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Abstract

Online optimization, in contrast to classical optimization, deals with optimization problems
whose input data is not immediately available, but instead is revealed piece by piece. An
online algorithm has to make irrevocable optimization decisions based on the arriving
pieces of data to compute a solution of the online problem. The quality of an online
algorithm is measured by the competitive ratio, which is the quotient of the solution
computed by the online algorithm and the optimum offline solution, i.e., the solution
computed by an optimum algorithm that has knowledge about all data from the start.
In this thesis we examine the online optimization problem online Dial-a-Ride. This

problem consists of a server starting at a distinct point of a metric space, called origin,
and serving transportation requests that appear over time. The goal is to minimize the
makespan, i.e., to complete serving all requests as fast as possible. We distinguish between
a closed version, where the server is required to return to the origin, and an open version,
where the server is allowed to stay at the destination of the last served request.

In this thesis, we provide new lower bounds for the competitive ratio of online Dial-
a-Ride on the real line for both the open and the closed version by expanding upon the
approach of [13]. In the case of the open version, the improved lower bound separates
online Dial-a-Ride from its special case online TSP, where starting position and destination
of requests coincide.
To produce improved upper bounds for the competitive ratio of online Dial-a-Ride,

we generalize the design of the Ignore algorithm and the Smartstart algorithm [5]
into the class of schedule-based algorithms. We show lower bounds for the competitive
ratios of algorithms of this class and then provide a thorough analysis of Ignore and
Smartstart. Identifying and correcting a critical weakness of Smartstart gives us the
improved SmarterStart algorithm. This schedule-based algorithm attains the best known
upper bound for open online Dial-a-Ride on the real line as well as on arbitrary metric
spaces.
Finally, we provide an analysis of the Replan algorithm [5] improving several known

bounds for the algorithm’s competitive ratio.
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Zusammenfassung

Im Kontrast zur klassischen Optimierung, handelt Online Optimierung von Optimierungs-
problemen, deren Parameter nicht unmittelbar bekannt sind, sondern stattdessen nach
und nach verfügbar werden. Ein online Algorithmus muss unwiderrufliche Optimierungs-
entscheidungen basierend auf den gerade vorhandenen Daten treffen, um eine Lösung
des online Optimierungsproblems zu berechnen. Die Güte eines online Algorithmus wird
als kompetitiver Faktor angegeben. Dieser ist der Quotient einer Lösung, welche von einem
online Algorithmus berechnet wurde, und der optimalen offline Lösung, d. h., der Lösung,
die von einem optimalen Algorithmus berechnet wurde, der alle Daten bereits zu Beginn
zur Verfügung hat.

In dieser Dissertation wird das online Problem online Dial-a-Ride behandelt. In diesem
online Problem muss ein Zusteller, welcher in einem ausgezeichneten Punkt, Ursprung
genannt, eines metrischen Raumes startet, Transportanfragen, welche zu verschiedenen
Zeitpunkten erscheinen, bedienen. Ziel ist es, die Gesamtzeit für das Bedienen aller
Anfragen zu minimieren. Wir unterscheiden zwischen einer geschlossenen Version des
Problems, in der der Zusteller wieder zum Ursprung zurückkehren muss und einer offenen
Version des Problems.

In dieser Dissertation beweisen wir verbesserte untere Schranken für den kompetitiven
Faktor von online Dial-a-Ride auf der reellen Achse, sowohl für die offene, als auch für
die geschlossene Variante des Problems. Die Schranke für die offene Version baut auf einer
Konstruktion aus [13] auf und separiert online Dial-a-Ride von seinem Spezialfall online
TSP, in welchem jede Anfrage jeweils den gleichen Start- und Endpunkt hat.

Im Weiteren verallgemeinern wir das Design des Ignore Algorithmus und des Smart-
start Algorithmus [5] und führen die Klasse der schedulebasierten Algorithmen ein. Wir
zeigen untere Schranken an den kompetitiven Faktor von Algorithmen dieser Klasse
und führen eine umfassende Analyse von Ignore und Smartstart durch. Durch das
Identifizieren und Beheben einer kritischen Schwäche von Smartstart, erhalten wir den
Algorithmus SmarterStart. Dieser schedulebasierte Algorithmus ist der beste bekannte
Algorithmus für online Dial-a-Ride sowohl auf der reellen Achse als auch in beliebigen
metrischen Räumen.
Abschließend analysieren wir den Algorithmus Replan [5] und verbessern mehrere

bekannte Schranken an seinen kompetitiven Faktor.
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1 Introduction

In classical optimization we deal with problems that consist of given input data, and we
need to make optimization decisions based on this data to optimize a certain objective.
While this kind of framework allows to model a large variety of problems, it is too restrictive
for problems where a part of the input data is revealed over time and optimization decisions
need to be made before all input data is available.
Consider for example an elevator and the problem of bringing every arriving person

to their desired destination as fast as possible. Since people arrive over time, we do not
know when and on which floor they will arrive and the elevator needs to move before the
last person has arrived, i.e., before all input data becomes available, if it wants to achieve
a good completion time. Another example would be a robot with the goal of exploring an
unknown cave network as efficiently as possible. Since the layout of the cave becomes
only available by exploring it, an optimum traversal cannot be computed without making
irrevocable decisions about the path to follow.
In comparison to an algorithm for a classical optimization problem that computes an

optimum solution based on the given input data, an online algorithm gets its input data
item by item and has to make an irrevocable optimization decision based on the piece
of data that arrives. Examples for input items would be the arrival of a new person
at some floor that wants to use the elevator or the knowledge gained by the robot by
making a step in a certain direction. The online algorithm needs to find a balance between
acting efficiently regarding the known data and protecting itself against future input data.
Imagine for example an elevator located at the first floor and a person arriving at the
second floor that wants to go the third floor. Of course, it is optimal to serve the request of
this person right away – at least as long as no other requests appear. But if the algorithm
acts accordingly and is unlucky, a person in the basement might appear that also wants to
go to the third floor. Now the elevator has to go all the way down from the third floor
to the basement and up to the third floor again, while it would have been much more
efficient to serve both requests in one go.

The example above shows that no algorithm controlling an elevator can act optimally: If
the elevator acts prematurely as described above, it might end up covering more distance
than necessary. However, if it decides to wait and no further requests appear, it incurs
unnecessary waiting time. This unavailability of the full amount of information puts online
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1 Introduction

algorithms in a disadvantage compared to a hypothetical optimum offline algorithm that
has access to all information from the start.

To measure the quality of an online algorithm, i.e., how much its result differs from the
offline optimum, we use competitive analysis based on the algorithm’s worst case behavior:
The algorithm is challenged by an adversary that answers every choice of the algorithm
by creating worst-case future input items. In the example of the elevator above, a simple
adversary strategy would be to introduce the request at the basement, if the algorithm
acts prematurely and to do nothing in the case that the algorithm decides to wait. Once
all input items have been revealed, we compare the algorithm’s result with the optimum
offline solution, i.e., the solution provided by an optimum offline algorithm. The quotient
of the algorithm’s result and the optimum offline solution is called the competitive ratio of
the algorithm.

The competitive ratio is a quite harsh measurement for the quality of an online algorithm
and for many online optimization problems it is known that no online algorithm with
constant competitive ratio exists. However, in this thesis we will only discuss online
problems with existing but not tight constant bounds for the competitive ratio.

Outline

After introducing the necessary tools and formal definitions in this introductory chapter,
we introduce the problem online Dial-a-Ride and its special case online TSP in Chapter 2.
In the second chapter, we also state the currently known results for the problem, give a
brief summary of the results that are presented in this thesis and discuss related work.
In the third chapter, we present two new lower bounds for the competitive ratio of

online Dial-a-Ride by expanding upon the approach of [13]. One of the improved lower
bound separates online Dial-a-Ride from its special case online TSP.
Starting from Chapter 4, we focus more on upper bounds for the competitive ratio of

online Dial-a-Ride. We introduce the class of schedule-based algorithms, analyze several
properties of algorithms belonging to this class and give a thorough analysis of the Ignore
algorithm [5].
In Chapter 5, we give a detailed analysis of the Smartstart algorithm, providing its

exact competitive ratio for the case that the underlying metric space is the real line and
improving upper bounds for its competitive ratio for arbitrary metric spaces.
Identifying and correcting a critical weakness of Smartstart gives us the improved

SmarterStart algorithm, which is examined in Chapter 6. This schedule-based algorithm
attains the best known upper bound for the competitive ratio of open online Dial-a-Ride
on the real line as well as on arbitrary metric spaces.
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1.1 Offline Optimization and Offline Algorithms

Finally, in Chapter 7, we provide an analysis of the Replan algorithm [5] improving
several known bounds for the algorithm’s competitive ratio.

1.1 Offline Optimization and Offline Algorithms

In the following, we formalize the notions introduced above and start with the definition
of classical offline optimization problems. The notations and definitions are inspired by
[9].

Definition 1.1. An offline optimization problem P is a tuple (I,S, f, c) where:

• I is the set of input instances,

• S is the set of solutions,

• f : I → 2S maps an instance I ∈ I to a set of feasible solutions FI ⊆ S,

• c : I × S → R maps a solution of an instance to a cost.

The set of optimum solutions of an instance I ∈ I is argminx∈FI
c(I, x).

An example for a combinatorial offline optimization problem would be finding the chro-
matic number of a graph with k ∈ N vertices: A coloring of an undirected graphG = (V,E)
with vertex set V and edge set E is a function g : V → N with g(v) ̸= g(u) for every
{v, u} ∈ E. The chromatic number is χ(G) := ming |im(g)| with g being a coloring of G.
In this case, every graph G = (V,E) with |V | = k is an input instance and every function
mapping from the set {1, . . . , k} to N is a solution. Furthermore, the set of coloring
functions of G, i.e., {g : V → N | g coloring of G} = FG, is the set of feasible solutions of
the instance G and c(G, g) := |im(g)| is the cost function.

Another classical example for an offline optimization problem is an (m×n)-dimensional
linear program of the form

min c⊤x subject to Ax ≤ b.

In this case (A, b) ∈ Rm×n × Rm = I is an input instance, the vector x ∈ Rn = S is a
solution, f(A, b) = {x ∈ Rn | Ax ≤ b} = F(A,b) is the set of feasible solutions and the
vector c ∈ Rn is the cost function.

Definition 1.2. An offline algorithm Alg computes a feasible solution Alg[I] ∈ FI (if
existent) of cost Alg(I) = c(I,Alg[I]) for every I ∈ I.

3



1 Introduction

Note that offline algorithms do not need to produce optimum results. Therefore, the
algorithm that just returns a function that maps every vertex v ∈ V to an unique natural
number is an offline algorithm for the coloring problem. In the case of a linear program,
every algorithm that produces a feasible solution, i.e., for example every Phase I for the
simplex algorithm is an offline algorithm.

Definition 1.3. By Opt we denote an optimum offline algorithm that computes an optimum
solution Opt[I] ∈ FI (if existent) of cost Opt(I) = minF∈FI

c(I, F ) for every instance
I ∈ I.

Examples for optimum offline algorithms for linear programs would be the simplex
algorithm or the ellipsoid method. Note that the word “optimum” in Definition 1.3 does
not refer to the complexity of the algorithm, but just to the optimality of the result
produced by the algorithm. Therefore, the algorithm that checks the value |im(f)| for
every coloring function f : V → {1, . . . , |V |} and returns a function with the lowest value
is an optimum offline algorithm for the coloring problem – albeit being very inefficient.

1.2 Online Algorithms and Competitiveness

In contrast to a classical offline optimization problem, we define an online optimization
problem as a request-response-game: Instead of having all input available at the start, the
input arrives item by item, i.e., request by request, and needs to be responded to item by
item, always incurring an irrevocable cost.

Definition 1.4. An online optimization problem is a tuple O = (R,A,Σ, F, C) where:

• R is the set of input items,

• A is the set of responses,

• Σ ⊆
⋃︁

i∈NRi is the set of all input sequences,

• F = (fi)i∈N is a sequence of functions fi : Ri ×Ai−1 → A mapping the first i input
items (s1, . . . , si) and the first i − 1 responses (a1, . . . , ai−1) to the set of feasible
responses fi(s1, . . . , si, a1, . . . , ai−1) in step i,

• C = (ci)i∈N is a sequence of cost functions ci : Ri ×Ai → R≥0 with c0 := 0.

For an input sequence σ = (s1, . . . , sn) ∈ (Σ ∩Rn) and i ≤ n, we define the subsequence
σ≤i := (s1, . . . , si).

4



1.2 Online Algorithms and Competitiveness

Throughout this thesis, σ will denote an arbitrary input sequence of length n ∈ N.
Whenever we talk about a specific input sequence, it will be given a specific identifier.

An example for an online optimization problem that is strongly connected to integer
programming is the online knapsack problem. In the classical knapsack problem, we have
a set of items that have weights wi ≥ 0 and values vi ≥ 0. The goal is to choose a subset
of items such that the total weight of the chosen items is bounded by a constant W and
the total value is maximized.
We can turn this problem into an online problem by changing the set of items into a

sequence of items, introducing them one by one and demanding an irrevocable decision
whether the item is taken or not, every time an item arrives. Then, the set of input items
is R2

≥0, i.e., the set of all possible tuples of weights and values. The set of responses is
{0, 1}, where 1 means that the current item is chosen and 0 that it is not chosen. The set
of input sequences is

⋃︁
n∈NR2×n, i.e., the set of all sequences of tuples of weights and

values. The set of feasible responses in step i is

fi(σ≤i, a1, . . . , ai−1) =

{︄
{0, 1}, if

∑︁i−1
j=1 ajwj ≤W − wi,

{0}, otherwise.

Last but not least, the cost functions are ci((wj , vj , aj)j∈{1,...,i}) :=
∑︁i

j=1(1− aj)vj . Note
that we take the difference of the total value

∑︁i
j=1 vj and the sum

∑︁i
j=1 ajvj as cost

function since we require the cost function to be positive and only regard minimization
problems.

Definition 1.5. An online algorithm Alg computes a sequence of response functions
(gi : Ri → fi(σ≤i, g1(s1), . . . , gi−1(s1, . . . , si−1)))i∈N. The solution of Alg for an input
sequence σ = (s1, . . . , sn) ∈ Σ is

Alg[σ] := (a1, . . . , an)

with ai := gi(σ≤i). Alg’s total cost is Alg(σ) := cn(σ,Alg[σ]).

Note that an online algorithm only uses σ≤i for the computation of the answer ai, i.e.,
answer ai has to be given irrevocably before input item si+1 becomes available. In conse-
quence, an online algorithm usually does not compute an optimum solution. In fact, for
the online problems discussed in this thesis there are no online algorithms that compute
optimum solutions for all input sequences.
If we fix the number n of input items, every online problem can be interpreted as an

offline problem: We set I = Rn and S = An. The set of feasible solutions Fσ of an
instance σ consists of all response sequences (a1, . . . , an) with ai ∈ fi(σ≤i, a1, . . . , ai−1)

5



1 Introduction

for all i ∈ {1, . . . , n}. Last but not least, we set c(σ, (ai)i∈{1,...,n}) = cn(σ, (ai)i∈{1,...,n}). If
interpreted like that, the set of optimum offline solutions for an input sequence σ is defined
as Opt[σ] ∈ argmina∈Fσ

cn(σ, a). This is identical to an optimum solution as defined in
Definition 1.1.
From now on let Opt always be a fixed optimum offline algorithm that computes an

optimum solution Opt[σ] of cost Opt(σ) = cn(σ,Opt[σ]). Observe that an online algorithm
Alg has to obey some consistency between its steps, i.e., for an input σ = (s1, . . . , sn)
and for every i < j ≤ n, the solution Alg[σ≤i] is a prefix of the solution Alg[σ≤j ]. Opt in
contrast does not need to obey this consistency, i.e., Opt[σ≤i] can completely differ from
Opt[σ≤j ]. We compare the performances of Alg and Opt.

Definition 1.6. An online algorithm Alg is (strictly) ρ-competitive if, for all instances
σ ∈ Σ, we have

Alg(σ) ≤ ρOpt(σ).

Note that we have put no restriction on ρ, i.e., ρ can be constant, but also a function
of σ or a function of every other problem parameter. Since Definition 1.6 demands that
Alg(σ) ≤ ρOpt(σ) holds for every input instance σ, the competitiveness of an online
algorithm measures how well it competes against the optimum offline solution in a worst-
case scenario. Note that the solution Alg[σ] cannot be better than the offline solution
Opt[σ], i.e., we always have ρ ≥ 1. The lack of information puts the online algorithm Alg
at severe disadvantage in comparison to the optimum offline algorithm Opt. For example,
in the case of the online knapsack problem, there is no ρ-competitive online algorithm for
a constant ρ ≥ 1 [38].

Definition 1.7. The competitive ratio of an online algorithm Alg is the infimum over all
ρ ≥ 1, such that Alg is ρ-competitive.

Note that an online algorithm with competitive ratio ρ is also ρ-competitive, while the
converse is not necessarily true. While the competitive ratio describes Alg’s worst-case
quality precisely, ρ-competitiveness only gives an upper bound for the quality of the
worst-case behavior of Alg. The competitive ratio allows us to compare the worst-case
performances of online algorithms. The competitive ratio of an online optimization
problem is defined as the competitive ratio of the best-possible online algorithm for it.

Definition 1.8. The competitive ratio of an online optimization problem is the infimum
over all ρ ≥ 1 for which a ρ-competitive algorithm exists.

The goal of this thesis is to analyze several online problems and give new improved upper
and lower bounds for their competitive ratios. An upper bound for the competitive ratio

6



1.2 Online Algorithms and Competitiveness

of an online problem can be proven by developing and analyzing an online algorithm for
it. A lower bound for the competitive ratio can be proven by competitive analysis: We let
a hypothetical online algorithm compete against an adversary, i.e., we construct a worst-
possible input sequence for every possible sequence of actions of the online algorithm. In
the next chapter we introduce the main online problems that are discussed in this thesis:
online Dial-a-Ride and its special case online TSP.

History of Online Optimization

The first publication that studied online optimization and online algorithms was [44]. In
this paper Sleator and Tarjan studied the problem online List Update, in which elements
of a linked list are requested over time. Accessing an element located closer to the back
of the list is more costly than accessing an element located closer to the front, however,
accessed elements are allowed to be moved further to the front for free. The authors
realized that for this problem it is more interesting to measure the worst-case performance
of an algorithm than the expected performance. This led them to prove that the online
algorithm MoveToFront for online List Update is 2-competitive – even though they did
not use the term “competitiveness” in their publication.
Formally, the terms “competitiveness” and “online algorithm” were first intruduced

in [31]. In this paper, Karlin et al. studied the problem online Paging. In this problem,
the content of a cache with limited memory is accessed over time. Loading content to the
cache incurs a cost and an element must be loaded to the cache if it is requested, while
not being in the cache.

Ben-David et al. were the first to give a more rigorous description of online optimization
problems [9]. They formally defined online optimization problems as request-response-
games the way it is presented in Definition 1.4 and introduced the notion of the “adversary”.

Over the years, a large variety of online optimization problems have been studied. Albers
et al. studied the problem online List Update from a randomized perspective [1, 3]: In
comparison to a deterministic online algorithm, a randomized algorithm adds random
choices into its computation. Consequently, instead of the costs Alg(σ), the expected
value of all possible costs is compared with the optimum offline result to compute the
randomized competitiveness of the randomized online algorithm. Albers et al. introduced
two 2-competitive, deterministic online algorithms for online List Update, TimeStamp [3]
and Bit, which they combined into the 1.6-competitive, randomized algorithm Comb [1].

The already mentioned online Knapsack problem is an example for an online problem
that has no bounded competitive ratio [38]. However, a randomized version of it admits
a bounded randomized competitive ratio: Albers et al. provided a (1/6.65)-competitive
randomized algorithm for the randomized problem in which the adversary is allowed to

7



1 Introduction

choose the item set – but not its order [2].
In the beginning of this chapter we used the example of a robot with the goal of

exploring an unknown cave network as efficiently as possible to introduce online opti-
mization problems. This problem is called online Graph Exploration and has been
studied extensively [4, 7, 15, 21, 22, 23, 24, 26, 30, 39, 42]. Miyazaki et al. [40] gave
a (1 +

√
3)/2-competitive algorithm for cycles and showed that this is best-possible. For

graphs with bounded genus g Megow et al. provided the 16(1 + 2g)-competitive Block-
ing algorithm, which is a modification of the depth-first search algorithm. For general
graphs Rosenkrantz et al. published a Θ(log n)-competitive algorithm [42], i.e., no online
algorithm with constant competitive ratios is known until now. The best known lower
bound for general graphs is 10/3 [11]
Another widely studied problem is online k-Server, where k servers are located in a

metric space. Every time a request is served a new request appears. An incoming request
needs to be served by one of the servers incuring a cost dependent on the distance between
the server and the request. Manasse et al. showed that there is no online algorithm for
k-Server with a competitive ratio lower than k on any metric space with at least k + 1
points [37]. Even though Chrobak et al. provided several k-competitive algorithms for
k-Server on a large variety on metric spaces [19, 20, 18], it remains open, if there is a
k-competitive online algorithm for every metric space.

The online optimization problem online Dial-a-Ride, that is studied in this thesis, was
first examined by Ascheuer et al. in [5]. In comparison to online k-Server the problem
online Dial-a-Ride consists of a single server and requests appear over time independently
of the server’s actions. The goal is to minimize the total completion time. A detailed
discussion of results follows in the next chapter.
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2 Online DIAL-A-RIDE and Online TSP

In the opening chapter of this thesis we briefly discussed an elevator as an example for
an online optimization problem. In this chapter we will provide a more detailed look
at this problem, including a precise mathematical representation of the problem and an
expansion to a more general version of it.

For a start let us take a more abstract look at the elevator: People arrive over time at a
certain floor and want to be carried to another floor. Therefore, the request of an arriving
person is defined by the floor, on which the person arrives, the floor, the person wants to
be carried to and the time of the person’s arrival. The elevator starts at the ground floor
and moves with unit speed. For simplicity we assume that our elevator has no braking
or accelaration time, i.e., at every point of time the elevator is either moving with unit
speed or not moving at all. Furthermore, our elevator has a capacity limit, i.e., only a
fixed number of people can be inside elevator at the same time. Our goal is to minimize
the total completion time of carrying all people to their desired floors.

To put this problem in a more general and more mathematical framework: Our elevator
is a server moving with unit speed in a metric space (X, d) and starting at some unique
position 0 ∈ X called origin. Over time, requests s = (a, b; r) are revealed, where a ∈ X is
the starting position of the request, b ∈ X is the destination of the request and r ∈ R≥0 is
the release time of the request. These requests need to be loaded by the server at their
starting positions, after their release time and need to be transported to their destinations.
The server has a capacity c ∈ N ∪ {∞}, i.e., only c requests can be loaded at the same
time. The goal is to minimize the makespan, i.e., to minimize the total completion time.
This problem is called online Dial-a-Ride.

In the case of the elevator, the metric space (X, d) is the real line R equipped with the
euclidean distance function d(p, q) := |p− q|. Then, the basement floors are represented
by negative numbers and floors above the ground are represented by the positive numbers.
It is clear that in general the metric space X needs to be equipped with a positive and
symmetric distance function d : X2 → R≥0 that obeys the triangle inequality. However,
we also have to ensure that the server can move continuously with unit speed. Therefore,
we only allow metric spaces satisfying a smoothness property: For all pairs of positions
(p, q) ∈ X2, there needs to be a rectifiable path γ : [0, 1]→ X, with γ(0) = p and γ(1) = q
of length d(p, q) (see e.g. [8] or [32]). This property ensures that, if the server starts
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2 Online DIAL-A-RIDE and Online TSP

moving from p to q at time t, for all t′ ∈ [t, t + d(p, q)] there is a x ∈ X such that the
server is at position x at time t′. We call the class of metric spaces satisfying this property
continuous metric spaces. Examples for continuous metric spaces are the real line and
euclidean vector spaces Rk with k ∈ N. Furthermore, every edge-weighted undirected
graph induces a continuous metric space.

Of course different metric spaces allow to model different real-world problems. Indeed,
online Dial-a-Ride is by far not limited to model the problem of conducting an elevator
efficiently. If we, for example, take a street network as underlying metric space, Dial-a-
Ride models the problem of a taxi driver efficiently serving customer requests.
We distinguish between an open and a closed variant of the problem: In the closed

version of online Dial-a-Ride, the server is required to return to the origin after serving
the last request of the request sequence, while in the open version, the server is allowed
to stay at the destination of the last served request. Note that the information that all
requests are released is only given implicitely by not releasing new requests anymore, i.e.,
in the closed version, the server might need to return to the origin prematurely to cover
the case that the request sequence is fully released and to stay competitive.

An offline solution for an instance of Dial-a-Ride is defined by the behavior of the server
including its trajectory inside the metric space and at which times requests are loaded and
unloaded. At every point of time, the server either waits or moves with unit speed towards
a certain position. Therefore, we can model the trajectory of the server as sequence of M
tuples (qi, xi), where qi ∈ X is a position and xi ∈ R≥0 is a waiting time at that position.
We always have q1 = 0 since the server starts at the origin and xM = 0 since there is
no waiting time after reaching the final position. In the closed variant of the problem,
we additionally have qM = 0. The server needs to serve all requests. To ensure this, we
introduce the loading matrix (Lj , Uj)j∈{1,...,n} consisting of the loading and unloading
times of the requests. This matrix has to obey some consistency rules: For all j ∈ {1, ..., n}
the inequality Lj ≤ Uj needs to hold, i.e., requests can only be unloaded if loaded prior.
Furthermore, for all j ∈ {1, ..., n} we need |{k ∈ {1, ..., n} \ {j} : Lj ∈ [Lk, Uk)}| < c, i.e.,
no request can be loaded, while c requests are already loaded. Finally, the matrix (Lj , Uj)
needs to be compatible with the trajectory (qi, xi), i.e., the server needs to be at position
aj at time Lj and at position bj at time Uj for all j ∈ {1, . . . , n}. An offline solution for
Dial-a-Ride is a trajectory with compatible loading matrix and we call offline solutions of
Dial-a-Ride from now on walks. The completion time of a walk (qi, xi)i∈{1,...,M} is defined
as

c((qi, xi)i∈{1,...,M}) :=
M−1∑︂
i=1

xi + d(qi, qi+1).

Whenever it is clear from the context which request is served at which time, we omit
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the loading matrix (Lj , Uj) in our analysis. Furthermore, we denote by q1 → . . . → qm
a walk that does not contain waiting times, i.e., that visits the points q1, . . . , qm ∈ X in
the order defined by their indices, always taking the shortest way from qk to qk+1 for
k ∈ {1, . . . ,m− 1}. We write

D(q1 → . . .→ qm) := d(q1, q2) + · · ·+ d(qm−1, qm).

for the length of the walk q1 → . . .→ qm.
We start the examination of online Dial-a-Ride by showing that it can be modeled as

an online optimization problem as defined in Definition 1.4:

• The set of input items R is the set of all requests s = (a, b; r).

• The set of responses A is the set of all walks starting at the origin.

• The set of input sequences Σ is the set of all sequences of requests.

• The set of feasible responses fi(σ≤i, a1, . . . , ai−1) in step i is the set of all walks W
that serve all requests of the subsequence σ≤i while respecting the capacity limit c
and the release times and being compatible with the actions of the server until step
i, i.e., until time ri. Compatible means that the walk the server has performed until
time ri is identical to the walk W and requests have been loaded and unloaded by
the server exactly at the same times as in W .

• The cost function ci of step i is mapping the currently chosen response, i.e., the
currently chosen walk to its completion time.

In this thesis we will examine several versions of the online Dial-a-Ride problem. We
will distinguish between online TSP and online Dial-a-Ride: Online TSP is a special case
of online Dial-a-Ride that only allows requests where the starting position is identical to
the destination, i.e., requests are served by just visiting their positions instead of having
to transport them. Consequently, requests are tuples (a; r) consisting only of a position
a ∈ X and a release time r ∈ R≥0 and there is no need to define a capacity. Note that,
since online TSP is a special case of online Dial-a-Ride, every lower bound established for
the competitive ratio of online TSP also holds for the more general online Dial-a-Ride.
Similarly, every upper bound established for the competitive ratio of online Dial-a-Ride
also holds for its special case online TSP.
Furthermore, we will make a distinction based on the underlying metric space: We

will distinguish between the real line R and the general setting, i.e., arbitrary continuous
metric spaces. Note that, since the real line is a continuous metric space, every lower
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2 Online DIAL-A-RIDE and Online TSP

bound established on the real line also holds for the general setting. Similarly, every upper
bound established in the general setting in particualar holds on the real line. We orient
the real line R from left to right and denote by

xmin := min{0, a1, . . . , an, b1, . . . , bn}

the leftmost and by
xmax := max{0, a1, . . . , an, b1, . . . , bn}

the rightmost position that needs to be visited by the server to serve the request sequence
σ. Obviously, there is an optimum walk that only visits positions in [xmin, xmax], and we let
Opt be such a walk. Throughout this thesis, we assume the server to be non-preemptive,
i.e., the server is allowed to unload requests only at their destinations.

2.1 State of the Art

The currently known best upper and lower bounds for the competitive ratios of the
problems are given in Table 2.1. For online TSP, Bjelde et al. present conclusive results on
the real line: For the closed version they provide a 1.6404-competitive online algorithm
(see [13, Thm 3]) that matches the lower bound shown by Ausiello et al. in [8, Thm 3.3].
Furthermore, Bjelde et al. present a 2.0346-competitive algorithm for the open version of
online TSP on the line (see [13, Thm 10]) that they complement with a matching lower
bound (see [13, Thm 4]). Therefore, online TSP on the line is fully understood in terms
of competitiveness. Moreover, the lower bound of 2.0346 for open online TSP on the line
provided by Bjelde et al. is the best known lower bound for online Dial-a-Ride and online
TSP in the general setting. In the same paper, Bjelde et al. also present a lower bound of
1.75 for the competitive ratio of closed online Dial-a-Ride on the line with c <∞ (see
[13, Thm 13]) and a 2.4142-competitive algorithm for open online Dial-a-Ride on general
continuous metric spaces with infinite capacity (see [13, Thm 12]). Interestingly, the
lower bound of 1.75 separates online Dial-a-Ride on the line with c <∞ from online TSP
on the line in terms of competitiveness.
The 2.4142-competitive algorithm returns to the origin and restarts a new optimum

walk serving all unserved requests upon the release of a new request. It is presented in
the paper as online algorithm for the preemptive version of open online Dial-a-Ride on
the line (i.e., for the version of online Dial-a-Ride that allows to unload requests at any
position and reload them at a later time). A close inspection of the proof however shows
that their algorithm achieves the same result on general continuous metric spaces and
for open online Dial-a-Ride with capacity c =∞. The closed version of the problem on

12



2.1 State of the Art

General Bounds open closed
upper bound lower bound upper bound lower bound

lin
e

Dial-a-Ride (c <∞) 3.4142 2.0346 2
1.75

[13, Thm 13]

Dial-a-Ride (c =∞) 2.4142 2.0346 2 1.6404

TSP
2.0346 2.0346 1.6404 1.6404

[13, Thm 10] [13, Thm 4] [13, Thm 3] [8, Thm 3.3]

ge
ne

ra
l

Dial-a-Ride (c <∞)
3.4142

2.0346
2

2[32, Thm 2.30] [5, Thm 6]

Dial-a-Ride (c =∞)
2.4142

2.0346
2

2[13, Thm 12] [25, Thm 2.3]

TSP 2.4142 2.0346
2 2

[8, Thm 4.2] [8, Thm 3.2]

Table 2.1: Overview of the best known bounds for the competitive ratios of online Dial-a-Ride on the line
(top), and online Dial-a-Ride on general continuous metric spaces (bottom) excluding results
of this thesis. Results are split into Dial-a-Ride with capacities c < ∞ and c = ∞ and TSP.
Underlined results are original, all other results follow immediately.

continuous metric spaces is also fully understood in terms of competitiveness: Ausiello
et al. provided a lower bound of 2 for the competitive ratio of online TSP on continuous
metric spaces using cyclic structure as underlying metric space (see [8, Thm 3.2]). They
complemented their lower bound with a 2-competitive algorithm for online TSP (see [8,
Thm 4.2]). Feuerstein and Stougie provided a 2-competitive algorithm for closed online
Dial-a-Ride with unlimited capacity in [25, Thm 2.3].

Algorithm SMARTSTART

The best known upper bounds for the competitive ratio of closed and open online Dial-a-
Ride with arbitrary capacity are provided by the algorithm Smartstart that was published
by Ascheuer et al. in [5]. The algorithm is 2-competitive for closed online Dial-a-Ride
in the general setting with arbitrary capacity (see [5, Thm 6]). Since this upper bound
matches the general lower bound for online TSP in the general setting, Smartstart is
the best possible online algorithm for closed online Dial-a-Ride and closed online TSP in
the general setting. Additionally, in contrast to the real line, closed online TSP and Dial-
a-Ride in the general setting cannot be separated in terms of competitiveness. Krumke
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2 Online DIAL-A-RIDE and Online TSP

Smartstart open closed
upper bound lower bound upper bound lower bound

lin
e

Dial-a-Ride (c <∞) 3.4142 2.0346 2
1.75

[13, Thm 13]

Dial-a-Ride (c =∞) 3.4142 2.0346 2 1.6404

TSP 3.4142
2.0346

2
1.6404

[13, Thm 4] [8, Thm 3.3]

ge
ne

ra
l Dial-a-Ride (c ∈ N ∪ {∞}) 3.4142

2.0346
2

2[32, Thm 2.30] [5, Thm 6]

TSP 3.4142 2.0346 2
2

[8, Thm 3.2]

Table 2.2: Overview of the best known bounds for the competitive ratios of Smartstart for online Dial-a-
Ride on the line (top), and online Dial-a-Ride on general continuous metric spaces (bottom)
excluding the results of this thesis. Results are split into Dial-a-Ride with capacities c < ∞ and
c = ∞ and TSP. Underlined results are original, all other results follow immediately.

showed in [32, Thm 2.30] that the open version of the Smartstart algorithm is roughly
3.4142-competitive, which is the best known upper bound for the competitive ratio of
open online Dial-a-Ride on the line as well as in the general setting. The currently best
known bounds for the competitive ratios of algorithm Smartstart are summarized in
Table 2.2. Note that the best known lower bounds for the competitive ratio of Smart-
start are identical to the best known general lower bounds, i.e., no thorough analysis of
Smartstart’s lower bounds has been conducted yet. The best known upper bounds for
the competitive ratio of Smartstart are the same for the real line as well as the general
setting and the same for online Dial-a-Ride as well as for online TSP. However, since
none of the best known upper bounds (except the closed version in the general setting)
match their corresponding lower bounds, it is currently unclear if restricting the setting
to the real line or disallowing transportation requests has an impact on Smartstart’s
competitive ratio. Furthermore, it is not clear if choosing a specific capacity has an impact
on Smartstart’s competitive ratio.

Algorithm IGNORE

The algorithm Ignore is similar to Smartstart, but much more simple in design. This
algorithm was first published in [5]. In [5, Thm 4], Ascheuer et al. showed that Ignore
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2.1 State of the Art

Ignore open closed
upper bound lower bound upper bound lower bound

lin
e

Dial-a-Ride (c <∞) 4 2.0346 2.5
1.75

[13, Thm 13]

Dial-a-Ride (c =∞) 4 2.0346 2.5 1.6404

TSP 4
2.0346

2.5
1.6404

[13, Thm 4] [8, Thm 3.3]

ge
ne

ra
l Dial-a-Ride (c ∈ N ∪ {∞}) 4

2.0346
2.5

2[32, Thm 2.29] [5, Thm 4]

TSP 4 2.0346 2.5
2

[8, Thm 3.2]

Table 2.3: Overview of the best known bounds for the competitive ratios of Ignore for online Dial-a-Ride
on the line (top), and online Dial-a-Ride on general continuous metric spaces (bottom) excluding
the results of this thesis. Results are split into Dial-a-Ride with capacities c < ∞ and c = ∞ and
TSP. Underlined results are original, all other results follow immediately.

is 2.5-competitive for closed online Dial-a-Ride in the general setting. Later, Krumke,
one of the authors of [5], analyzed Ignore for the open version of online Dial-a-Ride in
the general setting in his PhD thesis: He showed that the algorithm is 4-competitive [32,
Thm 2.29]. Similar to Smartstart, no lower bound analysis for Ignore’s competitive
ratio has been conducted yet. Consequently, the lower bounds for Ignore’s competitive
ratio are identical to the best known general lower bounds. Furthermore, again similar
to Smartstart, the upper bounds for the competitive ratio of Ignore are the same for
the real line as well as the general setting and the same for online Dial-a-Ride as well as
for online TSP. Additionally, the best known upper bounds for Ignore’s competitive ratio
are independent of the capacity of the server. However, since none of the upper bounds
match their corresponding lower bounds, it is currently unclear if restricting the setting to
the real line, disallowing transportation requests or choosing a specific capacity has an
impact on Ignore’s competitive ratio. The currently best known upper and lower bounds
for the competitive ratios of algorithm Ignore are summarized in Table 2.3.

Algorithm REPLAN

The last algorithm, we examine in this thesis, is the algorithm Replan. This algorithm
was first presented in [5]. Ascheuer et al. showed that the algorithm is 2.5-competitive for
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2 Online DIAL-A-RIDE and Online TSP

Replan open closed
upper bound lower bound upper bound lower bound

lin
e

Dial-a-Ride (c = 1) 3 2.5 2.5
1.75

[13, Thm 13]

Dial-a-Ride (1 < c <∞) 4.5 2.5 3.5
1.75

[13, Thm 13]

Dial-a-Ride (c =∞) 4.5 2.5 3.5 1.6404

TSP 2.5
2.5

2.5
1.6404

[8, Thm 4.1] [8, Thm 3.3]

ge
ne

ra
l

Dial-a-Ride (c = 1)
3

2.5
2.5

2[32, Thm 2.27] [5, Thm 3]

Dial-a-Ride (c > 1)
4.5

2.5
3.5

2[32, Thm 2.28] [32, Thm 2.14]

TSP
2.5

2.5 2.5
2

[8, Thm 4.1] [8, Thm 3.2]

Table 2.4: Overview of the best known bounds for the competitive ratios of Replan for online Dial-a-Ride
on the line (top), and online Dial-a-Ride on general continuous metric spaces (bottom) excluding
results of this thesis. Results are split into Dial-a-Ride with capacities c = 1, 1 < c < ∞ and
c = ∞ and TSP. Underlined results are original, all other results follow immediately.

closed online Dial-a-Ride with capacity c = 1 (see [5, Thm 3]). Krumke, one of the authors
of [5], examined the algorithms more thoroughly in his PhD Thesis [32]. He showed that
the algorithm is 3.5-competitive for closed online Dial-a-Ride with capacity c > 1 (see
[32, Thm 2.14]) and 3-competitive for open online Dial-a-Ride with capacity c = 1 (see
[32, Thm 2.27]) as well as 4.5-competitive for open online Dial-a-Ride with capacity
c > 1 (see [32, Thm 2.28]). For open online TSP, Ausiello et al. showed that the algorithm
has a tight competitive ratio of 2.5 (see [8, Thm 4.1]). Replan was the best known
online algorithm for open online TSP in the general setting until Bjelde et al. published a
2.4142-competitive algorithm in [13]. No lower bound analysis for Replan’s competitive
ratio in the closed version has been conducted yet. Consequently, the lower bounds for
Replan’s competitive ratio in the closed version are identical to the general lower bounds.
Even though we have different upper bounds for different capacities, it is currently unclear
if choosing a specific capacity has an impact on Replan’s competitive ratio. Similarly, it
is currently unclear if restricting to the real line or disallowing transportation requests
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2.2 Our Contribution

Schedule-based open closed
upper bound lower bound upper bound lower bound

lin
e Dial-a-Ride (c ∈ N ∪ {∞}) 2.6662 2.5

2 2Thm 6.5 [12] Thm 4.1

TSP
2.6288 2.3333

2
2

Thm 6.23 Thm 4.2 Thm 4.3

ge
ne

ra
l Dial-a-Ride (c ∈ N ∪ {∞}) 2.6956

2.5
2

2Thm 6.36 [5, Thm 6]

TSP
2.6625

2.3333 2
2

Thm 6.37 [8, Thm 3.2]

Table 2.5: Overview of the best known bounds for the competitive ratios of schedule-based algorithms for
online Dial-a-Ride on the line (top), and online Dial-a-Ride on general continuous metric spaces
(bottom). Results are split into Dial-a-Ride and TSP. Bold results are our contribution. Underlined
results are original and imply the other results.

has an impact on Replan’s competitive ratio. The currently best known bounds for the
competitive ratios of algorithm Replan are summarized in Table 2.4.

2.2 Our Contribution

In this thesis, we provide a thorough analysis of the algorithms mentioned above. In
particular, we take a more abstract point of view on the algorithms Ignore and Smart-
start and identify similarities between them. Using this insight, we define the class
of schedule-based algorithms and identify both algorithms as elements of this class. We
provide a lower bound of 2.5 for the competitive ratio of schedule-based algorithms for
open online Dial-a-Ride on the line (see Thm 4.1) and a lower bound of roughly 2.3333
for open online TSP on the line (see Thm 4.2). For the closed online TSP on the line we
provide a lower bound of 2 (see Thm 4.3). A detailed examination of the properties of
schedule-based algorithms is given in the first two sections of Chapter 4. A summary of
results for schedule-based algorithms is given in Table 2.5.

Algorithm IGNORE

For the algorithm Ignore, we complement the upper bound of 4 for its competitive ratio
for open online Dial-a-Ride (see [32, Thm 2.29]) with a matching lower bound (see
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2 Online DIAL-A-RIDE and Online TSP

Ignore open closed
upper bound lower bound upper bound lower bound

lin
e
&
ge

n.

Dial-a-Ride (c ∈ N ∪ {∞}) 4 4 2.5
2.5[32, Thm 2.29] Thm 4.12 [10] [5, Thm 4]

TSP
3.5 3

2.5
2.5

Thm 4.13 Thm 4.14 Thm 4.11

Table 2.6: Overview of the best known bounds for the competitive ratios of Ignore for online Dial-a-Ride
and online TSP. Bold results are our contribution. Underlined results are original and imply the
other results.

Thm 4.12). We published this lower bound also in [10, Prop A.1]. For closed online TSP,
we provide a lower bound of 2.5 (see Thm 4.11), matching the already known upper bound
for closed online Dial-a-Ride (see [5, Thm 4]). Note that this proves that restricting the
underlying metric space to the real line or choosing a specific capacity of the server has
no impact on the competitive ratio of Ignore for online Dial-a-Ride. Furthermore, the
closed version of Ignore attains the same competitive ratio for online Dial-a-Ride as for
online TSP. However, for the open version of online TSP we provide an improved upper
bound of 3.5 (see Thm 4.13) for the competitive ratio of Ignore, which is strictly lower
than the lower bound for the open version of online Dial-a-Ride. We complement this
upper bound with a lower bound of 3 for the competitive ratio of Ignore for open online
TSP (see Thm 4.14). The exact competitive ratio of Ignore for open online TSP remains
unknown. Consequently, it also remains unclear whether restricting the setting to the real
line or choosing a specific capacity for the server has an impact on the competitive ratio
of Ignore for open online TSP. A detailed examination of Ignore is given in Section 4.3
and summary of all results for algorithm Ignore is given in Table 2.6.

