a single size (they were reduced to size 1 in [18] and 2 in [45]),
and we have to ensure that the modified tours remain connected (which is more
immediate in [18] and [45]) and that they remain Jordan curves (which is more
immediate in [45] and not needed in [18]).

First, we give a more precise formulation of Lemma 4.3.

Lemma 4.14 (Tricolored Patching). Let πR, πG, πB be disjoint closed curves and s
be a non-aligned straight line segment. Assume that, in the crossing pattern on s,
there is no red crossing next to a green crossing. Then for every δ > 0, there are
disjoint closed curves π′

R, π
′
B, π

′
G such that

a) for all c ∈ {R,G,B}, πc differs from π′
c only inside Nδ(s),

b) |(s ∩ π′
R) ∪ (s ∩ π′

B) ∪ (s ∩ π′
G)| ≤ 18,

c) l(π′
R) + l(π′

G) + l(π′
B) ≤ l(πR) + l(πG) + l(πB) + 75 · l(s).

Proof. We modify the three curves in several steps to reduce the number of crossings
with s. For this, we arrange the crossings into groups, where a group is a maximal
set of consecutive monochromatic crossings. The color of a group G, denoted c(G),
is then the color of the crossings in this group.

The road map for our proof is the following: First, we reduce the number of
crossings inside a group by applying Lemma 4.12. Next, we further simplify the
occurring patterns by applying Lemma 4.13. Then, we give a new patching scheme
for the remaining occurring patterns for three colors.
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Reducing the number of crossings per group. For every group G that con-
tains more than two crossings, we apply the following modifications: Let s′(G) be
the subsegment of s beginning in the first crossing of G and ending in the last cross-
ing of G. Apply Lemma 4.12 to the tour of color c(G) and the subsegment s′(G).
After this, we obtain three tours πR, πG, πB differing from πR, πB, πG only in a δ-
neighborhood of s such that each group contains at most two crossings and the total
cost of the modifications is at most

∑
G 3 · l(s′(G)) ≤ 3 · l(s). Therefore,

l(πR) + l(πG) + l(πB) ≤ l(πR) + l(πG) + l(πB) + 3 · l(s). (4.3)

Bounding the number of red and green groups with only one crossing.
After the previous step, every group contains now either one or two crossings. Our
next goal is to bound the number of red and green groups with only one crossing.

For this, note that, for every c, c′ ∈ {R,G,B}, c ̸= c′ and every choice of two
crossings x,y of color c, the number of crossings of color c′ in between them is
even: The union of the subcurves πc[x,y] ∪ s[x,y] together form a closed curve,
where πc[x,y] denotes one of the two subcurves of πc that connect x and y. Since πc′

is also a closed curve, the number of intersection points in (πc[x,y] ∪ s[x,y]) ∩ πc′

must be even. Because πc and πc′ are disjoint, the number of crossings in πc′∩s[x,y]
must be even.

Next, note that, if we are given a red or green group G, it can only have blue
groups as neighbors because we assumed that no red crossing is next to a green
crossing. If it is neighbored by two blue groups, the number of crossings in G must
be even, i.e., two, because otherwise there is an odd number of crossings of color c(G)
in between these two blue groups. Therefore, if G has only one crossing, it has only
one neighboring group, which means that it is either the first or the last group on
the segment s. In particular, there are at most two red or green groups consisting
of only one crossing.

Patching bichromatic patterns. In the next step, we eliminate alternating se-
quences of red and blue, respectively green and blue groups. As already explained,
a bichromatic red-blue or green-blue crossing pattern cannot contain RBR or GBG,
so it suffices to be able to patch the patterns BRRBBRR and BGGBBGG. For
this, consider an arbitrary red-blue (or green-blue) bichromatic pattern and apply
the following modifications. While the crossing pattern contains one the above pat-
terns (BRRBBRR or BGGBBGG), pick the leftmost starting such pattern. Let s′
be the shortest subsegment containing the chosen pattern (i.e., beginning in the first
crossing and ending in the last crossing of the chosen pattern) and apply Lemma 4.13
to s′. The resulting pattern is then BRR, respectively BGG, and the cost of this
step is at most 4l(s′). Additionally, move the at most three resulting crossings suf-
ficiently close to the rightmost endpoint of s′, which gives an additional cost of at
most 6l(s′). The cost of modifications for a single choice of the pattern is then at
most 10 · l(s′).

Let x be the leftmost crossing in s′ after the modifications and y be the right
endpoint of s′, i.e., x is sufficiently close to y. Note that, after the modifications,
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none of the two possible patterns can start left of x and none of the patterns can
entirely lie left of y. This is because the chosen pattern was leftmost. Therefore,
if a new subsegment s′1 is chosen in the next step, it starts right of x or in x and
ends right of y. In particular, when applying the procedure on s′1, the crossings
can be moved close enough to the right endpoint of s′1 so that they do not lie in s′.
Then the subsegment s′2 chosen after s′1 does not intersect s′. This means that the
sequence s′i of the s′ chosen in the modifications above is such that each point on s
is contained in at most two of the s′i. Therefore, the total cost of the modifications
is at most

∑
i 10 · l(s′i) ≤ 20 · l(s).

With this, we obtain three curves π̃R, π̃G, π̃B differing from πR, πG, πB only in-
side Nδ(s) and having total length at most

l(π̃R) + l(π̃G) + l(π̃B) ≤ l(πR) + l(πG) + l(πB) + 20 · l(S)
(4.3)
≤ l(πR) + l(πG) + l(πB) + 23 · l(S) (4.4)

such that the crossing pattern fulfills the following:

i) no red group is next to a green group,

ii) every group contains at most two crossings,

iii) every red or green group which is not the first or last group along s contains
precisely two crossings,

iv) the subpatterns BRRBBRR and BGGBBGG are not contained,

v) between any two crossings of a color c, the number of crossings of color c′ ̸= c
is even, in particular, the patterns RRBRR and GGBGG are not contained.

To sum up, the possible crossing patterns are as follows: First, i) and ii) imply
that the sequence alternates between a blue group and a red or green group where
every group has one or two crossings. Second, combining iii) with iv) and v), we
obtain that there is no subsequence of blue group, red group, blue group, red group,
blue group. And similarly, there is no subsequence of blue group, green group, blue
group, green group, blue group.

Therefore, the crossing pattern of π̃R, π̃G, π̃B with s has the following form: G1PG2
where G1,G2 ∈ {∅, R,G,RR,GG}, and P is a subsequence of the infinite
sequence B∗RRB∗GGB∗RRB∗GG . . . , where each B∗ can be replaced indepen-
dently by B or BB. The next step will be to modify the sequence P such that
it has bounded length.

Patching trichromatic patterns In this step, we show that a pattern of the
form B∗RRB∗GGB∗RRB∗GG . . . can be patched in a way that the resulting pattern
contains either at most one green or at most one red group. For this, assume that
we are given a pattern where we have at least two groups of each color. Then it
contains the subpattern GGB∗RRB∗GGB∗RR, where the roles of R and G can
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Figure 4.9: The crossing pattern GGBBRRBBGGBBRR in a δ-neighborhood of s.

be exchanged. We number the groups in that pattern by G1, B1, R1, B2, G2, B3, R2

(cf. Figure 4.9). Our goal is to reduce this pattern to GGB∗RR.
As a first step, note that, in this pattern, every B∗ needs to be replaced by the

same choice in {B,BB}: If B1 and B2 do not have the same number of crossings,
the number of blue crossings between G1 and G2 is odd, which gives a contradiction.
Similarly, B2 and B3 contain the same number of crossings. Therefore, we investigate
the two patterns GGBBRRBBGGBBRR and GGBRRBGGBRR.

Even though we make adjustments only in a δ-neighborhood of s, it is important
to study how the crossings are connected via the entire tours because we need to
ensure that our patching procedure does not disconnect a tour.

For this, we say that the top of a crossing x on s is connected to the top of
another crossing y of the same color c if, when traveling along the curve πc from x
in the direction upwards from s, the first other crossing in s ∩ πc encountered is y
and we enter y from the top. This is similarly defined for bottoms of crossings and
combinations of tops and bottoms of crossings. Moreover, we say that the top of a
group G is connected to the top of another group G ′ if one of the tops of the crossings
in G is connected to one of the tops of the crossings in G ′. We denote the tops and
bottoms of the groups by G

(t)
1 , G

(b)
1 , . . . (cf. Figure 4.9).

We start by investigating the connections of the middle blue group B2. First,
note that there cannot be a connection from B2 to any blue group on the opposite
side, i.e., from B

(t)
2 to B

(b)
i or from B

(b)
2 to B

(t)
i for any i ∈ {1, 2, 3}: To see this,

observe that, in Figure 4.10 (a), including any of the dotted lines would lead to
the green, respectively red, groups being disconnected. Therefore, B2 can only be
connected to a blue group on the same side, i.e., B

(t)
2 can be connected to B

(t)
i

and B
(b)
2 can be connected to B

(b)
j for some i, j ∈ {1, 2, 3}.

Next, observe that it is impossible to have the connections with i = j = 1
or i = j = 3: As illustrated in Figure 4.10 (b), this would lead to the red (in
case i = j = 1), respectively green (in case i = j = 3), groups to be discon-
nected. Also, it is not possible that both, B

(t)
2 and B

(b)
2 , are only connected to

themselves, i.e., i = j = 2, because then B2 would not be connected to any other
blue group. Therefore, B2 is connected to either B1 or B2 on the same side and as-
sume w.l.o.g. that the connection between B

(t)
2 and B

(t)
1 exists. Next, we to show that

then the connection between B
(b)
2 and B

(b)
3 exists as well. Observe in Figure 4.10 (c)

that the existence of the connection between B
(t)
2 and B

(t)
1 implies the existence

of a connection between R
(b)
1 and R3, i.e., one of the red dashed connections must
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(a) (b) (c)

Figure 4.10: Impossible connections of the blue groups. Dashed lines represent
existing connections and dotted lines represent impossible connections.

Figure 4.11: We show that, in the two considered crossing patterns, the connections
illustrated by dashed lines must exist.

exist. With this, observe that any of the dotted blue connections (together with
any of the red dashed connections) would lead to G2 being disconnected from G1.
There must be a connection from B3 to some other blue group and we can now see
from Figure 4.10 (c) that the only remaining possibility is a connection between B

(b)
2

and B
(b)
3 .

To summarize, we have seen that there is a connection between B
(t)
2 and B

(t)
i , and

between B
(b)
2 and B

(b)
j for some {i, j} = {1, 3} and there are no other connections

of B2. In particular, given the case that each blue group consists of two crossings,
the tops and bottoms of both crossings in B2 are connected to the same other blue
group. Assume from now on w.l.o.g. that i = 1 and j = 3. The two possible crossing
patterns are illustrated in Figure 4.11 together with the connections of B2. By the
dashed red and green line, we indicate that R

(b)
1 must be connected to R2 and G

(t)
2

must be connected to G1.
From this, one can observe that cutting the tours open at points at distance

at most δ from s and reconnecting as illustrated in Figure 4.12, the three curves
are still connected and therefore, still form closed non-crossing curves. Note that
the new intersection pattern is GGB∗RR as desired. One can also see in the figure
that every line included for the reconnection has length at most l(s). Since each
line connects two points where the tours were cut open and there were 14, respec-
tively 11, crossings, the total cost of the reconnection is at most 14 · l(s). More-
over, the modified tours have at most 6 crossings so that moving them sufficiently
close to the right endpoint of s gives an additional cost of at most 12 · l(s). Over-
all, this shows that we can reduce the intersection pattern GGB∗RRB∗GGB∗RR
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Figure 4.12: Patching scheme for three non-crossing tours in the two considered
crossing patterns.

to GGB∗RR and move the crossings sufficiently close to the right endpoint of s at
cost (14 + 12) · l(s) = 26 · l(s).

Given this, we proceed similarly as in the paragraph on bichromatic patterns to
reduce the number of crossings with s: While the intersection pattern contains the
subsequence GGB∗RRB∗GGB∗RR (or with exchanged roles of G and R), choose
the leftmost such pattern and apply the described patching scheme to the shortest
subsegment s′ of s containing the subpattern and move the new crossings sufficiently
close to the right endpoint of s. We have seen that the cost of a single application
is 26 · l(s′) and, similarly as for bichromatic patterns, one can show that every point
in s is contained in at most two of the chosen s′. Therefore, the total cost of the
modifications is at most 52 · l(s). Let π′

R, π
′
G, π

′
B denote the resulting tours. Then

we have

l(π′
R) + l(π′

G) + l(π′
B) ≤ l(π̃R) + l(π̃G) + l(π̃B) + 52 · l(S)

(4.4)
≤ l(πR) + l(πG) + l(πB) + 75 · l(S). (4.5)

To summarize, we have shown that the intersection pattern of the modified
tours π′

R, π
′
G, π

′
B with S is of the form G1PG2 where G1,G2 ∈ {∅, R,G,RR,GG} and P

is a subsequence of B∗RRB∗GGB∗RRB∗GG . . . that does not contain two red and
two green groups. A longest possible such subsequence is BBRRBBGGBBRRBB.
Therefore, the lengths of G1 and G2 are at most two and the length of P is at most 14.
This implies that the total number of crossings is at most 18.

Moreover, observe that we have only modified the tours inside Nδ(s) and that
by equation (4.5) the total length of π′

R, π
′
G, π

′
B is as desired.

4.3.4 Structure theorem for three non-crossing tours

Now, we have all the prerequisites in place to state and prove our structure theorem
(cf. Theorem 4.5) for three non-crossing tours.

For this, given an instance of k-ETSP with terminals in {0, . . . , L}2 and a shift
vector a ∈ {0, . . . , L − 1}2, we say that a solution Π = (πc)c∈C is (r,m, δ)-portal
respecting if, for every boundary b in D(a), the intersection points b ∩

⋃
c∈C πc are
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contained in the the portals grid(b, r log(L), δ) and every portal is intersected in at
most m points in total (in particular, since grid lines consist of boundaries, grid
lines are only crossed in portals).

Theorem 4.15 (Structure Theorem for 3-ETSP). Consider an instance of 3-ETSP
with T ⊆ {0, . . . , L}2 and let ε > 0 be given. Then there exists a shift vec-
tor a ∈ {0, . . . , L− 1}2, such that, for every δ > 0 small enough, there exists one of
the following (or both)

• a (⌈14
ε
⌉, 18, δ)-portal-respecting solution of cost at most (1 + ε) ·Opt

• a (⌈14
ε
⌉, 18, δ)-portal-respecting two-tour presolution (π1, π2) of weighted cost

at most 2l(π1) + l(π2) ≤
(
5
3
+ ε

2

)
·Opt.

Proof. Let η > 0 be a small real number that will be appropriately set later on in the
proof. Let Π = (πR, πG, πB) be a solution of cost at most (1 + η)·Opt. Recall that we
can assume w.l.o.g. that each tour in Π consists of straight line segments connecting
points in N 1

4
({0, . . . , L}2). Choose a shift vector a ∈ {0, . . . , L − 1}2 uniformly at

random. Let δ > 0 be a small enough real number that will be appropriately upper
bounded later on in the proof. Set r := ⌈(14)/ε⌉, and consider the dissection D(a)
with the portals grid(b, r log(L), δ) placed on every boundary b. Throughout this
proof, a crossing is a point in the intersection of the (partially modified) tours and
the grid lines.

As the first step, we move all crossings to portals by applying the modifications
of Lemma 4.11 to πR, πG, πB where we set the value δ′ to be less than 0.25 and
let Π̂ = (π̂R, π̂G, π̂B) be the resulting tours. The tours remain disjoint and, since
they were only modified in a δ′-neighborhood around the grid lines and terminals
have distance at least 0.25 from any grid line, they still visit all the terminals so
that π̂R, π̂G, π̂B is still a solution to the given instance of 3-ETSP. By Lemma 4.11,
we have

E
[
l(Π̂)

]
≤

(
1 +

7
√
2

r

)
· (l(πR) + l(πG) + l(πB))

≤

(
1 + η +

7
√
2 · (1 + η)

r

)
·Opt. (4.6)

Moreover, no crossing of π̂R, π̂G, π̂B with grid lines lies in the intersection of two grid
lines. Note that this implies the following: Given a boundary b, consider the first
portal s on b. Recall that it is placed such that its left endpoint x lies on the left
endpoint of b and x lies in the intersection of b with a grid line g perpendicular to b.
Since no crossing lies in the intersection of two grid lines, there is no crossing that
equals x. Therefore, if we are about to apply patching (i.e., Lemma 4.14) on s, we
can choose a subsegment s′ of s not containing x and apply patching on s′ so that
the the tours remain unchanged in some neighborhood of g. The last portal on b
can be patched analogously. This means that we can patch portals in a way that
grid lines of shallower levels are not affected.



82 Chapter 4. Colored Euclidean TSP

W.l.o.g., assume π̂R, π̂G ≤ π̂B. We further modify the tours in Π̂ by applying the
following procedure: Consider every boundary b one by one in non-decreasing order
of their levels and consider every portal s on b. If there is no red crossing next to a
green crossing on s, we apply patching (i.e., Lemma 4.14) on s (as described in the
previous paragraph). If there is a red crossing next to a green crossing, we connect
the red and green tour along s and, for the remainder of the procedure, we identify
the colors red and green with each other (i.e., we are left with only two tours). Note
that this enables us to apply patching.

We argue that the resulting tours are (r, 18, δ)-portal respecting. Similarly as in
the proof of Lemma 4.11, note that patching can create additional crossings on a grid
line perpendicular to the portal under consideration. However, we have argued above
that only grid lines crossing s◦ are affected and, by Observation 4.10, these grid lines
are of deeper levels so that the corresponding boundaries have not been considered
yet. Moreover, the additionally created crossings on a boundary b′ perpendicular
to b◦ lie inside a portal because we only change the tours in a sufficiently small
neighborhood (smaller than the portal length) of b and b∩ b′ is an endpoint of b′ so
it lies in a portal on b′. With this, we obtain that the obtained tours are (r, 18, δ)-
portal respecting for every choice of a.

Next, we bound the cost of the resulting tours. It follows from Lemma 4.14 that
the cost of patching in a single portal is O(δ). Since there are O(L2r log(L)) portals,
the total cost of patching is O(δL2r log(L)), so δ can be chosen small enough to make
the total cost of patching at most Opt/r. To summarize, if there was never a red
crossing next to a green crossing in a portal, we obtain a (r, 18, δ)-portal respecting
solution of cost at most

Ea

[
l(Π̂)

]
+

Opt
r

(4.6)
≤

(
1 + η +

7
√
2 · (1 + η) + 1

r

)
·Opt ≤ (1 + ε) ·Opt,

where we have used in the last inequality that 7 ·
√
2 ≈ 9.899, r ≥ 14/ε and η can

be chosen small enough. In particular, at any time during the procedure in which
the red and green tour are not connected, the total length of any subset of the three
tours is increased at most by Opt/r.

Now, assume that, at some point in the procedure where a portal s is considered,
there is a red crossing next to a green crossing. The cost of connecting the red and
green tour is then at most 2δ, which is at most Opt/r for δ small enough. Therefore,
the total cost of patching and connecting the tours is at most 2Opt/r. Therefore,
the result of the procedure is a two-tour presolution (π1, π2) that is (r, 18, δ)-portal
respecting with

2l(π1) + l(π2) ≤ 2(l(π̂R) + l(π̂G)) + l(π̂B) + 2 · 2Opt
r

l(π̂R),l(π̂G)≤l(π̂B)

≤ 5

3
· (l(π̂R) + l(π̂G) + l(π̂B)) +

4Opt
r

(4.6)
≤ 5

3
·

(
1 + η +

7
√
2 · (1 + η) + 4

r

)
·Opt ≤

(
5

3
+

ε

2

)
·Opt,
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where we have used in the last inequality that 7 ·
√
2 ≈ 9.899, r ≥ 14/ε and η can

be chosen small enough.
Last, recall that a was chosen uniformly at random from {0, . . . , L − 1}2. We

have seen that we obtain a portal-respecting solution for every choice of a and the
resulting cost is in expectation as desired. Using the probabilistic method, this
implies that there is a vector a ∈ {0, . . . , L− 1}2 such that the obtained tours have
the cost stated in the Theorem.

Recall that, given a two-tour presolution, one can “double” one of the tours to ob-
tain an induced two-tour solution for 3-ETSP (cf. Observation 4.7). Applying this to
a (⌈14/ε⌉, 18, δ)-portal respecting two-tour presolution obtained from Theorem 4.15,
this gives a (⌈14/ε⌉, 36, δ)-portal respecting solution for 3-ETSP. Combining this
with Theorem 4.15, we obtain the following.

Corollary 4.16. For every instance of 3-ETSP with terminals in {0, . . . , L}2 and
every ε > 0, there is a shift vector a ∈ {0, . . . , L − 1}2 such that, for every δ > 0
small enough, there exists a (⌈14/ε⌉, 36, δ)-portal respecting solution of cost at
most

(
5
3
+ ε
)
·Opt.

4.4 Computing portal-respecting solutions

In the previous section, we have seen that there is a
(
5
3
+ ε
)
-approximate portal-

respecting solution. In this section, we give a polynomial-time algorithm that com-
putes an “optimal” (in the sense of Theorem 4.6) portal-respecting solution.

Our algorithm is based on the same ideas as Arora’s dynamic programming
algorithm for Euclidean TSP [5] and the algorithm by Dross et al. for 2-ETSP [45].
The difference to our work is that we need to solve a more general problem: First,
we allow for any fixed number of colors of terminals and search for non-crossing
tours. Second, we have weighted colors, i.e., the tours of different colors contribute
differently to the total cost.

More precisely, by k-ETSP′ we denote the following problem: A set C of k colors
is given together with an integer L that is a power of two. The input consists of
a set of terminals Tc ⊆ {0, . . . , L}2 for each color c ∈ C, a color weight wc ≥ 0
for each c ∈ C, a shift vector a ∈ {0, . . . , L − 1}2, δ > 0 (sufficiently small) and
integers r,m ∈ N. We consider the dissection D(a) and, as before, we place r log(L)
portals on every boundary. A solution to k-ETSP′ is a k-tuple of tours Π = (πc)c∈C
such that every terminal is visited by the tour of the same color (i.e., Tc ⊆ πc

for every c ∈ C), the tours are pairwise disjoint, and (r,m, δ)-portal respecting.
The cost of a solution for k-ETSP′ is then l(Π) :=

∑
c∈C wc · l(πc). Similarly as

for k-ETSP (cf. Figure 4.1), a solution minimizing the cost does not necessarily
exist. By Opt := inf{l(Π)) : Π is a solution}, we denote the value that we want to
approximate.

The aim of this section is to prove Theorem 4.6. We begin by giving a refined
formulation.
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Theorem 4.17. There is an algorithm that computes a parametric solution Π(λ)
to k-ETSP′ in time LO(mr log(k)) such that limλ→0 l(Π(λ)) = Opt.

The main idea is to use dynamic programming. More precisely, we consider the
nodes of D(a) (i.e., squares in R2) one by one from leaves to the root and compute
all possible ways that a solution can cross the border of the square. For a non-
leaf node, we will find these possibilities by combining the solutions for the four
subsquares.

4.4.1 The multipath problem and the lookup-table

In this subsection, we investigate how the problem of finding a portal-respecting
solution can be decomposed into subproblems. Throughout this subsection, fix an
instance (Tc)c∈C , (wc)c∈C ,a, δ, r,m of k-ETSP′.

Recall that portals are subsegments of boundaries of D(a) of positive length δ.
For every portal in D(a), we place m distinct points in it, called subportals, and we
will consider solutions that only intersect boundaries in subportals. We place the
subportals in a way that no subportal lies at the intersection of the gridlines. Note
that each subportal is crossed at most once because the tours are pairwise disjoint
and a subportal is a point. Observe that every (r,m, δ)-portal-respecting solution
can be transformed into a subportal-respecting solution at cost at most 2δ for every
portal. Since δ will be chosen arbitrarily small, this cost is negligible. Therefore,
the requirement that a solution only intersects portals in the subportals is not a
restriction.

Let a node (i.e., a square) S of D(a) be given. We consider all possible ways that
the tours of a solution can leave and enter S through the subportals. For this, we
color each subportal with one of the colors in C or leave it uncolored. This encodes
which of the tours in a solution crosses through the subportal where uncolored means
that none of them crosses. We denote a coloring on all the subportals associated
with ∂S by a k-tuple (Pc)c∈C of pairwise disjoint subsets of the subportals. Given
such a coloring, we also have to specify which subportals are crossed consecutively
by a tour. For this, we consider matchings between the colored subportals (cf. Fig-
ure 4.13). The fact that tours of different colors are non-crossing and that we can
restrict ourselves to constructing simple tours2, significantly reduces the number of
matchings that need to be considered.

For this, we define a non-crossing matching of a coloring (Pc)c∈C as a k-tuple
denoted (Mc)c∈C such that the following holds: For every c ∈ C, Mc is a parti-
tion of Pc into sets of size two, and there are pairwise disjoint curves (πpq) for ev-
ery {p, q} ∈

⋃
c∈C Mc such that each (πpq) connects the subportals p and q (cf. Fig-

ure 4.13). Observe that the latter condition is fulfilled if and only if the the set of
straight line segments {pq : {pq} ∈

⋃
c∈C Mc} is pairwise disjoint. We will see later

that the number of non-crossing matchings is bounded by LO(mr) (cf. Lemma 4.18).
2Assume that one of the tours πc is not simple, i.e., there is a point x in which πc crosses itself.

Then, πc can be modified in a sufficiently small neighborhood of x such that πc is simple in that
neighborhood, still does not intersect any of the other tours, and its length is decreased.
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If S contains all terminals of a color c or none of the terminals of color c, the
tour πc of a solution does not necessarily intersect the border of S (but note that it
might intersect it to bypass a terminal of another color). For this reason, we also
allow Pc = ∅. In this case, we need the constructed curves to form a single cycle.
However, if S contains at least one but not all terminals of color c, a solution must
intersect the border of S so we only allow for Pc ̸= ∅. We also need to ensure that
the tours πc that we construct in the end are connected (i.e., do not consist of several
disconnected cycles). For this reason, in the case Pc ̸= ∅, we will require πc ∩ S to
consist of curves starting and ending at the border of S.

Now, we have all the prerequisites in place to define the multipath problem (cf. Fig-
ure 4.13): Fix an instance of k-ETSP′ and a node S of D(a). The input consists
of a coloring (Pc)c∈C of the subportals of ∂S and a non-crossing matching (Mc)c∈C
of (Pc)c∈C , where Pc = ∅ is only a valid input if S ∩ Tc ∈ {Tc, ∅}. A solution to the
multipath problem for S is a k-tuple (Πc)c∈C of sets of simple curves in S such that:

a) every terminal of color c in S is visited by a curve of color c, i.e., Tc∩S ⊆
⋃

π∈Πc
π,

b) the curves are disjoint,

c) for every c ∈ C and every {p, q} ∈ Mc, there is a curve π ∈ Πc connecting the
two subportals and not crossing the border of S otherwise, i.e., {p, q} = π ∩ ∂S,

d) the border of S is only crossed at colored subportals, i.e., ∂S ∩
(⋃

c∈C,π∈Πc
π
)
⊆⋃

c∈C Pc, and boundaries inside S are only crossed at subportals,

e) for every c ∈ C, if Pc ̸= ∅, each curve of color c connects two subportals of color c
on ∂S,

f) for every c ∈ C, if Pc = ∅, then
⋃

π∈Πc
π is a single closed curve (or ∅).

Observe that conditions c) and d) together imply that every colored subportal is
crossed exactly once by a curve of the same color and there are no other crossings
on the border of S. The cost of a solution to the multipath problem is

∑
c∈C wc·l(Πc),

where l(Πc) :=
∑

π∈Πc
l(π) denotes the total length of the set of curves. Note that,

similarly as for k-ETSP and k-ETSP′, a solution minimizing the cost does not
necessarily exist.

We define the lookup-table LTS of S as follows:

LTS[(Pc)c∈C , (Mc)c∈C ] := inf
{∑

c∈C

wc · l(Πc) : (Πc)c∈C is a solution to the multipath

problem with inputs (Pc)c∈C and (Mc)c∈C

}
,

where (Pc)c∈C is a coloring of the subportals of S and (Mc)c∈C is a non-crossing
matching for (Pc)c∈C , where Pc = ∅ is only allowed if Tc ∩ S ∈ {∅, S}.

As we will calculate every entry of the lookup-tables in a dynamic programming
fashion, it is important to bound the number of entries of LTS. First, we bound the
number of non-crossing matchings. The key idea for this is to upper bound them
by the Catalan numbers.
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Figure 4.13: Illustration of the multipath problem: The cycles denote terminals and
the rectangles denote subportals. On the left, a solution of a base case is given.
On the right, we are given a combination of compatible entries and the resulting
solution.

Lemma 4.18. For a node S of D(a) and a coloring (Pc)c∈C of the subportals in ∂S,
the number of non-crossing matchings is at most LO(mr) and we can list all the non-
crossing matchings in time LO(mr).

Proof. Let a coloring (Pc)c∈C of the subportals of S be given. We count the num-
ber of non-crossing matchings of

⋃
c∈C Pc, i.e., we ignore the colors and allow for

all colored subportals to be matched as long as the straight line segments {p1p2 :
{p1,p2} is in the matching} are non-crossing. It is immediate that this is an upper
bound on the number of non-crossing matchings of (Pc)c∈C .

Let i := |
⋃

c∈C Pc| denote the number of colored subportals and let f(i) denote
the number of non-crossing matchings between them. Assume a non-crossing match-
ing contains the pair of subportals {p,p′}. Note that pp′ separates the square into
two faces. Therefore, the matching cannot contain a pair {q, q′} where q and q′ lie in
different faces. Hence, if there are j subportals different from p,p′ in one of the faces,
there are i−j−2 subportals different from p,p′ in the other face, and the number of
non-crossing matchings that contain the pair {p,p′} is f(i)·f(i−j−2) ≤ f(i)·f(i−j).
Summing up over all choices for p′, we obtain

f(i) ≤
i−1∑
j=0

f(j) · f(i− j). (4.7)

Note that this sum is precisely the recursive definition of the well-known Catalan
numbers (see, e.g., [106]). Additionally using that f(0) = 1 and f(1) = 0, we
obtain that f(i) is upper bounded by the i-th Catalan number Ci. Since Ci = O(4i)
(cf. [106, Theorem 3.1]), we have

f(i) ≤ Ci = O(4i).
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As i is the number of colored portals, we have i = O(mr log(L)). Together, this
gives that the number of non-crossing matchings is upper bounded by

O(4O(mr log(L))) = 2O(mr log(L)) = LO(mr).