Algorithm SMARTSTART

As Ignore before, Smartstart is also a schedule-based algorithm. Therefore, the already
mentioned lower bounds for schedule-based algorithms are also lower bounds for Smart-
start’s competitive ratio. In particular, the lower bound of 2 for the competitive ratio of
schedule-based algorithms for closed online TSP on the line (see Thm 4.3) matches the
known upper bound for the competitive ratio of Smartstart for closed online Dial-a-Ride
(see [5, Thm 6]). Consequently, Smartstart is a best-possible schedule-based algorithm
for the closed version of online TSP and online Dial-a-Ride even on the real line. For open
online Dial-a-Ride on the line we provide an improved upper bound for the competitive
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Smartstart open closed
upper bound lower bound upper bound lower bound

lin
e Dial-a-Ride (c ∈ N ∪ {∞}) 2.9377 2.9377

2 2Thm 5.5 [10] Thm 5.25 [10]

TSP
2.7604 2.7604

2
2

Thm 5.29 Thm 5.40 Thm 4.3

ge
ne

ra
l Dial-a-Ride (c ∈ N ∪ {∞}) 3

2.9377
2

2Thm 5.43 [5, Thm 6]

TSP
2.8229

2.7604 2
2

Thm 5.44 [8, Thm 3.2]

Table 2.7: Overview of the best known bounds for the competitive ratios of Smartstart for online Dial-a-
Ride on the line (top), and online Dial-a-Ride on general continuous metric spaces (bottom).
Results are split into Dial-a-Ride and TSP. Bold results are our contribution. Underlined results
are original and imply the other results.

ratio of Smartstart of roughly 2.9377 (see Thm 5.5), which we complement with a
matching lower bound (see Thm 5.25). We published these results also in [10, Thm 3.8,
Thm 4.9]. Interestingly, for open online TSP on the line, we provide a slightly stronger
upper bound for the competitive ratio of Smartstart of roughly 2.7604 (see Thm 5.29),
which we also complement with a matching lower bound (see Thm 5.40). This proves that
choosing a specific capacity for the server has no impact on Smartstart’s competitive
ratio in the open setting on the line, while disallowing transportation request has. For
arbitrary continuous metric spaces, we obtain slightly weaker upper bounds: We show that
Smartstart is 3-competitive for the open version of online Dial-a-Ride (see Thm 5.43)
and 2.8229-competitive for the open version of online TSP (see Thm 5.44). The lower
bounds obtained on the real line remain for the general setting, i.e., it remains unclear if
restricting the underlying metric space to the real line has an impact on Smartstart’s
competitive ratio. A detailed examination of Smartstart is presented in Chapter 5 and a
summary of results is given in Table 2.7.

Algorithm SMARTERSTART

During the analysis of Smartstart, we obtain conclusive insights on its strengths and
weaknesses. By avoiding a critical weakness of Smartstart, we are able to develop an
improved schedule-based algorithm called SmarterStart. We show that SmarterStart
is 2-competitive for closed online Dial-a-Ride (see Thm 6.40), matching the lower bound
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SmarterStart open closed
upper bound lower bound upper bound lower bound

lin
e Dial-a-Ride (c ∈ N ∪ {∞}) 2.6662 2.6662

2 2Thm 6.5 [12] Thm 6.19 [12]

TSP
2.6288 2.6288

2
2

Thm 6.23 Thm 6.33 Thm 4.3

ge
ne

ra
l Dial-a-Ride (c ∈ N ∪ {∞}) 2.6956

2.6662
2

2Thm 6.36 Thm 6.40

TSP
2.6625

2.6288 2
2

Thm 6.37 [8, Thm 3.2]

Table 2.8: Overview of the best known bounds for the competitive ratios of SmarterStart for online Dial-a-
Ride on the line (top), and online Dial-a-Ride on general continuous metric spaces (bottom).
Results are split into Dial-a-Ride and TSP. Bold results are our contribution. Underlined results
are original and imply the other results.

for schedule-based algorithms for closed online TSP on the line (see Thm 4.3). Thus, as
Smartstart, algorithm SmarterStart is a best-possible schedule-based algorithm for
closed online Dial-a-Ride and closed online TSP. For open online Dial-a-Ride on the line
we provide an upper bound for the competitive ratio of SmarterStart of roughly 2.6662
(see Thm 6.5), which we complement with a matching lower bound (see Thm 6.19).
This is a significant improvement in comparison to the 2.9377-competitive Smartstart
algorithm. We published these results also in [12, Thm 3.7, Thm 1.2]. For open online
TSP on the line we provide a slightly stronger upper bound for the competitive ratio of
SmarterStart of roughly 2.6288 (see Thm 6.23), which we complement with a matching
lower bound (see Thm 6.33). This proves that choosing a specific capacity for the server
has no impact on Smartstart’s competitive ratio in the open setting on the line, while
disallowing transportation request has. For arbitrary continuous metric spaces, we obtain
slightly weaker upper bounds: We show that SmarterStart is 2.6956-competitive for the
open version of online Dial-a-Ride (see Thm 6.36) and 2.6625-competitive for the open
version of online TSP (see Thm 6.37). The lower bounds obtained on the real line remain
for the general setting, i.e., it remains unclear if restricting the underlying metric space to
the real line has an impact on SmarterStart’s competitive ratio. A detailed examination
of SmarterStart is presented in Chapter 6 and a summary of results including the results
of this thesis is given in Table 2.8.
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2.2 Our Contribution

Replan open closed
upper bound lower bound upper bound lower bound

lin
e

Dial-a-Ride (c = 1) 3 2.5 2.5 2

Dial-a-Ride (1 < c <∞) 4 2.5
3

2Thm 7.6

Dial-a-Ride (c =∞) 3 2.5 2.5 2

TSP 2.5
2.5 2 2

[8, Thm 4.1] Thm 7.5 Thm 7.4

ge
ne

ra
l

Dial-a-Ride (c = 1)
3

2.5
2.5

2[32, Thm 2.27] [32, Thm 2.15]

Dial-a-Ride (1 < c <∞)
4

2.5
3.5

2Thm 7.8 [32, Thm 2.14]

Dial-a-Ride (c =∞)
3

2.5
2.5

2Thm 7.9 Thm 7.7

TSP
2.5

2.5 2.5
2

[8, Thm 4.1] [8, Thm 3.2]

Table 2.9: Overview of the best known bounds for the competitive ratios of Replan for online Dial-a-Ride
on the line (top), and online Dial-a-Ride on general continuous metric spaces (bottom). Results
are split into Dial-a-Ride with capacities c = 1, 1 < c < ∞ and c = ∞ and TSP. Bold results are
our contribution. Underlined results are original and imply the other results.

Algorithm REPLAN

Algorithm Replan is the only online algorithm examined in this thesis that is not schedule-
based. We present a lower bound of 2 for the competitive ratio of Replan for closed online
TSP on the line (see Thm 7.4), which we complement with a matching upper bound for
the closed version on the line (see Thm 7.5). The upper bound for the closed TSP version
of Replan in the general setting remains 2.5. For closed online Dial-a-Ride, we provide
an upper bound of 3 for capacity c > 1 on the line (see Thm 7.6) and an upper bound
of 2.5 for capacity c = ∞ in the general setting (see Thm 7.7). For the open version of
online Dial-a-Ride, we improve Krumke’s upper bound of 4.5 for capacity c > 1 to a
bound of 4 for capacity 1 < c <∞ (see Thm 7.8) and to a bound of 3 for capacity c =∞
(Thm 7.9). However, even though we improve several upper and lower bounds for the
competitive ratios of different versions of Replan, we only show a tight competitive ratio
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2 Online DIAL-A-RIDE and Online TSP

General Bounds open closed
upper bound lower bound upper bound lower bound

lin
e

Dial-a-Ride (c <∞)
2.6662 2.0585

2
1.7636

Thm 6.5 [12] Thm 3.2 [12] Thm 3.1

Dial-a-Ride (c =∞) 2.4142 2.0346 2 1.6404

TSP
2.0346 2.0346 1.6404 1.6404

[13, Thm 10] [13, Thm 4] [13, Thm 3] [8, Thm 3.3]

ge
ne

ra
l

Dial-a-Ride (c <∞)
2.6956

2.0585
2

2Thm 6.36 [5, Thm 6]

Dial-a-Ride (c =∞)
2.4142

2.0346
2

2[13, Thm 12] [25, Thm 2.3]

TSP 2.4142 2.0346
2 2

[8, Thm 4.2] [8, Thm 3.2]

Table 2.10: Overview of the best known bounds for the competitive ratios of online Dial-a-Ride on the line
(top), and online Dial-a-Ride on general continuous metric spaces (bottom). Results are split
into Dial-a-Ride with capacities c < ∞ and c = ∞ and TSP. Bold results are our contribution.
Underlined results are original and imply the other results.

for closed online TSP on the line. For all other versions of the problem, gaps between
upper and lower bounds remain. Consequently, it remains unclear if Replan has different
competitive ratios for online Dial-a-Ride and online TSP and if restricting the underlying
metric space to the real line has an impact on its competitive ratio. Furthermore, it remains
unclear if choosing a specific capacity has an impact on the competitive ratio. A thorough
examination of Replan in conducted in Chapter 7 and an overview of our results is given
in Table 2.9.

General Bounds

The analysis of the SmarterStart algorithm leads to several now improved general upper
bounds for the competitive ratio of the problem online Dial-a-Ride. In particular, for
open online Dial-a-Ride we improve Krumke’s upper bound of roughly 3.4142 provided
by Smartstart (see [32, Thm 2.30]) to an upper bound of roughly 2.6662 on the line
(see Thm 6.5, also published in [12]) and to roughly 2.6956 in the general setting (see
Thm 6.36). Besides providing analyses of online algorithms, we also present improved
general lower bounds for online Dial-a-Ride on the line. For closed online Dial-a-Ride
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2.3 Related Work

on the line with capacity c <∞, we provide an improved lower bound of roughly 1.7636
(see Thm 3.1) and for open online Dial-a-Ride on the line with capacity c < ∞ we
provide a lower bound of roughly 2.0585 (see Thm 3.2, also published in [12]). The latter
separates open online Dial-a-Ride on the line from open online TSP on the line in terms
of competitiveness. The lower bounds for online Dial-a-Ride with infinite capacity remain.
See Chapter 3 for a detailed discussion of the lower bound constructions.

2.3 Related Work

Many different versions and modification of online Dial-a-Ride have been studied in the
past. As already mentioned, in this thesis, we focus on the non-preemptive variant of
online Dial-a-Ride, where requests cannot be unloaded on the way in reaction to the
arrival of new requests. For the closed version in the case where preemption is allowed,
we have a tight competitive ratio of 2 in the general setting and bounds of [1.64, 2] on the
line. The lower bounds are implications of the lower bounds for closed online TSP on the
line [8, Thm 3.3] and in the general setting [8, Thm 3.2] and the best algorithm for closed
preemptive online Dial-a-Ride is the Smartstart algorithm for closed non-preemptive
online Dial-a-Ride [5, Thm 6]. Thus, the preemptive version is neither separated from
online TSP nor is it separated from non-preemptive online Dial-a-Ride on the line. The
same is true for open preemptive Dial-a-Ride on the line as well as in the general setting:
The best bounds for the open, preemptive variant are [2.04, 2.41] (see [13, Thm 4] and [13,
Thm 12]), where the lower bound is again an implication of the lower bound for open
online TSP on the line. The problem can be further modified by weakening the adversary.
A adversary is called fair, if it only releases requests such that the optimum server cannot
leave the convex hull of the origin and the positions of the currently released requests. Blom
et al. introduced this adversary model and provided a lower bound of 5+

√
57

8 ≈ 1.57 [14]
for the competitive ratio of closed online TSP that was complemented by a matching
online algorithm published by Lipmann [35].
A randomized version of closed online TSP was examined by Chen et al. [17]. They

show a tight competitive ratio of 1.5. In case of a fair adversary they present a lower bound
of 1+

√
17

4 ≈ 1.28, which they complement with an upper bound of 9+
√
177

16 ≈ 1.39.
Besides these minor modifications of the problem, many variants with more involved

modifications have been studied. A variant of the online Dial-a-Ride problem where the
objective is to minimize the maximal flow time, instead of the makespan, has been studied
by Krumke et al. [33, 34]. They established that in many metric spaces no online algorithm
can be competitive with respect to this objective. Hauptmeier et al. [29] showed that a
competitive algorithm is possible if we restrict ourselves to instances with “reasonable”
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2 Online DIAL-A-RIDE and Online TSP

load. They defined an instance as reasonable if requests that appear over a sufficiently
large time period T can always be served in time at most T . Lipmann et al. [36] studied a
natural variant of closed, online Dial-a-Ride where the destinations of requests are only
revealed upon collection by the server. For general metric spaces and server capacity c,
they showed a tight competitive ratio of 3 in the preemptive setting, and lower/upper
bounds of max{3.12, c} and 2c + 2, respectively, in the non-preemptive setting. Yi and
Tian [45] considered the online Dial-a-Ride problem with deadlines, with the objective
of serving the maximum number of requests. They provided bounds for the competitive
ratio depending on the diameter of the metric space. In [46] they further studied this
setting where the destinations of requests are only revealed upon collection by the server.

The offline version of Dial-a-Ride on the line has been studied in various settings. An
overview has been provided in [41]. For the closed, non-preemptive case without release
times, Gilmore and Gomory [27] and Atallah and Kosaraju [6] gave a polynomial time
algorithm for a server with unit capacity c = 1, and Guan [28] showed that the problem
is hard for c = 2. Bjelde et al. [13] extended this result to any finite c ≥ 2 and both
the open and closed case. They further showed that, with release times the, problem is
already hard for finite c ≥ 1. On the other hand, the complexity of the case c =∞ has
not yet been established. The closed, preemptive case without release times was shown
to be polynomial time solvable for c = 1 by Atallah and Kosaraju [6], and for c ≥ 2
by Guan [28]. For the closed, non-preemptive case with finite capacity, Krumke [32]
provided a 3-approximation algorithm. Finally, Charikar and Raghavachari [16] gave
approximation algorithms for the closed case without release times, both preemptive and
non-preemptive, on general metric spaces.
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3 Lower Bounds for Online DIAL-A-RIDE
In this chapter, we present two new lower bounds for online Dial-a-Ride. On one hand
we will present a lower bound of 1.7636 for the closed version of online Dial-a-Ride on
the line and on the other hand we provide a lower bound of 2.0585 for the open version
of online Dial-a-Ride on the line. To be more precise we prove the following results.

Theorem 3.1. Let ρcl ≈ 1.7636 be the largest root of the polynomial −14ρ2 + 40ρ − 27.
There is no (ρcl − ε)-competitive algorithm for closed online Dial-a-Ride on the line with
capacity c <∞ for any ε > 0.

Theorem 3.2. Let ρop ≈ 2.0585 be the second largest root of the polynomial 4ρ3 − 26ρ2 +
39ρ− 5. There is no (ρop − ε)-competitive algorithm for open online Dial-a-Ride on the line
with capacity c <∞ for any ε > 0.

The latter result separates the open versions of online Dial-a-Ride and online TSP on the
line in terms of competitiveness since open online TSP on the line has a tight competitive
ratio of 2.0346 [13, Thm 10]. For closed online Dial-a-Ride and online TSP on the line this
separation was already established in [13]. Bjelde et al. showed a tight competitive ratio
of roughly 1.6404 for closed online TSP on the line and improved the lower bound of online
Dial-a-Ride to 1.75. Interestingly, this kind of separation is not possible in the general
setting: Ausiello et al. were able to show in [8] that online TSP on an arbitrary continuous
metric space has a tight competitive ratio of 2. This directly implies a lower bound of 2 for
online Dial-a-Ride on general metric spaces, which Ascheuer et al. complemented with
the 2-competitive Smartstart algorithm in [5]. See Table 2.1 in Chapter 2 for a full list
of currently known bounds excluding the results of this thesis. We published Theorem 3.2
and its proof also in [12].

Preparations

The proof of Theorem 3.1 and the proof of Theorem 3.2 rely on constructing a request
sequence that consists of two stages. The intuitive idea of these two stages is the following:
The first stage forces the algorithm Alg to be in some critical situation and the second
stage then exploits this situation and forces Alg to be at best ρ-competitive for a certain
ρ > 1.
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3 General Lower Bounds for Online DIAL-A-RIDE

To simplify the exposition a bit, consider the situation in which the server is fully loaded
with requests that have the same destination: Let Alg’ be a online algorithm for online
Dial-a-Ride. We call Alg’ eager if, in the case that Alg’ is fully loaded with requests that
have the same destination, it immediately delivers all loaded requests without detour. It
is clear that we can transform every algorithm Alg′′ into an eager algorithm Alg′′

eager by
letting it act exactly as Alg′′, except if it is fully loaded. In the case it is fully loaded, we
let Alg′′

eager deliver the requests right away, wait until Alg′′ would have delivered them,
and then let it continue like Alg′′. Since Alg′′ cannot collect or serve other requests while
being fully loaded, we have Alg′′

eager(σ) ≤ Alg′′(σ) for every request sequence σ.

Observation 3.3. Every algorithm for online Dial-a-Ride can be turned into an eager
algorithm with the same competitive ratio.

Thus, we may assume in the following that the algorithm Alg is eager. Furthermore, in
the following, we use the notation “move(a)” to describe the trajectory of a server for the
tour that moves the server from its current position with unit speed to the position a ∈ R.
By pos(t) we denote Alg’s position at time t.

3.1 Lower Bound for Closed Online DIAL-A-RIDE on the Line

In this section, we prove Theorem 3.1. Let c < ∞ and Alg be an algorithm for closed
online Dial-a-Ride. Let ρcl ≈ 1.7636 be the largest root of the polynomial−14ρ2+40ρ−27.
We describe a request sequence σρcl such that

Alg
(︁
σρcl
)︁
≥ ρclOpt

(︁
σρcl
)︁
.

We first give a more intuitive description of our construction omitting most technical
details. As already mentioned, our construction consists of two stages, with the first stage
ending when a critical situation for Alg is established. We start by describing this critical
situation and how to exploit it, i.e., we first explain the second stage.
Suppose we have c times the request sjR = (rR, 0; rR) and c times the request sjL =

(−rL, 0; rL) with j ∈ {1, . . . , c}. We assume that Alg loads all c requests sjR at once before
any of the c requests sjL at some time t∗R ≥ (2ρcl− 2)rL + (2ρcl− 3)rR. Then we could just
release the request s∗R = (rR, rR; 2rL + rR) and we would have

Alg(σρcl) = t∗R + 2rL + 3rR

≥ (2ρcl − 2)rL + (2ρcl − 3)rR + 2rL + 3rR

= 2ρclrL + 2ρclrR
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3.1 Lower Bound for Closed Online DIAL-A-RIDE on the Line

= ρclOpt(σρcl),

since Opt can serve the 2c + 1 requests in time 2rL + 2rL by serving the requests sjL
first. In fact, we can force Alg into this situation, if the requests sjR = (rR, rR; rR) and
sjL = (−rL,−rL; rL) satisfy the following properties.

Definition 3.4. Let ρ > 1. We call the last 2c requests sjR = (rR, rR; rR) and sjL =
(−rL,−rL; rL) with j ∈ {1, . . . , c} of a request sequence σ with 0 < rL ≤ rR c-ρ-critical
for Alg if the following conditions hold:

(i) Both tours
move(−rL)⊕move(rR)⊕move(0)

and
move(rR)⊕move(−rL)⊕move(0)

serve all requests presented until time rR.

(ii) If Alg loads at least one request sjR before it loads any of the requests sjL, it does it
no earlier than t∗R := (2ρ− 2)rL + (2ρ− 3)rR.

(iii) If Alg loads at least one request sjL before it loads any of the requests sjR, it does it
no earlier than t∗L := (2ρ− 2)rR + (2ρ− 3)rL.

(iv) It holds that rR
rL
≤ 2ρ2−6ρ+4

−2ρ2+4ρ−1
.

Analysis of the Second Stage

Definition 3.4 describes the critical situation Alg is forced into at the end of the first
stage. There are two things we have to prove: We can present a request sequence that
satisfies Definition 3.4 (first stage), and, once Alg is in the critical situation described
by Definition 3.4, we can release additional requests, such that Alg is not better than
ρ-competitive (second stage). We first show the latter.

Lemma 3.5. Let ρ ∈ (12(2 +
√
2), 14(5 +

√
5)] ≈ (1.7071, 1.8090]. If there is a request

sequence with 2c c-ρ-critical requests for Alg, we can release additional requests such that
Alg is not (ρ− ε)-competitive on the resulting instance for any ε > 0.

Proof. Let σρ be a request sequence with c-ρ-critical requests sjL and sjR according to
Definition 3.4. First, we note that Definition 3.4 implies 0 < rL ≤ rR, i.e., Definition 3.4
(iv) can only hold if

1 ≤
rR
rL
≤ 2ρ2 − 6ρ+ 4

−2ρ2 + 4ρ− 1
,
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3 General Lower Bounds for Online DIAL-A-RIDE

0

pos

time

Alg
Opt

t∗0 Opt(σρ) Alg(σρ)a1

a0

0

pos

time

Alg
Opt

t∗Opt(σρ) Alg(σρ)a1

a0

Figure 3.1: Left: Alg does not serve all requests sj0 (yellow ) at once and moves the distance from the origin
to a0 three times. Right: Alg waits too long before serving the requests sj0, i.e. t

∗ gets too large.
We only show Alg’s walk after time t∗0 and t∗. Opt is blue, the requests sj1 are red and ρ = ρcl.

i.e., if ρ ∈ (12(2 +
√
2), 14(5 +

√
5)] holds. Let a0 ∈ {−rL, rR} be the starting position of

the requests of the subsequence (sj0)j ∈ {(s
j
L)j , (s

j
R)j} that are collected first by Alg and

let a1 ∈ {−rL, rR} be the starting position of the requests (sj1)j ∈ {(s
j
L)j , (s

j
R)j} that are

on the opposite side of the origin. By properties (ii) and (iii) of Definition 3.4, Alg cannot
collect any request sj0 before time t∗0 := (2ρ− 2)|a1|+ (2ρ− 3)|a0|. Note that ρ > 1.7071

implies t∗0 > 0. Assume Alg only serves c′ < c of the requests sj0 before loading the
remaining c− c′. See the left part of Figure 3.1 for an illustration of this case. We have

Alg(σρ) ≥ t∗0 + 2|a1|+ 3|a0| = 2ρ|a1|+ 2ρ|a0| = ρOpt(σρ),

since all requests can be served with the tour move(a1)⊕move(a0)⊕move(0) according
to (i).
Thus, we may assume that Alg loads all c requests sj0 at once at some time t∗. If no

additional requests are released, we have

Alg(σρ) ≥ t∗ + |a0|+ 2|a1|

and
Opt(σρ) = 2|a1|+ 2|a0|

again by (i). Thus, the claim is true if

t∗ + |a0|+ 2|a1| ≥ 2ρ|a1|+ 2ρ|a0|, i.e., t∗ ≥ (2ρ− 2)|a1|+ (2ρ− 1)|a0|

holds. See the right part of Figure 3.1 for an illustration of this case. If we have t∗ <
(2ρ− 2)|a1|+ (2ρ− 1)|a0| we release the request

s+0 := (sgn(a0)max{|a0|, t∗ − 2|a1|}, sgn(a0)max{|a0|, t∗ − 2|a1|}; t∗)
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0

pos

time

Alg
Opt

t∗ Opt(σρ) Alg(σρ)
a1

a0

t∗ − 2|a1|

Figure 3.2: Alg (green) collects all sj0 (yellow ) at time t∗ = (2ρ− 2)|a1|+ (2ρ− 2)|a0|. This implies that
the request s∗0 (violet ) is released at position t∗ − 2|a1| and after Opt reaches a0. We only show
Alg’s walk after time t∗. Opt is blue, the requests sj1 are red and ρ = ρcl.

and define σ+
ρ to be the request sequence σρ plus the request s+0 . Since Alg has loaded

the requests sj0 and is fully loaded, it has to deliver the loaded requests before being able
to serve s+0 . Thus, we have

Alg(σ+
ρ ) ≥ t∗ + |a0|+ 2max{|a0|, t∗ − 2|a1|}+ 2|a1|.

Opt serves the requests sj1 first and thus reaches position sgn(a0)max{|a0|, t∗ − 2|a1|} at
time t∗ or before. Therefore, Opt does not need to wait for the release of s+0 and we have

Opt(σ+
ρ ) = 2|a1|+ 2max{|a0|, t∗ − 2|a1|}.

If we have max{|a0|, t∗ − 2|a1|} = |a0|, the claim is true if

t∗ + 3|a0|+ 2|a1| ≥ 2ρ|a1|+ 2ρ|a0|, i.e., t∗ ≥ (2ρ− 2)|a1|+ (2ρ− 3)|a0|

holds, which is always the case because of (ii) and (iii). Otherwise, ifmax{|a0|, t∗−2|a1|} =
t∗ − 2|a1|, the claim is true if

3t∗ + |a0| − 2|a1| ≥ 2ρt∗ − 2ρ|a1|, i.e., t∗ ≤ 2ρ− 2

2ρ− 3
|a1|+

1

2ρ− 3
|a0| (3.1)

holds. An illustration of this last case is given in Figure 3.2. The inequality (3.1) holds for
all t∗ < (2ρ− 2)|a1|+ (2ρ− 1)|a0| if

2ρ− 2

2ρ− 3
|a1|+

1

2ρ− 3
|a0| ≥ (2ρ− 2)|a1|+ (2ρ− 1)|a0|.
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3 General Lower Bounds for Online DIAL-A-RIDE

This is equivalent to
|a0|
|a1|
≤ 2ρ2 − 6ρ+ 4

−2ρ2 + 4ρ− 1
,

which holds because of (iv).

Analysis of the First Stage

Thus, what remains is to construct a request sequence σ′
ρcl

that satisfies all properties of
Definition 3.4.

We let Alg wait until time 1. Without loss of generality, we assume that Alg’s position
at time 1 is pos(1) ≤ 0 (the other case is symmetric). Now, let the request s0R = (1, 1; 1)
appear. Alg cannot serve s0R before time 2. If Alg serves s0R after time 2ρcl − 1 it is not
ρcl-competitive, since

Alg((s0R)) ≥ 2ρcl − 1 + 1 = 2ρcl = ρclOpt((s0R)).

Let rL ∈ [2, 2ρcl − 1) be the time Alg serves s0R and let c requests sjL = (−rL, 0; rL) with
j ∈ {1, . . . , c} appear. We define the line

ℓcl(t) = (5− 2ρcl) · t− (2ρcl − 2) · rL.

We have rL ∈ [2, 2ρcl − 1) and ℓcl(rL) = (7− 4ρcl)rL. Since ρcl > 1.75, we have ℓcl(rL) <
0 < pos(rL), i.e., Alg’s position at time rL is above the line ℓcl in the position-time diagram.
Thus, Alg crosses the line ℓcl before loading any of the c requests sjL. Let rR be the time
Alg crosses the line ℓcl for the first time after time rL and let c requests sjR = (rR, 0; rR)
with j ∈ {1, . . . , c} appear. We define σ′

ρcl
:= (s0R, s

1
L, . . . , s

c
L, s

1
R, . . . , s

c
R).

Lemma 3.6. Let j ∈ {1, . . . , c}. Alg can neither collect a request sjL before time t∗L nor can
it collect request sjR before time t∗R.

Proof. See Figure 3.3 for an illustration of Alg collecting the requests sjL after time t∗L
(left) and an illustration of Alg collecting the requests sjR at time t∗R (right). Assume Alg
serves the requests sjR before sjL. Then it does not collect any request sjR before time

rR + |ℓcl(rR)− rR| = 2rR − ℓcl(rR) = (2ρcl − 2)rL + (2ρcl − 3)rR = t∗R

where the first equality follows since Alg is to the left of position rR at time rR. If we
have

ℓcl(rR) ≥ (2ρcl − 3)rR − (4− 2ρcl)rL, (3.2)
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0

pos

time

Alg

1 rR > t∗L

1

−rL

rR

0

pos

time

Alg

1 rR t∗R

1

−rL

rR

Figure 3.3: Left: Alg (green) collects sjL (yellow ) before sjR (violet ). The requests sjL are collected later
than t∗L. Right: Alg collects sjR before sjL. The requests sjR are not collected before t∗R. Request
s0R is red and ℓcl is the dashed black line.

Alg cannot collect any request sjL before time

rR + |ℓcl(rR)− (−rL)| = rR + ℓcl(rR) + rL
(3.2)
≥ rR + (2ρcl − 3)rR − (4− 2ρcl)rL + rL

= (2ρcl − 2)rR + (2ρcl − 3)rL = t∗L.

where the first equality follows since Alg is to the right of position −rL at time rR. Thus, it
is enough to show inequality (3.2). Inequality (3.2) holds for rR ≥

2ρcl−3
4−2ρcl

rL. Alg crosses
ℓcl earliest if it moves towards position −rL directly after serving the request s0R. Thus,
the earliest possible time Alg crosses ℓcl is the solution of

ℓcl(rR) = (5− 2ρcl)rR − (2ρcl − 2)rL = rL + 1− rR,

which is r∗R := 2ρcl−1
5−2ρcl

rL + 1
5−2ρcl

. Because of the inequality(︃
2ρcl − 3

4− 2ρcl
− 2ρcl − 1

5− 2ρcl

)︃
rL =

6ρcl − 11

4ρ2cl − 18ρcl + 20
rL

≤ 4ρcl − 7

2ρ2cl − 10ρcl + 12
(2ρcl − 1)

≤
6ρ2cl − 17ρcl + 11

4ρ2cl − 18ρcl + 20
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ρcl < 1.85
<

1

5− 2ρcl
,

we have r∗R > 2ρcl−3
4−2ρcl

rL, i.e., inequality (3.2) holds.

Finally, we show that the requests sjR and sjL with j ∈ {1, . . . , c} are critical.

Lemma 3.7. Let j ∈ {1, . . . , c}. The requests sjR and sjL of the request sequence σ′
ρcl

satisfy
Definition 3.4.

Proof. The release time of every request is equal to its starting position, thus every request
can be served/loaded immediately once its starting position is visited and (i) of Defini-
tion 3.4 is satisfied. Lemma 3.6 shows that (ii) and (iii) of Definition 3.4 are satisfied.
It remains to show that property (iv) of Definition 3.4 is satisfied. For this, we need to
examine the release time rR of the requests sjR. The time rR is largest if Alg tries to avoid
crossing the line ℓcl as long as possible, i.e., it continues to move right after serving the
request s0R. Then, we have pos(t) = 1− rL + t for t ≥ rL and rR is the solution of

1− rL + rR = (5− 2ρcl)rR − (2ρcl − 2)rL.

Thus, in general, we have rR ≤
2ρcl−3
4−2ρcl

rL + 1
4−2ρcl

, i.e.,

rR
rL
≤ 2ρcl − 3

4− 2ρcl
+

1

(4− 2ρcl)rL

rL≥2

≤ 4ρcl − 5

8− 4ρcl
.

For property (iv), we need rR
rL
≤ 2ρ2cl−6ρcl+4

−2ρ2cl+4ρcl−1
. This is satisfied if

4ρcl − 5

8− 4ρcl
≤

2ρ2cl − 6ρcl + 4

−2ρ2cl + 4ρcl − 1

holds, which is equivalent to

−14ρ2cl + 40ρcl − 27 ≥ 0.

This is true by definition of ρcl.

Together with Lemma 3.5, this completes the proof of Theorem 3.1.
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3.2 Lower Bound for Open Online DIAL-A-RIDE on the Line

In this section, we prove Theorem 3.2. Let c <∞ and Alg be an eager online algorithm for
open online Dial-a-Ride. Let ρop ≈ 2.0585, be the second largest root of the polynomial
4ρ3 − 26ρ2 + 39ρ− 5. We describe a request sequence σρop such that

Alg(σρop) ≥ ρopOpt(σρop).

The proof follows the same design principle as the proof of Theorem 3.1: We construct a
request sequence in a first stage that forces Alg into some critical situation that is then
exploited in the second stage.
The request sequence that will be constructed in this section is based on the request

sequence presented by Bjelde et al. in [13] to prove the lower bound of 2.0346 for online
TSP on the line: The first stage starts with an initial request (1, 1; 1) (assuming w.l.o.g.
Alg’s position at time 1 is at most 0). This stage consists of a loop, which ends as soon
as two so-called critical requests are established. The second stage exploits the situation
generated by the critical requests by releasing suitable additional requests to show the
desired competitive ratio. A single iteration of the loop only yields a lower bound of
roughly 2.0298, but as the number of iterations approaches infinity one can show the tight
bound of roughly 2.0346 in the limit.
In Theorem 3.2, we show a lower bound of roughly 2.0585 using the same general

structure but only a single iteration in the first stage. Our additional leeway stems from
replacing the initial request (1, 1; 1) with c initial requests of the form (1, δ; 1) where δ > 1:
At the time when an initial request is loaded, we show that w.l.o.g. all c requests are
loaded and then proceed as we did when (1, 1; 1) was served.
Before we explain the first stage in detail, we consider the second stage. We start by

describing the critical situation we want to force Alg into and then explain how to exploit
it. Suppose we have two requests sR = (rR, rR; rR) and sL = (−rL,−rL, rL) with rL ≤ rR
to the right and to the left of the origin, respectively. We assume that Alg serves sR first at
some time t∗ ≥ (2ρop − 2)rL + (ρop − 2)rR. Now suppose we could force Alg to serve sL
directly after sR, even if additional requests are released. Then we could just release the
request s∗R = (rR, rR, 2rL + rR) and we would have

Alg(σρop) = t∗ + 2rL + 2rR ≥ 2ρoprL + ρoprR = ρopOpt(σρop),

since Opt can serve the three requests in time 2rL + rR by serving sL first. In fact, we
will show that we can force Alg into this situation (or a worse situation) if the requests
sR = (rR, rR; rR) and sL = (−rL,−rL, rL) satisfy the following properties.
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Definition 3.8. Let ρ > 0. We call the last two requests sR = (rR, rR; rR) and sL =
(−rL,−rL, rL) of a request sequence with 0 < rL ≤ rR o-ρ-critical for Alg if the following
conditions hold:

(i) Both tours move(−rL) ⊕move(rR) and move(rR) ⊕move(−rL) serve all requests
presented until time rR.

(ii) Alg serves both sR and sL after time rR and Alg’s position at time rR lies between rR
and −rL.

(iii) If Alg serves sR before sL, it does so no earlier than t∗R := (2ρ− 2)rL + (ρ− 2)rR.

(iv) If Alg serves sL before sR, it does so no earlier than t∗L := (2ρ− 2)rR + (ρ− 2)rL.

(v) It holds that rR
rL
≤ 4ρ2−30ρ+50

−8ρ2+50ρ−66
.

Definition 3.8 differs from [13, Definition 5] for online TSP on the line only in property (v),
which is rR

rL
≤ 2 in the original paper.

Analysis of the Second Stage

Definition 3.8 describes the critical situation Alg is forced into at the end of the first stage.
As before in the closed case, there are two things we have to prove: We can present a
request sequence that satisfies Definition 3.8 (first stage), and, once Alg is in the critical
situation described by Definition 3.8, we can release additional requests, such that Alg is
not better than ρ-competitive. In this subsection, we show the latter.

Lemma 3.9. Let ρ ∈ (2, 13(10 −
√
13)) ≈ (2, 2.1315). If there is a request sequence with

two o-ρ-critical requests for Alg, we can release additional requests such that Alg is not
(ρ− ε)-competitive on the resulting instance for any ε > 0.

Lemma 3.9 has been proved in [13, Lemma 6] for request sequences that satisfy the
properties of [13, Definition 5], however, a careful inspection of the proof of [13, Lemma 6]
shows that the statement of Lemma 3.9 also holds for request sequences that only satisfy
(v) instead of rR

rL
≤ 2. For the sake of completeness, we present the full proof for our

slightly different version of Definition 3.8 and Lemma 3.9.
Let σρ be a request sequence with o-ρ-critical requests sL and sR according to Defini-

tion 3.8. First, we note that Definition 3.8 implies 0 < rL ≤ rR, i.e., Definition 3.8 (v) can
only hold if

1 ≤
rR
rL
≤ 4ρ2 − 30ρ+ 50

−8ρ2 + 50ρ− 66
,
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i.e., if ρ ∈ (18(25−
√
97), 13(10−

√
13)] ≈ (1.8939, 2.1315] holds. Let a0 ∈ {−rL, rR} be the

position of the request s0 ∈ {sL, sR} that is served first by Alg and let a1 ∈ {−rL, rR} be
the position of the request s1 ∈ {sL, sR} that is not served first. By properties (iii) and (iv)
of Definition 3.8, Alg cannot serve s0 before time t∗0 := (2ρ− 2)|a1|+ (ρ− 2)|a0|. Thus,
we have

Alg(σρ) ≥ t∗0 + |a0 − a1| = (2ρ− 1)|a1|+ (ρ− 1)|a0| =: t∗1, (3.3)

i.e., Alg cannot serve s1 before time t∗1. We have equality in inequality (3.3) if Alg
serves s0 the earliest possible time t∗0 and then moves directly to position a1 serving s1 at
time t∗1. However, in general Alg does not need to do this and instead might wait. If Alg
still has to serve s0 at time t ≥ max{|a0|, |a1|}, we have

Alg(σρ) ≥ t+ |pos(t)− a0|+ |a0 − a1|

and if s0 is served and only s1 is left to be served, we have

Alg(σρ) ≥ t+ |pos(t)− a1|.

We want to measure the delay of Alg at a time t ≥ max{|a0|, |a1|}, i.e., the difference
between the minimum time Alg needs to serve both requests s0 and s1 and the time t∗1,
which is the earliest possible time, both requests are served. For t ≥ max{|a0|, |a1|} we
define the function

delay(t) :=

⎧⎪⎨⎪⎩
t+ |pos(t)− a0|+ |a0 − a1| − t∗1 if s0 is not served at t,
t+ |pos(t)− a1| − t∗1 if s0 is served at t, but s1 not,
undefined otherwise.

We make the following observations about delay:

Observation 3.10. Let t ≥ max{|a0|, |a1|} be a time at which s1 is not served yet, i.e.
delay(t) is defined. Then we have delay(t) ≥ 0.

Proof. First, we note that request s1 is not served before time t∗1. At every point of time t ≥
max{|a0|, |a1|} at which s0 is not served yet, Alg needs at least time |pos(t)−a0|+ |a0−a1|
to serve s0 and then s1. This implies

t+ |pos(t)− a0|+ |a0 − a1| ≥ t∗1,

i.e., delay(t) ≥ 0. Similarly, at every point of time t ≥ max{|a0|, |a1|} at which s0 is served,
but s1 not, Alg needs at least time |pos(t)− a1| to serve s1. This implies

t+ |pos(t)− a0| ≥ t∗1,

i.e., again delay(t) ≥ 0.
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Observation 3.11. Let t ≥ max{|a0|, |a1|} be a time at which s1 is not served yet. The
earliest time Alg can serve s1 is t∗1 + delay(t).

Proof. At every point of time t ≥ max{|a0|, |a1|} at which s0 is not served yet, Alg needs
at least time

|pos(t)− a0|+ |a0 − a1| = t∗1 + delay(t)

to serve s0 and then s1. Similarly, at every point of time t ≥ max{|a0|, |a1|} at which s0 is
served, but s1 not, Alg needs at least time

|pos(t)− a1| = t∗1 + delay(t)

to serve s1.

Lemma 3.12. Let ρ > 2 and Alg be (ρ− ε)-competitive for some ε > 0. There is a W ≥ 0
with

delay

(︃
2|a1|+ |a0|+

W

ρ− 1

)︃
= W.

Proof. Because of property (ii) of Definition 3.8, at time max{|a0|, |a1|} neither s0 nor s1
has been served by Alg yet. Since Alg serves s1 after s0, the request s1 is not served
before time

max{|a0|, |a1|}+ |a0|+ |a1| ≥ 2|a1|+ |a0|,

i.e, delay(2|a1|+ |a0|) is defined and because of Observation 3.10, we have delay(2|a1|+
|a0|) ≥ 0. If delay(2|a1| + |a0|) = 0, we have W = 0 and are done. Otherwise, by
Observation 3.10, we have

delay(2|a1|+ |a0|) > 0. (3.4)

Alg needs to serve s1 at some point to be (ρ− ε)-competitive. Let W ∗ be chosen such that
Alg serves s1 at time 2|a1|+ |a0|+W ∗

ρ−1 . Therefore,

delay

(︃
2|a1|+ |a0|+

W ∗

ρ− 1
− ε′

)︃
is defined for some sufficiently small ε′ ≤ |a1|. Define the function

f(W ) := delay

(︃
2|a1|+ |a0|+

W

ρ− 1

)︃
−W.

Note that f is continuous, and we have f(0) > 0 by inequality (3.4). If

delay

(︃
2|a1|+ |a0|+

W ∗

ρ− 1
− ε′

)︃
≤ W ∗

ρ− 1
− ε′

ρ>2
< W ∗ − (ρ− 1)ε′,
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we have f(W ∗−(ρ−1)ε′) < 0, and we findW in the interval (0,W ∗−(ρ−1)ε′]. Otherwise,
we have

delay

(︃
2|a1|+ |a0|+

W ∗

ρ− 1
− ε′

)︃
>

W ∗

ρ− 1
− ε′. (3.5)

Then, by Observation 3.11, the earliest possible time Alg serves s1 is

t∗1 + delay

(︃
2|a1|+ |a0|+

W ∗

ρ− 1
− ε′

)︃
(3.5)
> t∗1 +

W ∗

ρ− 1
− ε′,

i.e., s1 is not served at time t∗1 +
W ∗

ρ−1 − ε′. However, we have

t∗1 +
W ∗

ρ− 1
− ε′ = (2ρ− 1)|a1|+ (ρ− 1)|a0|+

W ∗

ρ− 1
− ε′

ρ > 2, ε′ ≤ |a1|
> 2|a1|+ |a0|+

W ∗

ρ− 1
,

which is a contradiction to the fact, that W ∗ was chosen such that Alg serves s1 at time
2|a1|+ |a0|+W ∗

ρ−1 .

Lemma 3.13. Let 2 < ρ < 5
2 and Alg be (ρ− ε)-competitive for some ε > 0. Furthermore,

let W ≥ 0 with

delay

(︃
2|a1|+ |a0|+

W

ρ− 1

)︃
= W.

Then Alg serves s0 no later than time 2|a1|+ |a0|+ W
ρ−1 .