Note that the above recursion also gives an efficient recursive procedure for listing
all the non-crossing matchings.

Next, note that the number of subportals on the border of S is O(mr log(L)) so
there are (k + 1)O(mr log(L)) = LO(mr log(k)) possible colorings of the subportals of S,
and we can easily list all colorings in LO(mr log(k)) time as well. Combining this with
Lemma 4.18, we obtain the following result.

Observation 4.19. For every node S of D(a), the number of entries of the lookup-
table LTS is bounded by LO(mr log(k)).

4.4.2 A dynamic programming algorithm

Next, we show that the entries of the lookup-table can be computed in polynomial
time. We begin with computing the tables of leaves.

Lemma 4.20. For every leaf S of D(a), the lookup-table LTS can be computed in
time LO(mr log(k)).

Proof. Consider a leaf of D(a), i.e., a square S of side length 1, and an instance of
the multipath problem, i.e., a coloring of the subportals (Pc)c∈C and a non-crossing
matching (Mc)c∈C . Recall that terminals are distinct points in {0, . . . , L}2 so that S
contains at most one terminal and, if S contains a terminal, it lies in the center of S.

If it contains no terminal, observe that an optimal solution is simply given
by Πc = {p1p2 : {p1,p2} ∈Mc} (c ∈ C). Therefore, assume from now on that D(a)
does contain a terminal t, say of color c∗ ∈ C. If there is no subportal colored c∗

(note that this is only possible if t is the only portal of color c), consider the solution
given by Πc = {p1p2 : {p1,p2} ∈ Mc} (c ̸= c∗) and additionally letting Πc∗ consist
of a single small cycle of length at most λ that visits t and does not intersect any of
the tours in Πc, c ̸= c∗. In case one of the straight line segments in Πc intersects t, it
can be bended by a sufficiently small amount at cost at most λ (the parameter that
our solution depends on) so that it does not intersect t or any other of the straight
line segments. For λ→ 0, the cost of this solution, i.e.,

∑
{p1,p2}∈Mc

∥p1− p2∥, gives
the desired entry of the lookup-table. Therefore, assume from now on additionally
that there are subportals colored c∗.

For one of the matched pairs in Mc∗ , the curve connecting the two subportals has
to visit the terminal t. Say this pair is given by {p1,p2}. Then we obtain a solution
as follows: First, include the curve p1t ∪ tp2 in Πc∗ . Then, add the straight line
segments q1q2 to Πc for all {q1, q2} ∈ Mc where q1q2 does not intersect p1t ∪ tp2

(c ∈ C and {q1, q2} ̸= {p1,p2}). For each remaining pair {q1, q2} ∈ Mc that
intersects p1t ∪ tp2, there is a suitable point t′ at distance at most λ from t such
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that q1t′ ∪ t′q2 does not cross any other curves. This is illustrated by one of the
green pairs on the left side in Figure 4.13. We add π := q1t′ ∪ t′q2 to Πc. Note
that l(π) = ∥q1− t′∥+ ∥q2− t′∥ = ∥q1− t∥+ ∥q2− t∥ for λ→ 0. Therefore, given a
choice of the pair {p1,p2}, we can efficiently compute the optimal cost of a solution.
To find the entry of the lookup-table, we compute the cost for every choice of the
pair {p1,p2} ∈

⋃
c∈C Mc and check which choice minimizes the cost.

To summarize, there are O(mr log(L)) subportals so that the number of possible
choices of the pair {p1,p2} is at mostO(m2r2 log2 L). Once a pair is chosen, comput-
ing the cost of a solution (as λ→ 0) can be done in time O(mr log(L)) because the
number of curves is bounded by the number of subportals. Therefore, a single entry
of the lookup-table of a leaf can be computed in timeO(m2r2 log2 L) ≤ LO(mr). Com-
bining this with the fact that the size of every lookup-table is at most LO(mr log(k))

(cf. Observation 4.19), we obtain that LTS can be computed in time LO(mr log(k)).

Next, we investigate how the lookup-table of a non-leaf node of D(a) can be
computed.

Lemma 4.21. For every non-leaf node S of D(a), its lookup-table LTS can be
computed in time LO(mr log(k)) if the lookup-tables of its four children are given.

Proof. Let a square S of side length > 1, a coloring of the subportals (Pc)c∈C and
a non-crossing matching (Mc)c∈C be given. Let S(1), S(2), S(3), S(4) denote its four
children in D(a) and assume that the lookup-tables of the children are already
computed.

Note that each child S(i) (i ∈ {1, . . . , 4}) shares two border edges with siblings
and the other two of its border edges are contained in border edges of S (cf. right
side of Figure 4.13). In particular, each S(i) shares subportals with siblings and
the parent. More formally, let P denote the set of subportals on the border of S
and P (i) denote the set of subportals on the border of S(i) (i ∈ {1, 2, 3, 4}). Then we
have P (i) ⊆

⋃
j ̸=i P

(j) ∪ P . In order to be able to combine the curves of solutions of
the four children, we also need the following notion: a matched sequence of subportals
is a sequence of subportals p1, . . . ,pN such that {pj,pj+1} ∈

⋃
c∈C,i∈{1,...,4}M

(i)
c for

every j ∈ {1, . . . , N − 1}. Note that such a sequence exists if and only if combining
the four subsolutions gives a curve that connects p1 with pN . Also note that, in a
matched sequence, p2, . . . ,pN−1 cannot lie in P .

Given a combination of an entry of each lookup-table of the four children (P
(i)
c )c∈C ,

(M
(i)
c )c∈C , (i ∈ {1, 2, 3, 4}), we say that it is compatible with (Pc)c∈C , (Mc)c∈C if

a) the colorings of the shared subportals coincide, i.e., for i, j ∈ {1, 2, 3, 4}, c ∈ C

and p ∈ P (i) ∩ P (j), we have p ∈ P
(i)
c if and only if p ∈ P

(j)
c and, similarly,

for p ∈ P (i) ∩ P , we have p ∈ P
(i)
c if and only if p ∈ Pc,

b) For every c ∈ C and every {p, q} ∈ Mc, there is a matched sequence of por-
tals p1, . . . ,pN with p1 = p and pN = q,

c) if Pc ̸= ∅, for every maximal matched sequence of portals p1, . . . ,pN , we have
p1,pN ∈ P ,
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d) if Pc = ∅, then
⋃

i∈{1,2,3,4},{p,q}∈M(i)
c

pq is a single cycle.

Note that condition c) implies that the combination of subsolutions is acyclic and
only consists of curves touching ∂S. An example of a compatible combination and
the resulting solution is illustrated on the right hand side of Figure 4.13.

We obtain that the desired entry of LTS is given by the following equation:

LTS[(Pc)c∈C , (Mc)c∈C ] = min

{ 4∑
i=1

LTS(i)

[
(P (i)

c )c∈C , (M
(i)
c )c∈C

]
: (P (i)

c )c∈C , (M
(i)
c )c∈C

(i ∈ {1, 2, 3, 4}) is compatible with (Pc)c∈C , (Mc)c∈C

}
.

We investigate the complexity of computing this minimum: The number of
possibilities for combining entries of the lookup-table of the four children is at
most

(
LO(mr log(k))

)4
= LO(mr log(k)). Since the number of subportals on the boundary

of S and on the boundaries of its four children is at most O(mr log(L)), checking
whether a combination is compatible, takes time at most O(m2r2 log2(L)): For each
portal, we need to check whether its color coincides with the corresponding portal of
its parent, respectively its sibling, which takes constant time. Also, for each portal,
we have to compute the longest matched sequence in which it is contained, and the
length of this sequence is upper bounded by the total number of subportals. We
obtain that LTS can be computed in time

LO(mr log(k)) · O(m2r2 log2(L)) = LO(mr log(k)).

Now, we have all the prerequisites in place to prove Theorem 4.17, i.e., we show
that Opt can be computed in time LO(mr log(k)).

Proof of Theorem 4.17. Observe that the value Opt for the given instance of k-ETSP′

is given by the solution to the multipath problem of C(a) with Pc = ∅ for all c ∈ C.
Recall that D(a) is a full 4-ary tree with L2 leafs. Therefore, D(a) contains in total
at most O(L2) nodes. As we have seen in Lemmas 4.20 and 4.21, the lookup-tables
of the nodes of D(a) can be computed using dynamic programming and comput-
ing a single lookup-table takes time at most LO(mr log(k)). Together, this gives that
our algorithm has running time O

(
L2 · LO(mr log(k))

)
= LO(mr log(k)). As usual, a

parametrized solution Π(λ) with limλ→0 l(Π(λ)) = Opt can be found by reverse-
engineering the computation of the lookup-tables.

4.5 Perturbation
In the previous sections, we have focused on solving 3-ETSP when the terminals
have integer coordinates. In this section, we show how an input for general 3-ETSP
can be preprocessed to obtain an instance of the desired form, and how a solution
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Figure 4.14: Illustration of the algorithms Perturbation (left side) and Back-
Perturbation (right side): The terminals in instance I are illustrated as circles
and the terminals of the constructed instance I ′ are illustrated as rectangles. The
triangles at the grid boundary indicate on which gridlines the terminals of each color
can be snapped on.

to the preprocessed instance can be transformed back into a solution for the original
input. For this, we use similar ideas as in [5].

Note that, if the terminal sets of different colors are, in some sense, sufficiently
far apart, we can find solutions for each color independently, resulting in disjoint
tours. More precisely, we call an instance of the 3-ETSP ε-reducible if there exists a
partition of the three colors {c, c′}∪{c′′} = {R,G,B} such that applying the known
PTAS for 2-ETSP [45] on Tc and Tc′ , and independently applying Arora’s PTAS
for 1-ETSP [5] on Tc′′ , yields disjoint tours. In this case, these tours together form
a (1 + ε)-approximation for 3-ETSP. Therefore, in what follows, we restrict our
attention to non-reducible instances.

Theorem 4.22. Let ε > 0 and I be a non-ε-reducible instance of 3-ETSP.

a) There is an algorithm Perturbation that has running time O(n) and returns
an instance I ′ of 3-ETSP with terminals in {0, . . . , L}2 where L = O(n/ε) is a
power of two.

b) There is an algorithm Back-Perturbation that has running time O(n2) and,
given a (1+ε′)-approximate solution to the instance I ′, returns a (1+ε′+O(ε))-
approximate solution to the instance I.

Proof. We begin with part a). For this, consider the algorithm Perturbation
formally defined in Algorithm 4, which is illustrated on the left of Figure 4.14. Intu-
itively speaking, we first choose a smallest-possible square S in the plane containing
all terminals. For this, we only consider aligned squares, that is, with borders par-
allel to the x-axis and y-axis. Next, we put a suitable number of L + 1 = O(n/ε)
equispaced horizontal and vertical lines in the square, forming a lattice. Then, we
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Algorithm 4: Perturbation
input: ε > 0, TR, TG, TB ⊆ R2 with

⋃
c∈{R,G,B} Tc =: T and |T | =: n

1 (S, f)← argmin{f ′ : S ′ is an aligned square of side length f ′ with T ⊆ S ′}
2 L← min{2i : 2i ≥ ⌈n/ε⌉, i ∈ N}
3 let v0, . . . , vL and h0, . . . , hL denote L+ 1 vertical and L+ 1 horizontal

equispaced straight line segments of length f in S with h0, v0, hL, vL ⊆ ∂S
4 T ′

R, T
′
G, T

′
B ← ∅

5 forall c ∈ {R,G,B} and t ∈ Tc do

6 z ←


0, if c = R

1, if c = G

2, if c = B

7 t′ ← argmin{∥t′′ − t∥ : t′′ = vi ∩ hj with i mod 3 = j mod 3 = z}
8 add t′ to T ′

c

9 identify the points {vi ∩ hj : i, j ∈ {0, . . . , L}} with {0, . . . , L}2
10 return L, T ′

R, T
′
G, T

′
B

snap each terminal to a closest possible lattice point, allowing each color to use only
every third line of the lattice to ensure that no two terminals of different colors are
snapped to the same point. Note that terminals of the same color might be snapped
to the same point, however, this does not cause any issues. Last, we identify the
lattice with {0, . . . , L}2.

We begin by investigating the running time of Perturbation. For this, observe
that line 1 can be executed in time O(n) as we only have to find the smallest and
largest x-coordinates and y-coordinates of the terminals. The for-loop in line 5 is
executed n times, and all other steps can be executed in time O(1). Therefore, its
total running time is O(n).

Next, note that the sets (T ′
c)c∈{R,G,B} are disjoint because, due to lines 6 and 7,

terminals of different colors cannot be placed on the same line hi or vj. Therefore,
the output is a valid instance of k-ETSP. It is immediate from the construction
that its terminals lie in {0, . . . , L}2 and that L = O(n/ε). This completes the proof
of part a).

Before moving on to Back-Perturbation, we note some more useful proper-
ties of the algorithm Perturbation. First, observe that the assumption that the
instance is non-ε-reducible implies that, for every terminal, there exists a terminal
of another color at distance at most (1 + ε)Opt. This implies that f ≤ O(Opt).
Therefore, the distance between two consecutive horizontal lines hi and hi+1 (or
consecutive vertical lines vi and vi+1) is at most f/L ≤ O(Opt/L). It follows that,
for every terminal t in Tc, the distance to the closest terminal in T ′

c is at most
√
2 · 3 · O(Opt/L) ≤ O(Opt/L), (4.8)

due to line 7 (cf. left side of Figure 4.14).
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Algorithm 5: Back-Perturbation
input: TR, TG, TB ⊆ [0, L]2, (1 + ε′)-approximate solution π′

R, π
′
G, π

′
B to an

instance T ′
R, T

′
G, T

′
B ⊆ {0, . . . , L}2

1 choose δ > 0 small enough
2 forall c ∈ {R,G,B} and t ∈ Tc do
3 s← argmin{l(s′) : s′ is a straight line segment between t and π′

c}
4 if s contains a terminal other than t (in Td or T ′

d for any color d) then
5 replace s by a segment of length ≤ 2l(s) connecting t and πc not

containing other terminals
6 apply patching (Lemma 4.14) to πc′ , πc′′ along s where c′, c′′ ̸= c
7 redirect the remaining crossings around s
8 choose x1,x2 ∈ π′

c close enough at distance at most δ to s ∩ πc such
that π′

c[x1,x2] does not contain terminals
9 replace π′

c by (π′
c \ π′

c[x1,x2]) ∪ x1t ∪ x2t

10 return π′
R, π

′
G, π

′
B

Now, we turn to proving part b). For this, investigate the algorithm Back-
Perturbation given in Algorithm 5 and illustrated on the right side of Figure 4.14.
In short, it connects the terminals of I to the given solutions for I ′ by shortest
possible straight line segments, chosen such that these segments do not interfere with
any other terminal. These segments may create additional crossings of the tours so
that the other tours need to be redirected around the segments (cf. Figure 4.14 right
side). To ensure we only have to redirect a finite number of crossings, we first apply
patching along the segments for the two tours of the other colors.

First, note that every single line of the algorithm can be executed in time O(n).
Since the loop beginning in line 2 is executed n times, this gives a running time
of O(n2). Next, note that, by construction, the resulting tours are indeed a solution
to the instance of k-ETSP with terminal sets TR, TG, TB.

It remains to estimate the cost of the resulting tours. For this, we assume
that L, T ′

R, T
′
G, T

′
B are the output of Perturbation on TR, TG, TB. By Opt, we

refer to the infimum cost of solutions to I and, by Optp, we refer to the infimum
cost of solutions to the perturbed instance I ′. Note that the length of a segment s
chosen in the algorithm is at most O(Opt/L) because we have already seen that, for
every terminal t in Tc, the distance to the closest terminal in T ′

c is at mostO(Opt/L)
(see (4.8)). Therefore, in each executiong of line 6, the total length of the tours is
increased at most by O(Opt/L) (cf. Lemma 4.14). Then the remaining number of
crossings is at most 18 so that the additional cost in line 7 is O(Opt/L) as well.
Last, in line 9, since δ can be chosen small enough, the length of the considered
tour is also increased by at most O(Opt/L). Since the loop in line 2 is executed at
most n times, the total length of given solution to I ′ is increased by at most

O(n ·Opt/L) = O(ε)Opt,

where we have used that L = O(n/ε). It remains to relate Opt to Optp. Note
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Algorithm 6:
(
5
3
+ ε
)
-approximation for 3-ETSP

parameters: large enough constant M
input : ε > 0, disjoint terminal sets TR, TG, TB ⊆ R2

1 (L, T ′
R, T

′
G, T

′
B)← Perturbation(ε/M, TR, TG, TB)

2 choose δ, µ > 0 small enough
3 Sol← ∅
4 forall a ∈ {0, . . . , L− 1}2 do
5 compute a (1 + µ)-approximate solution Π = (πR, πG, πB) for 3-ETSP′

with terminals T ′
R, T

′
G, T

′
B that is (⌈14M/ε⌉, 36, δ)-portal-respecting in

the dissection D(a)
6 Sol← Sol ∪ {Π}
7 Π′ ← argmin{l(Π) : Π ∈ Sol}
8 return Back-Perturbation(Π′)

that the algorithm can also be applied the other way around, i.e., given a solution
to instance I, creating a solution to I ′ of length increased by at most O(ε)Opt.
This implies that Optp ≤ (1 +O(ε))Opt.

Coming back to applying the algorithm on a (1+ε′)-approximation for I ′ that is
obtained by applying the algorithm Perturbation on I, we obtain that the cost
of the resulting tour is at most

(1 + ε′)Optp +O(ε)Opt ≤ ((1 + ε′)(1 +O(ε)) +O(ε))Opt = (1 + ε′ +O(ε))Opt,

which completes the proof.

4.6 A (5/3 + ε)-approximation for 3-ETSP
We have all the prerequisites in place to prove our main result. We begin by recalling
the theorem.

Theorem 4.1. For every ε > 0, there exists an algorithm that computes a(
5
3
+ ε
)
-approximation for the 3-ETSP in time

(
n
ε

)O(1/ε).

Proof. We can check whether a given instance is ε-reducible in time (n
ε
)O(1/ε) by

simply checking for all three choices of a partition of the three colors {c, c′}∪{c′′} =
{R,G,B}, whether applying the known PTAS for 2-ETSP [45] on Tc and Tc′ , and
independently applying Arora’s PTAS for 1-ETSP [5] on Tc′′ , yields disjoint tours.
In that case, we have found a solution as desired. Therefore, assume that the
given instance is not ε-reducible. In that case, we show that Algorithm 6 computes
a
(
5
3
+ ε
)
-approximation for 3-ETSP in time (n

ε
)O(1/ε).

In Theorem 4.22 a), we have seen that the algorithm Perturbation out-
puts L = O(nM/ε) and an instance (T ′

R, T
′
G, T

′
B) of 3-ETSP with terminals lying
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in {0, . . . , L}2. Let Optp denote the optimal cost of this instance. By Corollary 4.16,
there exists a shift vector a ∈ {0, . . . , L−1}2 and δ > 0 small enough such that there
exists a (⌈14M/ε⌉, 36, δ)-portal respecting solution of cost at most

(
5
3
+ ε

M

)
·Optp

to the perturbed instance. Since, in the for-loop, we check all choices for a and, in
line 7, output the shortest such solution, we obtain that Π′ has cost upper bounded
by
(
5
3
+ ε

M

)
· (1 + µ) ·Optp.

By Theorem 4.22 b), Back-Perturbation(Π′) is a solution to the original
instance of cost at most

(
(5
3
+ ε

M
)(1 + µ) +O

(
ε
M

))
·Opt. Therefore, it is possible

to choose the constant M large enough and µ > 0 small enough such that the cost
of the resulting solution is at most (5/3 + ε) ·Opt as desired.

It remains to estimate the running time of Algorithm 6. By Theorem 4.22,
the steps in line 1 and 8 have running time O(n) and O(n2). By Theorem 4.17,
the step in line 5 has running time LO((M/ε)·36·log(3)) =

(
n
ε

)O(1/ε). The for-loop is

executed L2 = O
((

n
ε

)2) times, so that the overall running time is
(
n
ε

)O(1/ε), which
completes the proof of the Theorem.

4.7 Outlook

In this chapter, we initiated the study of the k-ETSP for k ≥ 3 and have seen that
the problem is substantially more challenging than the cases k ≤ 2. This is because
classical techniques that succeed for one and two colors fail when extended to three
or more. The central open question remains whether a PTAS exists for k ≥ 3
(Problem 4.2).

In terms of generalizing Arora’s algorithm, we have seen that, for any number of
colors, an optimum portal-respecting solution can be computed in polynomial time.
Furthermore, for every ε > 0, there exists a (1 + ε)-approximation that only crosses
the dissection at portals (where the portal placement depends on ε). However, the
crucial patching lemma does not generalize to more than 2 colors. In other words,
we can locally modify tours so that they only cross at portals, but we cannot modify
them such that they cross each portal at most a constant number of times.

This indicates that new ideas are needed to resolve Problem 4.2. First, note that
it is unclear whether the non-patchable tours depicted in Figure 4.2 actually appear
as optimal solutions of some instance. To rule out the possibility of obtaining a PTAS
via optimal portal-respecting solutions, one would need to construct an example in
which every (1+ε)-approximation crosses some portal more than a constant number
of times, for any shift vector a (which was a parameter of the dissection).

We observe that, even if one cannot bound the number of crossings per portal by a
constant, as long as the number of possible crossing patterns is at most a polynomial,
this would yield a quasi-polynomial-time approximation scheme (QPTAS), that is,
an algorithm that computes a (1+ ε)-approximation in time nOε(logn). For instance,
for the case of spirals as in Figure 4.1, even though the number of crossings may be
polynomial, the number of crossing patterns is also only polynomial (even though
one might expect 3m possible crossing patterns for m crossings). This is because the
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crossing pattern is fully desribed by an order of the colors and the number of windings
of the spiral. A natural direction for further investigation is to analyze spirals where
the winding direction alternates and study whether, for such configurations, a super-
polynomial number of crossing patterns is possible.
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Chapter 5

Online dial-a-ride

In the open online dial-a-ride problem, we are given a metric space (M,d), typi-
cally Rn or Rn

≥0, and have control of a server that can move at unit speed. Over
time, requests of the form (a, b; t) arrive. Here, a ∈ M is the starting position of
the request, b ∈M is its destination, and t ∈ R≥0 is the release time of the request.
We consider the online variant of the problem, meaning that the server does not get
to know all requests at time 0, but rather at the respective release times. Our task
is to control the server such that it serves all requests, i.e., we have to move the
server to position a, load the request (a, b; t) there after its release time t, and then
move to position b where we unload the request. The objective is to minimize the
completion time, i.e., the time when all requests are served. Importantly, the server
is not told which request is the last one. This means that we have to minimize the
completion time of the currently revealed requests at all times.

We assume that the server always starts at time 0 in some fixed point, which
we call the origin O ∈ M . The server has a capacity c ∈ (N ∪ {∞}) and is not
allowed to have more than c requests loaded at the same time. Furthermore, our
main focus is the non-preemptive version of the problem, that is, the server may
not unload a request preemptively at a point that is not the request’s destination.
In the dial-a-ride problem, a distinction is made between the open and the closed
variant. In the closed dial-a-ride problem, the server has to return to the origin after
serving all requests. In contrast, in the open dial-a-ride problem, the server may
finish anywhere in the metric space. In this work, we focus on the open variant of
the problem. An example for an instance of the problem is illustrated in Figure 5.1.

In this chapter, we present a deterministic parametrized algorithm called Lazyα

for open online dial-a-ride. Our main result is a tight analysis in general metric
spaces.

Theorem 5.1. For α = 1
2
+
√
11/12, the algorithm Lazyα has a competitive ratio

of α + 1 ≈ 2.457 for open online dial-a-ride on general metric spaces for every
capacity c ∈ N ∪ {∞}. In this, the choice of the parameter α is optimal.

Prior to our work, the best known upper bound on the competitive ratio of
the problem was 2.696 [21]. In addition to the study on general metric spaces, we
analyze Lazy for open online dial-a-ride on the half-line, i.e., where M = R≥0.

97
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0

position

time
1 1.6

1

1
2

Figure 5.1: Example of an instance for open online dial-a-ride with capacity 1.
The first request revealed is r1 = (0.5, 1; 1) (depicted in pink). The server travels
immediately towards the starting position of r1 and picks it up at time 1.5. At
time 1.6, the second request r2 = (0, 0.5; 1) is revealed (depicted in red). Since the
capacity is only 1 and we study the non-preemptive case, the server has to deliver r1
before it can pick up r2. We have Alg(σ) = 3.5 and Opt(σ) = 2.6 because the
offline optimum waits in 0 until r2 is revealed, then serves r2, and then serves r1.

We show that, in this special metric space, even better bounds on the competitive
ratio are possible by setting the value of α differently. More precisely, we show the
following.

Theorem 5.2. For α = 1+
√
3

2
, Lazyα has a competitive ratio of α + 1 ≈ 2.366 for

open online dial-a-ride on the half-line for every capacity c ∈ N ∪ {∞}. In this, the
choice of the parameter α is optimal.

Prior to our work, the best known upper bound for the problem on the half-line
was the one inherited from general metric spaces, i.e., 2.696 [21].

While we mainly work with the non-preemptive version of the problem, we will
show that our bounds also hold in the preemptive case (Corollary 5.17). Con-
sequently, we also obtain improved bounds for this version of the problem. An
overview of the different variants of open online dial-a-ride and our results is given
in Table 5.1.

5.1 Preliminaries
First, we observe, similarly to Section 2.1.3, that for the open online dial-a-ride prob-
lem there is no difference between the competitive ratio and the strict competitive
ratio. This allows us to use these terms interchangeably.

Observation 5.3. Consider the open online dial-a-ride problem on Rn or Rn
≥0

with n ≥ 1. The competitive ratio and the strict competitive ratio of the problem
coincide.

Proof. It is clear that any strictly ρ-competitive algorithm is also ρ-competitive. For
the other direction, we argue similarly as we did for exploration using the adversary
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metric space old bounds new bounds
lower upper upper

general non-preemptive 2.05 2.696 [21] 2.457 (Thm 5.1)
preemptive 2.04 2.696 2.457 (Cor 5.17)

line non-preemptive 2.05 [24] 2.696 2.457
preemptive 2.04 [25] 2.41 [25] —

half-line non-preemptive 1.9 [90] 2.696 2.366 (Thm 5.2)
preemptive 1.62 [90] 2.41 2.366 (Cor 5.17)

Table 5.1: State of the art of the open online dial-a-ride problem and overview of
our results: Bold bounds are original results, other bounds are inherited.

model (see Section 2.1.3). Assume that there is no strictly ρ-competitive algorithm.
Then there exists an adversarial strategy that constructs, for every deterministic
algorithm Alg, an instance σ with Alg(σ) ≥ ρ · Opt(σ) + ε for some ε > 0.
Note that we can scale the instance σ by any non-negative M ∈ R≥0, meaning that
we multiply all release times, starting positions, and destinations with M . This
results in an adversarial strategy that constructs for every algorithm an instance σ
with Alg(σ) ≥ ρ · Opt(σ) + Mε. Letting M → ∞, this shows that there is
no ρ-competitive algorithm.

Next, we give an overview of the algorithms for online dial-a-ride from the liter-
ature.

5.1.1 State of the art

Ignore and Replan. Two of the most natural algorithms for the online dial-a-
ride problem are Ignore and Replan. The basic idea of Ignore is to repeatedly
follow an optimum schedule over the currently unserved requests and ignoring all
requests released during its execution. The competitive ratio of this algorithm is
known to be exactly 4 [21, 83]. By contrast, the main idea of Replan is to start a
new schedule over all unserved requests whenever a new request is released. While
this algorithm is very natural and may be the first algorithm studied for the online
dial-a-ride problem, it has turned out to be notoriously difficult to analyze and
eluded tight analysis up to this day. However, it is known that its competitive ratio
is at least 2.5 [10] and at most 4 [21]. When c = 1, even an upper bound of 3
is known [83]. So far, Replan has been a canonical candidate for a best-possible
algorithm. We finally rule it out as our algorithm Lazy has a competitive ratio
of 2.457, which beats the known lower bound of 2.5 for Replan.

Adaptions of Ignore and Replan. Several variants of the algorithms Ignore
and Replan have been proposed, such as SmartStart [83], SmarterStart [24]
or WaitOrIgnore [90], which lead to improvements on the best known bounds
on the competitive ratio of the dial-a-ride problem. Prior to this work, the best
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known upper bound for the open online dial-a-ride problem, in both the preemp-
tive and non-preemptive version, was 2.696 and was achieved by the algorithm
SmarterStart [21]. Bjelde et al. [25] proved a stronger bound of 1 +

√
2 ≈ 2.41

for the preemptive version when the metric space is the line.

Schedule-based algorithms. Crucially, our upper bound of 2.457 for Lazy
(Theorem 5.1) beats, for the first time, a known lower bound of 2.5 for the class
of schedule-based algorithms [21], that is, algorithms that divide the execution into
subschedules, such that, when such a subschedule is started, it serves all requests
that are at that time revealed but not yet served, and these subschedules are never
interrupted. Note that interruption of a schedule is a quite different notion than pre-
emption: Preemption means that a request can be unloaded without being served,
i.e., unloaded at another position than its destination. Conversely, interruption of
a schedule means that the server changes its plan that it has made to serve several
requests (defined in more detail in Section 5.2.1). In particular, we can speak of
interruption of a schedule in the non-preemptive version of the problem. Histor-
ically, all upper bounds, prior to those via Lazy, were based on schedule-based
algorithms [22, 24]. Our results imply that online algorithms cannot afford to irre-
vocably commit to serving some subset of requests if they hope to attain the best
possible competitive ratio.