Proof. Assume we have

2|a1|+ |a0|+
W

ρ− 1
≥ t∗0 +W. (3.6)

By definition of W and Observation 3.11, Alg can serve s1 at time

t∗1 + delay

(︃
2|a1|+ |a0|+

W

ρ− 1

)︃
= t∗1 +W. (3.7)

Because of inequality (3.6), this can only be the case if Alg serves s0 no later than time

t∗1 +W − |a1 − a0| = t∗0 +W
(3.6)

≤ 2|a1|+ |a0|+
W

ρ− 1
.
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Thus, it remains to show inequality (3.6). Because of property (i) of Definition 3.8 all
requests can be served by the tourmove(a1)⊕move(a0), i.e., we have Opt(σρ) ≤ 2|a1|+|a0|.
By inequality (3.7), we have Alg(σρ) ≥ t∗1 +W . Thus, if we have

Alg(σρ) ≥ t∗1 +W > (ρ− ε)(2|a1|+ |a0|) ≥ (ρ− ε)Opt(σρ),

Alg is not (ρ− ε)-competitive. Therefore, we may assume

t∗1 +W ≤ (ρ− ε)(2|a1|+ |a0|),

and thus

W ≤ (ρ− ε)(2|a1|+ |a0|)− t∗1

= (ρ− ε)(2|a1|+ |a0|)− (2ρ− 1)|a1| − (ρ− 1)|a0|
= (1− 2ε)|a1|+ (1− ε)|a0|
< |a1|+ |a0|. (3.8)

If we solve inequality (3.6) for W , it is equivalent to

2|a1|+ |a0| − t∗0
1− 1

ρ−1

=
2|a1|+ |a0| − ((2ρ− 2)|a1|+ (ρ− 2)|a0|)

1− 1
ρ−1

=
(ρ− 1)((4− 2ρ)|a1|+ (3− ρ)|a0|)

ρ− 2

=
(ρ− 1)(4− 2ρ)

ρ− 2
|a1|+

(ρ− 1)(3− ρ)

ρ− 2
|a0|

Def 3.8 (v)
≥ |a0|+ (2− 2ρ)|a1|+

(−ρ2 + 3ρ− 1)(−8ρ2 + 50ρ− 66)

(ρ− 2)(4ρ2 − 30ρ+ 50)
|a1|

≥ |a0|+
5ρ3 − 36ρ2 + 86ρ− 67

2ρ3 − 19ρ2 + 55ρ− 50
|a1|

2 < ρ < 2.5
> |a0|+ |a1|

(3.8)
> W.

Now we have all ingredients to prove Lemma 3.9.

Proof of Lemma 3.9. Let W ≥ 0 with

delay

(︃
2|a1|+ |a0|+

W

ρ− 1

)︃
= W.
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0

pos

time

Alg
Opt

t∗0 Opt(σ+
ρ )

= r+0

Alg(σ+
ρ )

a+0

a1

a0

Figure 3.4: Case 1: Alg (green) serves s1 (red ) before s+0 (violet ). In this figure we have delay(t) = W = 2
for t ≥ t∗0 +W . Opt is blue, the request s0 is yellow .

We present the request

s+0 = (a+0 , a
+
0 ; r

+
0 )

:=

(︃
a0 + sgn(a0)

W

ρ− 1
, a0 + sgn(a0)

W

ρ− 1
; 2|a1|+ |a0|+

W

ρ− 1

)︃
and define σ+

ρ to be the request sequence σρ plus the request s+0 . We distinguish two
cases.

Case 1: At time r+0 , Alg is at least as close to a1 as to a+
0 or it serves s1 before s+0 .

See Figure 3.4 for an illustration of this case. In this case, we do not present additional
requests. By Lemma 3.13, Alg has served s0 at time r+0 or before and by Observation 3.11
it does not serve s1 earlier than time t∗1 +W . Thus, we have

Alg(σ+
ρ ) ≥ t∗1 +W + |a1|+ |a0|+

W

ρ− 1

= ρ

(︃
2|a1|+ |a0|+

W

ρ− 1

)︃
= ρOpt(σ+

ρ ).

Case 2: At time r+0 , Alg is closer to a+
0 than to a1 and it serves s+0 first.

We assume that the offline server first serves s1, then s0 and then s+0 . If the offline server
continues to move away from the origin after serving s+0 at time a+0 , its position at time
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0

pos

time

Alg
Opt

t∗0 Opt(σ+
ρ ) = r+0 Alg(σ+

ρ )
p1

p0

Figure 3.5: Case 2.1: The midpoint of Opt’s position and a1 (dashed line) reaches a+
0 (violet ) the same

time as Alg (green). No new requests are released. In this figure we have delay(t) = W = 2 for
t ≥ t∗0 +W . Opt is blue, the request s0 is yellow and the request s1 is red .

t ≥ |a1| is sgn(a0)t+ 2a1. We denote by

M(t) :=
sgn(a0)t+ 3a1

2

the midpoint between the current position of the offline server and the position a1. Note
that the time M−1(p), when the midpoint is at position p is given by

M−1(p) := |2p− 3a1|.

We again distinguish between two cases depending on the time, Alg serves the request s+0 .
We first take a look at the case that Alg serves s+0 too late.

Case 2.1: Alg does not serve s+0 until time M−1(a+
0 ).

See Figure 3.5 for an illustration of this case. In this case, the midpoint of the offline
server’s position and position a1 reaches a+0 before Alg. We do not present additional
requests. Since we are in Case 2, neither s+0 nor s1 is served at time M−1(a+0 ). Thus, we
have

Alg(σ+
ρ ) ≥ M−1(a+0 ) + |a

+
0 |+ |a1|

= |2a+0 − 3a1|+ |a+0 |+ |a1|

= |2a0 + 2sgn(a0)
W

ρ− 1
− 3a1|+ |a0|+

W

ρ− 1
+ |a1|

= 3|a0|+ 4|a1|+ 3
W

ρ− 1
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= ρ|a0|+ (3− ρ)|a0|+ 4|a1|+ 3
W

ρ− 1
Def 3.8 (v)
≥ ρ|a0|+

(3− ρ)(−8ρ2 + 50ρ− 66)

4ρ2 − 30ρ+ 50
|a1|+ 4|a1|+ 3

W

ρ− 1

= ρ|a0|+
4ρ3 − 29ρ2 + 48ρ+ 1

2ρ2 − 15ρ+ 25
|a1|+ 3

W

ρ− 1
2 < ρ < 2.5

> ρ|a0|+ 2ρ|a1|+ 3
W

ρ− 1
ρ < 3
> ρ

(︃
|a0|+ 2|a1|+

W

ρ− 1

)︃
= ρOpt(σ+

ρ ).

Case 2.2: Alg serves s+0 before time M−1(a+
0 ).

See 3.6 for an illustration of this case. By definition of W , the function delay is defined
for time a+0 , hence Alg has not served s1 before time a+0 . Since Alg is to the right of the
midpoint M(a+0 ) at time a+0 , there is a first time tmid at which M(tmid) = pos(tmid). We
present the request

s++
0 = (a++

0 , a++
0 ; r++

0 ) := (sgn(a0)tmid + 2a1, sgn(a0)tmid + 2a1; tmid).

and define σ++
ρ to be the request sequence σ+

ρ plus the request s++
0 . Note that Alg is

at the midpoint between a++
0 and a1 and thus, both tours move(a++

0 ) ⊕move(a1) and
move(a1)⊕move(a++

0 ) incur identical costs for Alg. We have

Alg(σρ) ≥ tmid + 3

(︃
|sgn(a0)tmid + 2a1 − a1|

2

)︃
=

5tmid − 3|a1|
2

.

We have Opt(σρ) = tmid, i.e., we want to show

Alg(σρ) ≥
5tmid − 3|a1|

2
≥ ρtmid = ρOpt(σρ). (3.9)

Inequality (3.9) is equivalent to

(5− 2ρ)tmid ≥ 3|a1|. (3.10)

Since ρ < 2.5, the coefficient (5 − 2ρ) of tmid is positive. Thus, we may assume tmid is
minimal to show the inequality (3.10). By assumption, s+0 is already served at time tmid.
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0

pos

time

Alg
Opt

t∗0∗ r+0

Alg(σ++
ρ )

Opt(σ++
ρ ) = r++

0

a0 = a+0

a1

a++
0

Figure 3.6: Case 2.2: Alg (green) serves s+0 (violet ) before the midpoint of Opt’s position and a1 (dashed
line) reaches a+

0 . Thus, s
+
0 (brown ) is released. In this figure we have delay(t) = W = 0 for

t ≥ t∗ +W . Opt is shown in blue, the request s0 is shown in yellow , the request s1 is shown in
red .

Hence, tmid is minimum if, starting at time r+0 at position pos
(︁
r+0
)︁
, Alg serves s+0 and

then moves towards the origin. Then, tmid is the solution of the equation

sgn(a0)r+0 + |pos
(︁
r+0
)︁
− a+0 |+ a+0 − sgn(a0)tmid =

sgn(a0)tmid + 3a1
2

. (3.11)

Because of Lemma 3.13, the request s0 is already served at time r+0 . Furthermore, since the
position of s1 has not been visited yet at time r+0 , we have sgn(a0)pos

(︁
r+0
)︁
> sgn(a0)a1,

i.e.,
|pos

(︁
r+0
)︁
− a1| = sgn(a0)(pos

(︁
r+0
)︁
− a1) > 0

and thus, because of −sgn(a0)a1 = |a1|, we get

delay(r+0 ) = r+0 + |pos
(︁
r+0
)︁
− a1| − t∗1

= r+0 + sgn(a0)pos
(︁
r+0
)︁
− sgn(a0)a1 − t∗1

= r+0 + sgn(a0)pos
(︁
r+0
)︁
+ |a1| − t∗1. (3.12)

Solving equation (3.12) for sgn(a0)pos
(︁
r+0
)︁
gives

sgn(a0)pos
(︁
r+0
)︁

= delay

(︃
2|a1|+ |a0|+

W

ρ− 1

)︃
− W

ρ− 1

+(ρ− 2)|a0|+ (2ρ− 4)|a1|

= W − W

ρ− 1
+ (ρ− 2)|a0|+ (2ρ− 4)|a1|
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=
ρ− 2

ρ− 1
W + (ρ− 2)|a0|+ (2ρ− 4)|a1| (3.13)

ρ < 3
<

W

ρ− 1
+ (ρ− 2)|a0|+ (2ρ− 4)|a1|

Def 3.8 (v)
≤ W

ρ− 1
+

(︃
(ρ− 2) + (2ρ− 4)

4ρ2 − 30ρ+ 50

−8ρ2 + 50ρ− 66

)︃
|a0|

1.9 < ρ < 4.3
<

W

ρ− 1
+ |a0|

= |a+0 |
sgn(a+0 ) = sgn(a0)

= sgn(a0)a+0 .

Thus, we have
|pos

(︁
r+0
)︁
− a+0 | = sgn(a0)(a+0 − pos

(︁
r+0
)︁
) > 0. (3.14)

Using inequality (3.14) and plugging inequality (3.13) into inequality (3.11) gives us

sgn(a0)tmid =
1

3
(2sgn(a0)r+0 + 2|pos

(︁
r+0
)︁
− 2a+0 |+ 2a+0 − 3a1)

(3.14)
=

1

3
(2sgn(a0)r+0 + 2sgn(a0)a+0 − 2sgn(a0)pos

(︁
r+0
)︁
+ 2a+0 − 3a1)

=
1

3

(︃
−7a1 + 6a0 +

(6sgn(a0))W
ρ− 1

− 2sgn(a0)pos
(︁
r+0
)︁)︃

(3.13)
=

1

3

(︃
−(15− 4ρ)a1 + (10− 2ρ)a0 +

(10− 2ρ)sgn(a0)W
ρ− 1

)︃
. (3.15)

Note that we also used sgn(a0) = sgn(a+0 ) = −sgn(a1). Multiplying equality (3.15) with
sgn(a0) gives us

tmid =
1

3

(︃
(15− 4ρ)|a1|+ (10− 2ρ)|a0|+

(10− 2ρ)W

ρ− 1

)︃
. (3.16)

By substituting equation (3.16) into inequality (3.10) and noting that it is hardest to
satisfy, when W = 0, we get

|a1|
|a0|
≤ 4ρ2 − 30ρ+ 50

−8ρ2 + 50ρ− 66
,

which is true due to Definition 3.8 (v).
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Analysis of the First Stage

In the previous subsection we have proved that there is no (ρ− ε)-competitive algorithm,
if we are able to construct a request sequence with two o-ρ-critical requests. Thus, our
goal is to construct a request sequence σ′

ρop that satisfies all properties of Definition 3.8.
We let Alg wait until time 1. Without loss of generality, we assume that Alg position at

time 1 is pos(1) ≤ 0 (the other case is symmetric). We define

δ :=
3ρ2op − 11

−3ρ3op + 15ρop − 4

and let c initial requests sj0 = (1, δ; 1) with j ∈ {1, . . . , c} appear. These are the only
requests appearing in the entire construction with a starting position differing from the
destination. We make a basic observation on how Alg has to serve these requests.

Lemma 3.14. Alg cannot collect any of the requests sj0 before time 2. If Alg collects the
requests after time ρopδ− (δ− 1) or serves c′ < c requests before loading the remaining c− c′,
it is not (ρop − ε)-competitive.

Proof. Alg cannot collect any sj0 before time 2 since its position at time 1 is pos(1) ≤ 0.
Moreover, Alg is not (ρop − ε)-competitive if it collects one of the requests after time
ρopδ − (δ − 1), since it cannot finish before time ρopδ, and we have

Alg((sj0)j∈{1,...,c}) ≥ ρopδ = ρopOpt((sj0)j∈{1,...,c}).

Assume Alg serves c′ < c requests before loading the remaining c− c′. Then, because of

δ =
3ρ2op − 11

−3ρ3op + 15ρop − 4

ρop>2.056
>

2

3− ρop
, (3.17)

we have

Alg((sj0)j∈{1,...,c}) ≥ δ + 2(δ − 1)
(3.17)
> ρopδ = ρopOpt((sj0)j∈{1,...,c}).

We hence may assume that Alg loads all c requests sj0 at the same time. Let rL ∈
[2, ρopδ− (δ− 1)) be the time Alg loads the c requests sj0. We present a variant of a single
iteration of the construction in [13]: We let the request sL = (−rL,−rL; rL) appear and
define the function

ℓop(t) = (4− ρop) · t− (2ρop − 2) · rL,
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0

pos

time

Alg

1 rL rR t∗L

1

δ

−rL

rR

0

pos

time

Alg

1 rL rR t∗R

1

δ

−rL

rR

Figure 3.7: Left: Alg serves sL (yellow ) before the request sR (violet ) at time t∗L. Right: Alg serves sR
before the request sL at time t∗R. The requests sj0 are red and the line ℓop is the dashed black
line.

which can be viewed as a line in the position-time diagram. Because of ρop > 2, we
have ℓop(rL) = (6− 3ρop)rL < 0 < pos(rL), i.e., Alg’s position at time rL is to the right
of the line ℓop. Thus, Alg crosses the line ℓop before it serves sL. Let rR be the time
Alg crosses ℓop for the first time and let the request sR = (rR, rR; rR) appear. We define
σ′
ρop := (s10, . . . , s

c
0, sL, sR)

Lemma 3.15. Alg can neither serve sL before time t∗L nor can it serve sR before time t∗R.

Proof. For an illustration of this lemma’s construction see Figure 3.7. Assume Alg crosses
the line ℓop and serves sR before sL. Then it does not serve sR before time

rR + |ℓop(rR)− rR| = (2ρop − 2)rL + (ρop − 2)rR = t∗R.

Now assume Alg crosses ℓop at time

rR ≥
3ρop − 5

7− 3ρop
rL (3.18)

and serves sL before sR. Then it does not serve serve sL before time

rR + |ℓop(rR)− (−rL)| = (5− ρop)rR − (2ρop − 3)rL
(3.18)
≥ (2ρop − 2)rR + (7− 3ρop)

3ρop − 5

7− 3ρop
rL − (2ρop − 3)rL

= (2ρop − 2)rR + (ρop − 2)rL = t∗L.
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3 General Lower Bounds for Online DIAL-A-RIDE

Thus, it is enough to show inequality (3.18). Since Alg is eager, it delivers the c requests sj0
without waiting or detour, i.e., we have pos(rL + (δ − 1)) = δ. Furthermore, we have

ℓop(rL + (δ − 1)) = (4− ρop)(rL + (δ − 1))− (2ρop − 2)rL

= (6− 3ρop)rL + (4− ρop)(δ − 1)

≤ (6− 3ρop)(ρopδ − (δ − 1)) + (4− ρop)(δ − 1)

=
3ρ4op − 18ρ3op + 3ρ2op + 50ρop − 14

3ρ3op − 15ρop + 4

ρop < 2.06
< δ

= pos(rL + (δ − 1)),

i.e., Alg’s position at time rL + (δ − 1) is to the right of ℓop. The earliest possible time
Alg crosses ℓop is the solution of

ℓop(rR) = (4− ρop)rR − (2ρop − 2)rL = pos(rL + (δ − 1)) + rL + (δ − 1)− rR,

which is rR =
2ρop−1
5−ρop

rL + 2δ−1
5−ρop

. Finally, the inequality(︃
3ρop − 5

7− 3ρop
−

2ρop − 1

5− ρop

)︃
rL =

3ρ2op + 3ρop − 18

3ρ2op − 22ρop + 35
rL

Lem 3.14
≤

3ρ2op + 3ρop − 18

3ρ2op − 22ρop + 35
(ρopδ − (δ − 1)))

=
3ρ3op + 6ρ2op − 15ρop − 18

3ρ4op − 15ρ3op − 15ρ2op + 79ρop − 20

=
2δ − 1

5− ρop

implies inequality (3.18).

In fact, also the other properties of o-ρop-critical requests are satisfied.

Lemma 3.16. The requests sR and sL of the request sequence σ′
ρop satisfy Definition 3.8.

Proof. We have to show that the requests sR and sL of the request sequence σρop satisfy
the properties (i) to (v) of Definition 3.8. The release time of every request is equal to its
starting position, thus every request can be served/loaded immediately once its starting
position is visited and (i) of Definition 3.8 is satisfied. At time rR Alg has not served sR,
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because for that it would have needed to go right from time 0 on; it has not served sL
either, because during the period of time [tL, tR] Alg and sL were on different sides of ℓop.
This establishes the first part of (ii) of Definition 3.8. Furthermore, at time rR Alg is at
position pos(rR) = (4− ρop)rR − (2ρop − 2)rL with

−rL ≤ (4− ρop)rR − (2ρop − 2)rL ≤ rR.

Therefore, the second part of (ii) of Definition 3.8 is satisfied as well.
Lemma 3.15 shows that (iii) and (iv) of Definition 3.8 are satisfied. It remains to show

that property (v) is satisfied. For this we need to examine the release time rR of sR. The
time rR is largest if Alg tries to avoid crossing the line ℓop for as long as possible, i.e., it
continues to move right after serving the requests sj0. Then, we have pos(t) = 1− rL + t
for t ∈ [rL, rR] and rR is the solution of

1− rL + rR = (4− ρop)rR − (2ρop − 2)rL.

Thus, in general, we have rR ≤
2ρop−3
3−ρop

rL + 1
3−ρop

, i.e.,

rR
rL
≤

2ρop − 3

3− ρop
+

1

(3− ρop)rL

rL≥2

≤
4ρop − 5

6− 2ρop
.

For property (v), we need rR
rL
≤ 4ρ2op−30ρop+50

−8ρ2op+50ρop−66
. This is satisfied if

4ρop − 5

6− 2ρop
≤

4ρ2op − 30ρop + 50

−8ρ2op + 50ρop − 66
,

which is equivalent to
4ρ3op − 26ρ2op + 39ρop − 5 ≥ 0,

which is true by definition of ρop.

Together with Lemma 3.9, this completes the proof of Theorem 3.2.
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Imagine the release time rn of the last request sn would be known. Then we could
simply wait at the origin until at time rn all requests have been released and start an
optimum offline walk serving all requests. Since the optimum also has to serve the
last request appearing at time rn, we have Opt(σ) ≥ rn. Furthermore, the optimum
walk that our server starts at time rn is also bounded by Opt(σ). Thus, this approach
would be 2-competitive, which would be an improvement to the currently known upper
bounds – at least for the open version of online TSP and Dial-a-Ride (see Table 2.1).
Unfortunately though, we neither know the number of requests nor the release time of
the last request. However, we can still let the server wait at the origin for some time and
then start an optimum walk serving all currently known requests. This motivates the class
of schedule-based algorithms (see Algorithm 1) for online TSP and online Dial-a-Ride.

Algorithm 1 schedule-based algorithm
p1 ← 0
for j = 1, 2, . . . do

while wait(t) = true do
wait

tj ← t
Sj ← optimal offline schedule serving Rt starting from pj
execute Sj

pj+1 ← current position

Schedule-based algorithms all follow a simple design rule: Wait a certain amount of time
(dependent on the available data at the current time t), then serve all currently known
unserved requests in an optimum offline walk while ignoring all new incoming requests
and repeat. To be more precise, let Rt be the subsequence of requests that have not been
served yet at time t and let

wait : R+
0 −→ {true, false},
t ↦−→ wait(t)
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4 Schedule-Based Algorithms

be a function mapping a time t to either true or false. A schedule-based algorithm for
online TSP and online Dial-a-Ride waits until a time t∗ with wait(t∗) = false and executes
an optimum walk serving Rt.

We call the executed optimum offline walks schedules Sj and index them in chronological
order, i.e., we have S1, . . . , SN with N ∈ N being the number of schedules the algorithm
executes. In the open setting of online TSP and online Dial-a-Ride a schedule finishes
at the position of the last served request, while in the closed setting every schedule ends
in the origin. The starting time of Sj is denoted by by tj and its ending time by vj+1.
Note that we always have vj ≤ tj . The starting position of Sj is denoted by pj and its
ending position by pj+1. The subsequence of requests served in Sj is denoted by σj . For
convenience, we set t0 = p0 = 0. We define L(t, p, R) to be the length of a shortest walk
that starts at position p at time t and serves all requests in the subsequence R ⊆ σ after
they appeared. Consequently, for every schedule-based algorithm Alg, we have

Alg(σ) = tN + L(tN , pN , σN ). (4.1)

Note that, by definition, a walk must respect release times, i.e., it might contain waiting
times caused by late release times of requests. However, no schedule executed by a
schedule-based algorithm contains waiting times since only already released requests are
served. For all 0 ≤ t ≤ t′, p, p′ ∈ X, and R ⊆ σ, we have

L(t, p, R) ≥ L(t′, p, R), (4.2)
L(t, p, R) ≤ d(p, p′) + L(t, p′, R), (4.3)
L(t, 0, R) ≤ L(t, 0, σ) ≤ L(0, 0, σ) = Opt(σ). (4.4)

Inequality (4.2) holds since an earlier starting time might cause additional waiting times
because of late releases of some requests. Inequality (4.3) is a consequence of the triangle
inequality, and inequality (4.4) holds since R ⊆ σ, t ≥ 0 and since the optimum trajectory
starts in the origin at time 0. Note that the schedules used by schedule-based algorithms
are NP-hard to compute for 1 < c <∞ [13].

Throughout this chapter, we let the capacity c ∈ N ∪ {∞} of the server be arbitrary but
fixed. We start our examination of schedule-based algorithms with the computation of
several lower bounds for their competitive ratios.

4.1 Lower Bounds for Schedule-Based Algorithms

In this subsection, we compute lower bounds for the competitive ratio of schedule-based
algorithms. For the open version of the problem, we compute separate lower bounds for
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online Dial-a-Ride and online TSP. For the closed version, we only provide a lower bound
for the TSP version, however, since online TSP is a special case of online Dial-a-Ride, the
computed lower bound is also valid for online Dial-a-Ride. We start with open online
Dial-a-Ride. All presented request sequences are on the real line R.

Theorem 4.1. Let Alg be a ρ-competitive schedule-based algorithm for open online Dial-a-
Ride on the line. Then we have ρ ≥ 5

2 .

Proof. Let s1 = (1, 1; 0). If Alg starts its first schedule S1 at time t1 ≥ 3
2 , we release no

additional requests. In this case, we have Opt((s1)) = 1 and Alg((s1)) ≥ 5
2 . If Alg starts

its first schedule S1 at time t1 = 0, we release the request s2 = (14 , 1;
1
4). In this case, we

have Opt((s1, s2)) = 1 and Alg((s1, s2)) ≥ 1+2 · 34 = 5
2 . Thus, we may assume 0 < t1 <

3
2

in the following. Let ε > 0 with ε < min{32 − t1, t1} ≤ 3
4 . We release the requests

s
(1)
2 =

(︃
−t1 +

1

4
ε,−t1 +

1

4
ε; t1 +

1

4
ε

)︃
,

s
(2)
2 =

(︃
1− t1

2
+

1

4
ε, 1; t1 +

1

4
ε

)︃
.

Alg finishes schedule S1 at time v2 = t1 + 1 at position p2 = 1. The shortest schedule
serving s

(1)
2 before s

(2)
2 has length

D

(︃
1→ −t1 +

1

4
ε→ 1

)︃
= 2 + 2t1 −

1

2
ε.

On the other hand, the shortest schedule that serves s(1)2 after s(2)2 has length

D

(︃
1→ 1− t1

2
+

1

4
ε→ 1→ −t1 +

1

4
ε

)︃
= 2 + 2t1 −

3

4
ε.

Therefore, for all t ≥ v2, we have

L(t, p2, (s
(1)
2 , s

(2)
2 )) = 2 + 2t1 −

3

4
ε (4.5)

and schedule S2 ends at position p3 = −t1 + 1
4ε. We make a case distinction depending

on the starting time t2 of schedule S2.
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0

pos

time

Alg
Opt

Opt(σ1
o) Alg(σ1

o)

1

−t1 + ε
4

1−t1
2 + ε

4

Figure 4.1: Alg’s and Opt’s walk serving σ1
o with ε = 0.2, t1 = 1.45 and t2 = 3.25. Request s1 is red ,

request s(1)2 is yellow , request s(2)2 is violet and request s3 is brown .

Case 1: t1 + 1 ≤ t2 < 2t1 + 1

We release s3 = (1, 1; 2t1 + 1) and define σ1
o := (s1, s

(1)
2 , s

(2)
2 , s3). See Figure 4.1 for Alg’s

walk (green) and Opt’s walk (blue). Opt waits at the origin until time 1
2ε and then

performs the walk

0→ −t1 +
1

4
ε→ 1.

Therefore, we have

Opt(σ1
o) =

1

2
ε+D

(︃
0→ −t1 +

1

4
ε→ 1

)︃
= 2t1 + 1. (4.6)

For Alg, we obtain

v3 = t2 + L(t2, p2, (s
(1)
2 , s

(2)
2 ))

t2 ≥ t1 + 1
≥ t1 + 1 + L(t2, p2, (s

(1)
2 , s

(2)
2 ))

(4.5)
= 3t1 + 3− 3

4
ε. (4.7)

For all t ≥ v3, we have

L(t, p3, (s3)) = D

(︃
−t1 +

1

4
ε→ 1

)︃
= 1 + t1 −

1

4
ε (4.8)

since v3 > r3. Finally, we obtain

Alg(σ1
o)

(4.1)
= t3 + L(t3, p3, (s3))
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0
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time
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Opt

Opt(σ2
o) Alg(σ2
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2 + ε

4

t2 − 2t1 +
2
3 −

7
12ε

Figure 4.2: Alg’s and Opt’s walk serving σ2
o with ε = 0.2, t1 = 1.45 and t2 = 4.25. Request s1 is red ,

request s(1)2 is yellow , request s(2)2 is violet and request s3 is brown .

≥ v3 + L(t3, p3, (s3))

(4.7),(4.8)
≥ 4t1 + 4− ε

ε < 3
2
− t1

> 5t1 +
5

2
(4.6)
=

5

2
Opt(σ1

o).

Case 2: 2t1 + 1 ≤ t2 < 2t1 + 2 − 1
4
ε

In this case, we have
t1 >

1

2
t2 − 1 +

1

8
ε. (4.9)

We release the request

s3 =

(︃
t2 − 2t1 +

2

3
− 7

12
ε, t2 − 2t1 +

2

3
− 7

12
ε; t2 +

2

3
− 7

12
ε

)︃
and define σ2

o := (s1, s
(1)
2 , s

(2)
2 , s3). See Figure 4.2 for Alg’s walk (green) and Opt’s walk

(blue). Note that we have 2
3 −

7
12ε > 0, since ε < 3

4 , i.e., s3 is released after S2 is started.
Opt waits at the origin until time 1

2ε and then performs the walk

0→ −t1 +
1

4
ε→ t2 − 2t1 +

2

3
− 7

12
ε.

Therefore, we have

Opt(σ2
o) =

1

2
ε+D

(︃
0→ −t1 +

1

4
ε→ t2 − 2t1 +

2

3
− 7

12
ε

)︃
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= t2 +
2

3
− 7

12
ε. (4.10)

For Alg, we obtain

v3 = t2 + L(t, p2, (s
(1)
2 , s

(2)
2 ))

(4.5)
= t2 + 2 + 2t1 −

3

4
ε. (4.11)

For all t ≥ v3, we have

L(t, p3, (s3)) = D

(︃
−t1 +

1

4
ε→ t2 − 2t1 +

2

3
− 7

12
ε

)︃
= t2 − t1 −

5

6
ε+

2

3
(4.12)

since v3 > r3. Finally, we obtain

Alg(σ2
o)

(4.1)
= t3 + L(t3, p3, (s3))

≥ v3 + L(t3, p3, (s3))

(4.11),(4.12)
= 2t2 + t1 +

8

3
− 19

12
ε

(4.9)
>

5

2
t2 +

5

3
− 35

24
ε

=
5

2

(︃
t2 +

2

3
− 7

12
ε

)︃
(4.10)
=

5

2
Opt(σ2

o).

Case 3: t2 ≥ 2t1 + 2 − 1
4
ε

We release no new requests and define σ3
o := (s1, s

(1)
2 , s

(2)
2 ). See Figure 4.3 for Alg’s walk

(green) and Opt’s walk (blue). Opt waits at the origin until time 1
2ε and then performs

the walk
0→ −t1 +

1

4
ε→ 1.

Therefore, we have

Opt(σ3
o) =

1

2
ε+D

(︃
0→ −t1 +

1

4
ε→ 1

)︃
= 2t1 + 1. (4.13)
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Figure 4.3: Alg’s and Opt’s walk serving σ3
o with ε = 0.2, t1 = 1.45 and t2 = 5. Request s1 is red ,

request s(1)2 is yellow and request s(2)2 is violet .

For Alg, we obtain

Alg(σ3
o)

(4.1)
= t2 + L(t2, p2, (s

(1)
2 , s

(2)
2 ))

t2 ≥ 2t1 + 2− 1
4
ε

≥ 2t1 + 2− 1

4
ε+ L(t2, p2, (s

(1)
2 , s

(2)
2 ))

(4.5)
= 4t1 + 4− ε

ε < 3
2
− t1

> 5t1 +
5

2
(4.13)
=

5

2
Opt(σ3

o).

For open online TSP we obtain a slightly weaker bound since we are not allowed to use
transportation requests.

Theorem 4.2. Let Alg be a ρ-competitive schedule-based algorithm for open online TSP on
the line. Then we have ρ ≥ 7

3 .

Proof. Let s1 = (1; 0). If Alg starts its first schedule S1 at time t1 ≥ 4
3 , we release no

additional requests. In this case, we have Opt((s1)) = 1 and Alg((s1)) = 7
3 . Thus, we

may assume in the following t1 <
4
3 . Let ε > 0 with ε < 4

3 − t1. We release the requests

s
(1)
2 =

(︃
−t1 −

1

4
ε; t1 +

1

4
ε

)︃
,

s
(2)
2 =

(︃
2 + t1 −

1

2
ε; t1 +

1

4
ε

)︃
.
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Figure 4.4: Alg’s and Opt’s walk serving σ4
o with ε = 0.2, t1 = 1 and t2 = 2.25. Request s1 is red ,

request s(1)2 is yellow , request s(2)2 is violet and request s3 is brown .

Alg finishes schedule S1 at time v2 = t1 + 1 at position p2 = 1. The shortest schedule
serving s

(1)
2 before s

(2)
2 has length

D

(︃
1→ −t1 −

1

4
ε→ 2 + t1 −

1

2
ε

)︃
= 3 + 3t1.

On the other hand, the shortest schedule that serves s(1)2 after s(2)2 has length

D

(︃
1→ 2 + t1 −

1

2
ε→ −t1 −

1

4
ε

)︃
= 3 + 3t1 −

3

4
ε.

Therefore, for all t ≥ v2, we have

L(t, p2, (s
(1)
2 , s

(2)
2 )) = 3 + 3t1 −

3

4
ε (4.14)

since v2 > r2. Thus, schedule S2 ends at position p3 = −t1− 1
4ε. We make a case distinction

depending on the starting time t2 of schedule S2.

Case 1: t1 + 1 ≤ t2 < 3t1 + 2

We release s3 = (2 + t1 − 1
2ε; 3t1 + 2) and define σ4

o := (s1, s
(1)
2 , s

(2)
2 , s3). See Figure 4.4

for Alg’s walk (green) and Opt’s walk (blue). Assume Opt performs the walk

0→ −t1 −
1

4
ε→ 2 + t1 −

1

2
ε.
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4.1 Lower Bounds for Schedule-Based Algorithms

Then, Opt reaches position a3 = 2 + t1 − 1
2ε at time 3t1 + 2 = r3, i.e., Opt can serve s3

upon arrival. Therefore, we have

Opt(σ4
o) = D

(︃
0→ −t1 −

1

4
ε→ 2 + t1 −

1

2
ε

)︃
= 3t1 + 2. (4.15)

For Alg, we obtain

v3 = t2 + L(t2, p2, (s
(1)
2 , s

(2)
2 ))

t2 ≥ t1 + 1
≥ t1 + 1 + L(t2, p2, (s

(1)
2 , s

(2)
2 ))

(4.14)
= 4 + 4t1 −

3

4
ε. (4.16)

For all t ≥ v3, we have

L(t, p3, (s3)) = D

(︃
−t1 −

1

4
ε→ 2 + t1 −

1

2
ε

)︃
= 2 + 2t1 −

1

4
ε (4.17)

since v3 > r3. Finally, we obtain

Alg(σ4
o)

(4.1)
= t3 + L(t3, p3, (s3))

≥ v3 + L(t3, p3, (s3))

(4.16),(4.17)
≥ 6t1 + 6− ε

ε < 4
3
− t1

> 7t1 +
14

3
(4.15)
=

7

3
Opt(σ4

o).

Case 2: 3t1 + 2 ≤ t2 < 3t1 + 3 − 1
4
ε

in this case, we have

t1 >
1

3
t2 − 1 +

1

12
ε. (4.18)

We release the request

s3 =

(︃
5

4
t2 − 2t1 +

3

4
− 9

8
ε;

5

4
t2 +

3

4
− 5

8
ε

)︃
.
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0

pos

time

Alg
Opt

Opt(σ5
o) Alg(σ5

o)

1

−t1 − ε
4

2 + t1 − ε
2

5
4 t2 − 2t1 +

3
4 −

9
8ε

Figure 4.5: Alg’s and Opt’s walk serving σ5
o with ε = 0.2, t1 = 1 and t2 = 5.5. Request s1 is red , request s(1)2

is yellow , request s(2)2 is violet and request s3 is brown .

and define σ5
o := (s1, s

(1)
2 , s

(2)
2 , s3). See Figure 4.5 for Alg’s walk (green) and Opt’s walk

(blue). Note that we have
r3 =

5

4
t2 +

3

4
− 5

8
ε > t2

because of t2 ≥ 3t1 + 2 and ε < 4
3 − t1, i.e., s3 is released after S2 is started. Opt peforms

the walk
0→ −t1 −

1

4
ε→ 5

4
t2 − 2t1 +

3

4
− 9

8
ε.

Therefore, we have

Opt(σ5
o) = D

(︃
0→ −t1 −

1

4
ε→ 5

4
t2 − 2t1 +

3

4
− 9

8
ε

)︃
=

5

4
t2 +

3

4
− 5

8
ε. (4.19)

For Alg, we obtain

v3 = t2 + L(t2, p2, (s
(1)
2 , s

(2)
2 ))

(4.14)
= t2 + 3 + 3t1 −

3

4
ε. (4.20)

For all t ≥ v3, we have

L(t, p3, (s3)) = D

(︃
−t1 −

1

4
ε→ 5

4
t2 − 2t1 +

3

4
− 9

8
ε

)︃
=

5

4
t2 − t1 +

3

4
− 7

8
ε (4.21)

58



4.1 Lower Bounds for Schedule-Based Algorithms

0

pos

time

Alg
Opt

Alg(σ6
o)

Opt(σ6
o)

1

−t1 − ε
4

2 + t1 − ε
2

Figure 4.6: Alg’s and Opt’s walk serving σ6
o with ε = 0.2, t1 = 1 and t2 = 6. Request s1 is red , request s(1)2

is yellow and request s(2)2 is violet .

since v3 > r3. Finally, we obtain

Alg(σ5
o)

(4.1)
= t3 + L(t3, p3, (s3))

≥ v3 + L(t3, p3, (s3))

(4.20),(4.21)
=

9

4
t2 + 2t1 +

15

4
− 13

8
ε

(4.18)
>

35

12
t2 +

7

4
− 35

24
ε

=
7

3

(︃
5

4
t2 +

3

4
− 5

8
ε

)︃
(4.19)
=

7

3
Opt(σ5

o).

Case 3: t2 ≥ 3t1 + 3 − 1
4
ε

We release no new requests and define σ6
o := (s1, s

(1)
2 , s

(2)
2 ). See Figure 4.6 for Alg’s walk

(green) and Opt’s walk (blue). Opt performs the walk

0→ −t1 −
1

4
ε→ 2 + t1 −

1

2
ε.

Therefore, we have

Opt(σ6
o) = D

(︃
0→ −t1 −

1

4
ε→ 2 + t1 −

1

2
ε

)︃
= 3t1 + 2. (4.22)
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0

pos

time

Alg
Opt

Alg(σ1
c )Opt(σ1

c )

1

Figure 4.7: Alg’s and Opt’s walk serving σ1
c with t1 = 0.5. Request s1 is red and request s2 is yellow .

For Alg, we obtain

Alg(σ6
o)

(4.1)
= t2 + L(t2, p2, (s

(1)
2 , s

(2)
2 ))

t2 ≥ 3t1 + 3− 1
4
ε

≥ 3t1 + 3− 1

4
ε+ L(t2, p2, (s

(1)
2 , s

(2)
2 ))

(4.14)
= 6t1 + 6− ε

ε < 4
3
− t1

> 7t1 +
14

3
(4.22)
=

7

3
Opt(σ6

o).

Finally, we present an lower bound for the competitive ratio of closed online TSP on the
line. Since online Dial-a-Ride is a special case of online TSP, this lower bound is also
valid for online Dial-a-Ride. Note that the following lower bound utilizes only requests
with positions on the positive side of the origin. Therefore, this lower bound is also valid
for online TSP on the half-line.

Theorem 4.3. Let Alg be a ρ-competitive schedule-based algorithm for closed online TSP on
the line. Then we have ρ ≥ 2.

Proof. Let s1 = (1; 0). For all t ≥ 0, we have

L(t, 0, (s1)) = D(0→ 1→ 0) = 2 (4.23)

and thus, Alg finishes schedule S1 at time

v2 = t1 + 2. (4.24)

We make a case distinction based on the starting time t1 of schedule S1.
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0

pos

time

Alg
Opt

Alg(σ2
c )Opt(σ2

c )

1

2− t1 − ε

Figure 4.8: Alg’s and Opt’s walk serving σ2
c with ε = 0.1 and t1 = 1.5. Request s1 is red and request s2 is

yellow .

Case 1: t1 < 1
We release the request s2 = (1; 1) and define σ1

c := (s1, s2). See Figure 4.7 for Alg’s walk
(green) and Opt’s walk (blue). Opt performs the walk 0→ 1→ 0. Therefore, we have

Opt(σ1
c ) = 2. (4.25)

For the second and last schedule S2 of Alg, we have

L(t2, 0, (s2)) = D(0→ 1→ 0) = 2. (4.26)

Thus, we obtain

Alg(σ1
c )

(4.1)
= t2 + L(t2, 0, (s2))

≥ v2 + L(t2, 0, (s2))

(4.24),(4.26)
= 4

(4.25)
= 2Opt(σ1

c ).

Case 2: 1 ≤ t1 < 2
Let ε > 0 with ε < 1 − 1

2 t1. We release the request s2 = (2 − t1 − ε; t1 + ε) and define
σ2
c := (s1, s2). See Figure 4.8 for Alg’s walk (green) and Opt’s walk (blue). Assume Opt

performs the walk 0→ 1→ 0. At time r2 = t1 + ε, Opt is at position 2− t1 − ε = a2, i.e.,
Opt can serve s2 upon arrival. Therefore, we have

Opt(σ2
c ) = 2. (4.27)
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Figure 4.9: Alg’s and Opt’s walk serving σ3
c with t1 = 2.25. Request s1 is red .

For the second and last schedule S2 of Alg, we have

L(t2, 0, (s2)) = D(0→ 2− t1 − ε→ 0) = 4− 2t1 − 2ε. (4.28)

Thus, we obtain

Alg(σ2
c )

(4.1)
= t2 + L(t2, 0, (s2))

≥ v2 + L(t2, 0, (s2))

(4.24),(4.28)
= 6− t1 − 2ε

ε < 1− 1
2
t1

> 4

(4.27)
= 2Opt(σ2

c ).

Case 3: t1 ≥ 2
We release no new requests and define σ3

c := (s1). See Figure 4.9 for Alg’s walk (green)
and Opt’s walk (blue). Opt performs the walk 0→ 1→ 0. Therefore, we have

Opt(σ3
c ) = 2. (4.29)

For Alg, we obtain

Alg(σ3
c )

(4.1)
= t1 + L(t1, 0, (s1))

(4.23)
= t1 + 2

t1 ≥ 2
≥ 4

(4.29)
= 2Opt(σ3

c ).
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4.2 Schedules

In the following, we will analyze three different schedule-based algorithms. To examine
their competitiveness, it is integral to understand the structure of the executed optimum
offline schedules. Because of that, we give a thorough analysis of schedules in the next
section.

4.2 Schedules

We published the results of this section also in [10] and used the results in [12]. In this
section we take a closer look at the lengths of the optimum schedules executed by schedule-
based algorithms. While schedule-based algorithms may vary drastically in their waiting
routines, some results for their schedules are universal and indispensable ingredients for
their analysis. Interestingly, schedules are easy to analyze in the closed version of online
Dial-a-Ride and online TSP, while their analysis is highly non-trivial in the open version.
In the closed version, every schedule is a closed walk ending at the origin. Therefore,
every schedule executed by a schedule-based algorithm for the closed version also starts
at the origin, i.e., we have pj = 0 for all schedules Sj . Inequality (4.4) then implies the
following lemma.

Lemma 4.4. For every schedule Sj of a schedule-based algorithm for closed online Dial-a-
Ride, we have

L(tj , pj , σj) ≤ Opt(σ).