Lower bounds. First, observe that, if the metric space is the real line, we easily
obtain a lower bound of 2 on the competitive ratio of the problem. To see this, con-
sider the following adversarial strategy: We construct a request sequence σ consisting
of a single request r that is revealed at time 1. If, at that time, the server is located
in a non-positive point, we let r = (1, 1; 1). Otherwise, we let r = (−1,−1; 1). In
either case, at time 1, the server needs at least one additional time unit to serve r.
Therefore, we have Alg(σ) ≥ 2. Conversely, the server in the offline optimum so-
lution starts moving at time 0 towards the starting position of r and reaches it at
time 1 so that Opt(σ) = 1.

Beating this simple lower bound of 2 has turned out to be very challenging.
However, Birx et al. [24] were able to give a slight improvement and proved that
every algorithm for the open online dial-a-ride problem has a competitive ratio of
at least 2.05, even if the metric space is the line. For open online dial-a-ride on
the half-line, Lipmann [90] established a lower bound of 1.9 for the non-preemptive
version and a lower bound of 1.62 for the preemptive version.

Online TSP and closed dial-a-ride. An important special case of dial-a-ride is
the online traveling salesperson problem, which is obtained by letting a = b for all
requests (a, b; t). For open online TSP, it is known that the competitive ratio is tigh
+ötly ≈ 2.04 on the real line [25] and at most 2.41 on general metric spaces [28].
The closed variant of online TSP is tightly analyzed with a competitive ratio of 2
on general metric spaces [6, 10, 52], of 1.64 on the line [10, 25], and of 1.5 on the
half-line [26].
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For the closed variant of the online dial-a-ride problem, the competitive ratio is
known to be exactly 2 on general metric spaces [6, 10, 52] and between 1.76 and 2
on the line [21, 25]. On the half-line the best known lower bound is 1.71 [6] and the
best known upper bound is 2 [6, 52].

5.1.2 Factor-revealing approach

Many of our upper bound results for Lazy were informed by a factor-revealing
technique, inspired by a similar approach of Bienkowski et al. [19]. For this, note
that the adversary problem (cf. Section 2.1) for Lazy can be formulated as the
following optimization problem

max

{
Alg(σ)
Opt(σ)

∣∣∣ σ describes a dial-a-ride instance
}
. (5.1)

An optimum solution to this problem immediately yields the competitive ratio
of Alg. Of course, we cannot hope to solve this optimization problem or even
describe it with a finite number of variables. The main idea in the factor-revealing
approach is to relax (5.1) to a practically solvable problem over a finite number of
variables.

The key is to select a set of variables that captures the structure of the problem
well enough to allow for meaningful bounds. The algorithm Lazy will consist of
so-called schedules and we can, for example, introduce variables for the starting
positions and durations of the second-to-last schedule and the last schedule. We
then need to relate those variables via constraints that ensure that an optimum
solution to the relaxed problem actually has a realization as a dial-a-ride instance.
For example, we might add the constraint that the distance between the starting
positions of the last two schedules is upper bounded by the duration of the second-
to-last schedule.

The power of the factor-revealing approach is that it allows to follow an itera-
tive process for deriving structurally crucial inequalities: When solving the relaxed
optimization problem, we generally have to expect an optimum solution that is not
realizable and overestimates the competitive ratio. We can then focus our efforts on
understanding why the corresponding variable assignment cannot be realized by a
dial-a-ride instance. Then, we can introduce additional variables and constraints to
exclude such solutions. In this way, the unrealizable solutions inform our analysis
in the sense that we obtain bounds on the competitive ratio that can be proven
analytically by only using the current set of variables and inequalities. Once we
obtain a realizable lower bound, we thus have found the exact competitive ratio of
the algorithm under investigation.

In order to practically solve the relaxed optimization problems, we limit ourselves
to linear programs (LPs). Note that the objective of (5.1) is linear if we normalize
to Opt(σ) = 1. For open online dial-a-ride on a scalable metric space such as Rn

or Rn
≥0, this is without loss of generality because the competitive ratio is invariant

with respect to rescaling the release times, starting positions, and destinations of
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the requests. Another advantage of using linear programs is that we immediately
obtain a formal proof from an optimum solution to the dual program. Of course,
the correctness of the involved inequalities still needs to be established.

In this chapter, we present a purely analytic proof of our results. Many of the
inequalities we derive in lemmas were informed by a factor-revealing approach via
a linear program with a small number of binary variables. As a consequence, we
cannot easily obtain a proof by simply providing an optimal dual solution. One
possibility would be to branch on all binary variables, that is, to solve the linear
program for every possible assignment of the binary variables. However, since we
require four binary variables, this would entail presenting 24 = 16 linear programs
along with their dual solutions. For this reason, we opt for an analytic proof, which
is more tractable. Nevertheless, solving the MILP informed our analysis in the
sense that it helped us identify the crucial properties and inequalities. We refer to
Section 5.2.4 for more details of the binary program that informed our results for
the half-line.

5.2 Improved upper bounds for
open online dial-a-ride

In this section, we introduce the algorithm Lazy and prove that it improves on
the best known competitive ratio of the open online dial-a-ride problem on general
metric spaces, and on the half-line. At the end of this section, we demonstrate how
the factor-revealing approach was used for our findings.

5.2.1 The algorithm Lazy

The rough idea of the algorithm Lazy is to wait until several requests are revealed
and then start a schedule serving them. Whenever a new request arrives, we check
whether we can deliver all currently loaded requests and return to the origin in a
reasonable time. If this is possible, we do so and, after possibly waiting for some
time, begin a new schedule including the new requests starting from the origin. If
this is not possible, we keep following the current schedule and consider the new
request later.

More formally, we say that a request is loaded when it has been picked up by the
server, but it has not yet reached the request’s destination. We will also say that a
request has been loaded at time t and unloaded at time t′, if t is the first point in
time when it is loaded and t′ is the last point in time when it is loaded. A schedule
is a sequence of actions specifying the server’s behavior, including its movement
and where requests are loaded or unloaded. Given a set of requests R and some
point x ∈ M , we denote by S(R, x) a shortest schedule serving all requests in R
beginning from point x at some time after all requests in R are released. In other
words, we can ignore the release times of the requests when computing S(R, x). As
waiting is not beneficial for the server if there are no release times, the length of
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Algorithm 7: Lazyα

22 initialize: i← 0

44 upon receiving a request:
66 if server can serve all loaded requests and return to O until time α ·Opt(t)

then
88 execute deliver_and_return

1010 upon becoming idle:
1212 if t < α ·Opt(t) then
1414 execute wait_until(α ·Opt(t))
1616 else if Rt ̸= ∅ then
1818 i← i+ 1, R(i) ← Rt, t(i) ← t, p(i) ← pt
2020 S(i) ← S(R(i), p(i))

2222 execute follow_schedule(S(i))

the schedule, i.e., the distance the server travels, is the same as the time needed
to complete it and we denote this by |S(R, x)|. By Opt[t], we denote an optimal
schedule beginning in O at time 0 and serving all requests (taking into account their
release times) that are released not later than time t. By Opt(t), we denote its
completion time.1

Now that we have established the notation needed, we can describe the algorithm
(cf. Algorithm 7). By t, we denote the current time. By pt, we denote the position of
the server at time t, and by Rt, we denote the set of requests that have been released
but not served until time t. The variable i is a counter over the schedules started
by the algorithm. By S(i), we denote the i-th schedule started by the algorithm.
By t(i), we denote its starting time, by p(i), its starting position, and by R(i), the
unserved requests until time t(i). The waiting parameter α ≥ 1 specifies how long
we wait before starting a schedule. The algorithm uses the following commands:
deliver_and_return orders the server to finish serving all currently loaded
requests and return to O in the fastest possible way, wait_until(t) orders the
server to remain at its current location until time t, and follow_schedule(S)
orders the server to execute the actions defined by schedule S. When any of these
commands is invoked, the server aborts what it is doing and executes the new
command. Whenever the server has completed a command, we say that it becomes
idle.

We make a few comments for illustration of the algorithm. First, note that
when none of the if-statements are fulfilled, the server simply continues what it was
doing before, i.e., it either continues its execution of one of the commands, or it
keeps being idle. If, upon receiving a request, the server returns to the origin before

1By slight abuse of notation, in this chapter, we allow Opt to take either a request sequence σ
or a time t as its argument. Evaluating Opt at time t corresponds to evaluating on the restriction
of σ to the requests revealed no later than t. The sequence σ is omitted in this notation as it will
always be clear from context.



104 Chapter 5. Online dial-a-ride

completing its current schedule, i.e., the if-statement in line 3 of the algorithm holds
and line 4 is executed, we say that this schedule is interrupted. Observe that, due to
interruption, the sets R(i) are not necessarily disjoint. Also, observe that p(1) = O,
and if schedule S(i) was interrupted, we have p(i+1) = O and t(i+1) = α ·Opt(t(i+1)).
If S(i) was not interrupted, p(i+1) is the ending position of S(i).

The following observations follow directly from the definitions above and the fact
that requests in R(i) \R(i−1) were released after time t(i−1).

Observation 5.4. For every request sequence, the following hold.

a) For every i > 1, Opt(t(i)) ≥ t(i−1) ≥ α ·Opt(t(i−1)).

b) For every x, y ∈M and every subset of requests R, we have

|S(R, x)| ≤ d(x, y) + |S(R, y)|.

c) Let i > 1 and assume that S(i−1) was not interrupted. Let x be the starting
position of the request in R(i) that is picked up first by Opt(t(i)). Then

Opt(t(i)) ≥ t(i−1) + |S(R(i), x)| ≥ α ·Opt(t(i−1)) + |S(R(i), x)|.

5.2.2 Upper bound for Lazy on general metric spaces

This section is concerned with the proof of the upper bound in Theorem 5.1. For
the remainder of this section, let (r1, . . . , rn) be some fixed request sequence. Let k
be the number of schedules started by Lazyα, and let S(i), t(i), p(i), R(i) (1 ≤ i ≤ k)
be defined as in the algorithm. Note that we slightly abuse notation here because
k, S(i), t(i), p(i), and R(i) depend on α. As it will always be clear from the context
what α is, we allow this implicit dependency in the notation.

As it will be crucial for the proof in which order Opt and Lazy serve requests,
we introduce the following notation. Let

• r
(i)
f,Opt = (a

(i)
f,Opt, b

(i)
f,Opt; t

(i)
f,Opt) be the first request in R(i) picked up by Opt[t(i)],

• r
(i)
l,Opt = (a

(i)
l,Opt, b

(i)
l,Opt; t

(i)
l,Opt) be the last request in R(i) delivered by Opt[t(i+1)],

• r
(i)
f,Lazy = (a

(i)
f,Lazy, b

(i)
f,Lazy; t

(i)
f,Lazy) be the first request in R(i) picked up by Lazyα,

• r
(i)
l,Lazy = (a

(i)
l,Lazy, b

(i)
l,Lazy; t

(i)
l,Lazy) be the last request in R(i) delivered by Lazyα.

Note that, if S(i) was not interrupted, the ending position of the server in that
schedule is also the starting position of the next schedule, i.e., b(i)l,Lazy = p(i+1).

Definition 5.5. We say that the i-th schedule is α-good if

a) |S(i)| ≤ Opt(t(i)) and

b) t(i) + |S(i)| ≤ (1 + α) ·Opt(t(i)).

In this section, we prove by induction on i that, for α ≥ 1
2
+
√
11/12, every

schedule is α-good. Note that this immediately implies the upper bound in Theo-
rem 5.1.

We begin with proving the base case.
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Observation 5.6 (Base case). For every α ≥ 1, the first schedule is α-good.

Proof. Recall that S(1) begins in O and is the shortest tour serving all requests
in R(1). Opt[t(1)] begins in O and serves all requests in R(1), too. This implies
that |S(1)| ≤ Opt(t(1)). From the fact that we have t(1) = α · Opt(t(1)), it follows
that t(1) + |S(1)| ≤ (1 + α) ·Opt(t(1)).

Next, we observe briefly that the induction step is not too difficult when the last
schedule was interrupted.

Observation 5.7 (Interruption case). Let α ≥ 1. Assume that schedule S(i) was
interrupted. Then S(i+1) is α-good.

Proof. If schedule S(i) was interrupted, we have p(i+1) = O and t(i+1) = α·Opt(t(i+1)).
Note that Opt(t(i+1)) begins in O and serves, amongst others, all requests in R(i+1)

so that we have
|S(i+1)| = |S(R(i+1), O)| ≤ Opt(t(i+1)).

Using that t(i+1) = α ·Opt(t(i+1)), this also implies condition (b) of being α-good,
i.e., that t(i+1) + |S(i+1)| ≤ (1 + α) ·Opt(t(i+1)).

For this reason, we will assume in many of the following statements that the
schedule S(i) was not interrupted.

The following lemma shows that the first requirement for schedule S(i+1) to
be α-good is satisfied.

Lemma 5.8. Let α ≥ 1+
√
17

4
≈ 1.281 and i ∈ {1, . . . , k − 1}. If S(i) is α-good, then

we have |S(i+1)| ≤ Opt(t(i+1)).

Proof. First, note that if S(i) was interrupted, the statement follows by Observa-
tion 5.7. Therefore, assume from now on that S(i) was not interrupted. Also,
if Opt[t(i+1)] serves r

(i)
l,Lazy at p(i+1) before collecting any request from R(i+1), we

trivially have
|S(i+1)| = |S(R(i+1), p(i+1))| ≤ Opt(t(i+1)).

Therefore, assume additionally that Opt[t(i+1)] collects r(i+1)
f,Opt before serving r

(i)
l,Lazy.

Next, we prove the following assertion.

Claim 5.9. In the setting described above, we have

d(a
(i+1)
f,Opt, p

(i+1)) ≤
(
1 +

2

α
− α

)
Opt(t(i)). (5.2)

Proof. Note that r
(i+1)
f,Opt is released not earlier than t(i) ≥ αOpt(t(i)). Since we

assume that Opt(t(i+1)) collects r
(i+1)
f,Opt before serving r

(i)
l,Lazy at p(i+1), we obtain

Opt(t(i+1)) ≥ α ·Opt(t(i)) + d(a
(i+1)
f,Opt, p

(i+1)). (5.3)

Upon the arrival of the last-revealed request in R(i+1), we have Opt(t) = Opt(t(i+1))
and, at that time, the server can finish its current schedule and return to the origin
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by time t(i) + |S(i)|+ d(p(i+1), O). As we assume that S(i) was not interrupted, this
yields

t(i) + |S(i)|+ d(p(i+1), O) > α ·Opt(t(i+1)). (5.4)

Combined, we obtain that

d(a
(i+1)
f,Opt, p

(i+1))
(5.3)
≤ Opt(t(i+1))− α ·Opt(t(i))

(5.4)
≤ 1

α
·
(
t(i) + |S(i)|+ d(p(i+1), O)

)
− α ·Opt(t(i))

S(i)α-good
≤ 1

α
·
(
(1 + α) ·Opt(t(i)) + d(p(i+1), O)

)
− α ·Opt(t(i))

≤
(
1 +

2

α
− α

)
Opt(t(i)),

where we have used in the last inequality that d(p(i+1), O) ≤ Opt(t(i)) because
Opt(t(i)) begins in O and has to serve r

(i)
l,Lazy at p(i+1). This completes the proof of

the claim.

Now, we turn back to proving Lemma 5.8. We obtain

|S(i+1)| ≤ d(p(i+1), a
(i+1)
f,Opt) + |S(R

(i+1), a
(i+1)
f,Opt)|

Obs 5.4c)
≤ d(p(i+1), a

(i+1)
f,Opt) + Opt(t(i+1))− α ·Opt(t(i))

(5.2)
≤
(
1 +

2

α
− 2α

)
Opt(t(i)) + Opt(t(i+1))

≤ Opt(t(i+1)),

where the last inequality follows from the fact that 1 + 2
α
− 2α ≤ 0 if and only

if α ≥ 1+
√
17

4
≈ 1.2808.

Recall that the goal of this section is to prove that every schedule is α-good.
So far, we have proven the base case (Observation 5.6) and |S(i+1)| ≤ Opt(t(i+1))
(Lemma 5.8) in the induction step. To complete the induction step, it remains to
show that t(i+1) + |S(i+1)| ≤ (1 +α) ·Opt(t(i+1)) assuming S(1), . . . , S(i) are α-good.
In Observation 5.7, we have already seen that this holds if S(i) was interrupted. To
show that the induction step also holds if S(i) was not interrupted, we distinguish
several cases for the order in which Opt serves the requests. In the following proofs,
when we talk about “the server’s behavior”, we always refer to the behavior of Lazy.
By contrast, we use “the behavior of Opt[t]” to specify, e.g., the order in which an
optimum solution handles the requests (that are revealed by time t). We begin with
the case that Opt[t(i+1)] picks up some request in R(i+1) before serving r

(i)
l,Lazy, i.e.,

that Opt[t(i+1)] does not follow the order of the S(i).

Lemma 5.10. Let α ≥ 1. Assume that S(i) is α-good and was not interrupted,
and that Opt[t(i+1)] picks up the request r

(i+1)
f,Opt before serving r

(i)
l,Lazy. Then we

have t(i+1) + |S(i+1)| ≤ (1 + α) ·Opt(t(i+1)).
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Proof. Using the order in which Opt handles the requests, we obtain the following.
After picking up r

(i+1)
f,Opt at a(i+1)

f,Opt after time t(i), Opt[t(i+1)] has to serve r(i)l,Lazy at p(i+1)

so that
Opt(t(i+1)) ≥ t(i) + d(p(i+1), a

(i+1)
f,Opt). (5.5)

After finishing schedule S(i), the server either waits until time α · Opt(t(i+1)) or
immediately starts the next schedule, i.e., we have

t(i+1) = max{α ·Opt(t(i+1)), t(i) + |S(i)|}.

If t(i+1) = α ·Opt(t(i+1)), the assertion follows immediately from Lemma 5.8. Thus,
assume t(i+1) = t(i) + |S(i)|. This yields

t(i+1) + |S(i+1)|
Obs 5.4b)
≤ t(i) + |S(i)|+ d(p(i+1), a

(i+1)
f,Opt) + |S(R

(i+1), a
(i+1)
f,Opt)|

S(i)α-good
≤ (1 + α) ·Opt(t(i)) + d(p(i+1), a

(i+1)
f,Opt)

+ |S(R(i+1), a
(i+1)
f,Opt)|

Obs 5.4a)
≤ 1 + α

α
t(i) + d(p(i+1), a

(i+1)
f,Opt) + |S(R

(i+1), a
(i+1)
f,Opt)|

Obs 5.4c)
≤ 1

α
t(i) + d(p(i+1), a

(i+1)
f,Opt) + Opt(t(i+1))

(5.5)
≤ 1

α

(
Opt(t(i+1))− d(p(i+1), a

(i+1)
f,Opt)

)
+ d(p(i+1), a

(i+1)
f,Opt)

+ Opt(t(i+1))

=

(
1 +

1

α

)
Opt(t(i+1)) +

(
1− 1

α

)
d(p(i+1), a

(i+1)
f,Opt)

≤ 2 ·Opt(t(i+1)),

where we have used in the last inequality that d(p(i+1), a
(i+1)
f,Opt) ≤ Opt(t(i+1))

as Opt[t(i+1)] has to visit both points. Since 2 ≤ 1+α, this completes the proof.

Next, we consider the case where Opt handles r
(i)
l,Lazy and r

(i+1)
f,Opt in the same

order as Lazy.

Lemma 5.11. Let α ≥ 1. Assume that schedules S(1), . . . , S(i) are α-good, S(i) was
not interrupted, and Opt[t(i+1)] serves r

(i)
l,Lazy before collecting r

(i+1)
f,Opt. If we have

d(p(i+1), a
(i+1)
f,Opt) + Opt(t(i)) ≤ α ·Opt(t(i+1)), (5.6)

then t(i+1) + |S(i+1)| ≤ (1 + α) ·Opt(t(i+1)).

Proof. Similarly as in the proof of Lemma 5.10, we can assume

t(i+1) = t(i) + |S(i)|. (5.7)
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We have

t(i+1) + |S(i+1)|
Obs 5.4b)
≤ t(i) + |S(i)|+ d(p(i+1), a

(i+1)
f,Opt) + |S(R

(i+1), a
(i+1)
f,Opt)|

S(i)α-good
≤ (1 + α) ·Opt(t(i)) + d(p(i+1), a

(i+1)
f,Opt)

+ |S(R(i+1), a
(i+1)
f,Opt)|

Obs 5.4c)
≤ (1 + α) ·Opt(t(i)) + d(p(i+1), a

(i+1)
f,Opt)

+ Opt(t(i+1))− α ·Opt(t(i))

= Opt(t(i+1)) + d(p(i+1), a
(i+1)
f,Opt) + Opt(t(i))

≤ (1 + α) ·Opt(t(i+1)),

where the last inequality follows from assumption (5.6).

Now that we have proven the case described in Lemma 5.11, i.e., where (5.6)
holds, we assume in the following the opposite case, i.e.,

d(p(i+1), a
(i+1)
f,Opt) > α ·Opt(t(i+1))−Opt(t(i)). (5.8)

The following lemma states that, in this case, the (i − 1)-th schedule (if it exists)
was interrupted, i.e., the i-th schedule starts in the origin at time α ·Opt(t(i)).

Lemma 5.12. Let α ≥ 1+
√
3

2
≈ 1.366. Assume that the i-th schedule is α-good and

was not interrupted, and Opt[t(i+1)] serves r
(i)
l,Lazy before collecting r

(i+1)
f,Opt. If (5.8)

holds, then p(i) = O and t(i) = α ·Opt(t(i)).

Proof. If i = 1, we obviously have p(i) = O and t(i) = α · Opt(t(i)). Thus, assume
that i ≥ 2. If r

(i)
l,Lazy ∈ (R(i−1) ∩R(i)), schedule S(i−1) was interrupted and, thus,

the statement holds. Otherwise, request r
(i)
l,Lazy is released while schedule S(i−1) is

running, i.e., t(i)l,Lazy ≥ t(i−1) ≥ α ·Opt(t(i−1)). Combining this with the assumption
that Opt[t(i+1)] serves r

(i)
l,Lazy before collecting r

(i+1)
f,Opt, we obtain

Opt(t(i+1)) ≥ t
(i)
l,Lazy + d(p(i+1), a

(i+1)
f,Opt)

≥ α ·Opt(t(i−1)) + d(p(i+1), a
(i+1)
f,Opt). (5.9)

Rearranging yields

α ·Opt(t(i−1))
(5.9)
≤ Opt(t(i+1))− d(p(i+1), a

(i+1)
f,Opt)

(5.8)
< Opt(t(i))− (α− 1)Opt(t(i+1))

Obs 5.4a)
≤ (1 + α− α2)Opt(t(i)),



5.2. Improved upper bounds for open online dial-a-ride 109

which is equivalent to

Opt(t(i−1)) <
(
1 +

1

α
− α

)
Opt(t(i)). (5.10)

By the assumption that S(i−1) is α-good, the server finishes schedule S(i−1) not later
than time (α + 1) ·Opt(t(i−1)). Thus, at the time when request r

(i)
l,Lazy is released,

the server can serve all loaded requests and return to the origin by time

max{(α+ 1)Opt(t(i−1)), t
(i)
l,Lazy}+ Opt(t(i−1)). (5.11)

In the case where max{(α+ 1)Opt(t(i−1)), t
(i)
l,Lazy} = (α+ 1)Opt(t(i−1)), we can

bound (5.11) by

(α + 2) ·Opt(t(i−1))
(5.10)
< (α+ 2)

(
1 +

1

α
− α

)
Opt(t(i))

=

(
3 +

2

α
− α2 − α

)
Opt(t(i))

≤ α ·Opt(t(i)),

where the last inequality holds for α ≥ 1.343.
In the case where max{(α+1)Opt(t(i−1)), t

(i)
l,Lazy} = t

(i)
l,Lazy, we can bound (5.11)

as follows. Since r
(i)
l,Lazy ∈ R(i), it holds that

t
(i)
l,Lazy + Opt(t(i−1)) ≤ Opt(t(i)) + Opt(t(i−1))

(5.10)
≤
(
2 +

1

α
− α

)
Opt(t(i)) ≤ α ·Opt(t(i)),

where the last inequality holds for α ≥ 1+
√
3

2
≈ 1.366. This implies that (5.11) can

be bounded in either case by α ·Opt(t(i)), which means that the server can return
to the origin by time α ·Opt(t(i)). Therefore, we have p(i) = O.

We now come to the technically most involved case.

Lemma 5.13. Let α ≥ 1
2
+
√

11/12 ≈ 1.457. Assume that the i-th schedule is α-
good and was not interrupted, and Opt[t(i+1)] serves r

(i)
l,Lazy before collecting r

(i+1)
f,Opt.

If (5.8) holds, then t(i+1) + |S(i+1)| ≤ (1 + α) ·Opt(t(i+1)).

Proof. We begin by proving the following assertion.

Claim 5.14. Opt[t(i+1)] serves all requests in R(i) before picking up r
(i+1)
f,Opt in a

(i+1)
f,Opt.

Proof. To prove the claim, assume otherwise, i.e., that Opt[t(i+1)] serves r(i)l,Opt after
collecting r

(i+1)
f,Opt. The request r

(i+1)
f,Opt is released after schedule S(i) is started, i.e.,
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after time α ·Opt(t(i)). Thus,

Opt(t(i+1)) ≥ α ·Opt(t(i)) + d(a
(i+1)
f,Opt, b

(i)
l,Opt)

△-ineq
≥ α ·Opt(t(i)) + d(a

(i+1)
f,Opt, p

(i+1))

− d(b
(i)
l,Opt, O)− d(O, p(i+1)). (5.12)

Since S(i) starts in O, ends in p(i+1) and serves r
(i)
l,Opt, we obtain

d(O, b
(i)
l,Opt) + d(b

(i)
l,Opt, O) ≤ |S(i)|+ d(p(i+1), O)

Lem 5.8
≤ Opt(t(i)) + d(p(i+1), O). (5.13)

Furthermore, because Opt[t(i+1)] serves r
(i)
l,Lazy at p(i+1) before picking up r

(i+1)
f,Opt

at a
(i+1)
f,Opt, we have

Opt(t(i+1)) ≥ d(O, p(i+1)) + d(p(i+1), a
(i+1)
f,Opt)

(5.8)
> d(O, p(i+1)) + α ·Opt(t(i+1))−Opt(t(i)). (5.14)

Combining all of the above yields

Opt(t(i+1))
(5.12),(5.13)
≥ α ·Opt(t(i)) + d(a

(i+1)
f,Opt, p

(i+1))

− Opt(t(i)) + d(p(i+1), O)

2
− d(O, p(i+1))

(5.14)
> α ·Opt(t(i)) + d(a

(i+1)
f,Opt, p

(i+1))− Opt(t(i))
2

− 3

2

(
Opt(t(i))− (α− 1)Opt(t(i+1))

)
=

(
3

2
α− 3

2

)
Opt(t(i+1))− (2− α)Opt(t(i)) + d(a

(i+1)
f,Opt, p

(i+1))

(5.8)
>

(
3

2
α− 3

2

)
Opt(t(i+1))− (2− α)Opt(t(i))

+ α ·Opt(t(i+1))−Opt(t(i))

=

(
5

2
α− 3

2

)
Opt(t(i+1))− (3− α)Opt(t(i))

Obs 5.4a)
≥

(
5

2
α− 3

2

)
Opt(t(i+1))−

(
3

α
− 1

)
Opt(t(i+1))

=

(
5

2
α− 1

2
− 3

α

)
Opt(t(i+1))

≥ Opt(t(i+1))

where the last inequality holds if and only if α ≥ 1
10
· (3 +

√
129) ≈ 1.436. As this

is a contradiction, we have that Opt[t(i+1)] serves all requests in R(i) before picking
up r

(i+1)
f,Opt in a

(i+1)
f,Opt. This completes the proof of the claim.
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Now that we have established the claim, we turn back to the proof of Lemma 5.13.
Let T ≥ 0 denote the time it takes Opt[t(i+1)] until it has served r

(i)
l,Opt, i.e., all

requests from R(i). First, observe that

T ≥ Opt(t(i)). (5.15)

By the claim, we have

Opt(t(i+1)) ≥ T + d(b
(i)
l,Opt, a

(i+1)
f,Opt) + |S(R

(i+1), a
(i+1)
f,Opt)|. (5.16)

The algorithm Lazyα finishes R(i+1) by time

t(i+1)+S(i+1) Lem 5.12
= α ·Opt(t(i)) + |S(i)|+ |S(i+1)|
≤ α ·Opt(t(i)) + |S(i)|+ d(p(i+1), a

(i+1)
f,Opt) + |S(R

(i+1), a
(i+1)
f,Opt)|

≤ α ·Opt(t(i)) + |S(i)|+ d(p(i+1), b
(i)
l,Opt) + d(b

(i)
l,Opt, a

(i+1)
f,Opt)

+ |S(R(i+1), a
(i+1)
f,Opt)|

(5.16)
≤ α ·Opt(t(i)) + |S(i)|+d(p(i+1), b

(i)
l,Opt)

+ Opt(t(i+1))− T. (5.17)

As S(i) visits b
(i)
l,Opt before p(i+1) and Opt[t(i+1)] visits p(i+1) before b

(i)
l,Opt,

|S(i)|+ T ≥
(
d(O, b

(i)
l,Opt) + d(b

(i)
l,Opt, p

(i+1))
)

+
(
d(O, p(i+1)) + d(p(i+1), b

(i)
l,Opt)

)
= 2 · d(p(i+1), b

(i)
l,Opt) + d(O, b

(i)
l,Opt) + d(O, p(i+1))

≥ 3 · d(p(i+1), b
(i)
l,Opt). (5.18)

Combined, we obtain that the algorithm finishes not later than

t(i+1) + |S(i+1)|
(5.17)
≤ α ·Opt(t(i)) + |S(i)|+ d(p(i+1), b

(i)
l,Opt) + Opt(t(i+1))− T

(5.18)
≤ α ·Opt(t(i)) + |S(i)|+ |S

(i)|+ T

3
+ Opt(t(i+1))− T

Obs 5.4a)
≤ 2 ·Opt(t(i+1)) +

4

3
|S(i)| − 2

3
T

Lem 5.8,(5.15)
≤ 2 ·Opt(t(i+1)) +

2

3
Opt(t(i))

Obs 5.4a)
≤

(
2 +

2

3α

)
·Opt(t(i+1))

≤ (1 + α) ·Opt(t(i+1))

where the last inequality holds if and only if α ≥ 1
2
+
√
11/12.