In our analysis of the open version we distinguish between bounds for the competitive
ratio in the general setting, i.e., on arbitrary continuous metric spaces and bounds that
only hold on the real line. We start with the more general bounds.

Open Version on General Metric Spaces

In this subsection, we give bounds for the length of a schedule in terms of the size of
Opt(σ) as well as the starting position of the schedule and the starting time of the previous
schedule.

Lemma 4.5. For every schedule Sj of a schedule-based algorithm for open online Dial-a-Ride,
we have

L(tj , pj , σj) ≤ min{Opt(σ) + d(0, pj), 2(Opt(σ)− tj−1)}.

Proof. First, we notice that by the triangle inequality we have

L(tj , pj , σj)
(4.3)

≤ d(0, pj) + L(tj , 0, σj)
(4.4)

≤ Opt(σ) + d(0, pj). (4.30)
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4 Schedule-Based Algorithms

Now, let sOptj be the first request of σj that is picked up by Opt and let aOptj be its starting
position and rOptj be its release time. We have

L(tj , pj , σj)
(4.3)

≤ d(pj , a
Opt
j ) + L(tj , a

Opt
j , σj), (4.31)

again by the triangle inequality. Since Opt serves all requests of σj starting at position aOptj

no earlier than time rOptj , we have

L(tj , a
Opt
j , σj)

(4.2)

≤ L(rOptj , aOptj , σj) ≤ Opt(σ)− rOptj , (4.32)

which yields

L(tj , pj , σj)
(4.31)
≤ d(pj , a

Opt
j ) + L(tj , a

Opt
j , σj)

(4.32)
≤ Opt(σ) + d(pj , a

Opt
j )− rOptj

tj−1 < rOptj

< Opt(σ) + d(pj , a
Opt
j )− tj−1. (4.33)

Since pj is the destination of a request, Opt needs to visit it. In the case that Opt visits pj
before collecting sOptj , we have

Opt(σ) + d(0, pj) ≥ Opt(σ)

≥ d(pj , a
Opt
j ) + L(tj , a

Opt
j , σj)

(4.31)
≥ L(tj , pj , σj).

On the other hand, if Opt collects sOptj before visiting the position pj , we have

tj−1 + d(pj , a
Opt
j )

tj−1<rOptj

< rOptj + d(pj , a
Opt
j ) ≤ Opt(σ), (4.34)

since Opt cannot collect sOptj before time rOptj and then still has to visit position pj . Thus,
we have

L(tj , pj , σj)
(4.33)
< Opt(σ) + d(pj , a

Opt
j )− tj−1

(4.34)
≤ 2Opt(σ)− 2tj−1. (4.35)

This implies

L(tj , pj , σj)
(4.30),(4.35)

≤ min{Opt(σ) + d(0, pj), 2(Opt(σ)− tj−1)}.
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4.2 Schedules

Interestingly, we can improve the bound provided by Lemma 4.5 if we disallow transporta-
tion requests.

Lemma 4.6. For every schedule Sj of a schedule-based algorithm for online TSP, we have

L(tj , pj , σj) ≤ min

{︃
Opt(σ) + d(0, pj),

3

2
(Opt(σ)− tj−1)

}︃
.

Proof. First, we notice that by the triangle inequality we have

L(tj , pj , σj)
(4.3)

≤ d(0, pj) + L(tj , 0, σj)
(4.4)

≤ Opt(σ) + d(0, pj). (4.36)

Now, let sfirstj = (afirstj ; rfirstj ) be the first request of σj that is served by Opt and let slastj =

(alastj ; rlastj ) be the last request of σj that is served by Opt. Furthermore, let WOpt
j be Opt’s

walk between serving sfirstj and slastj and let c(WOpt
j ) be its length. We have

c(WOpt
j ) ≥ L(tj , a

first
j , σj), (4.37)

since the walk WOpt
j serves every request of σj starting from position afirstj . However, we

also have
c(WOpt

j ) ≥ L(tj , a
last
j , σj), (4.38)

since walking WOpt
j backwards, i.e., starting from position alastj , also serves every request

of σj , while walking the same distance. Note that this is only the case since we do not
have transportation requests. Using the triangle inequality and the inequalities above, we
obtain

L(tj , pj , σj)
(4.3)

≤ d(pj , a
first
j ) + L(tj , a

first
j , σj)

(4.37)

≤ d(pj , a
first
j ) + c(WOpt

j ) (4.39)

and

L(tj , pj , σj)
(4.3)

≤ d(pj , a
last
j ) + L(tj , a

last
j , σj)

(4.38)

≤ d(pj , a
last
j ) + c(WOpt

j ). (4.40)

Combining the inequalities (4.39) and (4.40), we get

L(tj , pj , σj)
(4.39),(4.40)

≤ min{d(pj , afirstj ), d(pj , a
last
j )}+ c(WOpt

j ). (4.41)

Since pj is the position of a request, Opt needs to visit it. In the case that Opt visits pj
before serving sfirstj , we have

Opt(σ) + d(0, pj) ≥ Opt(σ)
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4 Schedule-Based Algorithms

≥ d(pj , a
first
j ) + c(WOpt

j )

(4.39)
≥ L(tj , pj , σj).

In the case that Opt visits pj after serving slastj , we have

Opt(σ) + d(0, pj) ≥ Opt(σ)

≥ c(WOpt
j ) + d(pj , a

last
j )

(4.40)
≥ L(tj , pj , σj),

as claimed. Thus, we may assume that Opt visits pj after serving sfirstj and before serv-
ing slastj . Since Opt cannot serve sfirstj before time rfirstj , this implies

Opt(σ) ≥ rfirstj + d(afirstj , pj) + d(pj , a
last
j ),

i.e.,

min{d(pj , afirstj ), d(pj , a
last
j )} ≤ 1

2

(︂
Opt(σ)− rfirstj

)︂
. (4.42)

Again, since Opt serves all requests of σj starting at position afirstj no earlier than time rfirstj ,
we have

Opt(σ) ≥ rfirstj + c(WOpt
j ). (4.43)

Combining the inequalities (4.42) and (4.43), we get

L(tj , pj , σj)
(4.41)
≤ min{d(pj , afirstj ), d(pj , a

last
j )}+ c(WOpt

j )

(4.42),(4.43)
≤ 3

2

(︂
Opt(σ)− rfirstj

)︂
rfirstj > tj−1

<
3

2
(Opt(σ)− tj−1). (4.44)

This implies

L(tj , pj , σj)
(4.36),(4.44)

≤ min

{︃
Opt(σ) + d(0, pj),

3

2
(Opt(σ)− tj−1)

}︃
.
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4.2 Schedules

Open Version on the Line

Recall that we denote by

xmin := min{0, a1, . . . , an, b1, . . . , bn}

the leftmost and by
xmax := max{0, a1, . . . , an, b1, . . . , bn}

the rightmost position that needs to be visited by the server to serve σ. For a schedule Sj ,
we denote by

xmin
j := min{min{a, b} | (a, b, r) ∈ σj}

the leftmost and by
xmax
j := max{max{a, b} | (a, b, r) ∈ σj}

the rightmost starting position or destination of the requests σj .

Lemma 4.7. Let Sj with j ∈ {1, . . . , N} be a schedule of a schedule-based algorithm for
open online Dial-a-Ride on the line. Moreover, let Opt(σ) = |xmin| + xmax + y for some
y ≥ 0. Then, we have

L(tj , 0, σj) ≤ |min{0, xmin
j }|+max{0, xmax

j }+ y.

Proof. We need to analyze the amount of time the server needs to serve σj starting from
position 0 at time tj . First of all, note that the server does not wait at any point, since all
requests of σj already have appeared at time tj . Because of that, the server cannot go to
the left ofmin{0, xmin

j } or to the right ofmax{0, xmax
j } while staying on an optimum route.

Furthermore, we notice that the route Opt takes to serve σ is a valid route to serve σj ,
since σj ⊆ σ. However, we can skip every part of the route Opt takes that lies left of
min{0, xmin

j } or right of max{0, xmax
j }, since no requests of σj have a starting or ending

position that lies in those intervals. Since all requests already have appeared at time tj ,
this does not produce additional waiting time, i.e., we can just delete the parts of the
route that lie left of min{0, xmin

j } and right of max{0, xmax
j } and still have a valid route

for serving σj when starting at time tj . This shortens the length of the route by at least

|xmin| − |min{0, xmin
j }|+ xmax −max{0, xmax

j },

which gives us

L(tj , 0, σj) ≤ Opt(σ)− (|xmin| − |min{0, xmin
j }|+ xmax −max{0, xmax

j })
= |min{0, xmin

j }|+max{0, xmax
j }+ y.
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Since we cannot orient an arbitrary continuous metric space from left to right, i.e., xmin

and xmax cannot be defined, Lemma 4.7 cannot be formulated for the general setting.
A natural modification of Lemma 4.7 for a continuous metric space X would be to let
Opt(σ) = xmax

X + y with y ≥ 0 and

xmax
X := max{d(0, a1), . . . , d(0, an), d(0, b1), . . . , d(0, bn)}

being the starting position or destination of the requests σ that is furthest away from the
origin. One might expect that for every schedule Sj , we would obtain

L(tj , 0, σj) ≤ xmax
X,j + y.

with
xmax
X,j := max{max{d(0, a), d(0, bn)} | (a, b; r) ∈ σj}

being the starting position or destination of the requests σj that is furthest away from the
origin. However, a small example shows that this is not true: Let X be the boundary of
the unit square [0, 1]2, i.e.,

X := {(0, z) | z ∈ [0, 1]} ∪ {(z, 1) | z ∈ [0, 1]} ∪ {(1, z) | z ∈ [0, 1]} ∪ {(z, 0) | z ∈ [0, 1]}

with euclidean metric d. Furthermore, let t < tj < t′ < 3
4 and σ′ = (s1, s2, s3) with

s1 = ((1, 0), (1, 0), t),

s2 =

(︃(︃
0,

3

4

)︃
,

(︃
0,

3

4

)︃
, t

)︃
,

s3 = ((1, 1), (1, 1), t′).

We have σ′
j = (s1, s2) since t′ > tj . Thus, we have xmax

X = d(0, a3) = 2 and xmax
X,j =

d(0, a2) = 1. Since all release times are bounded by 3
4 , every request can be served at

arrival without waiting times. Opt performs the walk (0, 0) → (1, 0) → (1, 1) → (0, 34),
which implies

Opt(σ′) =
13

4
= xmax

X +
5

4
,

i.e., y = 5
4 . However, the shortest schedule to serve s1 and s2 has length

L(tj , 0, (s1, s2)) = D

(︃
(0, 0)→

(︃
0,

3

4

)︃
→ (1, 0)

)︃
=

5

2
> xmax

X,j + y.

We continue our examination of schedules on the line.
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Lemma 4.8. Let Sj with j ∈ {1, . . . , N} be a schedule of a schedule-based algorithm for
open online Dial-a-Ride on the line. Moreover, let Opt(σ) = |xmin| + xmax + y for some
y ≥ 0. Then we have

L(tj ,max{0, xmin
j }+min{0, xmax

j }, σj) ≤ xmax
j − xmin

j + y.

Proof. First note that the case max{0, xmin
j } = min{0, xmax

j } = 0 directly follows from
Lemma 4.7. Assume we have max{0, xmin

j } = xmin
j . Then all requests of σj have starting

and ending positions on the right side of the origin, and we have 0 ≤ xmin
j ≤ xmax

j , i.e.,

min{0, xmax
j } = 0.

Similarly, if we have min{0, xmax
j } = xmax

j , we have

max{0, xmin
j } = 0.

Therefore, we have either

max{0, xmin
j }+min{0, xmax

j } = xmin
j

or
max{0, xmin

j }+min{0, xmax
j } = xmax

j .

Assume the former is the case. The other case is symmetric. We need to examine
L(tj , x

min
j , σj), i.e., the length of the optimum offline schedule serving the request se-

quence σj and starting from position xmin
j at time tj . We note that the server does not

wait at any point in time since all requests of σj already have appeared at time tj . Because
of that, the server cannot go to the left of xmin

j or to the right of xmax
j while staying on

an optimum route. Furthermore, we notice that Opt cannot collect any requests of σj
before passing xmin

j for the first time, since Opt starts at the origin. Therefore, removing
the parts of the walk that Opt performs until it first crosses xmin

j , gives us a valid route
to serve σj , since σj ⊆ σ. Additionally, we can skip every part of the route Opt takes to
collect requests that lie left of 0 or right of xmax

j since no requests of σj have a starting
or ending position that lies in those intervals. Again, this does not produce additional
waiting time. This shortens the length of the route by at least

|xmin|+ xmin
j + xmax − xmax

j ,

which gives us

L(tj , x
min
j , σj) ≤ Opt(σ)− (|xmin|+ xmin

j + xmax − xmax
j ) = xmax

j − xmin
j + y.

69



4 Schedule-Based Algorithms

Next, we give an upper bound for the rightmost position that can be reached during a
schedule.

Lemma 4.9. Let Sj with j ∈ {1, . . . , N} be a schedule of a schedule-based algorithm for open
online Dial-a-Ride on the line. Moreover, let |xmin| ≤ xmax and Opt(σ) = |xmin|+ xmax + y
for some y ≥ 0. Then, for every position p ∈ R that is visited during the execution of Sj , we
have

p ≤ |pj |+ |pj − pj+1|+ y − |min{0, xmin
j }|.

Proof. First, we notice that the server does not wait at any point since all requests of σj
already have appeared at time tj . Because of that, the server cannot go to the left of
min{pj , xmin

j } or to the right of max{pj , xmax
j } while staying on an optimum route. It

suffices to show

max{pj , xmax
j } ≤ |pj |+ |pj − pj+1|+ y − |min{0, xmin

j }|. (4.45)

We first examine the case max{pj , xmax
j } = pj: In this case, inequality (4.45) holds if

y ≥ |min{0, xmin
j }|. The inequality |xmin| ≤ xmax implies Opt(σ) ≥ 2|xmin| + xmax and

thus y ≥ |xmin|. Furthermore, we obtain |xmin| ≥ |min{0, xmin
j }| since we have |xmin| ≥ 0

and |xmin| ≥ |xmin
j |. The latter holds because we have xmin ≤ xmin

j if xmin
j < 0, i.e., if

min{0, xmin
j } = xmin

j . This implies y ≥ |min{0, xmin
j }|, i.e., inequality (4.45) holds.

Thus, we may assume max{pj , xmax
j } = xmax

j in the following. Similarly to before, if
we have xmax

j ≤ 0, the inequality (4.45) again holds, since the right hand side is always
non-negative. We may thus assume xmax

j > 0, i.e.,

max{0, xmax
j } = xmax

j (4.46)

in the following. According to the triangle inequality and Lemma 4.7, we have

L(tj , pj , σj)
(4.3)
≤ |pj |+ L(tj , 0, σj)

Lem 4.7
≤ |pj |+ |min{0, xmin

j }|+max{0, xmax
j }+ y.

(4.46)
= |pj |+ |min{0, xmin

j }|+ xmax
j + y. (4.47)

For the sake of contradiction, we assume

xmax
j > |pj |+ |pj − pj−1|+ y − |min{0, xmin

j }|. (4.48)

Since the server has to visit both extreme positions, i.e., max{pj , xmax
j } = xmax

j and
min{pj , xmin

j }, we have two possible scenarios: the server either visitsmin{pj , xmin
j } before
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xmax
j or it visits min{pj , xmin

j } after xmax
j . In both cases the schedule Sj ends in position

pj+1. In the first case, we have

L(tj , pj , σj) ≥ |pj −min{pj , xmin
j }|+ |min{pj , xmin

j } − xmax
j |+ |xmax

j − pj+1|
= pj −min{pj , xmin

j }+ xmax
j −min{pj , xmin

j }+ xmax
j − pj+1

= pj − 2min{pj , xmin
j }+ 2xmax

j − pj+1

(4.48)
> pj − 2min{pj , xmin

j }+ xmax
j + |pj |+ |pj − pj+1|

+y − |min{0, xmin
j }| − pj+1

≥ xmax
j + |pj |+ y − |min{0, xmin

j }| − 2min{pj , xmin
j }. (4.49)

In the second case, we obtain the same result

L(tj , pj , σj) ≥ |pj − xmax
j |+ |xmax

j −min{pj , xmin
j }|+ |min{pj , xmin

j } − pj+1|
= xmax

j − pj + xmax
j −min{pj , xmin

j }+ pj+1 −min{pj , xmin
j }

= pj+1 + 2xmax
j − 2min{pj , xmin

j } − pj
(4.48)
> pj+1 + xmax

j + |pj |+ |pj − pj+1|+ y

−|min{0, xmin
j }| − 2min{pj , xmin

j } − pj

≥ xmax
j + |pj |+ y − |min{0, xmin

j }| − 2min{pj , xmin
j }. (4.50)

Now we again consider two cases.

Case 1: min{pj, x
min
j } ≤ 0

In this case, we claim that

−min{pj , xmin
j } ≥ |min{0, xmin

j }| (4.51)

holds. This is clear for min{0, xmin
j } = 0 and for min{pj , xmin

j } = xmin
j . In the remaining

case, we have min{0, xmin
j } = xmin

j and min{pj , xmin
j } = pj , i.e., pj ≤ xmin

j ≤ 0, which
implies −pj ≥ −xmin

j = |xmin
j | as desired. This gives us

L(tj , pj , σj)
(4.49),(4.50)

> xmax
j + |pj |+ y − |min{0, xmin

j }| − 2min{pj , xmin
j }

(4.51)
≥ xmax

j + |pj |+ y + |min{0, xmin
j }|,

which is a contradiction to inequality (4.47).
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Case 2: min{pj, x
min
j } > 0

The inequality xmax
j ≥ xmin

j > 0 implies

max{0, xmin
j }+min{0, xmax

j } = xmin
j . (4.52)

Therefore, we can apply Lemma 4.8 and the triangle inequality to obtain

L(tj , pj , σj)
(4.3)
≤ |pj − xmin

j |+ L(tj , x
min
j , σj)

(4.52), Lem 4.8
≤ |pj − xmin

j |+ xmax
j − xmin

j + y

= max{pj , xmin
j } −min{pj , xmin

j }+ xmax
j − xmin

j + y. (4.53)

We have

max{pj , xmin
j } −min{pj , xmin

j } − xmin
j = pj − 2min{pj , xmin

j }. (4.54)

This gives us

L(tj , pj , σj)
(4.53)
≤ max{pj , xmin

j } −min{pj , xmin
j }+ xmax

j − xmin
j + y

(4.54)
= pj − 2min{pj , xmin

j }+ xmax
j + y. (4.55)

Finally, we have

L(tj , pj , σj)
(4.49),(4.50)

> xmax
j + |pj |+ y − |min{0, xmin

j }| − 2min{pj , xmin
j }

= xmax
j + pj + y − 2min{pj , xmin

j },

which is a contradiction to inequality (4.55). We conclude that (4.48) does not hold,
which in turn proves (4.45) in the case that max{pj , xmax

j } = xmax
j holds.

We finish this subsection by proving an upper bound for the length of a schedule in terms
of the starting and ending position of the schedule.

Proposition 4.10. Let Sj with j ∈ {1, . . . , N} be a schedule of a schedule-based algorithm for
online Dial-a-Ride on the line. Moreover, let |xmin| ≤ xmax and Opt(σ) = |xmin|+ xmax + y
for some y ≥ 0. We have

L(tj , pj , σj) ≤ 2|pj |+ |pj − pj+1|+ 2y.
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Proof. By definition, position xmax
j is visited by the server in schedule Sj . Therefore, we

have

xmax
j

Lem 4.9
≤ |pj |+ |pj − pj+1|+ y − |min{0, xmin

j }|. (4.56)

On the other hand, because of |xmin| ≤ xmax, we have Opt(σ) ≥ 2|xmin| + xmax, which
implies y ≥ |xmin|. By definition of xmin and xmin

j , we have |xmin| ≥ |min{0, xmin
j }|. This

gives us y ≥ |min{0, xmin
j }| and

0 ≤ |pj |+ |pj − pj+1|+ y − |min{0, xmin
j }|. (4.57)

To sum it up, we have

max{0, xmax
j }

(4.56),(4.57)

≤ |pj |+ |pj − pj+1|+ y − |min{0, xmin
j }|. (4.58)

Using the triangle inequality and the inequality above, we obtain

L(tj , pj , σj)
(4.3)
≤ |pj |+ L(tj , 0, σj)

Lem 4.7
≤ |pj |+ |min{0, xmin

j }|+max{0, xmax
j }+ y

(4.58)
≤ 2|pj |+ |pj − pj+1|+ 2y.

Equipped with the results of this section, we are able to analyze schedule-based algorithms
more easily. In the following, we will analyze three different schedule-based algorithms.
We start with the simplest schedule-based algorithm Ignore.

4.3 Algorithm IGNORE

The simplest waiting strategy is to never wait if there are unserved requests. The algorithm
that utilizing this strategy is called Ignore (see Algorithm 2) and was published by
Ascheuer et al. in [5]. However, a similar strategy already was examined in [43] for the
machine scheduling problem.

Formally, Ignore is a schedule-based algorithm for online Dial-a-Ride and online TSP
utilizing the waiting function

waitIg(t) :=

{︄
false, if Rt ̸= ∅,
true, otherwise.
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Algorithm 2 Ignore
repeat

if Rt ̸= ∅ then
Start optimal offline schedule serving Rt starting from the current position

else
wait

In [5, Theorem 4], Ascheuer et al. showed that the Ignore algorithm is 5
2 -competitive for

closed online Dial-a-Ride. Later, Krumke, one of the authors of [5], analyzed Ignore for
the open version of online Dial-a-Ride in his PhD thesis. He showed that the algorithm is
4-competitive [32, Theorem 2.29]. For a summary of results concerning the competitive
ratio of Ignore, excluding the results of this thesis, see Table 2.3.

We will complement the upper bound for Ignore for closed online Dial-a-Ride with a
lower bound of 5

2 using only TSP requests on the line, i.e. the closed version of Ignore has
a competitive ratio of exactly 5

2 for both, Dial-a-Ride and TSP on general metric spaces as
well as on the real line. For open online Dial-a-Ride, we complement the upper bound
of 4 with a lower bound of 4 on the real line. However, this lower bound construction
utilizes transportation requests and is not valid for open online TSP. For open online TSP
we instead provide an improved upper bound of 7

2 , which we will be complemented with
a lower bound of 3 on the real line. We start with the closed version.

Theorem 4.11. The competitive ratio of Ignore for closed online Dial-a-Ride and online
TSP is 5

2 .

Proof. It was shown in [5, Theorem 4] that Ignore is 5
2 -competitive for closed online

Dial-a-Ride on arbitrary metric spaces and therefore in particular for online TSP and on
the real line. It remains to show that for every sufficiently small ε > 0 there is a sequence
of requests σIg

1 containing no transportation requests such that

Ignore(σIg
1 ) ≥

(︃
5

2
− ε

)︃
Opt(σIg

1 ).

Let ε > 0 with ε < 1
2 . We consider the sequence of requests σIg

1 consisting of

s1 =

(︃
1

2
− ε,

1

2
− ε; 0

)︃
,

s2 = (1, 1; ε),

s3 = (1, 1; 1).
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0

pos

time

Ignore
Opt

ε 1 Opt(σIg
1 ) Ignore(σIg

1 )

1

1
2 − ε

Figure 4.10: Ignore’s and Opt’s walk serving σIg
1 with ε = 0.1. Request s1 is red , request s2 is yellow

and request s3 is violet .

The walk Ignore performs in a position-time diagram is illustrated in green in Figure 4.10.
Ignore first serves request s1 in schedule S1 and returns to the origin at time t2 = 1− 2ε.
Note that s3 is not yet released at time t2. Thus, Ignore serves only s2 in schedule S2 and
returns to the origin at time t3 = 3− ε. The request s3 is served in the final schedule S3.
To sum it up, we have

Ignore(σIg
1 ) = 5− 2ε.

Opt on the other hand serves all three requests on its way from the origin to position 1
and returns to the origin, resulting in

Opt(σIg
1 ) = 2.

The walk of Opt is illustrated in blue in Figure 4.10. To sum it up, we have

Ignore(σIg
1 ) =

(︃
5

2
− ε

)︃
Opt(σIg

1 ).

Next, we complement the upper bound of 4 [32, Theorem 2.29] for open online Dial-a-
Ride with a matching lower bound. We published this lower bound also in [10].

Theorem 4.12. The competitive ratio of Ignore for open online Dial-a-Ride is 4.

Proof. It was shown in [32, Theorem 2.29] that 4 is an upper bound for the competitive
ratio of Ignore for online Dial-a-Ride on arbitrary metric spaces and therefore in parti-
cular for the real line. It remains to show that for every sufficiently small ε > 0 there is a
sequence of requests σIg

2 such that

Ignore(σIg
2 ) ≥ (4− ε)Opt(σIg

2 ).
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0

pos

time

Ignore
Opt

1
5ε Opt(σIg

2 ) Ignore(σIg
2 )

1− 1
5ε

1
2

Figure 4.11: Ignore’s and Opt’s walk serving σIg
2 with ε = 0.75. Request s1 is red , s(1)2 is yellow , s(1)2 is

violet and s3 is brown .

Let ε > 0 with ε < 5
2 . We consider the sequence of requests σIg

2 consisting of

s1 =

(︃
1− 1

5
ε, 1− 1

5
ε; 0

)︃
,

s
(1)
2 =

(︃
1

2
, 1− 1

5
ε;

1

5
ε

)︃
,

s
(2)
2 =

(︃
0, 0;

1

5
ε

)︃
,

s3 =

(︃
1− 1

5
ε, 1− 1

5
ε; 1

)︃
.

The walk Ignore performs in a position-time diagram is illustrated in green in Figure 4.11.
Ignore serves request s1 in schedule S1 and finishes at time t2 = 1 − 1

5ε at position
p2 = 1− 1

5ε. Note that request s3 is not yet released at time t2. Thus, in schedule S2 only
the requests s(1)2 and s

(2)
2 are served. Note that serving s

(1)
2 before s

(2)
2 takes time 2− 3

5ε,
while serving s

(2)
2 first takes time 2− 2

5ε. Therefore, Ignore serves s(1)2 first and schedule
S2 ends at time t3 = 3− 4

5ε at position p3 = 0. The final schedule S3 has length 1− 1
5ε

and serves s3. To sum it up, we have

Ignore(σIg
2 ) = 4− ε.

Opt on the other hand waits until time 1
5ε at the origin for the request s(2)2 and then

collects and delivers the remaining requests on its way to position 1− 1
5ε, resulting in

Opt(σIg
2 ) = 1.
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The walk of Opt is illustrated in blue in Figure 4.11. To sum it up, we have

Ignore(σIg
2 ) = (4− ε)Opt(σIg

2 ).

In case of open online TSP, we provide a better upper bound than for the competitive
ratio of Ignore.

Theorem 4.13. Ignore for open online TSP is 7
2 -competitive.

Proof. Let sn = (an; rn) ∈ σ be the request that is released last. If Ignore is not on a
schedule at time rn, we have

Ignore(σ)
(4.1)
= tN + L(tN , pN , σN ) = rn + L(rn, pN , σN ). (4.59)

Since Opt has to serve sn, we have Opt ≥ rn. By Lemma 4.6, we get

Ignore(σ) (4.59)
= rn + L(rn, pN , σN)

≤ Opt(σ) + L(rn, pN , σN )

Lem 4.6
≤ 5

2
Opt(σ)− 3

2
tN−1

≤ 5

2
Opt(σ).

Now assume Ignore is busy executing a schedule at time rn. Then, we have

Ignore(σ) (4.1)
= tN + L(tN , pN , σN )

= tN−1 + L(tN−1, pN−1, σN−1) + L(tN , pN , σN ). (4.60)

Let sOptN = (aOptN ; rOptN ) be the first request of σN that is served by Opt. We have

L(tN , pN , σN )
(4.3)

≤ d(aOptj , pN ) + L(tN , aOptN , σN ) (4.61)

by the triangle inequality. Since Opt cannot serve sOptN before time rOptj , we have

Opt(σ) ≥ rOptj + L(tN , aOptN , σN ). (4.62)

Combining the inequalities (4.61) and (4.62), we obtain

Ignore(σ) (4.60)
= tN−1 + L(tN−1, pN−1, σN−1) + L(tN , pN , σN )
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0

pos

time

Ignore
Opt

1
3ε Opt(σIg

3 ) Ignore(σIg
3 )

1− 1
3ε

Figure 4.12: Ignore’s and Opt’s walk serving σIg
3 with ε = 0.75. Request s1 is red , request s2 is yellow

and request s3 is violet .

(4.61)
≤ tN−1 + L(tN−1, pN−1, σN−1) + d(aOptj , pN ) + L(tN , aOptN , σN )

(4.62)
≤ tN−1 + L(tN−1, pN−1, σN−1) + d(aOptj , pN ) + Opt(σ)− rOptj

tN−1 ≤ rOptj

≤ L(tN−1, pN−1, σN−1) + d(aOptj , pN ) + Opt(σ). (4.63)

Since Opt has to visit aOptj and pN , we have Opt(σ) ≥ d(aOptj , pN ) and Lemma 4.6 implies

L(tN−1, pN−1, σN−1)
Lem 4.6
≤ 3

2
(Opt(σ)− tN−2) ≤

3

2
Opt(σ). (4.64)

Finally, combining the inequalities above gives

Ignore(σ)
(4.63)

≤ L(tN−1, pN−1, σN−1) + d(aOptj , pN ) + Opt(σ)
(4.64)

≤ 7

2
Opt(σ).

We complement this upper bound with a lower bound of 3.

Theorem 4.14. For every sufficiently small ε > 0 there is a request sequence σIg
3 only

containing TSP requests such that

Ignore(σIg
3 ) = (3− ε)Opt(σIg

3 ).

Proof. Let ε > 0 with ε < 3
2 . We consider the sequence of requests σIg

3 consisting of

s1 =

(︃
1− 1

3
ε; 0

)︃
,
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s2 =

(︃
0;

1

3
ε

)︃
,

s3 =

(︃
1− 1

3
ε; 1

)︃
.

The walk Ignore performs in a position-time diagram is illustrated in green in Figure 4.12.
Ignore serves request s1 in schedule S1 at position p2 = 1− 1

3ε at time t2 = 1− 1
3ε. Note

that request s3 is not yet released at time t2. In schedule S2 only request s2 is served.
Schedule S2 finishes at position p3 = 0 at time t3 = 2 − 2

3ε. The final schedule S3 has
length 1− 1

3ε and serves s3. To sum it up, we have

Ignore(σIg
3 ) = 3− ε.

Opt on the other hand waits until time 1
3ε at the origin for the request s2 and then serves

the remaining requests on its way to position 1− 1
3ε, resulting in

Opt(σIg
3 ) = 1.

The walk of Opt is illustrated in blue in Figure 4.12. To sum it up, we have

Ignore(σIg
3 ) = (3− ε)Opt(σIg

3 ).

The results of this section are summarized in Table 2.6. We produced tight bounds for
closed and open online Dial-a-Ride and closed online TSP. Only for open online TSP a
gap remains. Note that we have the same bounds for Ignore on the line as in the general
setting. Furthermore, in the case of online Dial-a-Ride, we have the same bounds for all
choices of the capacity c. Thus, we have shown that restricting the metric space to the real
line has no impact on Ignore’s competitive ratio for closed and open online Dial-a-Ride
and for closed online TSP. Moreover, choosing a specific capacity of the server has no
impact on Ignore’s competitive ratio either.

However, there is a significant gap between Ignore’s competitive ratios and the lower
bounds for the competitive ratios of schedule-based algorithms presented in Section 4.1.
This indicates that Ignore is a rather weak schedule-based algorithm. And indeed our
analysis exposes a critical weakness of Ignore: Ignore is very easily lured away from the
origin even though it would have been smarter in many cases to wait before executing
a schedule. Ascheuer et al. also had this insight. To address this issue they proposed
the Smartstart algorithm in [5], a schedule-based algorithm with a waiting routine
dependent on the length of the upcoming schedule. This algorithm eliminates the critical
weakness of Ignore. We present a detailed examination of Smartstart in the next
chapter.
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In comparison to Ignore, the algorithm Smartstart [5] uses the given information
about the subsequence of unserved requests Rt at time t. While Ignore bases its waiting
function only on whether the subsequence Rt is empty, Smartstart compares the current
time with the time needed to serve Rt from its current position.

Algorithm 3 Smartstart
p1 ← 0
for j = 1, 2, . . . do

while t < L(t, pj , Rt)/(Θ− 1) do
wait

tj ← t
Sj ← optimal offline schedule serving unserved Rt starting from pj
execute Sj

pj+1 ← current position

The algorithm Smartstart is given in Algorithm 3. Essentially, at time t, Smartstart
waits before starting an optimal schedule to serve all available requests at time

min

{︃
t′ ∈ R≥0 : t

′ ≥ t ∧ t′ ≥ L(t′, p, Rt′)

Θ− 1

}︃
, (5.1)

where p is the current position of the server and Θ > 1 is a parameter of the algorithm
that scales the waiting time. Formally, Smartstart is a schedule-based algorithm with
waiting function

waitSm(t) :=

{︄
false, if Rt ̸= ∅ and t ≥ L(t,p,Rt)

Θ−1 ,

true, otherwise.

The Smartstart algorithm is of particular importance since it achieves the best possible
competitive ratio of 2 for the closed online Dial-a-Ride on arbitrary continuous metric
spaces [5, Thm 6] [8, Thm 4.2], and the best known upper bound of roughly 3.4142
for the competitive ratio of the open variant [32, Thm 2.30]. Smartstart is also a best
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possible schedule-based algorithm for closed online Dial-a-Ride on the line according to
Theorem 4.3. In this section, we provide the exact competitive ratio of Smartstart for
open online Dial-a-Ride and online TSP on the line. Furthermore, we provide improved
upper bounds for the competitive ratio of Smartstart for open online Dial-a-Ride and
online TSP in the general setting.
Regarding open online Dial-a-Ride, we show that Smartstart attains a competitive

ratio of ρD,RSm ≈ 2.9377 on the line for parameter value ΘD,R
Sm ≈ 2.0526 (Thm 5.26) and

is ρD,XSm -competitive with ρD,XSm = 3 in the general setting for parameter value ΘD,X
Sm = 2

(Thm 5.43). For open online TSP, we show that Smartstart achieves a competitive
ratio of ρT,RSm ≈ 2.7604 on the line for parameter value ΘT,R

Sm ≈ 1.8607 (Thm 5.41) and is
ρT,XSm -competitive with ρT,XSm ≈ 2.8229 in the general setting for parameter value ΘT,X

Sm ≈
1.8229 (Thm 5.44).

We published the results of the first two sections also in [10]. To show the upper bounds
for the competitive ratio of open online Dial-a-Ride on the line, we derive two separate
upper bounds depending on Θ: an upper bound for the case that Smartstart postpones
starting its final schedule and an upper bound for the case that Smartstart does not
postpone its final schedule (see Section 5.1). We complement the upper bounds with
matching lower bounds in Section 5.2. For online TSP on the line we show a slightly better
upper bound for the competitive ratio for the case that the final schedule is postponed,
which improves the general upper bound in comparison to the Dial-a-Ride version (see
Section 5.3). In the same section, we match this slightly improved upper bound with a
matching lower bound. For arbitrary continuous metric spaces, we show slightly weaker
upper bounds for the competitive ratio of Smartstart for open online Dial-a-Ride and
online TSP in the case that the final schedule is not postponed. This yields slightly weaker
general upper bounds than on the real line (see Section 5.4).

5.1 Upper Bound for Open Online DIAL-A-RIDE on the Line

In this section, we give an upper bound for the completion time of Smartstart in compar-
ison the optimum offline time to Opt(σ). To do this, we consider two cases, depending
on whether or not Smartstart postpones the execution of the final schedule SN . If
Smartstart postpones the execution of SN (i.e., it waits even though there are unserved
requests), the starting time of schedule SN is given by

tN =
1

Θ− 1
L(tN , pN , σN ). (5.2)
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If Smartstart does not postpone the final schedule, we have

tN = tN−1 + L(tN−1, pN−1, σN−1) (5.3)

if the final schedule SN is executed directly after the second to final schedule and

tN = rn (5.4)

if there are no unserved requests at the point of time the execution of SN−1 is finished
and the last requests are released at time rn > 1

Θ−1L(tN , pN , σN ).
First, we examine the case that the final schedule is postponed. We start by giving a

lower bound for the starting time of a schedule.

Lemma 5.1. Algorithm Smartstart for open online Dial-a-Ride does not start schedule Sj

earlier than time 1
Θd(0, pj+1), i.e., we have tj ≥ 1

Θd(0, pj+1).

Proof. Since Smartstart at least has to move from pj to pj+1, we have

L(tj , pj , σj) ≥ d(pj , pj+1).

Note however that Smartstart needs at least time d(pj , 0) to reach pj . Therefore, we
have

tj
(5.1)
≥ min

{︃
t ∈ R≥0 : t ≥ d(0, pj) ∧ t ≥ d(pj , pj+1)

Θ− 1

}︃
= max

{︃
d(0, pj),

d(pj , pj+1)

Θ− 1

}︃
. (5.5)

It remains to show
max

{︃
d(0, pj),

d(pj , pj+1)

Θ− 1

}︃
≥ d(0, pj+1)

Θ
.

For d(0, pj) ≥ d(0,pj+1)
Θ we trivially have

max

{︃
d(0, pj),

d(pj , pj+1)

Θ− 1

}︃
≥ d(0, pj) ≥

d(0, pj+1)

Θ
. (5.6)

For d(0, pj) <
d(0,pj+1)

Θ , the triangle inequality implies

max

{︃
d(0, pj),

d(pj , pj+1)

Θ− 1

}︃
≥ d(pj , pj+1)

Θ− 1
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≥ d(0, pj+1)

Θ− 1
− d(0, pj)

Θ− 1

d(0, pj) <
d(0,pj+1)

Θ
>

d(0, pj+1)

Θ− 1
− d(0, pj+1)

Θ(Θ− 1)

=
d(0, pj+1)

Θ
. (5.7)

To sum it up, we have

tj
(5.5)

≥ max

{︃
d(0, pj),

d(pj , pj+1)

Θ− 1

}︃
(5.6),(5.7)

≥ d(0, pj+1)

Θ
.

Using Lemmas 5.1 and 4.5, we can compute an upper bound for the length of Smartstart’s
schedules that is only dependent on the scaling parameter Θ.

Lemma 5.2. For every schedule Sj of Smartstart for open online Dial-a-Ride, we have

L(tj , pj , σj) ≤
(︃
1 +

Θ

Θ+ 2

)︃
Opt(σ).

Proof. By Lemma 4.5 and Lemma 5.1 we have

L(tj , pj , σj)
Lem 4.5
≤ min{Opt(σ) + d(pj , 0), 2(Opt(σ)− tj−1)}

Lem 5.1
≤ min

{︃
Opt(σ) + d(pj , 0), 2

(︃
Opt(σ)− 1

Θ
d(pj , 0)

)︃}︃
≤

(︃
1 +

Θ

Θ+ 2

)︃
Opt(σ)

since the minimum above is largest if the two terms are equal, which is the case for
d(pj , 0) =

Θ
Θ+2Opt(σ).

We are now ready to present an upper bound for the competitive ratio of Smartstart for
open online Dial-a-Ride in the case that the final schedule is postponed.

Proposition 5.3. In the case that Smartstart for open online Dial-a-Ride postpones
executing SN , we have

Smartstart(σ)
Opt(σ)

≤ 2Θ2 + 2Θ

Θ2 +Θ− 2
=: f

up
1 (Θ).
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Proof. Assume Smartstart postpones the final schedule. Then we have

Smartstart(σ)
(4.1)
= tN + L(tN , pN , σN )

(5.2)
=

Θ

Θ− 1
L(tN , pN , σN ). (5.8)

Lemma 5.2 thus yields the claimed bound:

Smartstart(σ) (5.8)
=

Θ

Θ− 1
L(tN , pN , σN )

Lem 5.2
≤ Θ

Θ− 1

(︃
1 +

Θ

Θ+ 2

)︃
Opt(σ)

=
2Θ2 + 2Θ

Θ2 +Θ− 2
Opt(σ).

Note that the upper bound presented in Proposition 5.3 is valid in the general setting and
thus also on the real line. It remains to examine the case where the algorithm Smartstart
does not postpone the final schedule.

Proposition 5.4. If Smartstart for open online Dial-a-Ride on the line does not postpone
executing SN , we have

Smartstart(σ)
Opt(σ)

≤ 3Θ2 + 5Θ+ 4

3Θ + 3
=: f

up
2 (Θ).

Proof. Assume algorithm Smartstart does not postpone the final schedule, i.e., Smart-
start starts the final schedule SN either immediately after finishing SN−1 or immediately
after the last requests are released.

Let the latter be the case, then the final schedule is started at the release time rn of the
last request. Since Opt also has to serve the last request, we have Opt(σ) ≥ rn and since
the execution of the final schedule is not postponed, we have rn > 1

Θ−1L(tN , pN , σN ), i.e.,

L(tN , pN , σN ) < (Θ− 1)Opt(σ). (5.9)

In total we have

Smartstart(σ) (4.1)
= tN + L(tN , pN , σN )

(5.4)
= rn + L(tN , pN , σN )

(5.9)
< ΘOpt(σ)

<
3Θ2 + 5Θ+ 4

3Θ + 3
Opt(σ).
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Now let the final schedule be started immediately after the second to final schedule.
Without loss of generality, we assume |xmin| ≤ xmax throughout the rest of the proof. The
other case follows by symmetry. Let sOptN be the first request of σN that is served by Opt
and let aOptN be its starting position and rOptN be its release time. We have

Smartstart(σ) (4.1)
= tN + L(tN , pN , σN )

(5.3)
= tN−1 + L(tN−1, pN−1, σN−1) + L(tN , pN , σN )

(4.2)
≤ tN−1 + L(tN−1, pN−1, σN−1) + L(rOptN , pN , σN ). (5.10)

Since Opt serves all requests of σN after time rOptN , starting with a request with starting
position aOptN , we also have

Opt(σ) ≥ rOptN + L(rOptN , aOptN , σN ). (5.11)

Furthermore, we have
rOptN > tN−1 (5.12)

since otherwise sOptN ∈ σN−1 would hold and

tN−1

(5.1)

≥ 1

Θ− 1
L(tN−1, pN−1, σN−1). (5.13)

by definition of Smartstart. This gives us

Smartstart(σ)
(5.10)
≤ tN−1 + L(tN−1, pN−1, σN−1) + L(rOptN , pN , σN )

(4.3)
≤ tN−1 + L(tN−1, pN−1, σN−1) + |aOptN − pN |+ L(rOptN , aOptN , σN )

(5.11)
≤ tN−1 + L(tN−1, pN−1, σN−1) + |aOptN − pN |+ Opt(σ)− rOptN

(5.12)
< L(tN−1, pN−1, σN−1) + |aOptN − pN |+ Opt(σ). (5.14)

We denote by sSmN−1 the last request that is delivered during schedule SN−1 by Smartstart.
Note that the destination of sSmN−1 is pN . We consider two cases.

Case 1: OPT collects sOptN before delivering the request sSmN−1

Obviously Opt cannot collect the request sOptN before its release time rOptN . Furthermore,
since Opt still has to go to position pN for delivering request sSmN−1 after collecting sOptN ,
we have

Opt(σ) ≥ rOptN + |aOptN − pN |
(5.12)
> tN−1 + |aOptN − pN |. (5.15)
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The inequality above gives us

Smartstart(σ)
(5.14)
< L(tN−1, pN−1, σN−1) + |aOptN − pN |+ Opt(σ)

(5.15)
< L(tN−1, pN−1, σN−1) + 2Opt(σ)− tN−1

(5.13)
≤ Θ− 2

Θ− 1
L(tN−1, pN−1, σN−1) + 2Opt(σ)

Lem 5.2
≤ Θ− 2

Θ− 1

(︃
1 +

Θ

Θ+ 2

)︃
Opt(σ) + 2Opt(σ)

=
4Θ2 − 8

Θ2 +Θ− 2
Opt(σ)

Θ > 1
<

3Θ2 + 5Θ+ 4

3Θ + 3
Opt(σ).

Case 2: OPT delivers sSmN−1 before collecting the request sOptN

In this case we have

Smartstart(σ)
(5.14)
< L(tN−1, pN−1, σN−1) + |aOptN − pN |+ Opt(σ)

(5.13)
≤ (Θ− 1)tN−1 + |aOptN − pN |+ Opt(σ)

tN−1 < Opt(σ)
< ΘOpt(σ) + |aOptN − pN |.

This means the claim is shown if we have

|pN − aOptN | < 2Θ + 4

3Θ + 3
Opt(σ).

Therefore, we may assume in the following that

|pN − aOptN | ≥ 2Θ + 4

3Θ + 3
Opt(σ). (5.16)

Let Opt(σ) = |xmin|+ xmax + y for some y ≥ 0. By definition of xmin and xmax we have

|pN − aOptN |+ y ≤ Opt(σ). (5.17)

Since by assumption Opt delivers sSmN−1 to position pN before collecting sOptN at posi-
tion aOptN , we have

|pN − aOptN |+ |pN | ≤ Opt(σ), (5.18)

87



5 Algorithm SMARTSTART

and since sSmN−1 appears after time tN−2, we also have

|pN − aOptN |+ tN−2 < Opt(σ). (5.19)

To sum it up, we may assume that

max{y, |pN |, tN−2}
(5.16),(5.17),(5.18),(5.19)

≤ Θ− 1

3Θ + 3
Opt(σ) (5.20)

holds. We compute

Smartstart(σ)
(5.14)
< L(tN−1, pN−1, σN−1) + |pN − aOptN |+ Opt(σ)

Prop 4.10
≤ 2|pN−1|+ |pN−1 − pN |+ 2y + |pN − aOptN |+ Opt(σ)

≤ 3|pN−1|+ |pN |+ 2y + |pN − aOptN |+ Opt(σ)
(5.18)
≤ 3|pN−1|+ 2y + 2Opt(σ)

Lem 5.1
≤ 3ΘtN−2 + 2y + 2Opt(σ)

(5.20)
≤ 3Θ

Θ− 1

3Θ + 3
+ 2

Θ− 1

3Θ + 3
+ 2Opt(σ)

=
3Θ2 + 5Θ+ 4

3Θ + 3
Opt(σ).

We combine the results of Proposition 5.3 and Proposition 5.4 to obtain a general upper
bound for the competitive ratio of Smartstart for online Dial-a-Ride on the line.

Theorem 5.5. The function max{fup
1 , f

up
2 } gives an upper bound for the competitive ratio

of Smartstart for open online Dial-a-Ride on the line for all Θ > 1. Let ΘD,R
Sm ≈ 2.0526 be

the unique solution of the equation f
up
1 (Θ) = f

up
2 (Θ), i.e., of

2Θ2 + 2Θ

Θ2 +Θ− 2
=

3Θ2 + 5Θ+ 4

3Θ + 3
,

in the interval (1,∞). Then, ΘD,R
Sm is the unique minimum of the function max{fup

1 , f
up
2 }

and Smartstart with scaling parameter ΘD,R
Sm is ρD,RSm -competitive with

ρD,RSm = f
up
1 (ΘD,R

Sm ) = f
up
2 (ΘD,R

Sm ) ≈ 2.9377.
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1 ΘD,R
Sm
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Figure 5.1: Functions fup
1 (green) / fup

2 (red): upper bounds for competitive ratio for postponing / non-
postponing case. Green / red area: possible values for the competitive ratio, bounded by fup

1 / fup
2 .

Proof. For the case where Smartstart postpones the final schedule, we have established
the upper bound

Smartstart(σ)
Opt(σ)

≤ 2Θ2 + 2Θ

Θ2 +Θ− 2
= f

up
1 (Θ)

in Proposition 5.3 and for the case where Smartstart does not postpone final schedule,
we have established the upper bound

Smartstart(σ)
Opt(σ)

≤ 3Θ2 + 5Θ+ 4

3Θ + 3
= f

up
2 (Θ)

in Proposition 5.4. Thus, the maximum of both bounds is a general upper bound for
the competitive ratio of Smartstart for open online Dial-a-Ride on the line that is
independent of Smartstart’s behavior before the final schedule.
Function f

up
1 is strictly decreasing for Θ > 1 and function f

up
2 is strictly increasing

for Θ > 1. Therefore the minimum of max{fup
1 , f

up
2 } in the interval (1,∞) lies in the

intersection point of fup
1 and f

up
2 , i.e., in ΘD,R

Sm ≈ 2.0526. The resulting upper bound for
the competitive ratio is

ρD,RSm = f
up
1 (ΘD,R

Sm ) = f
up
2 (ΘD,R

Sm ) ≈ 2.9377.

See Figure 5.1 for a visualization of the upper bound for the competitive ratio of Smart-
start for open online Dial-a-Ride on the line presented in Theorem 5.5
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5.2 Lower Bound for Open Online DIAL-A-RIDE on the Line

To complete our analysis of Smartstart for open online Dial-a-Ride on the line, we
give lower bound constructions for different values of Θ. In particular, we show that for
Θ ∈ (2, 3) there are request sequences where Smartstart postpones its final schedule
and has competitive ratio at least fup

1 (Θ). Similarly, we show that for Θ ∈ [2, 2.303]
there are instances where Smartstart does not postpone its final schedule and has
competitive ratio at least fup

2 (Θ). Together, this implies that the general upper bound
of max{fup

1 (Θ), f
up
2 (Θ)} is tight for Θ ∈ (2, 2.303], and thus for Θ = ΘD,R

Sm as defined in
Theorem 5.5. To conclude the analysis of Smartstart for open online Dial-a-Ride on
the line, we present four more lower bounds that establish that outside of the interval
(2, 2.303] there is no Θ ̸= ΘD,R

Sm that yields a better competitive ratio than ρD,RSm . All our
lower bounds rely on the following lemma that provides a way to lure Smartstart away
from the origin with almost no time overhead. More specifically, the lemma provides a
way to make Smartstart move to any position p > 0 within time p+ µ where µ > 0 is
arbitrarily small.

Lemma 5.6. Let p > 0 be any position on the real line and µ > 0 be any positive number.
Furthermore, let δ > 0 be such that p

δΘ = m ∈ N and δ < (Θ− 1)µ. Algorithm Smartstart
for open online Dial-a-Ride or online TSP finishes serving the request sequence σlure

p,µ =
(s1, . . . , sm+1) with

si =

(︃
iδ, iδ;

δ

Θ− 1
+ (i− 1)δ

)︃
for i ∈ {1, . . . ,m}

sm+1 = (p, p;mδ + µ) =
(︂
p, p;

p

Θ
+ µ

)︂
and reaches the position p at time p+ µ, provided that no additional requests appear until
time p

Θ + µ. The final schedule serving sm+1 is started at time p
Θ + µ.

Proof. We show via induction that every request si with i ∈ {1, . . . ,m} is served in a
separate schedule Si with starting position pi = (i− 1)δ and starting time

ti =
δ

Θ− 1
+ (i− 1)δ.

This is clear for i = 1: By definition, Smartstart starts from p1 = 0. The schedule S1 to
serve s1 is started at time

t1 = min

{︃
t ∈ R≥0 : t ≥

δ

Θ− 1
∧ L(t, 0, (s1))

Θ− 1
≤ t

}︃
=

δ

Θ− 1
,
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and reaches position p2 = δ at time v2 =
1

Θ−1δ + δ = Θ
Θ−1δ. Note that the release time of

every request si is larger than t1, ensuring that S1 indeed only serves s1.
We assume the claim is true for some k ∈ {1, . . . ,m − 1}. Consider i = k + 1. By

assumption, the server finishes schedule Sk at position pk+1 = kδ at time vk+1 =
1

Θ−1δ+kδ.
Therefore, we have

tk+1 ≥
1

Θ− 1
δ + kδ.

On the other hand, we have

L
(︂

δ
Θ−1 + kδ, kδ, (sk+1)

)︂
Θ− 1

=
δ

Θ− 1
<

δ

Θ− 1
+ kδ = vk+1.

Since there are no other unserved requests at time δ
Θ−1 + kδ, the schedule Sk+1 is started

at time tk+1 =
δ

Θ−1 + kδ and only serves sk+1 as claimed. It remains to examine the last
request sm+1. The above shows that schedule Sm is finished at time

vm+1 = tm + L(tm, pm, (sm)) =
δ

Θ− 1
+ (m− 1)δ + δ =

δ

Θ− 1
+mδ < µ+mδ

at position pm+1 = mδ = p
Θ , i.e., before the request sm+1 is released at time rm+1 = µ+mδ.

On the other hand, we have

L
(︁
µ+mδ, p

Θ , (sm+1)
)︁

Θ− 1
=

Θ−1
Θ p

Θ− 1
=

p

Θ
= mδ < µ+mδ.

Therefore the final schedule Sm+1 is started at time tm+1 = µ+mδ = µ+ p
Θ , and we get

Smartstart((si)i∈{1,...,m+1}) = tm+1 + L(tm+1, pm+1, (sm+1))

= µ+
p

Θ
+

Θ− 1

Θ
p

= µ+ p.

The request sequence σlure
p,µ contains no transportation request. Thus, our construction

remains valid for every capacity c ∈ N ∪ {∞} and also for online TSP. Furthermore, there
is no interference with requests that are released after time tm+1 = µ+ p

Θ .

Equipped with this strategy to lure Smartstart away from the origin, we now move on to
establish lower bounds matching Propositions 5.3 and 5.4. For convenience, whenever we
apply Lemma 5.6, we start the enumeration of schedules with the first schedule after the
subsequence σlure

p,µ is served. To make the analysis of the following constructions a bit more
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clear, we denote by wj the earliest time, a potential waiting period before schedule Sj is
over, i.e., wj =

1
Θ−1L(vj , pj , σ≤vj ). Consequently, if no new requests appear between the

ending time vj of schedule Sj−1 and the starting time of schedule Sj (which is the case
for all request sequences that will be analyzed in this section), we have tj = max{vj , wj}.
In the following, we will analyze four different request sequences σSm

1 to σSm
4 . We will

see that the ratio of Smartstart’s and Opt’s completion time of σSm
1 tightly matches the

upper bound of Proposition 5.3 for Θ ∈ (2, 3) and that the ratio of Smartstart’s and
Opt’s completion time of σSm

2 tightly matches the upper bound of Proposition 5.4 for
Θ ∈ [2, 2.303]. The request sequences σSm

3 and σSm
4 will provide additional lower bounds

for the competitive ratio of Smartstart for open online Dial-a-Ride on the line for larger
values of Θ. We start with request sequence σSm

1 .

Definition 5.7. Let ε′ > 0 with ε′ < 1
Θ . We define

σSm
1 := (σlure

1,ε′/2, s
(1)
1 , s

(2)
1 ),

where σlure
1,ε′/2 is a subsequence of requests resulting from the application of Lemma 5.6

with p = 1 and µ = ε′

2 and

s
(1)
1 =

(︃
− 1

Θ
+ ε′, 0;

1

Θ
+ ε′

)︃
,

s
(2)
1 =

(︃
1

Θ
, 1;

1

Θ
+ ε′

)︃
.

Note that both requests appear after time 1
Θ + ε′

2 and therefore do not interfere with the
application of Lemma 5.6 and that ε′ < 1

Θ implies a(1)1 < 0, i.e., the starting position
of request s(1)1 is on the left side of the origin. We begin our analysis of σSm

1 with the
computation of Opt(σSm

1 ).

Lemma 5.8. We have
Opt(σSm

1 ) =
Θ + 2

Θ
.

Proof. Opt waits at the origin until time 2ε′ and then performs the walk

0→ − 1

Θ
+ ε′ → 1.

Opt’s walk is presented in blue in Figure 5.2 for Θ = 1.9 and in blue in Figure 5.3 for
Θ = ΘD,R

Sm . We show that all requests are served this way: Opt collects s(1)1 at time 1
Θ + ε′
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and delivers it to the origin at time 2
Θ . Let q > 0 be the position of a request of σlure

1,ε′/2

arising from the application of Lemma 5.6. Then this request is released earlier than time
q + ε′

2 . On the other hand, Opt reaches position q not earlier than time 2
Θ + q. Since we

have ε′ < 1
Θ , we have 2

Θ + q > q+ ε′

2 and Opt can go straight from the origin to position 1,
collecting and delivering all requests that occur by the application of Lemma 5.6 as well
as s(2)1 on the way. Therefore, we have

Opt(σSm
1 ) = 2ε′ +D

(︃
0→ − 1

Θ
+ ε′ → 1

)︃
=

Θ+ 2

Θ
.

Opt can do this even if the capacity is c = 1, since no transportation requests need to be
carried over [0, 1

Θ ] ∪ {1}, where the requests of the application of Lemma 5.6 appear, and
because the carrying paths of s(1)1 and s

(2)
1 are disjoint.

Next, we compute Smartstart’s completion time. We will see that Smartstart’s comple-
tion time for serving σSm

1 depends strongly on the choice of Θ.

Lemma 5.9. Let Θ ∈ (1, 3) and ε′ < 2
9 . Then, we have

Smartstart(σSm
1 ) = min

{︃
3Θ

Θ− 1
,
2Θ + 2

Θ− 1

}︃
− 2Θ

Θ− 1
ε′.

Proof. Smartstart’s walk is presented in green in Figure 5.2 for Θ = 1.9 and in green in
Figure 5.3 for Θ = ΘD,R

Sm . Smartstart reaches position p1 = 1 at time v1 = 1 + ε′

2 . The
shortest schedule serving s

(2)
1 before serving s

(1)
1 has length

D

(︃
1→ 1

Θ
→ 1→ − 1

Θ
+ ε′ → 0

)︃
= 3− 2ε′.

On the other hand the shortest schedule that serves s(1)1 before serving s
(2)
1 has length

D

(︃
1→ − 1

Θ
+ ε′ → 1

)︃
= 2 +

2

Θ
− 2ε′.

Thus, for all t ≥ v1, we have

L(t, p1, (s
(1)
1 , s

(2)
1 )) = min

{︃
3, 2 +

2

Θ

}︃
− 2ε′.
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0

pos

time

Smartstart
Opt

Opt(σSm
1 )

Smartstart(σSm
1 )

1

1
Θ

− 1
Θ + ε′

Figure 5.2: Smartstart’s and Opt’s walk serving σSm
1 with ε′ = 0.25 and Θ = 1.9. Request s(1)1 is red and

request s(2)1 is yellow . The requests of Lemma 5.6 are gray .

By assumption, we have Θ < 3 and ε′ < 2
9 , which implies that for the time v1 = 1 + ε′

2 ,
when Smartstart reaches position p1 = 1, the inequality

w1 = min

{︃
3

Θ− 1
,

2Θ + 2

Θ(Θ− 1)

}︃
− 2

Θ− 1
ε′

Θ<3
>

4

3
− ε′

ε′< 2
9

> 1 +
ε′

2
= v1 (5.21)

holds. Note that inequality (5.21) also holds for slightly larger Θ if we let ε→ 0. Because
of inequality (5.21), Smartstart has a waiting period and starts the schedule S1 at time

t1 = max{v1, w1}
(5.21)
= w1 = min

{︃
3

Θ− 1
,

2Θ + 2

Θ(Θ− 1)

}︃
− 2

Θ− 1
ε′.

In total, we have

Smartstart(σSm
1 ) = t1 + L(t, p1, (s

(1)
1 , s

(2)
1 )) = min

{︃
3Θ

Θ− 1
,
2Θ + 2

Θ− 1

}︃
− 2Θ

Θ− 1
ε′.

Equipped with Lemmas 5.8 and 5.9, we can compute lower bounds for the competitive
ratio of Smartstart for online Dial-a-Ride for Θ ∈ (1, 3). We start with the subinterval
(1, 2].

Lemma 5.10. Let 1 < Θ ≤ 2. For every sufficiently small ε > 0, we have

Smartstart(σSm
1 )

Opt(σSm
1 )

=
3Θ2

Θ2 +Θ− 2
− ε =: f low

1 (Θ)− ε.

In particular, we have
Smartstart(σSm

1 )

Opt(σSm
1 )

> ρD,RSm ≈ 2.9377

for Θ ∈ (1, 2] and sufficiently small ε > 0.
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0

pos

time

Smartstart
Opt

Opt(σSm
1 ) Smartstart(σSm

1 )

1

1
Θ

− 1
Θ + ε′

Figure 5.3: Smartstart’s and Opt’s walk serving σSm
1 with ε′ = 0.25 and Θ = ΘD,R

Sm . Request s(1)1 is red
and request s(2)1 is yellow . The requests of Lemma 5.6 are gray .

Proof. Let ε > 0 with ε < min{29(
2Θ2

Θ2+Θ−2
), 1

20} and ε′ = Θ2+Θ−2
2Θ2 ε < 2

9 . By Lemma 5.9,
we have

Smartstart(σSm
1 )

Lem 5.9
= min

{︃
3Θ

Θ− 1
,
2Θ + 2

Θ− 1

}︃
− 2Θ

Θ− 1
ε′

Θ ≤ 2
=

3Θ

Θ− 1
− 2Θ

Θ− 1
ε′

Lemma 5.8 implies

Opt(σSm
1 ) =

Θ + 2

Θ
.

Since we have ε′ = Θ2+Θ−2
2Θ2 ε, we obtain

Smartstart(σSm
1 )

Opt(σSm
1 )

=
3Θ2

Θ2 +Θ− 2
− 2Θ2

Θ2 +Θ− 2
ε′ =

3Θ2

Θ2 +Θ− 2
− ε = f low

1 (Θ)− ε,

as claimed. The function f low
1 is monotonically decreasing on (1, 2]. Therefore, we have

Smartstart(σSm
1 )

Opt(σSm
1 )

− ε ≥ f low
1 (2)− ε = 3− ε > ρD,RSm ≈ 2.9377

for all Θ ∈ (1, 2] and ε < 1
20 .

The following proposition shows that in the case Θ ∈ (2, 3) the ratio of Smartstart’s
and Opt’s completion time for the request sequence σSm

1 tightly matches the upper bound
provided by Proposition 5.3.
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Proposition 5.11. Let 2 < Θ < 3. For every sufficiently small ε > 0 we have

Smartstart(σSm
1 )

Opt(σSm
1 )

=
2Θ2 + 2Θ

Θ2 +Θ− 2
− ε = f

up
1 (Θ)− ε

and Smartstart postpones the final schedule, i.e., the upper bound established in Proposi-
tion 5.3 is tight for Θ ∈ (2, 3).

Proof. Let ε > 0 with ε < 2
9(

2Θ2

Θ2+Θ−2
) and ε′ = Θ2+Θ−2

2Θ2 ε < 2
9 . By Lemma 5.9, we have

Smartstart(σSm
1 )

Lem 5.9
= min

{︃
3Θ

Θ− 1
,
2Θ + 2

Θ− 1

}︃
− 2Θ

Θ− 1
ε′

Θ > 2
=

2Θ+ 2

Θ− 1
− 2Θ

Θ− 1
ε′

Lemma 5.8 implies

Opt(σSm
1 ) =

Θ + 2

Θ
.

Since we have ε′ = Θ2+Θ−2
2Θ2 ε, we obtain

Smartstart(σSm
1 )

Opt(σSm
1 )

=
2Θ2 + 2Θ

Θ2 +Θ− 2
− 2Θ2

Θ2 +Θ− 2
ε′ =

2Θ2 + 2Θ

Θ2 +Θ− 2
− ε = f

up
1 (Θ)− ε.

Figure 5.4 is a visualization of the upper bound for the competitive ratio of online Dial-a-
Ride on the line presented in Theorem 5.5 together with the lower bounds of Proposi-
tion 5.11 and Lemma 5.10. Next we examine the request sequence σSm

2 .

Definition 5.12. Let ε′ > 0 with ε′ < Θ+1
Θ . We define

σSm
2 := (σlure

1,ε′/2, s
(1)
1 , s

(2)
1 , s2),

where σlure
1,ε′/2 is a subsequence of requests resulting from the application of Lemma 5.6

with p = 1 and µ = ε′

2 and

s
(1)
1 =

(︃
2Θ + 1

Θ
− ε′,

2Θ + 1

Θ
− ε′;

1

Θ
+ ε′

)︃
,

s
(2)
1 =

(︃
− 1

Θ
,− 1

Θ
;
1

Θ
+ ε′

)︃
,

s2 =

(︃
max

{︃
Θ+ 5

Θ2 −Θ
,
2Θ + 1

Θ

}︃
− ε′,max

{︃
Θ+ 5

Θ2 −Θ
,
2Θ + 1

Θ

}︃
− ε′;

3Θ + 3

Θ2 −Θ

)︃
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Figure 5.4: Functions fup
1 (green) / fup

2 (red): upper bounds for competitive ratio for postponing / non-
postponing case, drawn solid if tight. Function: f low

1 (blue): lower bounds for competitive ratio.
Green / red area: possible values for the competitive ratio, bounded by fup

1 / fup
2 and f low

1 .

Note that the requests s(1)1 , s(2)1 and s2 appear after time 1
Θ + ε′

2 and therefore do not
interfere with the application of Lemma 5.6 and that ε′ < Θ+1

Θ implies a2 ≥ a
(1)
1 > 1, i.e.,

both requests s(1)1 and s2 appear on the right side of position 1. Note that σSm
2 contains

no transportation requests. Thus, every lower bound implied by request sequence σSm
2

is also valid for open online TSP. We begin our analysis of σSm
2 with the computation of

Opt(σSm
2 ).

Lemma 5.13. We have

Opt(σSm
2 ) = max

{︃
3Θ + 3

Θ2 −Θ
,
2Θ + 3

Θ

}︃
.

Proof. Opt waits at the origin until time ε′ and then performs the walk

0→ − 1

Θ
→ max

{︃
Θ+ 5

Θ2 −Θ
,
2Θ + 1

Θ

}︃
− ε′.

Opt’s walk is presented in blue in Figure 5.5 for Θ = ΘD,R
Sm and in blue in Figure 5.6 for

Θ = 2.5. We show that all requests are served this way: Opt serves the request s(2)1 at
time 1

Θ + ε′ and returns to the origin at time 2
Θ + ε′. Let q > 0 be the position of a request

that has occurred by the application of Lemma 5.6. Then this request is released earlier
than time q + ε′

2 . Since Opt reaches position q not earlier than time 2
Θ + ε′ + q > q + ε′

2 ,
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Opt can go straight from the origin to the right and can serve all requests of Lemma 5.6
without waiting. Opt reaches position max{ Θ+5

Θ2−Θ
, 2Θ+1

Θ } − ε′ at time

ε′ +D

(︃
0→ − 1

Θ
→ max

{︃
Θ+ 5

Θ2 −Θ
,
2Θ + 1

Θ

}︃
− ε′

)︃
= max

{︃
3Θ + 3

Θ2 −Θ
,
2Θ + 3

Θ

}︃
≥ 3Θ + 3

Θ2 −Θ

= r2,

i.e., Opt serves the requests s(1)1 and s2 at arrival and we have

Opt(σSm
2 ) = max

{︃
3Θ + 3

Θ2 −Θ
,
2Θ + 3

Θ

}︃
.

Next, we compute Smartstart’s completion time.

Lemma 5.14. Let Θ ∈ [74 , 4] and ε′ < 3
14 . Then, we have

Smartstart(σSm
2 ) = max

{︃
3Θ2 + 5Θ+ 4

Θ2 −Θ
,
5Θ2 + 3Θ− 2

Θ2 −Θ

}︃
− 3Θ− 1

Θ− 1
ε′.

Proof. Smartstart’s walk is presented in green in Figure 5.5 for Θ = ΘD,R
Sm and in green

in Figure 5.6 for Θ = 2.5. Smartstart reaches position p1 = 1 at time v1 = 1+ ε′

2 . At this
time the requests s(1)1 and s

(2)
1 are released, but s2 is not. The shortest schedule serving s

(2)
1

before serving s
(1)
1 has length

D

(︃
1→ − 1

Θ
→ 2Θ + 1

Θ
− ε′

)︃
=

3Θ+ 3

Θ
− ε′.

On the other hand, the shortest schedule serving s
(2)
1 after serving s

(1)
1 has length

D

(︃
1→ 2Θ + 1

Θ
− ε′ → − 1

Θ

)︃
=

3Θ+ 3

Θ
− 2ε′.

Thus, Smartstart serves s(2)1 after serving s
(1)
1 , and, for all t ≥ v1, we obtain

L(t, p1, (s
(1)
1 , s

(2)
1 )) =

3Θ + 3

Θ
− 2ε′.
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By assumption, we have Θ ≤ 4 and ε′ < 3
14 , which implies that for the time v1 = 1 + ε′

2 ,
when Smartstart reaches position p1 = 1, the inequality

w1 =
3Θ+ 3

Θ(Θ− 1)
− 2ε′

Θ− 1

Θ≤4
≥ 5

4
− 2

3
ε′

ε′< 3
14

> 1 +
ε′

2
= v1 (5.22)

holds. Thus, Smartstart has a waiting period and starts schedule S1 at time

t1 = max{v1, w1}
(5.22)
= w1 =

3Θ+ 3

Θ(Θ− 1)
− 2ε′

Θ− 1
,

which is before s2 is released. Smartstart finishes schedule S1 at time

v2 = t1 + L(t1, p1, (s
(1)
1 , s

(2)
1 )) =

3Θ + 3

Θ− 1
− 2Θ

Θ− 1
ε′

at position p2 = − 1
Θ . It remains to serve s2. For all t ≥ v2, we obtain

L(t, p2, (s2)) = D

(︃
− 1

Θ
→ max

{︃
Θ+ 5

Θ2 −Θ
,
2Θ + 1

Θ

}︃
− ε′

)︃
= max

{︃
2Θ + 4

Θ2 −Θ
,
2Θ + 2

Θ

}︃
− ε′.

Assume we have max
{︂

2Θ+4
Θ2−Θ

, 2Θ+2
Θ

}︂
= 2Θ+4

Θ2−Θ
. By assumption, we have Θ ≥ 7

4 and ε′ <

3
14 < 3Θ3−5Θ−4

2Θ3−3Θ2+Θ
. For the finishing time v2 = 3Θ+3

Θ−1 −
2Θ
Θ−1ε

′ of schedule S1, we have the
inequality

w2 =
2Θ+ 4

Θ(Θ− 1)2
− ε′

Θ− 1

=
2Θ + 4

Θ(Θ− 1)2
+

2Θ− 1

Θ− 1
ε′ − 2Θ

Θ− 1
ε′

ε′ < 3Θ3−5Θ−4
2Θ3−3Θ2+Θ

<
3Θ + 3

Θ− 1
− 2Θ

Θ− 1
ε′

= v2. (5.23)

Note that inequality (5.23) still holds for slightly smaller Θ if we let ε→ 0. Now assume
we have max{ 2Θ+4

Θ2−Θ
, 2Θ+2

Θ } = 2Θ+2
Θ . By assumption, we have ε′ < 3

14 < Θ+1
Θ , which

implies that, for the finishing time v2 =
3Θ+3
Θ−1 −

2Θ
Θ−1ε

′ of schedule S1, the inequality

w2 =
2Θ+ 2

Θ(Θ− 1)
− ε′

Θ− 1
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Figure 5.5: Smartstart’s and Opt’s walk serving σSm
2 with ε′ = 0.5 and Θ = ΘD,R

Sm . Request s(1)1 is red ,
request s(2)1 is yellow and request s2 is violet . The requests of Lemma 5.6 are gray .

=
1

Θ

(︃
3Θ + 3

Θ− 1
− Θ+ 1 + ε′Θ

Θ− 1

)︃
ε < Θ+1

Θ
<

1

Θ

(︃
3Θ + 3

Θ− 1
− 2Θ

Θ− 1
ε′
)︃

Θ > 1
<

3Θ + 3

Θ− 1
− 2Θ

Θ− 1
ε′

= v2 (5.24)

holds. Because of the inequalities (5.23), (5.24) starting time of the schedule S2 is the
ending time of the schedule S1, i.e.,

t2 = max{v2, w2} = v2 =
3Θ+ 3

Θ− 1
− 2Θ

Θ− 1
ε′.

To sum it up, we have

Smartstart(σSm
2 ) = t2 + L(t2, p2, (s2))

= max

{︃
3Θ2 + 5Θ+ 4

Θ2 −Θ
,
5Θ2 + 3Θ− 2

Θ2 −Θ

}︃
− 3Θ− 1

Θ− 1
ε′.

Equipped with the Lemmas 5.13 and 5.14, we can compute lower bounds for the com-
petitive ratio of Smartstart for online Dial-a-Ride for Θ ∈ [74 , 4]. We start with the
subinterval [74 ,

1
2(1 +

√
13)].
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Proposition 5.15. Let 7
4 ≤ Θ ≤ 1

2(1 +
√
13). For every sufficiently small ε > 0, we have

Smartstart(σSm
2 )

Opt(σSm
2 )

=
3Θ2 + 5Θ+ 4

3Θ + 3
− ε = f

up
2 (Θ)− ε

and Smartstart does not postpone the final schedule, i.e., the upper bound established in
Proposition 5.3 is tight for Θ ∈ [74 ,

1
2(1 +

√
13)] ≈ [2, 2.303].

Proof. Let ε > 0 with ε < 3
14

(︂
3Θ2−Θ
3Θ+3

)︂
and ε′ = 3Θ+3

3Θ2−Θ
ε < 3

14 . By Lemma 5.14, we have

Smartstart(σSm
2 )

Lem 5.14
= max

{︃
3Θ2 + 5Θ+ 4

Θ2 −Θ
,
5Θ2 + 3Θ− 2

Θ2 −Θ

}︃
− 3Θ− 1

Θ− 1
ε′

Θ ≤ 1
2
(1 +

√
13)

=
3Θ2 + 5Θ+ 4

Θ2 −Θ
− 3Θ− 1

Θ− 1
ε′.

Lemma 5.13 implies

Opt(σSm
2 ) = max

{︃
3Θ + 3

Θ2 −Θ
,
2Θ + 3

Θ

}︃
Θ≤ 1

2
(1+

√
13)

=
3Θ+ 3

Θ2 −Θ
.

Since we have ε′ = 3Θ+3
3Θ2−Θ

ε, we finally obtain

Smartstart(σSm
2 )

Opt(σSm
2 )

=
3Θ2 + 5Θ+ 4

3Θ + 3
− 3Θ2 −Θ

3Θ+ 3
ε′ =

3Θ2 + 5Θ+ 4

3Θ + 3
− ε = f

up
2 (Θ)− ε.

Next, we examine the subinterval (12(1 +
√
13), 4].

Lemma 5.16. Let 1
2(1 +

√
13) < Θ ≤ 4. For every sufficiently small ε > 0, we have

Smartstart(σSm
2 )

Opt(σSm
2 )

=
5Θ2 + 3Θ− 2

2Θ2 +Θ− 3
− ε =: f low

2 (Θ)− ε.

In particular, we have
Smartstart(σSm

2 )

Opt(σSm
2 )

> ρD,RSm ≈ 2.93768

for Θ ∈ (12(1 +
√
13,
√
7] ≈ (2.303, 2.646].
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Figure 5.6: Smartstart’s and Opt’s walk serving σSm
2 with ε′ = 0.25 and Θ = 2.5. Request s(1)1 is red ,

request s(2)1 is yellow and request s2 is violet . The requests of Lemma 5.6 are gray .

Proof. Let ε > 0 with ε < min{ 3
14(

3Θ2−Θ
3Θ+3 ), 1

20} and ε′ = 3Θ+3
3Θ2−Θ

ε < 3
14 . By Lemma 5.14,

we have

Smartstart(σSm
2 )

Lem 5.14
= max

{︃
3Θ2 + 5Θ+ 4

Θ2 −Θ
,
5Θ2 + 3Θ− 2

Θ2 −Θ

}︃
− 3Θ− 1

Θ− 1
ε′

Θ > 1
2
(1 +

√
13)

=
5Θ2 + 3Θ− 2

Θ2 −Θ
− 3Θ− 1

Θ− 1
ε′.

Lemma 5.13 implies

Opt(σSm
2 ) = max

{︃
3Θ + 3

Θ2 −Θ
,
2Θ + 3

Θ

}︃
Θ> 1

2
(1+

√
13)

=
2Θ+ 3

Θ
.

An illustration of Opt’s walk is presented in blue in Figure 5.6. Since we have ε′ = 3Θ+3
3Θ2−Θ

ε,
we finally obtain

Smartstart(σSm
2 )

Opt(σSm
2 )

=
5Θ2 + 3Θ− 2

2Θ2 +Θ− 3
− 3Θ2 −Θ

2Θ2 +Θ− 3
ε′

=
5Θ2 + 3Θ− 2

2Θ2 +Θ− 3
− ε

= f low
2 (Θ)− ε,

as claimed. The function f low
2 is monotonically decreasing on (12(1+

√
13),
√
7]. Therefore,

we have
Smartstart(σSm

2 )

Opt(σSm
2 )

≥ f low
2 (
√
7)− ε = 3− ε′ > ρD,RSm ≈ 2.93768
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Figure 5.7: Functions fup
1 (green) / fup

2 (red): upper bounds for the competitive ratio for the postponing
/ non-postponing case, drawn solid if tight. Functions: f low

1 , f low
2 (blue): lower bounds for the

competitive ratio. Green / red area: possible values for the competitive ratio, bounded by fup
1 / fup

2

and f low
1 , f low

2 .

for all (12(1 +
√
13),
√
7] and ε < 1

20 .

Figure 5.7 is a visualization of the upper bound for the competitive ratio of online Dial-a-
Ride on the line presented in Theorem 5.5 together with the lower bounds of Proposi-
tions 5.11 and 5.15 as well as Lemmas 5.10 and 5.16.

Recall that the optimal parameter ΘD,R
Sm established in Theorem 5.5 is the only positive,

real solution of the equation

2Θ2 + 2Θ

Θ2 +Θ− 2
=

3Θ2 + 5Θ+ 4

3Θ + 3
,

which isΘD,R
Sm ≈ 2.0526. Therefore, by Proposition 5.11 and Proposition 5.15 the parameter

ΘD,R
Sm lies in the interval where the upper bounds of Propositions 5.3 and 5.4 are both

tight. Moreover, by Propositions 5.11 and 5.15 and by Lemmas 5.10 and 5.16 there is no
scaling parameter Θ ∈ (1,

√
7] \ {ΘD,R

Sm } that yields an equal or better competitive ratio
than ΘD,R

Sm does. Thus, it remains to make sure that there is no Θ >
√
7 that yields an

equal or better competitive ratio than ρD,RSm ≈ 2.93768. To show this, we analyze two more
request sequences σSm

3 and σSm
4 . We start with σSm

3 .

Definition 5.17. Let ε′ > 0 with ε′ < max{2Θ−2
Θ , 1

Θ}. We define

σSm
3 := (σlure

1,ε′/2, s
(1)
1 , s

(2)
1 , s2),
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where σlure
1,ε′/2 is a subsequence of requests resulting from the application of Lemma 5.6

with p = 1 and µ = ε′

2 and

s
(1)
1 =

(︃
1

Θ
+

ε′

2
, 1;

1

Θ
+ ε′

)︃
,

s
(2)
1 =

(︃
− 1

Θ
+ ε′,− 1

Θ
+ ε′;

1

Θ
+ ε′

)︃
,

s2 =

(︃
1, 1;

3Θ− 1

Θ(Θ− 1)

)︃
.

Note that the requests s(1)1 , s(2)1 and s2 requests appear after time 1
Θ + ε′

2 and therefore do
not interfere with the application of Lemma 5.6. Furthermore, ε′ < 2Θ−2

Θ implies a(1)1 < 1

and ε′ < 1
Θ implies a(2)1 < 0, i.e., the position of request s(1)1 is on the left side of position 1

and the position of request s(2)1 is on the left side of the origin. We begin our analysis
of σSm

3 with the computation of Opt(σSm
3 ).

Lemma 5.18. Let Θ ≥ 1 +
√
2. Then, we have

Opt(σSm
3 ) =

Θ + 2

Θ
.

Proof. Opt waits at the origin until time 2ε′ and then performs the walk

0→ − 1

Θ
+ ε′ → 1.

Opt’s walk is presented in blue in Figure 5.8 for Θ = 2.75. We show that all requests are
served this way: Opt collects s(1)1 at time 1

Θ + ε′ and returns to the origin at time 2
Θ . Let

q > 0 be the position of a request that has occurred by the application of Lemma 5.6.
Then this request is released earlier than time q + ε′

2 . Opt reaches position q not earlier
than time 2

Θ . We have ε′ < 1
Θ , which implies 2

Θ + q > q + ε′

2 and Opt can go straight
from position − 1

Θ + ε to position 1 collecting and delivering all requests that occur by the
application of Lemma 5.6 as well as s(2)1 . Note that Opt can also collect s2 at arrival at
position 1 at time 1 + 2

Θ since we have

1 +
2

Θ

Θ≥1+
√
2

≥ 3Θ− 1

Θ(Θ− 1)
.

Therefore, we have

Opt(σSm
3 ) = 2ε′ +D

(︃
0→ − 1

Θ
+ ε′ → 1

)︃
=

Θ+ 2

Θ
.
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Note that Opt can do this even if capacity c = 1 holds since no additional requests need to
be carried over [0, 1

Θ ]∪{1}, where the requests of the application of Lemma 5.6 appear.

Next, we examine Smartstart’s completion time.

Lemma 5.19. Let Θ ∈ [1 +
√
2, 3) and ε′ < 2

9 . Then, we have

Smartstart(σSm
3 ) =

4Θ2 −Θ− 1

Θ2 −Θ
− 3Θ− 1

Θ− 1
ε′.

Proof. Smartstart’s walk is presented in green in Figure 5.8 for Θ = 2.75. Smartstart
reaches position p1 = 1 at time v1 = 1 + ε′

2 . The shortest schedule serving s
(2)
1 before

delivering s
(1)
1 has length

D

(︃
1→ − 1

Θ
+ ε′ → 1

)︃
= 2 +

2

Θ
− 2ε′.

On the other hand, the shortest schedule that serves s(2)1 after delivering s
(1)
1 has length

D

(︃
1→ 1

Θ
+

ε′

2
→ 1→ − 1

Θ
+ ε′

)︃
= 3− 1

Θ
− 2ε′.

By assumption, we have Θ < 3, which implies 3 − 1
Θ − 2ε′ < 2 + 2

Θ − 2ε′. Therefore
Smartstart serves s(2)1 after delivering s

(1)
1 and for all t ≥ v1 we have

L(t, p1, (s
(1)
1 , s

(2)
1 )) = 3− 1

Θ
− 2ε′.

Again, by assumption, we have Θ < 3 and ε′ < 2
9 , which implies that for the time

v1 = 1 + ε′

2 , when Smartstart reaches position p1 = 1 the inequality

w1 =
3Θ− 1

Θ(Θ− 1)
− 2ε′

Θ− 1

Θ<3
>

4

3
− ε′

ε′< 2
9

> 1 +
ε′

2
= v1 (5.25)

holds. Thus, Smartstart has a waiting period and starts schedule S1 at time

t1 = max{v1, w1}
(5.25)
= w1 =

3Θ− 1

Θ(Θ− 1)
− 2ε′

Θ− 1

before request s3 is released. Smartstart finishes schedule S1 at time

v2 = t1 + L(t1, p1, (s
(1)
1 , s

(2)
1 )) =

3Θ− 1

Θ− 1
− 2Θ

Θ− 1
ε′.
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0

pos

time

Smartstart
Opt

Opt(σSm
3 ) Smartstart(σSm

3 )

1

1
Θ + ε′

2

− 1
Θ + ε′

Figure 5.8: Smartstart’s and Opt’s walk serving σSm
3 with ε′ = 0.2 and Θ = 2.75. Request s(1)1 is red ,

request s(2)1 is yellow and request s2 is violet . The requests of Lemma 5.6 are gray .

at position p2 = − 1
Θ + ε′. For all t ≥ v2, we have

L(t, p2, (s2)) = D

(︃
− 1

Θ
+ ε′ → 1

)︃
= 1 +

1

Θ
− ε′.

By assumption, we have Θ ≥ 1 +
√
2 and ε′ < 2

9 < 3Θ2−2Θ−1
Θ . For the finishing time v2 of

schedule S1 the inequality

w2 =
1 + 1

Θ

Θ− 1
− ε′

Θ− 1

=
1 + 1

Θ

Θ− 1
+

(2Θ− 1)ε′

Θ− 1
− 2Θε′

Θ− 1

ε′ < 3Θ2−2Θ−1
Θ

<
3Θ− 1

Θ− 1
− 2ε′Θ

Θ− 1

= v2. (5.26)

holds. Therefore the final schedule S2 is started at time

t2 = max{v2, w2}
(5.26)
= v2 =

3Θ− 1

Θ− 1
− 2ε′Θ

Θ− 1
.

To sum it up, we have

Smartstart(σSm
3 ) = t2 + L(t2, p2, (s2)) =

4Θ2 −Θ− 1

Θ2 −Θ
− 3Θ− 1

Θ− 1
ε′.

Equipped with the Lemmas 5.18 and 5.19, we can compute lower bounds for the competi-
tive ratio of Smartstart for online Dial-a-Ride for Θ ∈ [1 +

√
2, 3).
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Lemma 5.20. Let 1 +
√
2 ≤ Θ < 3. For every sufficiently small ε > 0, we have

Smartstart(σSm
3 )

Opt(σSm
3 )

=
4Θ2 −Θ− 1

Θ2 +Θ− 2
− ε =: f low

3 (Θ)− ε.

In particular, we have
Smartstart(σSm

3 )

Opt(σSm
3 )

> ρD,RSm ≈ 2.93768

for Θ ∈ [1 +
√
2, 3) ≈ [2.414, 3).