The above results enable us to prove the upper bound in Theorem 5.1.



112 Chapter 5. Online dial-a-ride

Proof of upper bound in Theorem 5.1. Our goal was to prove by induction that ev-
ery schedule is α-good for α ≥ 1

2
+
√
11/12. In Observation 5.6, we have proven

the base case. In the induction step, we have distinguished several cases. First, we
have seen in Observation 5.7 that the induction step holds if the previous schedule
was interrupted. Next, we have seen in Lemma 5.8 that the induction hypothesis
implies |S(i+1)| ≤ Opt(t(i+1)). If the previous schedule was not interrupted, we have
first seen in Lemma 5.10 that the induction step holds if Opt[t(i+1)] loads r

(i+1)
f,Opt

before serving r
(i)
l,Opt. If Opt[t(i+1)] serves r(i)l,Opt before loading r

(i+1)
f,Opt, the induction

step holds by Lemma 5.11 and Lemma 5.13.

5.2.3 Upper bound for Lazy on the half-line

In this subsection, we prove that Lazy achieves a better competitive ratio if the
metric space considered is the half-line. In particular, we prove Theorem 5.2, i.e.,
that Lazyα is (1 + α)-competitive for α = 1+

√
3

2
≈ 1.366. Later, we will show that

our bound is tight.
Note that all of the results in the previous subsection, except for Lemma 5.13,

hold for all α ≥ 1+
√
3

2
≈ 1.366. Thus, it only remains to show a counterpart to

Lemma 5.13 for α = 1+
√
3

2
on the half-line. Then the proof of Theorem 5.2 is anal-

ogous to the proof of Theorem 5.1, where we only have to replace Lemma 5.13 by
the following result.

Lemma 5.15. Let 1+
√
3

2
≤ α ≤ 2, and let M = R≥0. Assume that the i-th schedule

is α-good and was not interrupted, and that Opt[t(i+1)] serves r
(i)
l,Lazy before collect-

ing r
(i+1)
f,Opt. If (5.8) holds, then t(i+1) + |S(i+1)| ≤ (1 + α) ·Opt(t(i+1)).

Proof. First, observe that, in Lemma 5.13, we have the same assumptions except
that we worked on general metric spaces. Therefore, all the inequalities shown in
Lemma 5.13 hold in this setting, too, so that we can use them for our proof. Next,
note that on the half-line, we have for any x, y ∈M

d(x, y) ≤ max{d(x,O), d(y,O)}. (5.19)

We show that this implies that a similar claim as in Lemma 5.13 holds.

Claim 5.16. Opt[t(i+1)] serves all requests in R(i) before picking up r
(i+1)
f,Opt in a

(i+1)
f,Opt.

Proof. To prove the claim, assume otherwise, i.e., that Opt[t(i+1)] serves r(i)l,Opt after
collecting r

(i+1)
f,Opt. The request r

(i+1)
f,Opt is released after schedule S(i) is started, i.e.,

after time α ·Opt(t(i)). Thus,

Opt(t(i+1)) ≥ α ·Opt(t(i)) + d(a
(i+1)
f,Opt, b

(i)
l,Opt)

≥ α ·Opt(t(i)) + d(a
(i+1)
f,Opt, p

(i+1))− d(b
(i)
l,Opt, p

(i+1))

(5.19)
≥ α ·Opt(t(i)) + d(a

(i+1)
f,Opt, p

(i+1))

−max{d(b(i)l,Opt, O), d(O, p(i+1))}. (5.20)
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Combining the above with the results from the proof of Lemma 5.13 yields

Opt(t(i+1))
(5.20),(5.13)
≥ α ·Opt(t(i)) + d(a

(i+1)
f,Opt, p

(i+1))

−max
{Opt(t(i)) + d(p(i+1), O)

2
, d(O, p(i+1))

}
(5.14)
> α ·Opt(t(i)) + d(a

(i+1)
f,Opt, p

(i+1))

−max
{2Opt(t(i))− (α− 1)Opt(t(i+1))

2
,

Opt(t(i))− (α− 1)Opt(t(i+1))
}

=
α− 1

2
Opt(t(i+1)) + (α− 1)Opt(t(i)) + d(a

(i+1)
f,Opt, p

(i+1))

(5.8)
>
(α− 1

2
+ α

)
Opt(t(i+1)) + (α− 2)Opt(t(i))

Obs 5.4a)
≥

(α− 1

2
+ α +

α− 2

α

)
Opt(t(i+1))

≥ Opt(t(i+1))

where the last inequality holds for all α ≥ 4
3
. As this is a contradiction, we have

that Opt[t(i+1)] serves all requests in R(i) before picking up r
(i+1)
f,Opt in a

(i+1)
f,Opt. This

completes the proof of the claim.

Now that we have established the claim, we turn back to the proof of Lemma 5.15.
Let T ≥ 0 denote the time it takes Opt[t(i+1)] until it has served r

(i)
l,Opt, i.e., all

requests from R(i). First, observe that

T ≥ Opt(t(i)). (5.21)

If p(i+1) ≥ b
(i)
l,Opt, as Opt[t(i+1)] visits p(i+1) before b

(i)
l,Opt, we have

T ≥ d(O, p(i+1)) + d(p(i+1), b
(i)
l,Opt)

(5.19)
≥ 2 · d(p(i+1), b

(i)
l,Opt).

Otherwise, if p(i+1) < b
(i)
l,Opt, as S(i) visits b

(i)
l,Opt before p(i+1), we have

T
(5.21)
≥ Opt(t(i)) ≥ |S(i)| ≥ d(O, b

(i)
l,Opt) + d(b

(i)
l,Opt, p

(i+1))
(5.19)
≥ 2 · d(b(i)l,Opt, p

(i+1)).

Thus, in either case, we have

d(b
(i)
l,Opt, p

(i+1)) ≤ T

2
. (5.22)

Combined, we obtain that the algorithm finishes not later than

t(i+1) + |S(i+1)|
(5.17)
≤ α ·Opt(t(i)) + |S(i)|+ d(p(i+1), b

(i)
l,Opt) + Opt(t(i+1))− T
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(5.22)
≤ α ·Opt(t(i)) + |S(i)|+ T

2
+ Opt(t(i+1))− T

Obs 5.4a)
≤ 2 ·Opt(t(i+1)) + |S(i)| − T

2
Lem 5.8, (5.21)
≤ 2 ·Opt(t(i+1)) +

1

2
Opt(t(i))

Obs 5.4a)
≤

(
2 +

1

2α

)
·Opt(t(i+1)) ≤ (1 + α) ·Opt(t(i+1))

where the last inequality holds if and only if α ≥ 1+
√
3

2
≈ 1.366.

To complete our upper bounds, we comment on the performance of the Lazy
algorithm in the preemptive vesion of the open online dial-a-ride problem. Recall
that, in the preemptive setting, the server is allowed to unload requests anywhere and
pick them up later again. In this version, prior to our work, the best known upper
bound on general metric spaces was 2.696 [21] and the best known upper bound
on the line and the half-line was 2.41 [25]. Clearly, every non-preemptive algorithm
can also be applied in the preemptive setting, however, its competitive ratio may be
degraded since the optimum might use preemption. Our algorithm Lazy repeatedly
executes optimal solutions for subsets of requests and can be turned preemptive by
using preemptive solutions. With this change, our analysis of Lazy still carries
through in the preemptive case and improves the state of the art for general metric
spaces and the half-line.

Corollary 5.17. The competitive ratio of the open preemptive online dial-a-ride
problem with any capacity c ∈ N ∪ {∞} is upper bounded by

a) 3
2
+
√

11
12

≈ 2.457 and this bound is achieved by Lazy
(

1
2
+
√

11
12

)
,

b) 1 + 1+
√
3

2
≈ 2.366 on the half-line and this bound is achieved by Lazy(1+

√
3

2
).

5.2.4 Factor-revealing approach for the half-line

We illustrate how we made use of the factor revealing approach described in Sec-
tion 5.1.2 for the dial-a-ride problem on the half-line. Consider the following vari-
ables (recall that k ∈ N is the number of schedules started by Lazyα).

• t1 = t(k−1), the start time of the second to last schedule

• t2 = r(k), the start time of the last schedule

• s1 = |S(k−1)|, the duration of the second to last schedule

• s2 = |S(k)|, the duration of the last schedule

• Opt1 = Opt(t(k−1)), duration of the optimal tour serving requests released
until t(k−1)



5.2. Improved upper bounds for open online dial-a-ride 115

• Opt2 = Opt(t(k)), duration of the optimal tour

• p1 = p(k), the position where Lazyα ends the second to last schedule

• p2 = a
(k)
f,Opt, the position of the first request in R(k) picked up first by the

optimal tour

• sa2 = |S(R(k), a
(k)
f,Opt)|, duration of the schedule serving R(k) starting in p2

• d = d(p(k), a
(k)
f,Opt), the distance between p1 and p2

With these variables x =
(
t1, t2, s1, s2,Opt1,Opt2, p1, p2, s

a
2, d
)
, we can create the

following valid optimization problem.

max t2 + s2

s.t. Opt2 = 1 (5.23)
d = |p1 − p2| (5.24)
t2 = max{t1 + s1, αOpt2} (5.25)
t1 ≥ αOpt1 (5.26)

Opt1 ≥ p1 (5.27)
s2 ≤ d+ sa2 (5.28)

Opt2 ≥ t1 + sa2 (5.29)
t1 + s1 ≤ (1 + α)Opt1 (5.30)
Opt2 ≥ p1 + d or Opt2 ≥ t1 + d (5.31)

d ≥ αOpt2 −Opt1 or s1 − p1 ≤ 2(Opt2 − p2) (5.32)
x ≥ 0 (5.33)

The notation in (5.31) and (5.32) means that at least one of the two inequali-
ties has to be satisfied. Note that all constraints except for (5.24), (5.25), (5.31),
and (5.32) are linear. In order to make the problem linear, we introduce a bi-
nary variable for each of these constraints b1, . . . , b4 ∈ {0, 1}, let M > 0 be a
large enough constant and we proceed as follows: For equality (5.24), note that we
have |p1 − p2| = max{p1 − p2, p2 − p1} and we replace the constraint by the inequal-
ities

d ≥ p1 − p2,

d ≥ p2 − p1,

d ≤ p1 − p2 + b1 ·M,

d ≤ p2 − p1 + (1− b1) ·M.

In the above, b1 = 0 indicates the case that max{p1 − p2, p2 − p1} = p1 − p2. In
equality (5.25), we handle the maximum analogously, using the binary variable b2.
Constraint (5.31) can be replaced by the inequalities

Opt2 ≥ p1 + d− b3 ·M,

Opt2 ≥ t1 + d− (1− b3) ·M,
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and (5.32) is again handled similarly, using the binary variable b4. This results
in a mixed-integer linear program (MILP), that is, a linear program with certain
variables required to take integer values. Using a MILP solver, one finds that the
following is an optimal solution.(

t1, t2, s1, s2,Opt1,Opt2, p1, p2, s
a
2, d, b1, b2, b3, b4

)
=
(
1,

α + 1

α
,
1

α
, 2− α,

1

α
, 1, 0, 2− α, 0, 2− α, 0, 1, 1, 1

)
The objective function value of this solution is max{3+ 1

α
−α, 1+α}. This expression

is minimized for α = 1+
√
3

2
> 1.366.

5.3 Lower bounds on the competitive ratio of Lazy

In this section, we provide lower bounds on the competitive ratio of Lazyα. More
precisely, we show the following.

Theorem 5.18. For all α ≥ 0, the algorithm Lazyα has a competitive ratio of at
least 3

2
+
√

11/12 ≈ 2.457 for open online dial-a-ride on general metric spaces for
every capacity c ∈ N ∪ {∞}.

Note that this implies that our parameter choice in Section 5.2.2 is optimal, i.e.,
this completes the proof of Theorem 5.1.

Our proof will consist of a lower bound construction for α ≥ 1 and a separate
construction for α < 1. In the following constructions, we let the metric space (M,d)
be the real line, i.e., M = R, O = 0, and d(a, b) = |a−b|. Note that lower bounds on
the line trivially carry over to general metric spaces. Moreover, our constructions
work for any given server capacity c ∈ N ∪ {∞} because, in our construction, a
larger server capacity does neither change the behavior of the optimum solution nor
the behavior of Lazy.

First, observe that, for any α ≥ 0, the competitive ratio of Lazyα is lower
bounded by 1 + α. This can be easily seen by observing the request sequence
consisting of the single request r1 = (1, 1; 1). In this case, the offline optimum has
completed the sequence by time 1, whereas Lazyα waits in O until time max(α, 1)
and then moves to 1 and serves r1 not earlier than 1 + α.

Observation 5.19. For any α ≥ 0, Lazyα has a competitive ratio of at least 1+α
for the open online dial-a-ride problem on the line for any capacity c ∈ N ∪ {∞}.

This gives the desired lower bound of (3/2+
√

11/12) for all α ≥ 1/2+
√

11/12.
Now, we give a lower bound construction for the case 1 ≤ α < 1/2 +

√
11/12.

Proposition 5.20. For α ≥ 1, Lazyα has a competitive ratio of at least 2+ 2
3α

for
the open online dial-a-ride problem on the line.
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0

position

time

Lazy
Opt

3α Lazy

1

−1

2− 3α− ε

Figure 5.2: Instance of the open online dial-a-ride problem on the line where Lazyα

has a competitive ratio of at least 2 + 2
3α

for all α ≥ 1.

Proof. First, observe that, for α ≥ 1/2 +
√
11/12, we have 2 + 2

3α
≤ 1 + α so that

the assertion follows from Lemma 5.19. Therefore, let α ∈ [1, 1/2 +
√
11/12) and

let ε > 0 be small enough such that 3α + 2 > 3α2 + αε. Note that this is possible
because 3α+ 2 > 3α2 for α ∈ [1, (1/2) +

√
11/12).

We construct an instance of the open online dial-a-ride problem, where the com-
petitive ratio of Lazyα converges to 2 + 2

3α
for ε → 0 (cf. Figure 5.2). We define

the instance by giving the requests

r1 = (0, 1; 0), r2 = (0,−1; 0), and r3 = (2− 3α− ε, 2− 3α− ε; 3α + ε).

One solution is to first serve r1 and then r2. This is possible in 3 time units and,
after this, the server is in position −1. Then, the server can reach point 2− 3α− ε
by time 3 + (−2 + 3α + ε − 1) = 3α + ε. At this point in time, r3 is released and
can immediately be served. Thus, we have

Opt := Opt(3α+ ε) = 3α+ ε.

We now analyze what Lazyα does on this request sequence. Note that we
have Opt(0) = 3. Thus, the server waits in O until time 3α. Since no new request
arrives until this time, the server starts an optimal schedule serving r1 and r2.
Without loss of generality, we can assume that Lazyα starts by serving r2, because
the starting positions and destinations of r1 and r2 are symmetrical. At time 3α+ε,
request r3 is released, and the server has currently loaded r2. Delivering r2 and
returning to the origin takes the server until time 3α+ 2. By definition of α and ε,
we have

3α + 2 > 3α2 + αε = αOpt. (5.34)

This implies that the server is not interrupted in its current schedule. It continues
serving r2 and then serves r1 at time 3α + 3. Together with (5.34), it follows that,
after serving r1, the server immediately starts serving the remaining request r3.
Moving from 1 to 2− 3α− ε takes 3α− 1+ ε time units, i.e., the server serves r3 at
time (3α + 3) + (3α− 1 + ε) = 6α + 2 + ε. Thus, the competitive ratio is at least

6α + 2 + ε

Opt
=

6α + 2 + ε

3α + ε
= 2 +

2− ε

3α + ε
.
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0
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α+ε
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1

1
2

Figure 5.3: Instance of the open online dial-a-ride problem on the line where Lazyα

has a competitive ratio of at least 1 + 3
α+1

for all α ∈ [0, 1).

The statement follows by taking the limit ε→ 0.

Next, we give a lower bound construction for α < 1.

Proposition 5.21. For α ∈ [0, 1), the algorithm Lazyα has a competitive ratio of
at least 1 + 3

α+1
for the open dial-a-ride problem on the half-line.

Proof. Let α ∈ [0, 1) and ε ∈ (0,min{α
2
, 1
α
− α, 1 − α}). We construct an instance

of the open dial-a-ride problem, where the competitive ratio of Lazyα converges
to 1 + 3

α+1
for ε→ 0 (cf. Figure 5.3). We define the instance by giving the requests

r1 =

(
0,

1

2
; 0

)
, r2 = (1, 1; 0), r3 = (0, 0;α + ε),

r4 =

(
1

2
+ ε, 1;α+ ε

)
, and r5 = (1, 1;α + 1 + ε).

One solution is to first wait in O until time α+ ε and serve r3. Then, the server
can pick up and deliver r1, move to 1

2
+ ε, and immediately do the same with r4.

This can be done by time α + 1 + ε. Now, the server is in position 1 and can thus
immediately serve r2 and r5. It finishes serving all request in time α + 1 + ε. Since
the last request is released at time α + 1 + ε, we have

Opt := Opt(α+ 1 + ε) = α + 1 + ε. (5.35)

We now analyze what Lazyα does on this request sequence. Note that we
have Opt(0) = 1. Hence, the server waits in O until time α. Since no new requests
arrive until this time, the server starts an optimal schedule serving r1 and r2, i.e.,
picks up r1 and starts moving towards position 1

2
. At time α + ε, r3 and r4 are

released. We have Opt(α + ε) = α + 1 + ε. Serving the loaded request r1 and
returning to 0 would take the server until time

α + 1
ε< 1

α
−α

> α + (α2 + αε) = α(α + 1 + ε) = α ·Opt(α+ ε). (5.36)
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Figure 5.4: Lower bounds on the competitive ratio of Lazyα depending on α. The
lower bound of Observation 5.19 is depicted in green, the lower bound of Proposi-
tion 5.20 in red, and the lower bound of Proposition 5.21 in orange.

Thus, the server keeps following its tour, i.e., it serves r1 and then r2 at time α + 1.
By (5.36) and since Opt(α + 1) = Opt(α + ε), the server immediately starts serv-
ing r3 and r4. The shortest tour is serving r4 first, i.e., the server starts moving
towards 1

2
+ ε. At time α+ 1 + ε, request r5 is released. Since

α + 1 + ε
(5.35)
= Opt(α+ 1 + ε) > α ·Opt(α + 1 + ε),

the server keeps following its schedule. It completes that schedule in position O
at time (α+ 1) + (1− 2ε) + 1 = 3 + α− 2ε. Then, the server starts its last tour in
order to serve r5. It moves to 1 and finishes serving the last request at time 4+α−2ε.
Thus, the competitive ratio is

4 + α− 2ε

Opt
=

4 + α− 2ε

α + 1 + ε
= 1 +

3− 3ε

α + 1 + ε
.

The statement follows by taking the limit ε→ 0.

Now, we combine our results for the lower bounds (cf. Figure 5.4). Combin-
ing Observation 5.19 and Proposition 5.20, we obtain that, for α ≥ 1, Lazyα has a
competitive ratio of at least max{1 + α, 2 + 2/(3α)}. Minimizing over α ≥ 1 yields
a competitive ratio of at least 3/2 +

√
11/12 > 2.457. For the case α < 1, we have

seen in Proposition 5.21 that the algorithm Lazyα has a competitive ratio of at
least 1 + 3/(α+ 1) > 5/2. Together, this proves the lower bound in Theorem 5.18.

5.3.1 Lower bound on the half-line

We go on to show lower bounds on the performance of Lazy on the half-line. More
precisely, we prove the following.
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0

position

time

Lazy
Opt

00 Opt = 4α Lazy

4α− 2

2− ε

1

Figure 5.5: Instance of the open online dial-a-ride problem on the half-line where
Lazyα has a competitive ratio of at least 2 + 1

2α
for all α ∈ [1, 1.366).

Theorem 5.22. For all α ≥ 0, the competitive ratio of Lazyα for open online dial
a ride on the half-line for every capacity c ∈ N ∪ {∞} is at least 3+

√
3

2
≈ 2.366.

This shows that our parameter choice in Section 5.2.3 is optimal, i.e., together
with the upper bounds from that section, this result implies Theorem 5.2.

Note that the lower bound constructions in the proofs of Observation 5.19 and
Proposition 5.21 are instances on the half-line. Thus, the lower bounds also hold on
the half-line. Combining these two results gives that, for α ∈ [0, 1)∪ [1+

√
3

2
,∞), the

competitive ratio of Lazyα is at least 3+
√
3

2
≈ 2.366.

The next result closes the gap between α < 1 and α ≥ 1.366.

Proposition 5.23. For every α ∈ [1, 1.366), the algorithm Lazyα has a competitive
ratio of at least 2 + 1

2α
for the open online dial-a-ride problem on the half-line for

every capacity c ∈ N ∪ {∞}.

Proof. Let α ∈ [1, 1.366) and let ε > 0 be sufficiently small. We define an instance
(cf. Figure 5.5) by giving the request sequence

r1 = (0, 1; 0), r2 = (1, 0; 0), r3 = (1, 2− ε; 0), and r4 = (4α− 2, 4α− 2; 4α).

The offline optimum delivers the requests in the order (r1, r2, r3, r4) with no waiting
times. This takes 4α time units.

On the other hand, because Opt(0) = 4 − 2ε, Lazyα waits in the origin until
time α(4 − 2ε) and starts serving requests r1, r2, r3 in the order (r1, r3, r2). At
time 4α, request r4 is released. At this time, serving the loaded request r1 and
returning to the origin takes time

α(4− 2ε) + 2 = 4α+ 2− 2αε
α∈[1,1.366),ε≪1

> 4α2 = α ·Opt(4α).

Thus, Lazyα continues its schedule and afterwards serves r4. Overall, this takes
time α(4 − 2ε) + (4 − 2ε) + 4α − 2 = 8α + 2 − (2α + 2)ε. We obtain that the
competitive ratio of Lazyα is at least

lim
ε→0

8α + 2− (2α + 2)ε

4α
= 2 +

1

2α
.
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Figure 5.6: Lower bounds on the competitive ratio of Lazyα depending on α. The
lower bound of Observation 5.19 is depicted in red, the lower bound of Proposi-
tion 5.21 in blue, and the lower bound of Proposition 5.23 in green.

By combining the results from Observation 5.19, Proposition 5.21, and Proposi-
tion 5.23 (cf. Figure 5.6), we obtain Theorem 5.22, i.e., that the competitive ratio
of Lazy on the half-line cannot be better than 3+

√
3

2
≈ 2.366.

5.4 Outlook

In this chapter, we presented an improved algorithm, Lazy, for the open online
dial-a-ride problem and proved that it achieves a competitive ratio of 2.457 on
general metric spaces and 2.366 on the half-line. The best known lower bounds for
this problem are 2.05 on general metric spaces [23] and 1.9 on the half-line [90].
Determining the exact competitive ratio of the open online dial-a-ride problem thus
remains an open question.

Importantly, our results show that the natural candidate Replan is not optimal,
as a lower bound of 2.5 is known for this algorithm [7]. Furthermore, the same
lower bound of 2.5 is known for schedule-based algorithms, i.e., algorithms that
divide execution into subschedules such that, when a subschedule starts, it serves
all requests revealed but not yet served at that time, and these subschedules are never
interrupted. Our results imply that schedule-based algorithms cannot be optimal
either. Moreover, we have established lower bounds for Lazy, showing that our
analysis is tight.

Thus, to obtain an algorithm with a better competitive ratio, a new approach
is needed. For example, instead of simply executing a shortest schedule for the
unserved requests, one might want to take into account other aspects when planning.
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For instance, to anticipate that schedules can be interrupted, one could minimize the
sum of completion times rather than the overall completion time. Another objective
could be to choose schedules that end at a position closer to the origin.

Last, we remark that there are numerous variants of the dial-a-ride problem
studied in the literature. This includes settings where the request sequence has to
fulfill some reasonable additional properties [26, 66, 86], where the server is presented
with additional [2, 7] or less [89] information, where the server has some additional
abilities [27, 73], where the server has to handle requests in a given order [65, 73],
where the requests have to be served before some deadline [112], where the distances
between points are not necessarily symmetric [8], or where we consider different
objectives than the completion time [9, 19, 20, 66, 71, 72, 84, 85, 86]. Other examples
include the study of randomized algorithms [83], or other metric spaces, such as a
circle [74]. We believe that applying Lazy, or an adaptation of it, to some of these
variants could serve as an interesting starting point for future research.



Chapter 6

Conclusion

We studied approximation algorithms for the traveling salesperson problem under
additional constraints, including incomplete information and restrictions on the run-
ning time.

The central focus of our work was the online graph exploration problem, in which
an agent is tasked to find a TSP tour in a graph that is learned gradually over time.
The key open question for this problem is whether a constant-competitive algorithm
exists [75]. We made progress on this problem in the following sense: We proved
that a constant-competitive algorithm exists on minor-free graphs (Theorem 2.2).
Prior to our work, the bounded-genus graphs [92] were the largest class known to
admit a constant competitive ratio. This indicates that difficult instance for online
graph exploration could be expanders or graphs fulfilling some density properties.
Investigating these types of graphs could serve as a starting point for developing
improved lower bound constructions.

In addition, we proved that the competitive ratio of the problem is at least 4
(Theorem 2.3), improving on the previously best known lower bound of 10/3 [23].
However, since our construction is planar, it cannot be used to obtain a non-constant
lower bound, as the competitive ratio for online graph exploration on planar graphs
is at most 16 [75]. As discussed in Section 2.6, we believe that existing techniques
for proving lower bounds [23, 44] have been pushed to their limits, and that breaking
the barrier of 4 will require new approaches.

Next, we considered the exploration problem using a team of k agents. Finding
an optimal strategy for this is a wide-open problem, even on graphs as simple as
unweighted trees. Consequently, most research on collaborative exploration has
focused on this special case, which we also addressed in our work. We gave a
slightly improved bound on the competitive ratio of the algorithm Yo* [98]. The
most difficult instances for collaborative tree exploration seem to be exploration of
trees of large depth D ≥ n1−o(1) using a small team of k ≤ no(1) agents. When it
comes to collaborative exploration of general weighted graphs, essentially nothing
is known yet, and the problem remains wide open. Building on our findings in
Chapter 2, an interesting direction for future research could be the following: Can
better approximation guarantees be achieved for collaborative exploration on minor-
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free graphs compared to general graphs?
We also investigated the open online dial-a-ride problem. To this end, we in-

troduced the algorithm Lazy and proved a competitive ratio of 2.457 on general
metric spaces (Theorem 4.1) and 2.366 on the half-line (Theorem 5.2). Prior to
our work, the best known upper bound in both metric spaces was 2.696 [21]. The
best known lower bounds are 2.05 [24] on general metric spaces and 1.9 on the
half-line [90]. Closing these gaps remains an open problem. Note that the problem
assumes the underlying metric space to be continuous, and it is typically considered
on Rn or Rn

≥0. While the special case of online TSP has been studied on a circle [74],
we believe it would be highly interesting to investigate dial-a-ride on other types of
metric spaces. For instance, any weighted graph can be transformed into a contin-
uous metric space by allowing the agent (and possibly the requests) to occupy any
point along an edge. Investigating which graph structures lead to higher or lower
competitive ratios could provide an interesting direction for further research.

While the problems discussed above fall in the field of online optimization, we
also investigated a different type of restriction for the TSP, where full information
is available but algorithms are required to run in polynomial time. Specifically, we
studied the k-colored Euclidean TSP under this perspective. For the cases k = 1 [5]
and k = 2 [45], it is known that an EPTAS exists. However, we have seen that
the case k ≥ 3 is substantially more challenging, as the Patching Lemma, which is
one of the key ingredients for Arora’s algorithm, does not generalize to more than
two non-crossing tours. In our approach, we circumvented this issue by giving a
conditional patching scheme for three tours and an alternative approach for the case
where patching is not possible, based on a weighted solution with two colors. The
most pressing open question for k-ETSP remains whether a PTAS exists for k ≥ 3.

We note that a very intriguing question for the TSP, which lies beyond the scope
of this work, is the following: What is the best possible approximation ratio achiev-
able by a polynomial-time algorithm for the classical TSP? Here, we specifically refer
to the metric TSP, where the problem is defined on a weighted graph and the agent
is allowed to visit vertices multiple times. In contrast, if the agent is required to
visit each vertex exactly once, there is no polynomial-time constant-factor approxi-
mation algorithm, since this case reduces to the Hamiltonian cycle problem, which
is NP-complete. The best known upper bound for the approximation factor for met-
ric TSP is 1.5− 10−36 [76, 77], which slightly improves on the bound of 1.5 achieved
by Christofide’s algorithm [36]. The best known lower bound is 123/122 [79].

We have studied two different types of restrictions, on information and on com-
putational complexity, and we believe it would be an interesting direction to impose
both types of restrictions simultaneously. While online optimization typically does
not focus on the running time of algorithms, incorporating computational complex-
ity considerations could yield valuable insights. For example, all known algorithms
for the online graph exploration problem can be implemented to run in polynomial
time, meaning that the decision of which unexplored vertex to visit next can be
computed efficiently. A natural question is whether stronger lower bounds on the
competitive ratio can be established when restricting to polynomial-time algorithms,
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possibly under complexity-theoretic assumptions such as P ̸= NP or the Exponen-
tial Time Hypothesis. We believe that investigating such problems could serve as a
bridge between online optimization and computational complexity.
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