Proof. Let ε > 0 with ε < min{29(
3Θ2−Θ
Θ2+Θ−2

), 1
20} and ε′ = Θ2+Θ−2

3Θ2−Θ
ε < 2

9 . By Lemma 5.19
we have

Smartstart(σSm
3 ) =

4Θ2 −Θ− 1

Θ2 −Θ
− 3Θ− 1

Θ− 1
ε′.

By Lemma 5.18 we have

Opt(σSm
3 ) =

Θ + 2

Θ
.

We have

Smartstart(σSm
3 )

Opt(σSm
3 )

=
4Θ2 −Θ− 1

Θ2 +Θ− 2
− 3Θ2 −Θ

Θ2 +Θ− 2
ε′

=
4Θ2 −Θ− 1

Θ2 +Θ− 2
− ε

= f low
3 (Θ)− ε

as claimed. The function f low
3 has exactly one local minimum in the interval [1 +

√
2, 3) at

Θ = 7
5 +

√
34
5 . Therefore, we have

Smartstart(σSm
3 )

Opt(σSm
3 )

≥ f low
3

(︄
7

5
+

√
34

5

)︄
− ε > 3− ε > ρD,RSm ≈ 2.9377

for all [1 +
√
2, 3) and ε < 1

20 .

Last, but not least, we examine request sequence σSm
4 .

Definition 5.21. Let ε′ > 0 with ε′ < Θ−1
2Θ . We define

σSm
4 := (σlure

1−ε′,ε′/2, s
(1)
1 , s

(2)
1 , s2),
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where σlure
1−ε′,ε′/2 is a request sequence resulting from the application of Lemma 5.6 with

p = 1− ε′ and µ = ε′

2 and

s
(1)
1 =

(︃
Θ+ 1

2Θ
, 1− ε′;

1

Θ
+ ε′

)︃
,

s
(2)
1 =

(︃
1

Θ
,
1

Θ
;
1

Θ
+ ε′

)︃
,

s2 =
(︁
1− ε′, 1− ε′; 1

)︁
.

Note that the requests s(1)1 , s(2)1 and s2 appear after time 1−ε′

Θ + ε′

2 and therefore do not
interfere with the application of Lemma 5.6. Furthermore, note that we have a

(1)
1 =

Θ+1
2Θ > 1

Θ and that ε′ < Θ−1
2Θ implies a(1)1 < 1− ε′, i.e., the carrying path of s(1)1 and the

area, where Lemma 5.6 is applied are disjoint and the starting position of request s(1)1 is
on the left side of position 1− ε′. We begin our analysis of σSm

4 with the computation of
Opt(σSm

4 ).

Lemma 5.22. We have
Opt(σSm

4 ) = 1.

Proof. Opt waits at the origin until time ε′ and then performs the walk

0→ 1− ε′.

Opt’s walk is presented in blue in Figure 5.9 for Θ = 3.25. We show that all requests are
served this way: Let q be the position of a request that has occurred by the application of
Lemma 5.6. Then this requests is released earlier than time q + ε′

2 . Since Opt reaches
position q not earlier than time q + ε′ > q + ε′

2 , Opt can go straight from the origin
to position 1 − ε′ collecting and delivering all requests that occur by the application of
Lemma 5.6 as well as, s(1)1 , s(2)1 and s2. Note that s(1)1 can be served on the way since

a
(1)
1 =

Θ+ 1

2Θ
>

1

Θ
= r

(1)
1 − ε′.

Therefore, we have
Opt(σSm

4 ) = ε′ +D
(︁
0→ 1 + ε′

)︁
= 1.

Note that Opt can do this even if capacity c = 1 holds since no transportation requests
need to be carried over [0, 1−ε′

Θ ]∪ {1}, where the requests of the application of Lemma 5.6
appear.
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Lemma 5.23. Let Θ ∈ [3,∞). Then, we have

Smartstart(σSm
4 ) =

4Θ− 3

Θ
− 9

2
ε′.

Proof. Smartstart’s walk is presented in green in Figure 5.9 for Θ = 3.25. Algorithm
Smartstart reaches position p1 = 1−ε′ at time v1 = 1− ε′

2 . The shortest schedule serving
s
(2)
1 before delivering s

(1)
1 has length

D

(︃
1− ε′ → 1

Θ
→ 1− ε′

)︃
= 2− 2

Θ
− 2ε′.

The shortest schedule that serves s(2)1 after delivering s
(1)
1 has length

D

(︃
1− ε′ → Θ+ 1

2Θ
→ 1− ε′ → 1

Θ

)︃
= 2− 2

Θ
− 3ε′.

Therefore Smartstart serves s(2)1 after delivering s
(1)
1 and for all t ≥ v1 we have

L(t, p1, (s
(1)
1 , s

(2)
1 )) = 2− 2

Θ
− 3ε′.

By assumption, we have Θ ≥ 3, which implies that for the finishing time v1 = 1− ε′

2 of
schedule S1 the inequality

w1 =
2Θ− 2

Θ(Θ− 1)
− 3ε′

Θ− 1

Θ≥3
≤ 2

3
− 3

2
ε′ < 1− ε′

2
= v1

holds. Thus, the schedule S1 is started immediately after the application of Lemma 5.6 at
time

t1 = max{v1, w1} = v1 = 1− ε′

2
.

Smartstart finishes schedule S1 at time

v2 = t1 + L(t1, p1, (s
(1)
1 , s

(2)
1 )) =

3Θ− 2

Θ
− 7

2
ε′

at position p2 =
1
Θ . For all t ≥ v2, we have

L(t, p2, (s2)) = D

(︃
1

Θ
→ 1− ε′

)︃
= 1− 1

Θ
− ε′.
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0

pos

time

Smartstart
Opt

Opt(σSm
4 ) Smartstart(σSm

4 )

1− ε′

Θ+1
2Θ

1
Θ

Figure 5.9: Smartstart’s and Opt’s walk serving σSm
4 with ε′ = 0.2 and Θ = 3.25. Request s(1)1 is red ,

request s(2)1 is yellow and request s2 is violet . The requests of Lemma 5.6 are gray .

By assumption, we have Θ ≥ 3, which implies ε′ < Θ−1
2Θ < 6(Θ−1)2

7Θ2−9Θ
. For the finishing time

v2 =
3Θ−2
Θ − 7

2ε
′ of schedule S1 the inequality

w2 =
1− 1

Θ − ε′

Θ− 1

=
1

Θ
− 7

2
ε′ +

7Θ− 9

2Θ− 1
ε′

ε′ < 6(Θ−1)2

7Θ2−9Θ

<
3Θ− 2

Θ
− 7

2
ε′

= v2.

holds. Therefore the final schedule S2 is started at time

t2 = max{v2, w2} = v2 =
3Θ− 2

Θ
− 7

2
ε′.

To sum it up, we have

Smartstart(σSm
4 ) = t2 + L(t2, p2, (s2)) =

4Θ− 3

Θ
− 9

2
ε′.

Equipped with the Lemmas 5.22 and 5.23, we can compute lower bounds for the competi-
tive ratio of Smartstart for online Dial-a-Ride for Θ ∈ [3,∞).

Lemma 5.24. Let Θ ≥ 3. For every sufficiently small ε > 0, we have

Smartstart(σSm
4 )

Opt(σSm
4 )

=
4Θ− 3

Θ
− ε =: f low

4 (Θ)− ε.
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In particular, we have
Smartstart(σSm

4 )

Opt(σSm
4 )

> ρD,RSm ≈ 2.93768

for Θ ∈ [3,∞).

Proof. Let ε > 0 with ε < min{92
(︁
Θ−1
2Θ

)︁
, 1
20} and ε′ = 2

9ε <
Θ−1
2Θ . By Lemma 5.23, we have

Smartstart(σSm
4 ) =

4Θ− 3

Θ
− 9

2
ε′.

By Lemma 5.22, we have
Opt(σSm

4 ) = 1.

We have

Smartstart(σSm
4 )

Opt(σSm
4 )

=
4Θ− 3

Θ
− 9

2
ε′ =

4Θ− 3

Θ
− ε = f low

4 (Θ)− ε.

as claimed. The function f low
4 monotonically increasing on the interval [3,∞). Therefore,

we have
Smartstart(σSm

4 )

Opt(σSm
4 )

≥ f low
4 (3)− ε = 3− ε′ > ρD,RSm ≈ 2.93768

for all [3,∞) and ε < 1
20 .

We combine all lower bounds constructed in this section into one general lower bound.
See Figure 5.10 for an illustration of all upper and lower bounds for the competitive ratio
of online Dial-a-Ride on the line.

Theorem 5.25. Let FDaR : R>1 → R>1 be a function with

FDaR(Θ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f low
1 (Θ), for Θ ∈ (1, 2],

f
up
1 (Θ), for Θ ∈ (2,ΘD,R

Sm ],

f
up
2 (Θ), for Θ ∈ (ΘD,R

Sm , 12(1 +
√
13)],

f low
2 (Θ), for Θ ∈ (12(1 +

√
13), 1 +

√
2),

f low
3 (Θ), for Θ ∈ [1 +

√
2, 3),

f low
4 (Θ), for Θ ∈ [3,∞).

Then FDaR is general lower bound for the competitive ratio of Smartstart for open online
Dial-a-Ride on the line. The unique minimum of FDaR lies in Θ = ΘD,R

Sm ≈ 2.0526 and yields
a lower bound of

FDaR(Θ
D,R
Sm ) = ρD,RSm ≈ 2.9377
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Figure 5.10: Functions fup
1 (green) / fup

2 (red): upper bounds for competitive ratio for postponing / non-
postponing case, drawn solid if tight. Functions: f low

1 to f low
4 (blue): lower bounds for competitive

ratio. Green / red area: possible values for the competitive ratio, bounded by fup
1 / fup

2 and f low
1

to f low
4 .

Proof. We have shown in Proposition 5.11 that fup
1 (Θ) with Θ ∈ (2,ΘD,R

Sm ] is a lower
bound for the competitive ratio of Smartstart for online Dial-a-Ride on the line and in
Proposition 5.15 that fup

2 (Θ) with Θ ∈ (ΘD,R
Sm , 12(1 +

√
13)] is a lower bound. Theorem 5.5

implies that FDaR has unique minimum in the interval (2, 12(1 +
√
13)] at Θ = ΘD,R

Sm . It
remains to show that FDaR(Θ) > FDaR(Θ

D,R
Sm ) for all Θ ∈ (1, 2] ∪ [12(1 +

√
13),∞). This

immediately follows from Lemmas 5.10, 5.16, 5.20 and 5.24.

The main theorem of this section follows by combining Theorem 5.5 and Theorem 5.25.

Theorem 5.26. The competitive ratio of Smartstart for open online Dial-a-Ride on the
line with scaling parameter ΘD,R

Sm ≈ 2.0526 is exactly

ρD,RSm = f
up
1 (ΘD,R

Sm ) = f
up
2 (ΘD,R

Sm ) ≈ 2.9377.

For every other Θ > 1 with Θ ̸= ΘD,R
Sm the competitive ratio of Smartstart is strictly larger

than ρD,RSm .

5.3 Bounds for Open Online TSP on the Line

After we have thoroughly analyzed Smartstart for online Dial-a-Ride on the line, we
now examine the algorithm for online TSP on the line. First we notice, that, since
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online TSP is a special case of online Dial-a-Ride, all upper bounds, i.e., the bounds
provided by Proposition 5.3 and Proposition 5.4 for the competitive ratio of Smartstart
for online Dial-a-Ride on the line are also valid for online TSP on the line. However, of the
lower bounds, only the bounds obtained by the request sequences without transportation
requests are valid for online TSP. To be more precise, only the bounds given by the request
sequence σSm

2 are valid, while the bounds given by σSm
1 , σSm

3 and σSm
4 are not. Therefore,

we have a lower bound of fup
2 (Θ) for Θ ∈ [74 ,

1
2(1 +

√
13)] that tightly matches the upper

bound provided by Proposition 5.4 for the case that the final schedule is not postponed
and a lower bound of f low

2 (Θ) for Θ ∈ (12(1 +
√
13), 4]. We will see that the upper bound

given in Proposition 5.3 for the case that the final schedule is postponed is not tight for
online TSP. The reason for this is that online TSP allows a smaller bound for the length of
a schedule.

Lemma 5.27. For every schedule Sj of Smartstart for online TSP, we have

L(tj , pj , σj) ≤
(︃
1 +

Θ

2Θ + 3

)︃
Opt(σ).

Proof. By Lemma 4.6 and Lemma 5.1, we have

L(tj , pj , σj)
Lem 4.6
≤ min

{︃
Opt(σ) + d(pj , 0),

3

2
(Opt(σ)− tj−1)

}︃
Lem 5.1
≤ min

{︃
Opt(σ) + d(pj , 0),

3

2

(︃
Opt(σ)− 1

Θ
d(pj , 0)

)︃}︃
≤

(︃
1 +

Θ

2Θ + 3

)︃
Opt(σ)

since the minimum above is largest if the two terms are equal, which is the case for
d(pj , 0) =

Θ
2Θ+3Opt(σ).

With the result of Lemma 5.27 we can improve the upper bound of Proposition 5.3.

Proposition 5.28. In the case that Smartstart for online TSP postpones executing SN , we
have

Smartstart(σ)
Opt(σ)

≤ 3Θ2 + 3Θ

2Θ2 +Θ− 3
=: f

up
1,TSP(Θ).

Proof. Assume Smartstart postpones the final schedule. Then we have

Smartstart(σ)
(4.1)
= tN + L(tN , pN , σN )

(5.2)
=

Θ

Θ− 1
L(tN , pN , σN ). (5.27)
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Figure 5.11: Functions fup
1,TSP (green) / fup

2 (red): upper bounds for competitive ratio for postponing / non-
postponing case, drawn solid if tight. Function: f low

2 (blue): lower bound for competitive ratio.
Green / red area: possible values for the competitive ratio, bounded by fup

1,TSP / fup
2 and f low

2 .

Lemma 5.27 thus yields the claimed bound:

Smartstart(σ) (5.27)
=

Θ

Θ− 1
L(tN , pN , σN )

Lem 5.27
≤ Θ

Θ− 1

(︃
1 +

Θ

2Θ + 3

)︃
Opt(σ)

=
3Θ2 + 3Θ

2Θ2 +Θ− 3
Opt(σ).

We combine the results of Proposition 5.28 and Proposition 5.4 to obtain a general upper
bound for the competitive ratio of Smartstart for online Dial-a-Ride on the line.

Theorem 5.29. The function max{fup
1,TSP, f

up
2 } gives an upper bound for the competitive

ratio of Smartstart for open online TSP on the line for all Θ > 1. Let ΘT,R
Sm ≈ 1.8607 be the

unique solution of the equation f
up
1,TSP(Θ) = f

up
2 (Θ), i.e., of

3Θ2 + 3Θ

2Θ2 +Θ− 3
=

3Θ2 + 5Θ+ 4

3Θ + 3
,

in the interval (1,∞). Then, ΘT,R
Sm is the unique minimum of the function max{fup

1,TSP, f
up
2 }

and Smartstart with scaling parameter ΘT,R
Sm is ρT,RSm -competitive with

ρT,RSm = f
up
1,TSP(Θ

T,R
Sm ) = f

up
2 (ΘT,R

Sm ) ≈ 2.7604.
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Proof. For the case where Smartstart postpones the final schedule, we have established
the upper bound

Smartstart(σ)
Opt(σ)

≤ 3Θ2 + 3Θ

2Θ2 +Θ− 3
= f

up
1,TSP(Θ)

in Proposition 5.28 and for the case where Smartstart does not postpone final schedule,
we have established the upper bound

Smartstart(σ)
Opt(σ)

≤ 3Θ2 + 5Θ+ 4

3Θ + 3
= f

up
2 (Θ)

in Proposition 5.4. Thus, the maximum of both bounds is a general upper bound for the
competitive ratio of Smartstart for open online TSP on the line that is independent of
Smartstart’s behavior before the final schedule.
Function f

up
1,TSP is strictly decreasing for Θ > 1 and function f

up
2 is strictly increasing

for Θ > 1. Therefore the minimum of max{fup
1,TSP, f

up
2 } in the interval (1,∞) lies in the

intersection point of fup
1,TSP and f

up
2 , i.e., in ΘT,R

Sm ≈ 1.8607. The resulting upper bound for
the competitive ratio is

ρT,RSm = f
up
1,TSP(Θ

T,R
Sm ) = f

up
2 (ΘT,R

Sm ) ≈ 2.7604.

See Figure 5.11 for a visualization of the upper bound for the competitive ratio of online
Dial-a-Ride on the line presented in Theorem 5.5 together with the lower bound f low

2 (Θ).
In the following we will present two request sequences σSm

5 and σSm
6 . We will see that the

ratio of Smartstart’s and Opt’s completion time of σSm
5 tightly matches the upper bound

of Proposition 5.28 for Θ ∈ (1, 4). The request sequence σSm
6 will provide an additional

lower bound for the competitive ratio of Smartstart for open online TSP on the line for
larger values of Θ. But first, we take another look at the request sequence σSm

2 . Since the
upper bound for the competitive ratio ρT,RSm of Smartstart for the TSP version is slightly
lower than the competitive ratio ρD,RSm of the Dial-a-Ride version, the lower bound f low

2 (Θ)
provided by the request sequence σSm

2 is useful for a slightly larger interval in the TSP
version than in the Dial-a-Ride version.

Lemma 5.30. We have

Smartstart(σSm
2 )

Opt(σSm
2 )

> ρT,RSm ≈ 2.7604

for Θ ∈ (12(1 +
√
13, 72 ] ≈ (2.303, 3.5].

115



5 Algorithm SMARTSTART

Proof. According to Lemma 5.16, we have

Smartstart(σSm
2 )

Opt(σSm
2 )

=
5Θ2 + 3Θ− 2

2Θ2 +Θ− 3
− ε = f low

2 (Θ)− ε

for Θ ∈ (12(1 +
√
13), 4] and sufficiently small ε. Let ε < 1

50 . The function f low
2 is

monotonically decreasing on (12(1 +
√
13), 72 ]. Therefore, we have

Smartstart(σSm
2 )

Opt(σSm
2 )

≥ f low
2

(︃
7

2

)︃
− ε > 2.79− ε′ > ρT,RSm ≈ 2.7604

for all (12(1 +
√
13), 72 ] and ε < 1

50 .

We define the request sequence σSm
5 .

Definition 5.31. Let ε′ > 0 with ε′ < Θ+1
Θ . We define

σSm
5 := (σlure

1,ε′/2, s
(1)
1 , s

(2)
1 ),

where σlure
1,ε′/2 is a subsequence of requests resulting from the application of Lemma 5.6

with p = 1 and µ = ε′

2 and

s
(1)
1 =

(︃
2Θ + 1

Θ
− ε′;

1

Θ
+ ε′

)︃
,

s
(2)
1 =

(︃
− 1

Θ
;
1

Θ
+ ε′

)︃
.

Note that the requests s(1)1 and s
(2)
1 appear after time 1

Θ + ε′

2 and therefore do not interfere
with the application of Lemma 5.6. Furthermore, note that ε′ < Θ+1

Θ implies a(1)1 > 1, i.e.,
the position of s(1)1 is on the right side of position 1. We begin our analysis of σSm

5 with the
computation of Opt(σSm

5 ).

Lemma 5.32. We have
Opt(σSm

5 ) =
2Θ + 3

Θ
.

Proof. Opt waits at the origin until time ε′ and then performs the walk

0→ − 1

Θ
→ 2Θ + 1

Θ
− ε′.
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Opt’s walk is shown in blue in Figure 5.12 for Θ = ΘT,R
Sm . We show that all requests are

served this way: Opt collects s(2)1 at time 1
Θ + ε′ and returns to the origin at time 2

Θ + ε′.
Let q be the position of a request that has occurred by the application of Lemma 5.6. Then
this requests is released earlier than time q + ε′

2 . Since Opt reaches position q not earlier
than time q + 2

Θ + ε′ > q + ε′

2 , Opt can go straight from the origin to position 2Θ+1
Θ − ε′

serving all requests that occur by the application of Lemma 5.6 as well as s(1)1 . Therefore,
we have

Opt(σSm
5 ) = ε′ +D

(︃
0→ − 1

Θ
→ 2Θ + 1

Θ
− ε′

)︃
=

2Θ+ 3

Θ
.

Next, we compute Smartstart’s completion time.

Lemma 5.33. Let Θ ≤ 4 and ε′ < Θ−1
2Θ+6 . Then, we have

Smartstart(σSm
5 ) =

3Θ + 3

Θ− 1
− 2Θ

Θ− 1
ε′.

Proof. Smartstart’s walk is shown in green in Figure 5.12 for Θ = SMTL. Smartstart
reaches position p1 = 1 at time v1 = 1 + ε′

2 . The shortest schedule serving s
(2)
1 before

serving s
(1)
1 has length

D

(︃
1→ − 1

Θ
→ 2 +

1

Θ
− ε′

)︃
= 3 +

3

Θ
− ε′.

The shortest schedule that serves s(2)1 after serving s
(1)
1 has length

D

(︃
1→ 2 +

1

Θ
− ε′ → − 1

Θ

)︃
= 3 +

3

Θ
− 2ε′.

Thus, Smartstart serves s(2)1 after serving s
(1)
1 , and, for all t ≥ v1, we obtain

L
(︂
t, p1, (s

(1)
1 , s

(2)
1 )
)︂
= 3 +

3

Θ
− 2ε′.

By assumption, we have Θ ≤ 4 and ε′ < Θ−1
2Θ+6 , which implies that for the time v1 = 1+ ε′

2 ,
when Smartstart reaches position p1 = 1, the inequality

w1 =
3Θ+ 3

Θ(Θ− 1)
− 2

Θ− 1
ε′

Θ ≤ 4
≥ 5

4
− 2

Θ− 1
ε′
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0

pos

time

Smartstart
Opt

Opt(σSm
5 )

Smartstart(σSm
5 )

1

2Θ+1
Θ − ε′

− 1
Θ

Figure 5.12: Smartstart’s and Opt’s walk serving σSm
5 with ε′ = 0.25 and Θ = ΘT,R

Sm . Request s(1)1 is red
and request s(2)1 is yellow . The requests of Lemma 5.6 are gray .

=
5

4
− Θ+ 3

2Θ− 2
ε′ +

ε′

2
ε′ < Θ−1

2Θ+6

> 1 +
ε′

2
= v1 (5.28)

holds. Thus, Smartstart has a waiting period and starts schedule S1 at time

t1 = max{v1, w1}
(5.28)
= w1 =

3Θ+ 3

Θ(Θ− 1)
− 2

Θ− 1
ε′.

To sum it up, we have

Smartstart(σSm
5 ) = t1 + L(t1, p1, (s

(1)
1 , s

(2)
1 )) =

3Θ + 3

Θ− 1
− 2Θ

Θ− 1
ε′.

The following proposition shows that in the case Θ ∈ (1, 4] the ratio of Smartstart ’s and
Opt ’s completion time for the request sequence σSm

5 tightly matches the upper bound
provided by Proposition 5.28.

Proposition 5.34. Let 1 < Θ ≤ 4. For every sufficiently small ε > 0, we have

Smartstart(σSm
5 )

Opt(σSm
5 )

≥ 3Θ2 + 5Θ+ 4

3Θ + 3
− ε = f

up
1,TSP(Θ)− ε

and Smartstart postpones the final schedule, i.e., the upper bound established in Proposi-
tion 5.28 is tight for Θ ∈ (1, 4].
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5.3 Bounds for Open Online TSP on the Line

Proof. Let ε > 0 with ε < Θ−1
2Θ+6

(︂
2Θ2

2Θ2+Θ−3

)︂
and ε′ = 2Θ2+Θ−3

2Θ2 ε < Θ−1
2Θ+6 . Lemma 5.33

implies

Smartstart(σSm
5 ) =

3Θ + 3

Θ− 1
− 2Θ

Θ− 1
ε′.

By Lemma 5.32, we have

Opt(σSm
5 ) =

2Θ + 3

Θ
.

Since we have ε′ = 2Θ2+Θ−3
2Θ2 ε, we obtain

Smartstart(σSm
5 )

Opt(σSm
5 )

=
3Θ2 + 3Θ

2Θ2 +Θ− 3
− 2Θ2

2Θ2 +Θ− 3
ε′ =

3Θ2 + 3Θ

2Θ2 +Θ− 3
− ε = f

up
1,TSP(Θ)− ε.

Recall that the optimal parameter ΘT,R
Sm established in Theorem 5.29 is the only positive,

real solution of the equation

3Θ2 + 3Θ

2Θ2 +Θ− 3
=

3Θ2 + 5Θ+ 4

3Θ + 3
,

which isΘT,R
Sm ≈ 1.8607. Therefore, by Proposition 5.34 and Proposition 5.15 the parameter

ΘT,R
Sm lies in the interval where the upper bounds of Propositions 5.28 and 5.4 are both tight.

Moreover, by Propositions 5.34 and 5.15 and by Lemma 5.30, there is noΘ ∈ (1, 72 ]\{Θ
T,R
Sm }

that yields an equal or better competitive ratio than ΘT,R
Sm does. Therefore, it remains

to make sure that there is no Θ > 7
2 that yields an equal or better competitive ratio

than ρT,RSm ≈ 2.76037. For this we introduce the final request sequence σSm
6 . Figure 5.13

illustrates the upper and lower bounds for the compeititive ratio of Smartstart for online
TSP on the line including the result of Proposition 5.34.

Definition 5.35. Let Θ > 3 and ε′ > 0 with ε′ < min{1, 4
Θ}. We define

σSm
6 := (σlure

1,ε′/4, s
(1)
1 , s

(2)
1 , s

(1)
2 , s

(2)
2 , s3),

where σlure
1,ε′/4 is a subsequence of requests resulting from the application of Lemma 5.6

with p = 1 and µ = ε′

4 and

s
(1)
1 =

(︃
max

{︃
Θ+ 1

2
,
Θ2 − 2Θ + 2

Θ

}︃
;
1

Θ
+

ε′

2

)︃
,
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Figure 5.13: Functions fup
1,TSP (green) / fup

2 (red): upper bounds for competitive ratio for postponing / non-
postponing case, drawn solid if tight. Function: f low

2 (blue): lower bound for competitive ratio.
Green / red area: possible values for the competitive ratio, bounded by fup

1,TSP / fup
2 and f low

2 .

s
(2)
1 =

(︃
max

{︃
5−Θ

4
,
1

Θ

}︃
+

ε′

2
;
1

Θ
+

ε′

2

)︃
,

s
(1)
2 = (1; 1 + ε′)

s
(2)
2 =

(︃
max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
− Θ− 1

2
ε′; 1 + ε′

)︃
s3 =

(︃
max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
− ε′; Θ

)︃
Note that the requests s(1)1 , s(2)1 , s(1)2 , s(2)2 and s3 appear after time 1

Θ + ε′

4 and therefore
do not interfere with the application of Lemma 5.6. Furthermore, note that Θ > 3 implies
a3 > a

(2)
2 , i.e., the position of s3 is to the right of the position of s(2)2 and

ε′ < min

{︃
1,

4

Θ

}︃
< min

{︃
Θ− 1

2
,
2Θ− 2

Θ

}︃
implies

a
(2)
2 ≥ Θ− Θ− 1

2
ε′

ε′<min{1, 4
Θ
}

> a
(1)
1

Θ>3
> 1 = a

(1)
2

ε′<min{Θ−1
2

, 2Θ−2
Θ

}
> = a

(2)
1 > 0,

i.e., the position of s3 is to the right of the position of s(1)1 , which is to the right of the
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5.3 Bounds for Open Online TSP on the Line

position of s(1)2 position, which is to the right of the position of s(2)1 . Therefore, s3 is the
rightmost request. We begin our analysis of σSm

6 with the computation of Opt(σSm
6 ).

Lemma 5.36. We have

Opt(σSm
6 ) = max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
.

Proof. First we note that all position of the requests of σSm
6 are to the right of the origin

and to the left of a3. Opt waits at the origin until time ε′ and then performs the walk

0→ max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
− ε′.

Opt’s walk is presented in blue in Figure 5.14 for Θ = 3.75 and in blue in Figure 5.15
for Θ = 4.25. We show that all requests are served this way: We need to show that the
release time of every request is not more than ε′ larger than their position. This is clear for
s
(2)
1 and s

(1)
2 . Let q > 0 be the position of a request that has occurred by the application

of Lemma 5.6. Then this request is released earlier than time q + ε′

2 and Opt reaches
position q at time q + ε′. For s(1)1 , we have

a
(1)
1 = max

{︃
Θ+ 1

2
,
Θ2 − 2Θ + 2

Θ

}︃
Θ>3
>

1

Θ
= r

(1)
1 − ε′.

Because of Θ > 3, we have ε′ < 1 < max{2, Θ2−9Θ+16
Θ }. For s(2)2 , we obtain

a
(2)
2 = max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
− Θ− 1

2
ε′

ε′<max{2,Θ
2−9Θ+16

Θ
}

> 1 = r
(2)
2 − ε′.

It remains to examine the request s3. We have

a3 = max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
− ε′ ≥ Θ− ε′ = r3 − ε′,

which proves the claim. Thus, in total, we have

Opt(σSm
6 ) = ε′+D

(︃
0→ max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
− ε′

)︃
= max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
.

Next, we examine Smartstart’s completion time.
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Lemma 5.37. Let Θ ∈ (72 ,∞). Then, we have

Smartstart(σSm
6 ) = max

{︃
7Θ− 5

2
,
6Θ2 − 15Θ + 10

Θ

}︃
−
(︃
Θ− 11

4

)︃
ε′

Proof. Smartstart’s walk serving σSm
6 is presented in green in Figure 5.14 for Θ = 3.75

and in green in Figure 5.15 for Θ = 4.25. First, we note that

a
(1)
1 = max

{︃
Θ+ 1

2
,
Θ2 − 2Θ + 2

Θ

}︃
=

Θ+ 1

2

holds if and only if we have

a
(2)
1 −

ε′

2
= max

{︃
5−Θ

4
,
1

Θ

}︃
=

5−Θ

4

and if and only if

a
(2)
1 −

Θ− 1

2
ε′ = a3 − ε′ = max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
= Θ.

Smartstart reaches position p1 = 1 at time v1 = 1+ ε′

4 . The shortest schedule serving s
(2)
1

before serving s
(1)
1 has length

D

(︃
1→ max

{︃
5−Θ

4
,
1

Θ

}︃
+

ε′

2
→ max

{︃
Θ+ 1

2
,
Θ2 − 2Θ + 2

Θ

}︃)︃
= Θ− 1− ε′.

On the other hand, the shortest schedule that serves s(1)1 before serving s
(2)
1 has length

D

(︃
1→ max

{︃
Θ+ 1

2
,
Θ2 − 2Θ + 2

Θ

}︃
→ max

{︃
5−Θ

4
,
1

Θ

}︃
+

ε′

2

)︃
= max

{︃
5Θ− 5

4
,
2Θ2 − 5Θ + 3

Θ

}︃
− ε′

2

Θ > 7
2

> Θ− 1− ε′.

Therefore, Smartstart serves s(2)1 before serving s
(1)
1 and for all t ≥ v1, we have

L(t, p1, (s
(1)
1 , s

(2)
1 )) = Θ− 1− ε′
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and thus
w1 = 1− ε′

Θ− 1
< 1 +

ε′

4
= v1. (5.29)

Smartstart starts the schedule S1 at time

t1 = max{v1, w1}
(5.29)
= v1 = 1 +

ε′

4
,

i.e., directly after the arrival at position p1 = 1 and before s
(1)
2 and s

(2)
2 are released.

Smartstart reaches position p2 = max
{︂

Θ+1
2 , Θ

2−2Θ+2
Θ

}︂
at time v2 = Θ − 3

4ε
′. The

shortest schedule serving s
(1)
2 before serving s

(2)
2 has length

D

(︃
max

{︃
Θ+ 1

2
,
Θ2 − 2Θ + 2

Θ

}︃
→ 1→ max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
− Θ−1

2 ε′
)︃

= max

{︃
3Θ− 3

2
,
3Θ2 − 9Θ + 6

Θ

}︃
− (Θ− 1)ε′

2
.

On the other hand, the shortest schedule that serves s(2)2 before serving s
(1)
2 has length

D

(︃
max

{︃
Θ+ 1

2
,
Θ2 − 2Θ + 2

Θ

}︃
→ max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
− Θ− 1

2
ε′ → 1

)︃
= max

{︃
3Θ− 3

2
,
3Θ2 − 9Θ + 6

Θ

}︃
− (Θ− 1)ε′.

Therefore, Smartstart serves s(2)2 before serving s
(1)
2 and for all t ≥ v2, we have

L(t, p2, (s
(1)
2 , s

(2)
2 )) = max

{︃
3Θ− 3

2
,
3Θ2 − 9Θ + 6

Θ

}︃
− (Θ− 1)ε′.

For the time v2 = Θ− 3
4ε

′ when Smartstart reaches position p2 = max
{︂

Θ+1
2 , Θ

2−2Θ+2
Θ

}︂
,

the inequality

w2 = max

{︃
3

2
,
3Θ2 − 9Θ + 6

Θ2 −Θ

}︃
− ε′

Θ> 7
2

< Θ− 3

4
ε′ = v2 (5.30)

holds. Thus, Smartstart starts the schedule S2 directly after finishing schedule S1 at
time

t2 = max{v2, w2}
(5.30)
= v2 = Θ− 3

4
ε′,
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5 Algorithm SMARTSTART

which is before the final request s3 is released. Schedule S2 ends in position p3 = 1 at time

v3 = t2 + L(t2, p2, (s
(1)
2 , s

(2)
2 )) = max

{︃
5Θ− 3

2
,
4Θ2 − 9Θ + 6

Θ

}︃
−
(︃
Θ− 7

4

)︃
ε′.

It remains to serve request s3 starting from position p3 = 1. For all t ≥ v3, we have

L(t, p3, (s3)) = D

(︃
1→ max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
− ε′

)︃
= max

{︃
Θ− 1,

2Θ2 − 6Θ + 4

Θ

}︃
− ε′.

By assumption, we have Θ > 7
2 and thus ε′ < 1 < 12Θ3−36Θ2+40Θ−16

4Θ2−11Θ+3
. For the case

max
{︂
Θ− 1, 2Θ

2−6Θ+4
Θ

}︂
= Θ− 1, we get

w3 = 1− ε′

Θ− 1

= 1 +
4Θ2 − 11Θ + 3

4Θ− 4
ε′ −

(︃
Θ− 7

4

)︃
ε′

ε′ < 12Θ3−36Θ2+40Θ−16
4Θ2−11Θ+3

<
3Θ2 − 5Θ + 4

Θ
−
(︃
Θ− 7

4

)︃
ε′

< v3. (5.31)

Again by assumption, we have Θ > 7
2 and thus ε′ < 1 < 12Θ3−40Θ2+60Θ−32

4Θ2−11Θ+3
. For the case

max
{︂
Θ− 1, 2Θ

2−6Θ+4
Θ

}︂
= 2Θ2−6Θ+4

Θ , we get

w3 =
2Θ2 − 6Θ + 4

Θ
− ε′

Θ− 1

=
2Θ2 − 6Θ + 4

Θ
+

4Θ2 − 11Θ + 3

4Θ− 4
ε′ −

(︃
Θ− 7

4

)︃
ε′

ε′ < 12Θ3−40Θ2+60Θ−32
4Θ2−11Θ+3

<
3Θ2 − 5Θ + 4

Θ
−
(︃
Θ− 7

4

)︃
ε′

< v3. (5.32)

Because of the inequalities (5.31) and (5.32) Smartstart starts the schedule S3 directly
after finishing schedule S2 at time

t3 = max{v3, w3}
(5.31),(5.32)

= v3 = max

{︃
5Θ− 3

2
,
4Θ2 − 9Θ + 6

Θ

}︃
−
(︃
Θ− 7

4

)︃
ε′.
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0

pos

time

Smartstart
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Opt(σSm
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1

Θ+1
2

5−Θ
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Θ− ε′

Figure 5.14: Smartstart’s and Opt’s walk serving σSm
6 with ε′ = 0.5 and Θ = 3.75. Request s(1)1 is red ,

s
(2)
1 is yellow , s(1)2 is violet , s(2)2 is brown and s3 is orange . The requests of Lemma 5.6
are gray .

To sum it up, we have

Smartstart(σSm
6 ) = t3 + L(t3, p3, (s3))

= max

{︃
7Θ− 5

2
,
6Θ2 − 15Θ + 10

Θ

}︃
−
(︃
Θ− 11

4

)︃
ε′.

Equipped with the Lemmas 5.36 and 5.37, we can compute lower bounds for the compet-
itive ratio of Smartstart for online TSP for Θ ∈ (72 ,∞). We start with the subinterval
(72 , 4].

Lemma 5.38. Let 7
2 < Θ ≤ 4. For every sufficiently small ε > 0, we have

Smartstart(σSm
6 )

Opt(σSm
6 )

=
7Θ− 5

2Θ
− ε =: f low

6.1 (Θ)− ε.

In particular, we have
Smartstart(σSm

6 )

Opt(σSm
6 )

> ρT,RSm ≈ 2.7604

for Θ ∈ (72 , 4].
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Proof. Let ε > 0 with ε < min{4Θ−11
4Θ , 1

40} and ε′ = 4Θ
4Θ−11ε. By Lemma 5.37, we have

Smartstart(σSm
6 )

Lem 5.37
= max

{︃
7Θ− 5

2
,
6Θ2 − 15Θ + 10

Θ

}︃
−
(︃
Θ− 11

4

)︃
ε′

Θ ≤ 4
=

7Θ− 5

2
−
(︃
Θ− 11

4

)︃
ε′.

Since we have ε′ < 1, Lemma 5.36 implies

Opt(σSm
6 ) = max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
Θ≤4
= Θ.

Since we have ε′ = 4Θ
4Θ−11ε, we obtain

Smartstart(σSm
6 )

Opt(σSm
6 )

=
7Θ− 5

2Θ
− 4Θ− 11

4Θ
ε′ =

7Θ− 5

2Θ
− ε = f low

6.1 (Θ)− ε,

as claimed. The function f low
6.1 is strictly monotonically increasing on [72 , 4]. Therefore, we

have
Smartstart(σSm

6 )

Opt(σSm
6 )

− ε > f low
6.1

(︃
7

2

)︃
− ε > 2.7857− ε > ρT,RSm ≈ 2.7604

for all Θ ∈ (72 , 4] and ε < 1
40 .

Finally, we examine the subinterval (4,∞).

Lemma 5.39. Let Θ > 4. For every sufficiently small ε > 0, we have

Smartstart(σSm
6 )

Opt(σSm
6 )

=
6Θ2 − 15Θ + 10

2Θ2 − 5Θ + 4
− ε =: f low

6.2 (Θ)− ε.

In particular, we have
Smartstart(σSm

6 )

Opt(σSm
6 )

> ρT,RSm ≈ 2.76037

for Θ ∈ (4,∞).

Proof. Let ε > 0 with ε < min{ 4Θ2−11Θ
8Θ2−20Θ+16

, 1
20} and ε′ = 8Θ2−20Θ+16

4Θ2−11Θ
ε. By Lemma 5.37,

we have

Smartstart(σSm
6 )

Lem 5.37
= max

{︃
7Θ− 5

2
,
6Θ2 − 15Θ + 10

Θ

}︃
−
(︃
Θ− 11

4

)︃
ε′
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Figure 5.15: Smartstart’s and Opt’s walk serving σSm
6 with ε′ = 0.5 and Θ = 4.25. Request s(1)1 is red ,

s
(2)
1 is yellow , s(1)2 is violet , s(2)2 is brown and s3 is orange . The requests of Lemma 5.6
are gray .

Θ > 4
=

6Θ2 − 15Θ + 10

Θ
−
(︃
Θ− 11

4

)︃
ε′.

Since we have ε′ < 1, Lemma 5.36 implies

Opt(σSm
6 ) = max

{︃
Θ,

2Θ2 − 5Θ + 4

Θ

}︃
Θ>4
=

2Θ2 − 5Θ + 4

Θ
.

Since we have ε′ = 8Θ2−20Θ+16
4Θ2−11Θ

ε, we obtain

Smartstart(σSm
6 )

Opt(σSm
6 )

=
6Θ2 − 15Θ + 10

2Θ2 − 5Θ + 4
− 4Θ2 − 11Θ

8Θ2 − 20Θ + 16
ε′

=
6Θ2 − 15Θ + 10

2Θ2 − 5Θ + 4
− ε

= f low
6.2 (Θ)− ε,

as claimed. The function f low
6.2 is strictly monotonically increasing on [4,∞). Therefore, we

have
Smartstart(σSm

6 )

Opt(σSm
6 )

− ε > f low
6.2 (4)− ε =

23

8
− ε > ρT,RSm ≈ 2.7604

for all Θ ∈ (4,∞) and ε < 1
20 .
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Figure 5.16: Functions fup
1,TSP (green) / fup

2 (red): upper bounds for competitive ratio for postponing /
non-postponing case, drawn solid if tight. Functions: f low

2 , f low
6.1 , f low

6.2 (blue): lower bound for
competitive ratio. Green / red area: possible values for the competitive ratio, bounded by fup

1,TSP

/ fup
2 and f low

2 , f low
6.1 , f low

6.2 .

We combine all lower bounds constructed in this section into one general lower bound.
See Figure 5.16 for an illustration of all upper and lower bounds for the competitive ratio
of online TSP on the line.

Theorem 5.40. Let FTSP : R>1 → R>1 be a function with

FTSP(Θ) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f
up
1,TSP(Θ), for Θ ∈ (1,ΘT,R

Sm ],

f
up
2 (Θ), for Θ ∈ (ΘT,R

Sm , 12(1 +
√
13)],

f low
2 (Θ), for Θ ∈ (12(1 +

√
13), 72 ],

f low
6.1 (Θ), for Θ ∈ (72 , 4],

f low
6.2 (Θ), for Θ ∈ (4,∞).

Then FTSP is general lower bound for the competitive ratio of Smartstart for online TSP on
the line. The unique minimum of FTSP lies in Θ = ΘT,R

Sm ≈ 1.8607 and yields a lower bound of

FTSP(Θ
T,R
Sm ) = ρT,RSm ≈ 2.7604.

Proof. We have shown in Proposition 5.34 that fup
1,TSP(Θ) with Θ ∈ (1,ΘT,R

Sm ] is a lower
bound for the competitive ratio of Smartstart for online TSP and in Proposition 5.15
that fup

2 (Θ) with Θ ∈ (ΘT,R
Sm , 12(1 +

√
13)] is a lower bound. Theorem 5.29 implies that
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FTSP has unique minimum in the interval (1, 12(1 +
√
13)] at Θ = ΘT,R

Sm . It remains to show
that FTSP(Θ) > FTSP(Θ

T,R
Sm ) for all Θ ∈ (12(1 +

√
13),∞). This immediately follows from

Lemmas 5.30, 5.38 and 5.39.

The main theorem of this section follows by combining Theorem 5.29 and Theorem 5.40.

Theorem 5.41. The competitive ratio of Smartstart for open online TSP on the line with
scaling parameter ΘT,R

Sm ≈ 1.8607 is exactly

ρT,RSm = f
up
1,TSP(Θ

T,R
Sm ) = f

up
2 (ΘT,R

Sm ) ≈ 2.7604.

For every other Θ > 1 with Θ ̸= ΘT,R
Sm the competitive ratio of Smartstart is strictly larger

than ρT,RSm .

5.4 Upper Bounds for the General Setting

After having examined Smartstart on the real line thoroughly, we now focus on the
general setting, i.e., on arbitrary continuous metric spaces. Since the real line R is a
specific continuous metric space, every lower bound established in the previous sections
also holds in the general setting. We also note that the upper bounds in the postponing
case, i.e., the bound f

up
1 (Θ) from Proposition 5.3 for open online Dial-a-Ride and the

bound f
up
1,TSP(Θ) from Proposition 5.28 for online TSP, also hold in the general setting.

The upper bound f
up
2 (Θ) from Proposition 5.4 for the non-postponing case however uses

Proposition 4.10, which relies on line-specific features. Therefore, fup
2 (Θ) is not a valid

upper bound in the general setting. We compute a new bound.

Proposition 5.42. If Smartstart for online Dial-a-Ride does not postpone the final sched-
ule SN , we have

Smartstart(σ)
Opt(σ)

≤ Θ+ 1 =: f
up
2,X(Θ).

Proof. Assume algorithm Smartstart does not postpone the final schedule, i.e., Smart-
start starts the final schedule SN either immediately after finishing SN−1 or immediately
after the last requests are released.

Let the latter be the case, then the final schedule is started at the release time rn of the
last request. Since Opt also has to serve the last request, we have Opt(σ) ≥ rn and since
the execution of the final schedule is not postponed, we have rn > 1

Θ−1L(tN , pN , σN ), i.e.,

L(tN , pN , σN ) < (Θ− 1)Opt(σ). (5.33)
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In total we have

Smartstart(σ) (4.1)
= tN + L(tN , pN , σN )

(5.4)
= rn + L(tN , pN , σN )

(5.33)
< ΘOpt(σ)
< (Θ + 1)Opt(σ).

Now let the final schedule be started immediately after the second to final schedule.
Let sOptN be the first request of σN that is served by Opt and let aOptN be its starting position
and rOptN be its release time. We have

Smartstart(σ) (4.1)
= tN + L(tN , pN , σN )

(5.3)
= tN−1 + L(tN−1, pN−1, σN−1) + L(tN , pN , σN )

(4.2)
≤ tN−1 + L(tN−1, pN−1, σN−1) + L(rOptN , pN , σN )

(5.1)
≤ ΘtN−1 + L(rOptN , pN , σN ). (5.34)

Since Opt serves all requests of σN after time rOptN , starting with a request with starting
position aOptN , we have

Opt(σ) ≥ rOptN + L(rOptN , aOptN , σN ). (5.35)

Furthermore, we have
rOptN > tN−1 (5.36)

since otherwise sOptN ∈ σN−1 would hold. We have tN−1 < Opt(σ) since at least one
request needs to be released after time tN−1. This gives us

Smartstart(σ)
(5.34)
≤ ΘtN−1 + L(rOptN , pN , σN )

(4.3)
≤ ΘtN−1 + d(aOptN , pN ) + L(rOptN , aOptN , σN )

(5.35)
≤ ΘtN−1 + d(aOptN , pN ) + Opt(σ)− rOptN

(5.36)
< (Θ− 1)tN−1 + d(aOptN , pN ) + Opt(σ)

tN−1 < Opt(σ)
< ΘOpt(σ) + d(aOptN , pN ). (5.37)
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Since Opt has to visit both aOptN and pN , we have d(aOptN , pN ) ≤ Opt(σ), i.e.,

Smartstart(σ)
(5.37)
< ΘOpt(σ) + d(aOptN , pN ) ≤ (Θ + 1)Opt(σ).

The upper bound f
up
2,X(Θ) is slightly weaker than the upper bound f

up
2 (Θ). We use

Proposition 5.42 to compute a new general upper bound for open online Dial-a-Ride.

Theorem 5.43. The function max{fup
1 , f

up
2,X} gives an upper bound for the competitive ratio

of Smartstart for open online Dial-a-Ride in the general setting for allΘ > 1. LetΘD,X
Sm = 2

be the unique solution of the equation f
up
1 (Θ) = f

up
2,X(Θ), i.e., of

2Θ2 + 2Θ

Θ2 +Θ− 2
= Θ + 1,

in the interval (1,∞). Then, ΘD,X
Sm is the unique minimum of the function max{fup

1 , f
up
2,X}

and Smartstart with scaling parameter ΘD,X
Sm is ρD,XSm -competitive with

ρD,XSm = f
up
1 (ΘD,X

Sm ) = f
up
2,X(ΘD,X

Sm ) = 3.

Proof. For the case where Smartstart postpones the final schedule, we have established
the upper bound

Smartstart(σ)
Opt(σ)

≤ 2Θ2 + 2Θ

Θ2 +Θ− 2
= f

up
1 (Θ)
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in Proposition 5.3, and for the case where Smartstart does not postpone final schedule
we have established the upper bound

Smartstart(σ)
Opt(σ)

≤ Θ+ 1 = f
up
2,X(Θ)

in Proposition 5.42. Thus, the maximum of both bounds is a general upper bound for the
competitive ratio of Smartstart for open online Dial-a-Ride in the general setting that
is independent of Smartstart’s behavior before the final schedule.
Function f

up
1 is strictly decreasing for Θ > 1 and function f

up
2,X is strictly increasing

for Θ > 1. Therefore, the minimum of max{fup
1 , f

up
2,X} in the interval (1,∞) lies in the

intersection point of fup
1 and f

up
2,X , i.e., in ΘD,X

Sm = 2. The resulting upper bound for the
competitive ratio is

ρD,XSm = f
up
1 (ΘD,X

Sm ) = f
up
2,X(ΘD,X

Sm ) = 3.

See Figure 5.17 for a visualization of the upper bound for the competitive ratio of online
Dial-a-Ride on the line presented in Theorem 5.43. Finally, we use Proposition 5.42 to
compute a new general upper bound for open online TSP.

Theorem 5.44. The function max{fup
1,TSP, f

up
2,X} gives an upper bound for the competitive

ratio of Smartstart for open online TSP in the general setting for all Θ > 1. Let ΘT,X
Sm ≈
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1.8229 be the unique solution of the equation f
up
1,TSP(Θ) = f

up
2,X(Θ), i.e., of

3Θ2 + 3Θ

2Θ2 +Θ− 3
= Θ + 1,

in the interval (1,∞). Then, ΘT,X
Sm is the unique minimum of the function max{fup

1,TSP, f
up
2,X}

and Smartstart with scaling parameter ΘT,X
Sm is ρT,XSm -competitive with

ρT,XSm = f
up
1,TSP(Θ

T,X
Sm ) = f

up
2,X(ΘT,X

Sm ) ≈ 2.8229.

Proof. For the case where Smartstart postpones the final schedule we have established
the upper bound

Smartstart(σ)
Opt(σ)

≤ 3Θ2 + 3Θ

2Θ2 +Θ− 3
= f

up
1,TSP(Θ)

in Proposition 5.28, and for the case where Smartstart does not postpone final schedule
we have established the upper bound

Smartstart(σ)
Opt(σ)

≤ Θ+ 1 = f
up
2,X(Θ)

in Proposition 5.42. Thus, the maximum of both bounds is a general upper bound for
the competitive ratio of Smartstart for open online TSP in the general setting that is
independent of Smartstart’s behavior before the final schedule.
Function f

up
1,TSP is strictly decreasing for Θ > 1 and function f

up
2,X is strictly increasing

for Θ > 1. Therefore, the minimum of max{fup
1,TSP, f

up
2,X} in the interval (1,∞) lies in the

intersection point of fup
1,TSP and f

up
2,X , i.e., in ΘT,X

Sm ≈ 1.8229. The resulting upper bound
for the competitive ratio is

ρT,XSm = f
up
1,TSP(Θ

T,X
Sm ) = f

up
2,X(ΘT,X

Sm ) ≈ 2.8229.

See Figure 5.18 for a visualization of the upper bound for the competitive ratio of online
Dial-a-Ride on the line presented in Theorem 5.44.

Conclusion and Outlook

We provided a conclusive analysis for Smartstart in this chapter. We computed tight
bounds for the competitive ratio for open online Dial-a-Ride and open online TSP on the
line and introduced new upper bounds for open online Dial-a-Ride and open online TSP
in general continuous metric spaces. For the open version of online Dial-a-Ride on the
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5 Algorithm SMARTSTART

line we have shown a tight competitive ratio of 2.9377: The upper bound was proven in
Theorem 5.5 and the lower bound was proven in Theorem 5.25. For the open version
of online TSP on the line we have shown a tight competitive ratio of 2.7604: The upper
bound was proven in Theorem 5.29 and the lower bound was proven in Theorem 5.40.
While we have tight results on the line for open online Dial-a-Ride and open online TSP,
it remains unclear if Smartstart performs worse in the general setting: We provided an
upper bound of 3 for the competitive ratio of Smartstart for open online Dial-a-Ride
and an upper bound of 2.8229 for the competitive ratio of Smartstart for open online
TSP. The lower bounds obtained on the real line remain in the general setting. For the
closed version, we provided a matching lower bound of 2 in Theroem 4.3 for the upper
bound provided by Ascheuer et al. in [5, Thm 6]. Consequently, Smartstart is a best
possible schedule-based online algorithm for closed online Dial-a-Ride and closed online
TSP on both, the real line and the general setting. See Table 2.7 for a summary of the
results.

If we compare Smartstart’s competitiveness with the general bounds for online Dial-
a-Ride and online TSP from Table 2.1, we see that our analysis of Smartstart provides
an improved upper bound for the competitive ratio of open online Dial-a-Ride on the real
line as well as on general continuous metric spaces, improving the best known bound from
3.4142 to 2.9377 on the real line and to 3 on general continuous metric spaces. While this
is a significant improvement, there is still a large gap between Smartstart’s competitive
ratios and the best known general lower bounds for open online Dial-a-Ride and open
online TSP. Moreover, there is also a significant gap between Smartstart’s competitive
ratio and the best known lower bounds for open schedule-based algorithms. This indicates
that the open version of Smartstart is a rather weak schedule-based algorithm. Indeed,
Smartstart contains a major flaw: the luring mechanic introduced in Lemma 5.6. In the
next chapter we will introduce an improved schedule-based algorithm that avoids luring
by using the complete known request sequence instead of just the unserved requests as a
basis for computing its waiting time. Fittingly, we call this algorithm SmarterStart.
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6 Algorithm SMARTERSTART
Recall that Smartstart uses the length of the next schedule as basis for its waiting
function. For the open version of online Dial-a-Ride and online TSP, this calculation is
flawed in two ways: On one hand, Smartstart does not use all available information,
i.e., it uses just the unserved requests and not all already released requests to calculate its
waiting time. This leads to ignoring some requests when calculating the waiting time as
shown in Lemma 5.6, where it forces Smartstart to walk to any position with essentially
no waiting time. On the other hand, Smartstart’s waiting routine is designed to keep
Smartstart competitive in comparison to an optimum offline solution starting from
its current postition, while Opt always starts from the origin. Therefore, dependent on
Smartstart’s distance to the origin, its waiting time can be a lot longer than necessary.

Algorithm 4 SmarterStart
p1 ← 0
for j = 1, 2, . . . do

while current time t < L(t, 0, σ≤t)/(Θ− 1) do
wait

tj ← t
Sj ← optimal offline schedule serving unserved requests Rt starting from pj
execute Sj

pj+1 ← current position

We fix these two issues by slightly adjusting the waiting routine. Essentially, at time t,
SmarterStart (see Algorithm 4) waits before starting an optimum schedule to serve all
currently unserved requests Rt at time

min

{︃
t′ ∈ R≥0 : t

′ ≥ t ∧ t′ ≥ L(t′, 0, σ≤t′)

Θ− 1

}︃
, (6.1)

where Θ > 1 is again a scaling parameter. Formally SmarterStart is a schedule-based
algorithm with waiting function

waitS+(t) :=

{︄
false, if Rt ̸= ∅ and t ≥ L(t,0,σ≤t)

Θ−1 ,

true, otherwise.
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In difference to Smartstart, the algorithm SmarterStart bases its waiting routine on
the length of the optimum offline schedule serving all known requests starting from the
origin instead of basing it on the length of the next executed schedule. Recall that the
luring weakness of Smartstart is triggered by iteratively releasing requests that are close
to each other, exploiting that Smartstart only takes the distance to the next request
as basis for the computation of its waiting time (see Lemma 5.6). To be more precise,
Smartstart is lured to position q by releasing requests si = (iε, iε; ε

Θ−1 + (i − 1)ε) for
every i ∈ {1, . . . , q

Θε}, which are all served in seperate schedules. While Smartstart only
uses the distance to the next request, which is always ε, to compute its waiting time,
SmarterStart bases its waiting time on the optimum offline schedule serving all known
requests from the origin, which increases by ε for every released request. This makes
SmarterStart not vulnerable to this luring mechanic.
We analyze SmarterStart’s competitiveness. Regarding open online Dial-a-Ride,

we show that SmarterStart has a competitive ratio of ρD,RS+ ≈ 2.6662 on the line for
parameter valueΘD,R

S+ ≈ 1.7125 (Thm 6.20) and is ρD,XS+ -competitive with ρD,XS+ = 2.6956 in
the general setting for parameter value ΘD,X

S+ ≈ 1.6956 (Thm 6.36). For open online TSP,
we show that SmarterStart achieves a competitive ratio of ρT,RS+ ≈ 2.6288 on the line for
parameter value ΘT,R

S+ ≈ 1.6789 (Thm 6.34) and is ρT,XS+ -competitive with ρT,XS+ ≈ 2.6625

in the general setting for parameter value ΘT,X
S+ ≈ 1.6625 (Thm 6.37).

We published the results of the first two sections also in [12]. Similar to Smartstart
we show an upper bounds for the competitive ratio of SmarterStart for open online
Dial-a-Ride on the line by deriving two separate upper bounds depending on Θ: an
upper bound for the case that SmarterStart postpones starting its final schedule and
an upper bound for the case that SmarterStart does not postpone its final schedule
(see Section 6.1). We complement the upper bounds with matching lower bounds in
Section 6.2. For online TSP on the line we show a slightly stronger upper bound for the
competitive ratio for the case that the final schedule is postponed. This improves the
general upper bound in comparison to the Dial-a-Ride version (see Section 6.3). In the
same section, we complement this slightly stronger upper bound with a matching lower
bound. For the general setting, we show slightly weaker upper bounds for the competitive
ratio of SmarterStart for open online Dial-a-Ride and online TSP in the case that the
final schedule is not postponed. This yields slightly weaker general upper bounds than on
the real line (see Section 6.4). For the closed version of SmarterStart, we provide an
upper bound for the competitive ratio of 2, which is complemented by the general lower
bound for schedule-based algorithms provided by Theorem 4.3 (see Section 6.5).
We start with the computation of an upper bound for the competitive ratio of Smar-

terStart. Similar to Smartstart and independent of which version, open or closed, we
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examine, we distinguish between three different cases concerning the starting time of the
final schedule. If SmarterStart postpones the execution of the final schedule SN (i.e., it
waits even though there are unserved requests), the starting time of schedule SN is given
by

tN =
1

Θ− 1
L(tN , 0, σ≤tN ). (6.2)

If SmarterStart does not postpone the final schedule, we have

tN = tN−1 + L(tN−1, pN−1, σN−1) (6.3)

if the final schedule SN is executed directly after the second to final schedule and

tN = rn. (6.4)

if there are no unserved requests at the point of time the execution of SN−1 is finished
and the last requests are released at time rn > 1

Θ−1L(tN , 0, σ≤tN ).
First, we examine the case that the final schedule is postponed. We start by giving a

lower bound for the starting time of a schedule.

6.1 Upper Bound for the Open Online DIAL-A-RIDE on the Line

We start by giving a lower bound for the starting time of a schedule. For Smartstart, a
schedule Sj is never started earlier than time 1

Θd(0, pj+1) (see Lemma 5.1). This changes
slightly for SmarterStart.

Lemma 6.1. Algorithm SmarterStart for open online Dial-a-Ride does not start schedule
Sj earlier than time 1

Θ−1d(0, pj+1), i.e., we have tj ≥ 1
Θ−1d(0, pj+1).

Proof. Since pj+1 is the ending position of schedule Sj , there is a request with destination
in pj+1 in the sequence σj . All requests of σj appear before time tj , which implies that
they are part of the sequence σ≤tj . Thus, we have

L(tj , 0, σ≤tj ) ≥ d(0, pj+1) (6.5)

and therefore

tj
(6.1)

≥
L(tj , 0, σ≤tj )

Θ− 1

(6.5)

≥ 1

Θ− 1
d(0, pj+1).

Using Lemma 6.1 and Lemma 4.5, we can give an upper bound for the length of Smar-
terStart’s schedules, which is an essential ingredient in our upper bounds. A similar
bound for Smartstart was proven in Lemma 5.2.
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Lemma 6.2. For every schedule Sj of SmarterStart for open online Dial-a-Ride, we have

L(tj , pj , σj) ≤
(︃
1 +

Θ− 1

Θ + 1

)︃
Opt(σ).

Proof. By Lemma 4.5 and Lemma 6.1 we have

L(tj , pj , σj)
Lem 4.5
≤ min{Opt(σ) + d(pj , 0), 2(Opt(σ)− tj−1)}

Lem 6.1
≤ min

{︃
Opt(σ) + d(pj , 0), 2

(︃
Opt(σ)− 1

Θ− 1
d(pj , 0)

)︃}︃
≤

(︃
1 +

Θ− 1

Θ + 1

)︃
Opt(σ)

since the minimum above is largest if the two terms are equal, which is the case for
d(pj , 0) =

Θ−1
Θ+1Opt(σ).

The following proposition uses Lemma 6.2 to provide an upper bound for the competitive
ratio of SmarterStart, in the case that SmarterStart does have a waiting period before
starting the final schedule.

Proposition 6.3. In case SmarterStart for open online Dial-a-Ride postpones execut-
ing SN , we have

SmarterStart(σ)
Opt(σ)

≤ 2Θ2 −Θ+ 1

Θ2 − 1
=: g

up
1 (Θ).

Proof. Assume SmarterStart postpones the final schedule. Then Lemma 6.2 yields the
claimed bound:

SmarterStart(σ) (4.1)
= tN + L(tN , pN , σN )

(6.2)
=

1

Θ− 1
L(tN , 0, σ≤tN ) + L(tN , pN , σN )

(4.4)
≤ 1

Θ− 1
Opt(σ) + L(tN , pN , σN )

Lem 6.2
≤

(︃
1

Θ− 1
+ 1 +

Θ− 1

Θ + 1

)︃
Opt(σ)

=
2Θ2 −Θ+ 1

Θ2 − 1
Opt(σ).
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In comparison, the upper bound for the competitive ratio of Smartstart, in the case
that the final schedule is postponed, is 2Θ2+2Θ

Θ2+Θ−2
(see Proposition 5.3). Note that Smarter-

Start’s bound is better than Smartstart’s bound for Θ > 1.
Using the bound established by Proposition 4.10, we can give an upper bound for the

competitive ratio of SmarterStart for open online Dial-a-Ride on the line if the server
is not waiting before starting the final schedule. Note that by using Proposition 4.10, the
resulting upper bound is not valid for general continuous metric spaces.

Proposition 6.4. If SmarterStart for open online Dial-a-Ride on the line does not post-
pone executing SN , we have

SmarterStart(σ)
Opt(σ)

≤ 3Θ2 + 3

2Θ + 1
=: g

up
2 (Θ).

Proof. Assume algorithm SmarterStart does not postpone the final schedule. This means
SmarterStart either starts the final schedule SN immediately after finishing SN−1 or
immediately after the last request is released.
Let the latter be the case. Then, the final schedule is started at the release time rn of

the last request. Since Opt also has to serve the last request, we have

Opt(σ) ≥ rn. (6.6)

In total we have

SmarterStart(σ) (4.1)
= tN + L(tN , pN , σN )

(6.4)
= rn + L(tN , pN , σN )

(6.6)
≤ Opt(σ) + L(tN , pN , σN )

Lem 6.2
≤

(︃
2 +

Θ− 1

Θ + 1

)︃
Opt(σ)

Θ > 1
<

3Θ2 + 3

2Θ + 1
Opt(σ).

Now, consider the case that the final schedule is started immediately after the second to
final schedule. Let sOptN be the first request of σN that is served by Opt and let aOptN be its
starting position and rOptN be its release time. We have

SmarterStart(σ) (4.1)
= tN + L(tN , pN , σN )

(6.3)
= tN−1 + L(tN−1, pN−1, σN−1) + L(tN , pN , σN )
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tN ≥ rOptN

≤ tN−1 + L(tN−1, pN−1, σN−1) + L(rOptN , pN , σN ). (6.7)

Since Opt serves all requests of σN after time rOptN , starting with a request with starting
position aOptN , we have

Opt(σ) ≥ rOptN + L(rOptN , aOptN , σN ). (6.8)

Furthermore, we have
rOptN > tN−1 (6.9)

since otherwise sOptN ∈ σN−1 would hold. This gives us

SmarterStart(σ)
(6.7)
≤ tN−1 + L(tN−1, pN−1, σN−1) + L(rOptN , pN , σN )

(4.3)
≤ tN−1 + L(tN−1, pN−1, σN−1) + |aOptN − pN |

+L(rOptN , aOptN , σN )

(6.8)
≤ tN−1 + L(tN−1, pN−1, σN−1) + |aOptN − pN |+ Opt(σ)− rOptN

(6.9)
< L(tN−1, pN−1, σN−1) + |aOptN − pN |+ Opt(σ) (6.10)

(4.3)
≤ |pN−1|+ L(tN−1, 0, σN−1) + |aOptN − pN |+ Opt(σ)

Lem 6.1
≤ (Θ− 1)tN−2 + L(tN−1, 0, σN−1) + |aOptN − pN |+ Opt(σ).

(6.11)

We have
Opt(σ) ≥ tN−2 + |aOptN − pN |, (6.12)

because Opt has to visit both aOptN and pN after time tN−2: It has to visit aOptN to collect
sOptSN

and it has to visit pN to deliver some request of σN−1. Using the above inequalitiy,
we get

SmarterStart(σ)
(6.11)
< (Θ− 1)tN−2 + L(tN−1, 0, σN−1) + |aOptN − pN |+ Opt(σ)

(6.12)
≤ 2Opt(σ) + L(tN−1, 0, σN−1) + (Θ− 2)tN−2.. (6.13)

In the case Θ ≥ 2, we have

SmarterStart(σ)
(6.13)
< 2Opt(σ) + L(tN−1, 0, σN−1) + (Θ− 2)tN−2
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(4.4)
≤ (Θ + 1)Opt(σ)

Θ ≥ 2
≤ 3Θ2 + 3

2Θ + 1
Opt(σ).

Thus, we may assume Θ < 2. Similarly as in inequality (6.13), we get

SmarterStart(σ)
(6.11)
< (Θ− 1)tN−2 + L(tN−1, 0, σN−1) + |aOptN − pN |+ Opt(σ)

(6.12)
≤ ΘOpt(σ) + L(tN−1, 0, σN−1) + (2−Θ)|aOptN − pN |

(6.1)
≤ ΘOpt(σ) + (Θ− 1)tN−1 + (2−Θ)|aOptN − pN |
≤ (2Θ− 1)Opt(σ) + (2−Θ)|aOptN − pN |, (6.14)

where the last inequality follows, because of Opt(σ) ≥ tN−1. This means the claim is
shown if we have

|aOptN − pN | ≤
(︃
1− Θ− 1

2Θ + 1

)︃
Opt(σ) (6.15)

since then we have

SmarterStart(σ)
(6.14)
< (2Θ− 1)Opt(σ) + (2−Θ)|aOptN − pN |

(6.15)
≤ (2Θ− 1)Opt(σ) + (2−Θ)

(︃
1− Θ− 1

2Θ + 1

)︃
Opt(σ)

=
3Θ2 + 3

2Θ + 1
Opt(σ).

Therefore, we may assume in the following that

|pN − aOptN | >
(︃
1− Θ− 1

2Θ + 1

)︃
Opt(σ). (6.16)

Let Opt(σ) = |xmin|+ xmax + y for some y ≥ 0. By definition of xmin and xmax we have

|pN − aOptN |+ y ≤ Opt(σ). (6.17)

In the case that Opt visits position pN before it collects sOptN , we have

|aOptN − pN |+ |pN | ≤ Opt(σ). (6.18)

Similarly, if Opt collects sOptN before it visits position pN for the first time, we have

Opt(σ) ≥ rOptN + |aOptN − pN |
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(6.9)
> tN−1 + |aOptN − pN |

Lem 6.1
≥ |pN |

Θ− 1
+ |aOptN − pN |

Θ < 2
≥ |pN |+ |aOptN − pN |.

Thus, inequality (6.18) holds in general. To sum it up, we may assume that

max{y, |pN |, tN−2}
(6.16),(6.17),(6.18),(6.12)

<
Θ− 1

2Θ + 1
Opt(σ) (6.19)

holds. By Proposition 4.10 we have

SmarterStart(σ)
(6.10)
< L(tN−1, pN−1, σN−1) + |pN − aOptN |+ Opt(σ)

Prop 4.10
≤ 2|pN−1|+ |pN−1 − pN |+ 2y + |pN − aOptN |+ Opt(σ)

(6.17)
≤ 2|pN−1|+ |pN−1 − pN |+ y + 2Opt(σ)

≤ 3|pN−1|+ |pN |+ y + 2Opt(σ)
Lem 6.1
≤ (3Θ− 3)tN−2 + |pN |+ y + 2Opt(σ)

(6.19)
≥

(︃
(3Θ− 3)

Θ− 1

2Θ + 1
+ 2

Θ− 1

2Θ + 1
+ 2

)︃
Opt(σ)

=
3Θ2 + 3

2Θ + 1
Opt(σ).

In comparison, the upper bound for the competitive ratio of Smartstart, in case that
the final schedule is not postponed, is 3Θ2+5Θ+4

3Θ+3 (see Proposition 5.4). Note that Smar-
terStart’s bound is slightly worse than Smartstart’s bound for Θ > 1.47. However,
in combination with the bound of Proposition 6.3, SmarterStart has a better worst-
case than Smartstart. We compute a general upper bound for the competitive ratio of
SmarterStart for open online Dial-a-Ride on the line.

Theorem 6.5. The function max{gup1 , g
up
2 } gives an upper bound for the competitive ratio of

SmarterStart for open online Dial-a-Ride on the line for all Θ > 1. Let ΘD,R
S+ ≈ 1.7125 be

the unique solution of gup1 (Θ) = g
up
2 (Θ), i.e., of

2Θ2 −Θ+ 1

Θ2 − 1
=

3Θ2 + 3

2Θ + 1
,
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Figure 6.1: Functions gup1 (green) / gup2 (red): upper bounds for competitive ratio for postponing / non-
postponing case. Green / red area: possible values for the competitive ratio, bounded by gup1 / gup2 .

in the interval (1,∞). Then, ΘD,R
S+ is the unique minimum of the function max{gup1 , g

up
2 } and

SmarterStart with scaling parameter ΘD,R
S+ is ρD,RS+ -competitive with

ρD,RS+ := g
up
1 (ΘD,R

S+ ) = g
up
2 (ΘD,R

S+ ) ≈ 2.6662.

Proof. For the case where SmarterStart postpones the final schedule we have established
the upper bound

SmarterStart(σ)
Opt(σ)

≤ 2Θ2 −Θ+ 1

Θ2 − 1
= g

up
1 (Θ)

in Proposition 6.3, and for the case where SmarterStart starts the final schedule imme-
diately after the second to final schedule we have established the upper bound

SmarterStart(σ)
Opt(σ)

≤ 3Θ2 + 3

2Θ + 1
= g

up
2 (Θ)

in Proposition 6.4. Thus, the maximum of both bounds is a general upper bound for
the competitive ratio of SmarterStart for open online Dial-a-Ride on the line that is
independent of SmarterStart’s behavior.

The function g
up
1 is strictly decreasing forΘ > 1 and the function g

up
2 is strictly increasing

for Θ > 1. Therefore, the minimum of max{gup1 , g
up
2 } in the interval (1,∞) lies in the

intersection point of gup1 and g
up
2 , i.e., in ΘD,R

S+ ≈ 1.7125. The resulting upper bound for
the competitive ratio is

ρD,RS+ = g
up
1 (ΘD,R

S+ ) = g
up
2 (ρD,RS+ ) ≈ 2.6662.
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See Figure 6.1 for a visualization of the upper bound for the competitive ratio of Smar-
terStart for open online Dial-a-Ride on the line presented in Theorem 6.5.

6.2 Lower Bound for the Open Online DIAL-A-RIDE on the Line

In this section we present matching lower bounds for the upper bounds provided by the
Propositions 6.3 and 6.4. In particular, we show that for Θ ∈ (1, 2) there are request
sequences where SmarterStart postpones its final schedule and has competitive ratio
at least gup1 (Θ). Similarly, we show that for Θ ∈ [12(1 +

√
5), 2] there are instances where

SmarterStart does not postpone its final schedule and has competitive ratio at least
g
up
2 (Θ). Together, this implies that the general upper bound of max{gup1 , g

up
2 } is tight for

Θ ∈ (1, 2] and thus for Θ = ΘD,R
S+ as defined in Theorem 6.5. Combining these lower

bounds with additional lower bounds for Θ > 2, we will show that ΘD,R
S+ ≈ 1.7125 is

the optimum choice of the scaling parameter Θ, i.e., all Θ > 1 with Θ ̸= ΘD,R
S+ yield

competitive ratios larger than ρD,RS+ .
As before with algorithm Smartstart, we denote by wj the earliest time, a potential

waiting period before schedule Sj is over, i.e., wj =
1

Θ−1L(vj , 0, σ≤vj ). Consequently, if no
new requests appear between the ending time of schedule Sj−1 and the starting time of
schedule Sj (which will be the case for all request sequences constructed in this section),
we have tj = max{vj , wj}.

In the following, we will analyze three different request sequences σS+
1 , σS+

2 and σS+
3 . We

will see that the ratio of SmarterStart’s and Opt’s completion time of σS+
1 tightly matches

the upper bound of Proposition 6.3 for Θ ∈ (1, 2) and that the ratio of SmarterStart’s
and Opt’s completion time of σS+

2 tightly matches the upper bound of Proposition 6.4 for
Θ ∈ [1.6180, 2]. The request sequence σS+

3 will provide an additional lower bound for the
competitive ratio of SmarterStart for open online Dial-a-Ride on the line for larger
values of Θ. We start with the request sequence σS+

1 .

Definition 6.6. Let ε′ > 0 with ε′ < 1
Θ−1 . We define

σS+
1 := (s1, s2)

with

s1 = (1, 1; 0),

s2 =

(︃
− 1

Θ− 1
+ ε′, 1;

1

Θ− 1
+ ε′

)︃
.
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Note that ε′ < 1
Θ−1 implies a2 < 0, i.e., the request s2 is on the left side of the origin. We

begin our analysis with the computation of Opt(σS+
1 ).

Lemma 6.7. We have
Opt(σS+

1 ) =
Θ + 1

Θ− 1
.

Proof. Opt waits at the origin until time 2ε′ and then performs the walk

0→ − 1

Θ− 1
+ ε′ → 1.

Opt’s walk is presented in blue in Figure 6.2 for Θ = ΘD,R
S+ . We show that all requests are

served this way: Opt collects s2 at position a1 = − 1
Θ−1 + ε′ time 1

Θ−1 + ε′ and reaches
position a2 = 1 at time Θ+1

Θ−1 > 1
Θ−1 + ε′ = r1. Therefore, we have

Opt(σS+
1 ) = 2ε′ +D

(︃
0→ − 1

Θ− 1
+ ε′ → 1

)︃
=

Θ+ 1

Θ− 1
.

Next, we compute SmarterStart(σS+
1 ).

Lemma 6.8. Let Θ ∈ (1, 2) and ε′ < 1
2 . Then we have

SmarterStart(σS+
1 ) =

2Θ2 −Θ+ 1

(Θ− 1)2
− 2Θ

Θ− 1
ε′.

Proof. SmarterStart’s walk is presented in green in Figure 6.2 for Θ = ΘD,R
S+ . For all

t ≥ 0 we have L(t, 0, (s1)) = 1. Thus, SmarterStart starts its first schedule S1 at time
t1 =

1
Θ−1 and reaches position p2 = 1 at time v2 =

Θ
Θ−1 . For t ≥ v2, we have

L(t, 0, (s1, s2)) = D

(︃
0→ − 1

Θ− 1
+ ε′ → 1

)︃
=

Θ+ 1

Θ− 1
− 2ε′.

Thus, the second and final schedule S2 is not started before time

w2 =
L(t, 0, (s1, s2))

Θ− 1
=

Θ+ 1

(Θ− 1)2
− 2

Θ− 1
ε′.

By assumption, we have Θ < 2 and ε′ < 1
2 , which implies that for the time v2 = Θ

Θ−1 ,
when SmarterStart reaches position p2 = 1, the inequality

w2 =
Θ+ 1

(Θ− 1)2
− 2

Θ− 1
ε′

ε′< 1
2

>
2

(Θ− 1)2
Θ<2
>

Θ

Θ− 1
= v2 (6.20)
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0

pos

time

SmarterStart
Opt

Opt(σS+
1 ) SmarterStart(σS+

1 )

1

− 1
Θ−1 + ε′

Figure 6.2: SmarterStart’s and Opt’s walk serving σS+
1 with ε′ = 0.25 and Θ = ΘD,R

S+ . Request s1 is red
and request s2 is yellow .

holds. Note that inequality (6.20) also holds for slightly larger Θ if we let ε→ 0. Because
of inequality (6.20), SmarterStart has a waiting period and starts the schedule S2 at
time

t2 = max{v2, w2}
(6.20)
= w2 =

Θ+ 1

(Θ− 1)2
− 2

Θ− 1
ε′.

Serving s2 from position p2 = 1 takes time

L(t2, p2, (s2)) = D

(︃
1→ − 1

Θ− 1
+ ε→ 1

)︃
=

2Θ

Θ− 1
− 2ε′.

To sum it up, we have

SmarterStart(σS+
1 ) = t2 + L(t2, p2, (s2)) =

2Θ2 −Θ+ 1

(Θ− 1)2
− 2Θ

Θ− 1
ε′.

Eqipped with Lemmas 6.7 and 6.8, we can compute a lower bound for the competitive of
SmarterStart for open online Dial-a-Ride on the line for Θ ∈ (1, 2).

Proposition 6.9. Let 1 < Θ < 2. For every sufficiently small ε > 0, we have

SmarterStart(σS+
1 )

Opt(σS+
1 )

=
2Θ2 −Θ+ 1

Θ2 − 1
− ε = g

up
1 (Θ)− ε,

i.e., the upper bound established in Proposition 6.3 is tight for Θ ∈ (1, 2).

Proof. Let ε > 0 with ε < Θ
Θ+1 and ε′ = Θ+1

2Θ ε < 1
2 . By Lemma 6.8, we have

SmarterStart(σS+
1 ) =

2Θ2 −Θ+ 1

(Θ− 1)2
− 2Θ

Θ− 1
ε′.
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Figure 6.3: Functions gup1 (green) / gup2 (red): upper bounds for competitive ratio for postponing / non-
postponing case, drawn solid if tight. Red area: possible values for the competitive ratio, bounded
by gup2 .

By Lemma 6.7, we have

Opt(σS+
1 ) =

Θ + 1

Θ− 1
.

Since we have ε′ = Θ+1
2Θ ε, we obtain

SmarterStart(σS+
1 )

Opt(σS+
1 )

=
2Θ2 −Θ+ 1

Θ2 − 1
− 2Θ

Θ+ 1
ε′ =

2Θ2 −Θ+ 1

Θ2 − 1
− ε = g

up
1 (Θ)− ε.

Figure 6.3 is a visualization of the upper bound for the competitive ratio of online Dial-a-
Ride on the line presented in Theorem 6.5 together with the lower bound of Proposition 6.9.
Next, we examine the request sequence σS+

2 .

Definition 6.10. Let ε′ > 0 with ε′ < Θ
Θ−1 . We define

σS+
2 = {s1, s(1)2 , s

(2)
2 , s3}

with

s1 = (1, 1; 0),

s
(1)
2 =

(︃
2Θ− 1

Θ− 1
− ε′,

2Θ− 1

Θ− 1
− ε′;

1

Θ− 1
+ ε′

)︃
,

147



6 Algorithm SMARTERSTART

s
(2)
2 =

(︃
− 1

Θ− 1
,− 1

Θ− 1
;

1

Θ− 1
+ ε′

)︃
,

s3 =

(︃
max

{︃
3

(Θ− 1)2
,
2Θ− 1

Θ− 1

}︃
− ε′,max

{︃
3

(Θ− 1)2
,
2Θ− 1

Θ− 1

}︃
− ε′;

2Θ + 1

(Θ− 1)2

)︃
.

Note ε′ < Θ
Θ−1 , which implies a3 ≥ a

(1)
2 = 2Θ−1

Θ−1 − ε′ > 1 = a1, i.e., the positions of a(1)2

and a3 are to the right of position a1 = 1. We start the examination of σS+
2 with computing

Opt(σS+
2 ).

Lemma 6.11. We have

Opt(σS+
2 ) = max

{︃
2Θ + 1

(Θ− 1)2
,
2Θ + 1

Θ− 1

}︃
.

Proof. Opt waits at the origin until time ε′ and then performs the walk

0→ − 1

Θ− 1
→ max

{︃
3

(Θ− 1)2
,
2Θ− 1

Θ− 1

}︃
− ε′.

Opt’s walk is presented in blue in Figure 6.4 for Θ = ΘD,R
S+ and in blue in Figure 6.5 for

Θ = 2.5. We show that all requests are seved this way: Opt serves request s(2)2 at time
r
(2)
2 = 1

Θ−1+ε′. The release time of s(1)2 is the same as of s(2)2 and thus Opt can serve s(2)2 at

arrival. Opt reaches position a3 = max
{︂

3
(Θ−1)2

, 2Θ−1
Θ−1

}︂
− ε′ at time max

{︂
2Θ+1
(Θ−1)2

, 2Θ+1
Θ−1

}︂
,

which is after time r3, i.e., request s3 is also served at arrival. To sum it up, we have

Opt(σS+
2 ) = ε′ +D

(︃
0→ − 1

Θ− 1
→ max

{︃
3

(Θ− 1)2
,
2Θ− 1

Θ− 1

}︃
− ε′

)︃
= max

{︃
2Θ + 1

(Θ− 1)2
,
2Θ + 1

Θ− 1

}︃
.

Next, we compute SmarterStart’s completion time.

Lemma 6.12. Let 1
2(1 +

√
5) ≤ Θ ≤ 3 and ε′ < 1

2 . Then, we have

SmarterStart(σS+
2 ) = max

{︃
3Θ2 + 3

(Θ− 1)2
,
5Θ2 − 3Θ + 1

(Θ− 1)2

}︃
− 3Θ− 2

Θ− 1
ε′.

Proof. SmarterStart’s walk is presented in green in Figure 6.4 forΘ = ΘD,R
S+ and in green

in Figure 6.5 for Θ = 2.5. For all t ≥ 0, we have L(t, 0, (s1)) = 1. Thus, SmarterStart
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starts its first schedule S1 at time t1 =
1

Θ−1 and reaches position p2 = 1 at time v2 =
Θ

Θ−1 .
For t ≥ v2 we have

L(t, 0, (s1, s
(1)
2 , s

(2)
2 )) = D

(︃
0→ − 1

Θ− 1
→ 2Θ− 1

Θ− 1
− ε′

)︃
=

2Θ+ 1

Θ− 1
− ε′.

Thus, the second schedule S2 is not started before time

w2 =
L
(︂
t, 0, (s1, s

(1)
2 , s

(2)
2 )
)︂

Θ− 1
=

2Θ + 1

(Θ− 1)2
− ε′

Θ− 1
.

By assumption, we have Θ ≤ 3 and ε′ < 1
2 , which implies that for the time v2 = Θ

Θ−1 ,
when SmarterStart reaches position p2 = 1, the inequality

w2 =
2Θ+ 1

(Θ− 1)2
− ε′

Θ− 1

ε′< 1
2

>
3
2Θ+ 3

2

(Θ− 1)2

Θ≤3
≥ Θ

Θ− 1
= v2 (6.21)

holds. Note that inequality (6.21) also holds for slightly larger Θ if we let ε→ 0. Because
of inequality (6.21), SmarterStart has a waiting period and starts the schedule S2 at
time

t2 = max{v2, w2}
(6.21)
= w2 =

2Θ+ 1

(Θ− 1)2
− ε′

Θ− 1

before the request s3 is released. If SmarterStart serves s(2)2 before serving s
(1)
2 the time

it needs is at least

D

(︃
1→ − 1

Θ− 1
→ 2Θ− 1

Θ− 1
− ε′

)︃
=

3Θ

Θ− 1
− ε′.

The best schedule that serves s(2)2 after serving s
(1)
2 needs time

D

(︃
1→ 2Θ− 1

Θ− 1
− ε′ → − 1

Θ− 1

)︃
=

3Θ

Θ− 1
− 2ε′.

Thus, SmarterStart serves s(2)2 after serving s
(1)
2 and finishes S2 at position p3 = − 1

Θ−1
at time

v3 = t2 + L(t2, p2, (s
(1)
2 , s

(2)
2 )) =

3Θ2 −Θ+ 1

(Θ− 1)2
− 2Θ− 1

Θ− 1
ε′.

For all t ≥ v3 we have

L(t, 0, (s1, s
(1)
2 , s

(2)
2 , s3)) = D

(︃
0→ − 1

Θ− 1
→ max

{︃
3

(Θ− 1)2
,
2Θ− 1

Θ− 1

}︃
− ε′

)︃
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= max

{︃
2Θ + 1

(Θ− 1)2
,
2Θ + 1

Θ− 1

}︃
− ε′.

Therefore the final schedule is not started before time

w3 =
L(t, 0, (s1, s

(1)
2 , s

(2)
2 , s3))

Θ− 1
= max

{︃
2Θ + 1

(Θ− 1)3
,
2Θ + 1

(Θ− 1)2

}︃
− ε′

Θ− 1
.

However, by assumption, we have Θ ≥ 1
2

(︁
1 +
√
5
)︁
and ε′ < 1

2 , which implies

v3 =
3Θ2 −Θ+ 1

(Θ− 1)2
− 2Θ− 1

Θ− 1
ε′

=
3Θ2 −Θ+ 1

(Θ− 1)2
− 2ε′ − ε′

Θ− 1

ε′ < 1
2

>
2Θ2 +Θ

(Θ− 1)2
− ε′

Θ− 1

Θ ≥ 1
2
(1 +

√
5)

≥ max

{︃
2Θ + 1

(Θ− 1)3
,
2Θ + 1

(Θ− 1)2

}︃
− ε′

Θ− 1

= w3, (6.22)

i.e., the starting time of the schedule S3 is the ending time of the schedule S2 and we have

t3 = max{v3, w3}
(6.22)
= v3 =

3Θ2 −Θ+ 1

(Θ− 1)2
− 2Θ− 1

Θ− 1
ε′.

The schedule S3 needs time

L(t3, p3, (s3)) = D

(︃
1

Θ− 1
→ max

{︃
3

(Θ− 1)2
,
2Θ− 1

Θ− 1

}︃
− ε′

)︃
= max

{︃
Θ+ 2

(Θ− 1)2
,

2Θ

Θ− 1

}︃
− ε′.

To sum it up, we have

SmarterStart(σS+
2 ) = t3+L(t3, p3, (s3)) = max

{︃
3Θ2 + 3

(Θ− 1)2
,
5Θ2 − 3Θ + 1

(Θ− 1)2

}︃
− 3Θ− 2

Θ− 1
ε′.

Eqipped with Lemmas 6.11 and 6.12, we can compute lower bounds for the competitive
of SmarterStart for open online Dial-a-Ride on the line for Θ ∈ [12(1 +

√
5), 3]. We

begin with the subinterval [12(1 +
√
5), 2].
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0

pos

time

SmarterStart
Opt

Opt(σS+
2 ) SmarterStart(σS+

2 )

1

2 + 1
Θ−1 − 2ε′

− 1
Θ−1 + ε′

3
(Θ−1)2 − ε′

Figure 6.4: SmarterStart’s and Opt’s walk serving σS+
2 with ε′ = 0.2 and Θ = ΘD,R

S+ . Request s1 is red ,
request s(1)2 is yellow , request s(2)2 is violet and request s3 is brown .

Proposition 6.13. Let 1
2(1 +

√
5) ≤ Θ ≤ 2. For every sufficiently small ε > 0 we have

SmarterStart(σS+
2 )

Opt(σS+
2 )

=
3Θ2 + 3

2Θ + 1
− ε = g

up
2 (Θ)− ε,

i.e., the upper bound established in Proposition 6.4 is tight forΘ ∈ [12(1+
√
5), 2] ≈ [1.6180, 2].

Proof. Let ε > 0 with ε < 1
2(

3Θ2−5Θ+2
2Θ+1 ) and ε′ = 2Θ+1

3Θ2−5Θ+2
ε < 1

2 . By Lemma 6.12, we
have

SmarterStart(σS+
2 )

Lem 6.12
= max

{︃
3Θ2 + 3

(Θ− 1)2
,
5Θ2 − 3Θ + 1

(Θ− 1)2

}︃
− 3Θ− 2

Θ− 1
ε′

Θ ≤ 2
=

3Θ2 + 3

(Θ− 1)2
− 3Θ− 2

Θ− 1
ε′.

Lemma 6.11 implies

Opt(σS+
2 ) = max

{︃
2Θ + 1

(Θ− 1)2
,
2Θ + 1

Θ− 1

}︃
Θ≤2
=

2Θ+ 1

(Θ− 1)2
.

Since we have ε′ = 2Θ+1
3Θ2−5Θ+2

ε, we finally obtain

SmarterStart(σS+
2 )

Opt(σS+
2 )

=
3Θ2 + 3

2Θ + 1
− 3Θ2 − 5Θ + 2

2Θ + 1
ε′ =

3Θ2 + 3

2Θ + 1
− ε = g

up
2 (Θ)− ε.

Next, we compute a lower bound for the competitive of SmarterStart for open online
Dial-a-Ride on the line for Θ ∈ (2, 3].

151



6 Algorithm SMARTERSTART

0

pos

time

SmarterStart
Opt

Opt(σS+
2 ) SmarterStart(σS+

2 )

1

2 + 1
Θ−1 − ε′

− 1
Θ−1

Figure 6.5: SmarterStart’s and Opt’s walk serving σS+
2 with ε′ = 0.2 and Θ = 2.5. Request s1 is red ,

request s(1)2 is yellow , request s(2)2 is violet and request s3 is brown .

Lemma 6.14. Let 2 < Θ ≤ 3 and ε > 0 sufficiently small. Then, we have

SmarterStart(σS+
2 )

Opt(σS+
2 )

=
5Θ2 − 3Θ + 1

2Θ2 −Θ− 1
− ε =: glow2 (Θ)− ε.

In particular, we have

SmarterStart(σS+
2 )

Opt(σS+
2 )

> ρD,RS+ ≈ 2.6662

for Θ ∈ (2, 1 +
√
2] ≈ (2, 1 +

√
2] and sufficiently small ε.

Proof. Let ε > 0 with ε < min{12(
3Θ−2
2Θ+1),

1
10} and ε′ = 2Θ+1

3Θ−2ε < 1
2 . By Lemma 6.12, we

have

SmarterStart(σS+
2 )

Lem 6.12
= max

{︃
3Θ2 + 3

(Θ− 1)2
,
5Θ2 − 3Θ + 1

(Θ− 1)2

}︃
− 3Θ− 2

Θ− 1
ε′

Θ > 2
=

5Θ2 − 3Θ + 1

(Θ− 1)2
− 3Θ− 2

Θ− 1
ε′.

By Lemma 6.11 we have

Opt(σS+
2 ) = max

{︃
2Θ + 1

(Θ− 1)2
,
2Θ + 1

Θ− 1

}︃
Θ>2
=

2Θ+ 1

Θ− 1
.
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Figure 6.6: Functions gup1 (green) / gup2 (red): upper bounds for competitive ratio for postponing / non-
postponing case, drawn solid if tight. Function: glow2 (blue): lower bound for competitive ratio.
Red area: possible values for the competitive ratio, bounded by gup2 and glow2 .

Since we have ε′ = 2Θ+1
3Θ−2ε, we finally obtain

SmarterStart(σS+
2 )

Opt(σS+
2 )

=
5Θ2 − 3Θ + 1

2Θ2 −Θ− 1
− 3Θ− 2

2Θ + 1
ε′ =

5Θ2 − 3Θ + 1

2Θ2 −Θ− 1
− ε = glow2 (Θ)− ε,

as claimed. The function glow2 is monotonically increasing on (2, 1 +
√
2]. Therefore, we

have
SmarterStart(σS+

2 )

Opt(σS+
2 )

− ε > glow2 (1 +
√
2)− ε =

11√
2
− 5− ε > ρD,RS+

for all Θ ∈ (2, 1 +
√
2] and ε < 1

10 .

Figure 6.6 is a visualization of the upper bound for the competitive ratio of online Dial-a-
Ride on the line presented in Theorem 6.5 together with the lower bounds of Proposi-
tions 6.9 and 6.13 as well as Lemma 6.14.

Recall that the optimal parameter ΘD,R
S+ established in Theorem 6.5 is the only positive,

real solution of the equation

3Θ2 + 3

2Θ + 1
=

2Θ2 −Θ+ 1

Θ2 − 1
,

which is ΘD,R
S+ ≈ 1.7125. Therefore, according to Proposition 6.9 and Proposition 6.13 the

parameter ΘD,R
S+ lies in the interval where the upper bounds of Propositions 6.3 and 6.4
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are both tight. It remains to make sure that for all Θ that lie outside of this interval the
competitive ratio of SmarterStart is larger than ρD,RS+ ≈ 2.6662. For this, we examine the
request sequence σS+

3 .

Definition 6.15. Let Θ > 1 +
√
2 and ε′ > 0 with ε′ < min{ Θ

2Θ−2 ,
1

Θ−1}. We define

σS+
3 := {s1, s(1)2 , s

(2)
2 , s3}

with

s1 = (1, 1; 0),

s
(1)
2 =

(︃
Θ− 2

2Θ− 2
+ ε′, 1;

1

Θ− 1
+ ε′

)︃
,

s
(2)
2 =

(︃
− 1

Θ− 1
+ ε′,− 1

Θ− 1
+ ε′;

1

Θ− 1
+ ε′

)︃
,

s3 =

(︃
1, 1;

Θ + 1

Θ− 1

)︃
.

We have ε′ < Θ
2Θ−2 , which implies 0 < Θ−2

2Θ−2 + ε′ < 1 for Θ > 1 +
√
2, i.e., the starting

position of s(1)2 is between 0 and 1. Furthermore, we have ε′ < 1
Θ−1 , which implies

a
(2)
2 = − 1

Θ−1 + ε′ < 0, i.e., the starting position of s(2)2 is to the left of the origin. We start
the examination of σS+

3 with computing Opt(σS+
3 ).

Lemma 6.16. We have
Opt(σS+

3 ) =
Θ + 1

Θ− 1
.

Proof. Opt waits at the origin until time 2ε′ and then performs the walk

0→ − 1

Θ− 1
+ ε′ → 1.

An illustration of Opt’s walk is presented in blue in Figure 6.7 for Θ = 2.75. We show that
all requests are served this way: Opt serves request s(2)2 at time r

(2)
2 = 1

Θ−1 + ε′. When
Opt returns to the origin at time 2

Θ−1 , the requests s1 and s
(1)
2 already have been released

and can thus be served on the way to position 1. Opt reaches position 1 at time Θ+1
Θ−1 and

can thus serve s3 at arrival. To sum it up, we have

Opt(σS+
3 ) = 2ε′ +D

(︃
0→ − 1

Θ− 1
+ ε′ → 1

)︃
=

Θ+ 1

Θ− 1
.
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Opt can do this even if c = 1 since s
(1)
2 is the only transportation request and no other

request lies between its starting position and destination.

Next, we compute SmarterStart’s completion time.

Lemma 6.17. Let Θ > 1 +
√
2. Then, we have

SmarterStart(σS+
3 ) =

4Θ

Θ− 1
− 4ε′.

Proof. SmarterStart’s walk is presented in green in Figure 6.7 for Θ = 2.75. For all
t ≥ 0, we have L(t, 0, (s1)) = 1. Thus, SmarterStart waits at position p1 = 0 at least
until time 1

Θ−1 . Since no other request are released until SmarterStart’s waiting period
is over the first schedule S1 is started at time t1 =

1
Θ−1 . SmarterStart reaches position

p2 = 1 at time v2 =
Θ

Θ−1 . For t ≥ v2 we have

L(t, 0, (s1, s
(1)
2 , s

(2)
2 )) = D

(︃
0→ − 1

Θ− 1
+ ε′ → 1

)︃
=

Θ+ 1

Θ− 1
− 2ε′.

Thus, SmarterStart postpones the second schedule S2 at least until

w2 =
Θ+ 1

(Θ− 1)2
− 2

Θ− 1
ε′.

By assumption, we have Θ > 1 +
√
2, which implies

w2 =
Θ+ 1

(Θ− 1)2
− 2

Θ− 1
ε′

Θ>1+
√
2

<
Θ

Θ− 1
= v2. (6.23)

Because of inequality (6.23), SmarterStart starts schedule S2 at time

t2 = max{v2, w2}
(6.23)
= v2 =

Θ

Θ− 1
,

which is before request s3 is released. The shortest schedule serving s
(2)
2 before serving s(1)2

has length

D

(︃
1→ − 1

Θ− 1
+ ε′ → 1

)︃
=

2Θ

Θ− 1
− 2ε′.

The shortest schedule that serves s(2)2 after serving s
(1)
2 has length

D

(︃
1→ Θ− 2

2Θ− 2
+ ε→ 1→ − 1

Θ− 1
+ ε′

)︃
=

2Θ

Θ− 1
− 3ε′.
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Thus, SmarterStart serves s(2)2 after serving s(1)2 and finishes S2 at position p3 = − 1
Θ−1+ε′

at time

v3 = t2 + L(t2, p2, (s
(1)
2 , s

(2)
2 )) =

3Θ

Θ− 1
− 3ε′

after s3 is released. We have for all t ≥ v3 the equation

L(t, 0, (s1, s
(1)
2 , s

(2)
2 , s3)) = D

(︃
0→ − 1

Θ− 1
ε′ → 1

)︃
=

Θ+ 1

Θ− 1
− 2ε′.

Therefore the final schedule is not started before time

w3 =
Θ+ 1

(Θ− 1)2
− 2

Θ− 1
ε′,

which is equal to w2 and thus smaller than t3, which again is smaller than v3. Therefore,
the starting time of the schedule S3 is the ending time of the schedule S2 and we have

t3 = v3 =
3Θ

Θ− 1
− 3ε′.

The schedule S3 has length

L(t3, p3, (s3)) = D

(︃
− 1

Θ− 1
+ ε→ 1

)︃
=

Θ

Θ− 1
− ε′.

To sum it up, we have

SmarterStart(σS+
3 ) = t3 + L(t3, p3, (s3)) =

4Θ

Θ− 1
− 4ε′.

Equipped with the Lemmas 6.16 and 6.17, we can compute a lower bound for the com-
petitive ratio of SmarterStart for open online Dial-a-Ride on the line for Θ > 1 +

√
2.

Lemma 6.18. Let Θ > 1 +
√
2 and ε > 0 sufficiently small. Then, we have

SmarterStart(σS+
3 )

Opt(σS+
3 )

=
4Θ

Θ+ 1
− ε =: glow3 (Θ)− ε.

In particular, we have

SmarterStart(σS+
3 )

Opt(σS+
3 )

> ρD,RS+ ≈ 2.6662

for Θ ∈ (1 +
√
2,∞) ≈ (2.4142,∞) and sufficiently small ε.
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0

pos

time

SmarterStart
Opt

Opt(σS+
3 ) SmarterStart(σS+

3 )

1

Θ−2
2Θ−2 + ε′

− 1
Θ−1 + ε′

Figure 6.7: SmarterStart’s and Opt’s walk serving σS+
3 with ε′ = 0.2 and Θ = 2.75. Request s1 is red ,

request s(1)2 is yellow , request s(2)2 is violet and request s3 is brown .

Proof. Let ε > 0 with ε < 1
10 and ε′ = Θ+1

4Θ−4 . By Lemma 6.17, we have

SmarterStart(σS+
3 )

Lem 6.17
=

4Θ

Θ− 1
− 4ε′.

By Lemma 6.16, we have

Opt(σS+
3 ) =

Θ + 1

Θ− 1
.

Since we have ε′ = Θ+1
4Θ−4ε, we finally obtain

SmarterStart(σS+
3 )

Opt(σS+
3 )

=
4Θ

Θ+ 1
− 4Θ− 4

Θ + 1
ε′ =

4Θ

Θ+ 1
− ε = glow3 (Θ)− ε.

The function glow3 is monotonically increasing on [1 +
√
2,∞). Therefore, we have

SmarterStart(σS+
3 )

Opt(σS+
3 )

− ε > glow3 (1 +
√
2)− ε = 2

√
2− ε > ρD,RS+

for all Θ ∈ (1 +
√
2,∞) and ε < 1

10 .

We combine all lower bounds constructed in this section into one general lower bound.
See Figure 6.8 for an illustration of all upper and lower bounds for the competitive ratio
of online Dial-a-Ride on the line.

Theorem 6.19. Let GDaR : R>1 → R>1 be a function with

GDaR(Θ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g
up
1 (Θ), for Θ ∈ (1,ΘD,R

S+ ],

g
up
2 (Θ), for Θ ∈ (ΘD,R

S+ , 2],

glow2 (Θ), for Θ ∈ (2, 1 +
√
2),

glow3 (Θ), for Θ ∈ [1 +
√
2,∞).
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Figure 6.8: Functions gup1 (green) / gup2 (red): upper bounds for competitive ratio for postponing / non-
postponing case, drawn solid if tight. Functions: glow2 and glow3 (blue): lower bounds for competitive
ratio. Red area: possible values for the competitive ratio, bounded by gup2 and glow2 / glow3 .

Then GDaR is general lower bound for the competitive ratio of SmarterStart for online
Dial-a-Ride on the line. The unique minimum of GDaR lies in Θ = ΘD,R

S+ and yields a lower
bound of

GDaR(Θ
D,R
S+ ) = ρD,RS+ ≈ 2.6662.

Proof. We have shown in Proposition 6.9 that gup1 (Θ) with Θ ∈ (1,ΘD,R
S+ ] is a lower bound

for the competitive ratio of SmarterStart for online Dial-a-Ride and in Proposition 6.13
that gup2 (Θ)withΘ ∈ (ΘD,R

S+ , 2] is a lower bound. Theorem 6.5 implies thatGDaR has unique
minimum in the interval (1, 2] atΘ = ΘD,R

S+ . It remains to show thatGDaR(Θ) > GDaR(Θ
D,R
S+ )

for all Θ ∈ (2,∞). This immediately follows from Lemmas 6.14 and 6.18.

The main theorem of this section follows by combining Theorem 6.5 and Theorem 6.19.

Theorem 6.20. The competitive ratio of SmarterStart for open online Dial-a-Ride on
the line with scaling parameter ΘD,R

S+ ≈ 1.7125 is exactly

ρD,RS+ = g
up
1 (ΘD,R

S+ ) = g
up
2 (ΘD,R

S+ ) ≈ 2.6662.

For every scaling parameter Θ > 1 with Θ ̸= ΘD,R
S+ the competitive ratio of SmarterStart

is strictly larger than ρD,RS+ .
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6.3 Bounds for the Open Online TSP on the Line

In the case of Smartstart, the Dial-a-Ride and the TSP version of the algorithm had
different competitive ratios. This is also true for SmarterStart. Since online TSP is
a special case of online Dial-a-Ride, all upper bounds, i.e., the bounds provided by
Proposition 6.3 and Proposition 6.4 on the competitive ratio of SmarterStart for open
online Dial-a-Ride on the line are also valid for open online TSP on the line. However, of
the lower bounds, only the bounds obtained by request sequences without transportation
requests are valid for open online TSP. To be more precise, only the bounds given by the
request sequence σS+

2 are valid, while the bounds given by σS+
1 , σS+

3 are not. Therefore,
we have only the lower bound g

up
2 (Θ) for Θ ∈ [12(1 +

√
5), 2] that tightly matches the

upper bound from Proposition 6.4 for the case that the final schedule is not postponed as
well as the lower bound glow2 (Θ) for Θ ∈ (2, 3]. We will see that the upper bound given in
Proposition 6.3 for the case that the final schedule is postponed is not tight for online TSP.
The reason for this is that online TSP allows a smaller bound for the length of a schedule.

Lemma 6.21. For every schedule Sj of SmarterStart for open online TSP, we have

L(tj , pj , σj) ≤
(︃
1 +

Θ− 1

2Θ + 1

)︃
Opt(σ).

Proof. By Lemma 4.5 and Lemma 6.1 we have

L(tj , pj , σj)
Lem 4.6
≤ min

{︃
Opt(σ) + d(pj , 0),

3

2
(Opt(σ)− tj−1)

}︃
Lem 6.1
≤ min

{︃
Opt(σ) + d(pj , 0),

3

2

(︃
Opt(σ)− 1

Θ− 1
d(pj , 0)

)︃}︃
≤

(︃
1 +

Θ− 1

2Θ + 1

)︃
Opt(σ)

since the minimum above is largest if the two terms are equal, which is the case for
d(pj , 0) =

Θ−1
2Θ+1Opt(σ).

Using Lemma 6.21, we can improve the bound of Proposition 6.3.

Proposition 6.22. In case SmarterStart for open online TSP postpones executing SN , we
have

SmarterStart(σ)
Opt(σ)

≤ 3Θ2 −Θ+ 1

2Θ2 −Θ− 1
=: g

up
1,TSP(Θ).
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Figure 6.9: Functions gup1,TSP (green) / gup2 (red): upper bounds for competitive ratio for postponing / non-
postponing case, drawn solid if tight. Function: glow2 (blue): lower bound for competitive ratio.
Green / red area: possible values for the competitive ratio, bounded by gup2 and glow2 .

Proof. Assume SmarterStart postpones the final schedule. Then Lemma 6.21 yields the
claimed bound:

SmarterStart(σ) (4.1)
= tN + L(tN , pN , σN )

(6.2)
=

1

Θ− 1
L(tN , 0, σ≤tN ) + L(tN , pN , σN )

(4.4)
≤ 1

Θ− 1
Opt(σ) + L(tN , pN , σN )

Lem 6.21
≤

(︃
1

Θ− 1
+ 1 +

Θ− 1

2Θ + 1

)︃
Opt(σ)

=
3Θ2 −Θ+ 1

2Θ2 −Θ− 1
Opt(σ).

Consequently, we obtain a general upper bound for the competitive ratio of SmarterStart
for online TSP on the line that is slightly stronger than our bound for the competitive ratio
of SmarterStart for online Dial-a-Ride on the line.

Theorem 6.23. The function max{gup1,TSP, g
up
2 } gives an upper bound for the competitive

ratio of SmarterStart for open online TSP on the line for all Θ > 1. Let ΘT,R
S+ ≈ 1.6789 be

the unique solution of gup1,TSP(Θ) = g
up
2 (Θ), i.e., of

3Θ2 −Θ+ 1

2Θ2 −Θ− 1
=

3Θ2 + 3

2Θ + 1
,
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in the interval (1,∞). Then, ΘT,R
S+ is the unique minimum of th function max{gup1,TSP, g

up
2 }.

SmarterStart with scaling parameter ΘT,R
S+ is ρT,RS+ -competitive with

ρT,RS+ := g
up
1,TSP(Θ

T,R
S+ ) = g

up
2 (ΘT,R

S+ ) ≈ 2.6288.

Proof. For the case where SmarterStart postpones the final schedule we have established
the upper bound

SmarterStart(σ)
Opt(σ)

≤ 3Θ2 −Θ+ 1

2Θ2 −Θ− 1
= g

up
1,TSP(Θ)

in Proposition 6.22, and for the case where SmarterStart starts the final schedule
immediately after the second to final schedule we have established the upper bound

SmarterStart(σ)
Opt(σ)

≤ 3Θ2 + 3

2Θ + 1
= g

up
2 (Θ)

in Proposition 6.4. Thus, the maximum of both bounds is a general upper bound for
the competitive ratio of SmarterStart for open online Dial-a-Ride on the line that is
independent of SmarterStart’s behavior.
Function g

up
1,TSP is strictly decreasing for Θ > 1 and function g

up
2 is strictly increasing

for Θ > 1. Therefore, the minimum of max{gup1,TSP, g
up
2 } in the interval (1,∞) lies in the

intersection point of gup1,TSP and g
up
2 , i.e., in ΘT,R

S+ ≈ 1.6789. The resulting upper bound for
the competitive ratio is

ρT,RS+ = g
up
1,TSP(Θ

T,R
S+ ) = g

up
2 (ρT,RS+ ) ≈ 2.6288.

See Figure 6.9 for a visualization of the upper bound for the competitive ratio of online
TSP on the line presented in Theorem 6.23 and the lower bound provided by Lemma 6.14.

In the following, we will present two request sequences σS+
4 and σS+

5 . We complement
the upper bound of Proposition 6.22 with a matching lower bound by computing the
ratio of SmarterStart’s and Opt’s completion time of σS+

4 for Θ ∈ (1, 1 +
√
3]. The

request sequence σS+
5 provides an additional lower bound for the competitive ratio of

SmarterStart for open online TSP on the line. However, first we take another look at
the request sequence σS+

2 : Since then competitive ratio ρD,RS+ of the Dial-a-Ride version of
SmarterStart is slightly larger than the upper bound ρT,RS+ for the competitive ratio of
the TSP version, the lower bound glow2 (Θ) provided by the request sequence σS+

2 holds for
slightly larger scaling parameters Θ then in the Dial-a-Ride version.
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Lemma 6.24. We have

SmarterStart(σS+
2 )

Opt(σS+
2 )

> ρT,RS+ ≈ 2.6288

for Θ ∈ (2, 3].

Proof. According to Lemma 6.14, we have

SmarterStart(σS+
2 )

Opt(σS+
2 )

=
5Θ2 − 3Θ + 1

2Θ2 −Θ− 1
− ε = glow2 (Θ)− ε

for Θ ∈ (2, 3] and sufficiently small ε > 0. Let ε < 1
50 . The function glow2 is monotonically

decreasing on (2, 3]. Therefore, we have

SmarterStart(σS+
2 )

Opt(σS+
2 )

= glow2 (3)− ε > 2.642− ε > ρT,RS+

for all Θ ∈ (2, 3] and ε < 1
50 .

We define the request sequence σS+
4 .

Definition 6.25. Let ε′ > 0 with ε′ < Θ
Θ−1 . We define

σS+
4 := (s1, s

(1)
2 , s

(2)
2 )),

with

s1 = (1, 1; 0)

s
(1)
2 =

(︃
2 +

1

Θ− 1
− ε′;

1

Θ− 1
+ ε′

)︃
,

s
(2)
2 =

(︃
− 1

Θ− 1
;

1

Θ− 1
+ ε′

)︃
.

Note that ε′ < Θ
Θ−1 implies a(1)2 > 1, i.e., the request s(1)2 appears to the right of the request

s1. We begin our analysis with the computation of Opt(σS+
4 ).

Lemma 6.26. We have
Opt(σS+

4 ) =
2Θ + 1

Θ− 1
.
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Proof. Opt waits at the origin until time ε′ and then performs the walk

0→ − 1

Θ− 1
→ 2 +

1

Θ− 1
− ε′.

An illustration of Opt’s walk is presented in blue in Figure 6.10 for Θ = ΘT,R
S+ . We show

that all requests can be served this way: Opt serves s(2)2 at time r
(2)
2 = 1

Θ−1 + ε′ and then
walks straight towards position 2 + 1

Θ−1 − ε′. At the time 2
Θ−1 + ε′, when Opt is at the

origin again, all remaining requests are already released. Therefore all remaining requests
can be served at arrival and we have

Opt(σS+
4 ) = ε′ +D

(︃
0→ − 1

Θ− 1
→ 2 +

1

Θ− 1
− ε′

)︃
=

2Θ+ 1

Θ− 1
.

Next, we compute SmarterStart’s completion time.

Lemma 6.27. Let Θ ≤ 1 +
√
3 and ε′ < 1. Then, we have

SmarterStart(σS+
4 ) =

3Θ2 −Θ+ 1

(Θ− 1)2
− 2Θ− 1

Θ− 1
ε′.

Proof. SmarterStart’s walk is presented in green in Figure 6.10 for Θ = ΘT,R
S+ . For all

t ≥ 0, we have L(t, 0, (s1)) = 1. Thus, SmarterStart starts its first schedule S1 at time
t1 =

1
Θ−1 and reaches position p2 = 1 at time v2 =

Θ
Θ−1 . For t ≥ v2 we have

L(t, 0, (s1, s
(1)
2 , s

(2)
2 )) = D

(︃
0→ − 1

Θ− 1
→ 2 +

1

Θ− 1
− ε′

)︃
=

2Θ+ 1

Θ− 1
− ε′.

Thus, the second schedule S2 is not started before time

w2 =
L
(︂
t, 0, (s1, s

(1)
2 , s

(2)
2 )
)︂

Θ− 1
=

2Θ + 1

(Θ− 1)2
− ε′

Θ− 1
.

By assumption, we have Θ ≤ 1+
√
3 and ε′ < 1, which implies that for the time v2 = Θ

Θ−1 ,
when SmarterStart reaches position p2 = 1, the inequality

w2 =
2Θ+ 1

(Θ− 1)2
− ε′

Θ− 1

ε′<1
>

Θ+ 2

(Θ− 1)2

Θ≤1+
√
3

≥ Θ

Θ− 1
= v2 (6.24)

holds. Note that inequality (6.24) also holds for slightly larger Θ if we let ε→ 0. Because
of inequality (6.24), SmarterStart has a waiting period and starts the schedule S2 at
time

t2 = max{v2, w2}
(6.24)
= w2 =

2Θ+ 1

(Θ− 1)2
− ε′

Θ− 1
.
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0

pos

time

SmarterStart
Opt

Opt(σS+
4 )

SmarterStart(σS+
4 )1

2 + 1
Θ−1 − ε′

− 1
Θ−1

Figure 6.10: SmarterStart’s and Opt’s walk serving σS+
4 with ε′ = 0.2 and Θ = ΘT,R

S+ . Request s1 is red ,
request s(1)2 is yellow and request s(2)2 is violet .

If SmarterStart serves s(2)2 before serving s
(1)
2 the time it needs is at least

D

(︃
1→ − 1

Θ− 1
→ 2 +

1

Θ− 1
− ε′

)︃
=

3Θ

Θ− 1
− ε′.

The best schedule that serves s(2)2 after serving s
(1)
2 needs time

D

(︃
1→ 2 +

1

Θ− 1
− ε′ → − 1

Θ− 1

)︃
=

3Θ

Θ− 1
− 2ε′.

Thus, SmarterStart serves s(2)2 after serving s
(1)
2 and we have

L(t2, p2, (s
(1)
2 , s

(2)
2 )) =

3Θ

Θ− 1
− 2ε′.

To sum it up, we have

SmarterStart(σS+
4 ) = t2 + L(t2, p2, (s

(1)
2 , s

(2)
2 )) =

3Θ2 −Θ+ 1

(Θ− 1)2
− 2Θ− 1

Θ− 1
ε′.

Equipped with the Lemmas 6.26 and 6.27, we compute a lower bound for the competitive
ratio of SmarterStart for open online TSP on the line for 1 < Θ ≤ 1 +

√
3.

Proposition 6.28. Let 1 < Θ ≤ 1 +
√
3. For every sufficiently small ε > 0 there is a request

sequence σS+
4 such that SmarterStart postpones the final schedule SN and such that

SmarterStart(σS+
4 )

Opt(σS+
4 )

=
3Θ2 −Θ+ 1

2Θ2 −Θ− 1
− ε =: g

up
1,TSP(Θ)− ε,

i.e., the upper bound established in Proposition 6.4 is tight for Θ ∈ (1, 1 +
√
3] ≈ (1, 2.7321].
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Figure 6.11: Functions gup1,TSP (green) / gup2 (red): upper bounds for competitive ratio for postponing / non-
postponing case, drawn solid if tight. Function: glow2 (blue): lower bound for competitive ratio.
Red area: possible values for the competitive ratio, bounded by gup2 and glow2 .

Proof. Let ε > 0 with ε < 2Θ−1
2Θ+1 and ε′ = 2Θ+1

2Θ−1ε < 1. By Lemma 6.27, we have

SmarterStart(σS+
4 ) =

3Θ2 −Θ+ 1

(Θ− 1)2
− 2Θ− 1

Θ− 1
ε′.

By Lemma 6.26, we have

Opt(σS+
4 ) =

2Θ + 1

Θ− 1
.

Since we have ε′ = 2Θ+1
2Θ−1ε, we finally obtain

SmarterStart(σS+
4 )

Opt(σS+
4 )

=
3Θ2 −Θ+ 1

2Θ2 −Θ− 1
− 2Θ− 1

2Θ + 1
ε′ =

3Θ2 −Θ+ 1

2Θ2 −Θ− 1
−ε = g

up
1,TSP(Θ)−ε.

Figure 6.13 is a visualization of the upper bound for the competitive ratio of online TSP on
the line presented in Theorem 6.23 together with the lower bounds of Propositions 6.28
and 6.13 as well as Lemma 6.24.

Recall that the optimal parameter ΘT,R
S+ established in Theorem 6.23 is the only positive,

real solution of the equation

3Θ2 −Θ+ 1

2Θ2 −Θ− 1
=

3Θ2 + 3

2Θ + 1
,
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which is ΘT,R
S+ ≈ 1.6789. Therefore, by Proposition 6.28 and Proposition 6.13 the parame-

ter ΘT,R
S+ lies in the interval where the upper bounds of Propositions 6.22 and 6.4 are both

tight. It remains to make sure that for all Θ that lie outside of this interval the competitive
ratio of SmarterStart is larger than ρD,RS+ ≈ 2.6288. For this, we examine the request
sequence σS+

5 .

Definition 6.29. Let Θ > 3 and ε′ > 0 with ε′ < Θ−2
Θ−1 . We define

σS+
5 := (s1, s

(1)
2 , s

(1)
2 , s3)

with

s1 = (1; 0),

s
(1)
2 =

(︃
2Θ− 3

Θ− 1
− ε′;

1

Θ− 1
+ ε′

)︃
,

s
(2)
2 =

(︃
1

Θ− 1
;

1

Θ− 1
+ ε′

)︃
,

s3 =

(︃
2Θ− 3

Θ− 1
− ε′;

Θ

Θ− 1
+ ε′

)︃
.

Note that ε′ < Θ−2
Θ−1 implies 2Θ−3

Θ−1 − ε′ > 1, i.e., the position of requests s(1)2 and s3 to
the right of the position of request s1. We begin our analysis with the computation of
Opt(σS+

5 ).

Lemma 6.30. Let ε′ < Θ−3
Θ−1 . We have

Opt(σS+
5 ) =

2Θ− 3

Θ− 1
.

Proof. An illustration of Opt’s walk is presented in blue in Figure 6.12 for Θ = 3.5. Opt
waits at the origin until time ε′ and then performs the walk

0→ 2Θ− 3

Θ− 1
− ε′.

We show that all requests are served this way: This is clear for the requests s1 and s
(2)
2 .

The position of the remaining two requests s(1)2 and s3 is reached at time 2Θ−3
Θ−1 . Since we

have
2Θ− 3

Θ− 1

ε′<Θ−3
Θ−1

>
Θ

Θ− 1
+ ε′ = r3 > r

(1)
2 ,
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both requests can be served at arrival and we have

Opt(σS+
5 ) = ε′ +D

(︃
0→ 2Θ− 3

Θ− 1
− ε′

)︃
=

2Θ− 3

Θ− 1
.

Next, we compute SmarterStart’s completion time.

Lemma 6.31. We have

SmarterStart(σS+
5 ) =

6Θ− 10

Θ− 1
− 3ε′.

Proof. SmarterStart’s walk is presented in green in Figure 6.12 for Θ = 3.5. For all
t ≥ 0, we have L(t, 0, (s1)) = 1. Thus, SmarterStart starts its first schedule S1 at time
t1 =

1
Θ−1 and reaches position p2 = 1 at time v2 =

Θ
Θ−1 . For t ≥ v2 we have

L(t, 0, (s1, s
(1)
2 , s

(2)
2 )) = D

(︃
0→ 2Θ− 3

Θ− 1
− ε′

)︃
=

2Θ− 3

Θ− 1
− ε′.

Thus, the second schedule S2 is not started before time

w2 =
L
(︂
t, 0, (s1, s

(1)
2 , s

(2)
2 )
)︂

Θ− 1
=

2Θ− 3

(Θ− 1)2
− ε′

Θ− 1
.

For the time v2 =
Θ

Θ−1 , when SmarterStart reaches position p2 = 1, we have

w2 =
2Θ− 3

(Θ− 1)2
− ε′

Θ− 1

Θ>1
<

Θ

Θ− 1
= v2. (6.25)

Because of inequality (6.25), SmarterStart does not postpone the schedule S2 at time

t2 = max{v2, w2}
(6.25)
= v2 =

Θ

Θ− 1
.

The shortest schedule serving s
(2)
2 before serving s

(1)
2 has length

D

(︃
1→ 1

Θ− 1
→ 2Θ− 3

Θ− 1
− ε′

)︃
=

3Θ− 6

Θ− 1
− ε′.

The shortest schedule that serves s(2)2 after serving s
(1)
2 needs time

D

(︃
1→ 2Θ− 3

Θ− 1
− ε′ → 1

Θ− 1

)︃
=

3Θ− 6

Θ− 1
− 2ε′.
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Thus, SmarterStart serves s(2)2 after serving s
(1)
2 and we have

L(t2, p2, (s
(1)
2 , s

(2)
2 )) =

3Θ− 6

Θ− 1
− 2ε′.

Schedule S2 ends at time

v3 = t2 + L(t2, p2, (s
(1)
2 , s

(2)
2 )) =

4Θ− 6

Θ− 1
− 2ε′

at position p3 =
1

Θ−1 . For t ≥ v3 we have

L(t, 0, (s1, s
(1)
2 , s

(2)
2 , s3)) = D

(︃
0→ 2Θ− 3

Θ− 1
− ε′

)︃
=

2Θ− 3

Θ− 1
− ε′.

Thus, we have w3 = w2, which is smaller than v2 by inequality (6.25), which again is
smaller than v3. Therefore, the final schedule S3 is started at time

t3 = v3 =
4Θ− 6

Θ− 1
− 2ε′.

For all t ≥ v3, we have

L(t, p3, (s3)) = D

(︃
1

Θ− 1
→ 2Θ− 3

Θ− 1
− ε′

)︃
=

2Θ− 4

Θ− 1
− ε′.

To sum it up, we have

SmarterStart(σS+
5 ) = t3 + L(t3, p3, (s3)) =

6Θ− 10

Θ− 1
− 3ε′.

Equipped with the Lemmas 6.30 and 6.31, we compute a lower bound for the competitive
ratio of SmarterStart for open online TSP on the line for Θ > 3.

Lemma 6.32. Let Θ > 3 and ε > 0 sufficiently small. Then, we have

SmarterStart(σS+
5 )

Opt(σS+
5 )

=
6Θ− 10

2Θ− 3
− ε =: glow5 (Θ)− ε.

In particular, we have

SmarterStart(σS+
5 )

Opt(σS+
5 )

> ρT,RS+ ≈ 2.6288.

for Θ ∈ (3,∞) and sufficiently small ε.
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time

SmarterStart
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Opt(σS+
5 ) SmarterStart(σS+

5 )

1

2Θ−3
Θ−1 − ε′

1
Θ−1

Figure 6.12: SmarterStart’s and Opt’s walk serving σS+
5 with ε′ = 0.2 and Θ = 3.5. Request s1 is red ,

request s(1)2 is yellow , request s(2)2 is violet and request s3 is brown .

Proof. Let ε > 0 with ε < min{3Θ−3
2Θ−3(

Θ−3
Θ−1),

1
50} and ε′ = 2Θ−3

3Θ−3ε < Θ−3
Θ−1 . By Lemma 6.31,

we have

SmarterStart(σS+
5 ) =

6Θ− 10

Θ− 1
− 3ε′.

By Lemma 6.30, we have

Opt(σS+
5 ) =

2Θ− 3

Θ− 1
.

Since we have ε′ = 2Θ−3
3Θ−3 , we obtain

SmarterStart(σS+
5 )

Opt(σS+
5 )

=
6Θ− 10

2Θ− 3
− 3Θ− 3

2Θ− 3
ε′ =

6Θ− 10

2Θ− 3
− ε = glow5 (Θ)− ε.

The function glow5 is monotonically increasing on the interval [3,∞). Therefore, we have

SmarterStart(σS+
5 )

Opt(σS+
5 )

> glow5 (3)− ε =
8

3
− ε > ρT,RS+ ≈ 2.6288

for all Θ > 3 and ε < 1
50 .

We combine all lower bounds constructed in this section into one general lower bound.
See Figure 6.13 for an illustration of all upper and lower bounds for the competitive ratio
og SmarterStart for open online TSP on the line.
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Figure 6.13: Functions gup1,TSP (green) / gup2 (red): upper bounds for competitive ratio for postponing /
non-postponing case, drawn solid if tight. Functions: glow2 and glow5 (blue): lower bounds for
competitive ratio. Red area: possible values for the competitive ratio, bounded by gup2 and
glow2 / glow5 .

Theorem 6.33. Let GTSP : R>1 → R>1 be a function with

GTSP(Θ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g
up
1,TSP(Θ), for Θ ∈ (1,ΘT,R

S+ ],

g
up
2 (Θ), for Θ ∈ (ΘT,R

S+ , 2],

glow2 (Θ), for Θ ∈ (2, 3],

glow5 (Θ), for Θ ∈ (3,∞).

Then GTSP is a general lower bound for the competitive ratio of SmarterStart for open
online TSP on the line. The unique minimum of GTSP lies in Θ = ΘT,R

S+ and yields a lower
bound of

GTSP(Θ
T,R
S+ ) = ρT,RS+ ≈ 2.6288.

Proof. We have shown in Proposition 6.28 that g
up
1,TSP(Θ) with Θ ∈ (1, 2) is a lower

bound for the competitive ratio of SmarterStart for open online TSP on the line and
in Proposition 6.13 that gup2 (Θ) with Θ ∈ [12(1 +

√
5), 2] is a lower bound. Theorem 6.23

implies that GTSP has its unique minimum in the interval (1, 2] at Θ = ΘT,R
S+ . It remains

to show that GTSP(Θ) > GTSP(Θ
T,R
S+ ) for all Θ > 2. This immediately follows from the

Lemmas 6.24 and 6.32.

The main theorem of this section follows by combining Theorem 6.23 and Theorem 6.33.
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Theorem 6.34. The competitive ratio of SmarterStart for open online TSP on the line
with scaling parameter ΘT,R

S+ ≈ 1.6789 is exactly

ρT,RS+ = g
up
1,TSP(Θ

T,R
S+ ) = g

up
2 (ΘT,R

S+ ) ≈ 2.6288.

For every other Θ > 1 with Θ ̸= ΘT,R
S+ the competitive ratio of SmarterStart is strictly

larger than ρT,RS+ .

6.4 Upper Bounds in the General Setting

It remains to examine SmarterStart for general continuous metric spaces. Since the real
line is a special case of a continuous metric space, every lower bound established in the
previous sections also holds for general continuous metric spaces. This is not necessarily
true for the upper bounds we have presented. However, the upper bound g

up
1 for open

online Dial-a-Ride presented in Proposition 6.3 and the upper bound g
up
1,TSP for open

online TSP presented in Proposition 6.22 are also valid for general continuous metric
spaces. The upper bound for the non-postponing case presented in Proposition 6.4 relies
on Proposition 4.10 which uses line-specific features. Therefore, we need to compute a
new upper bound for the non-postponing case.

Proposition 6.35. If SmarterStart for open online Dial-a-Ride does not postpone exe-
cuting SN , we have

SmarterStart(σ)
Opt(σ)

≤ Θ+ 1 =: g
up
2,X(Θ).

Proof. Assume algorithm SmarterStart does not postpone the final schedule, i.e., Smar-
terStart starts the final schedule SN either immediately after finishing SN−1 or immedi-
ately after the last request is released.
Let the latter be the case. Then, the final schedule is started at the release time rn of

the last request. Since Opt also has to serve the last request, we have

Opt(σ) ≥ rn. (6.26)

In total we have

SmarterStart(σ) (4.1)
= tN + L(tN , pN , σN )

(6.4)
= rn + L(tN , pN , σN )

(6.26)
≤ Opt(σ) + L(tN , pN , σN )
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Lem 6.2
≤

(︃
2 +

Θ− 1

Θ + 1

)︃
Opt(σ)

Θ > 1
< (Θ + 1)Opt(σ).

Now, consider the case that the final schedule is started immediately after the second to
final schedule. Let sOptN be the first request of σN that is served by Opt and let aOptN be its
starting position and rOptN be its release time. We have

SmarterStart(σ) (4.1)
= tN + L(tN , pN , σN )

(6.3)
= tN−1 + L(tN−1, pN−1, σN−1) + L(tN , pN , σN )

tN ≥ rOptN

≤ tN−1 + L(tN−1, pN−1, σN−1) + L(rOptN , pN , σN ). (6.27)

Since Opt serves all requests of σN after time rOptN , starting with a request with starting
position aOptN , we have

Opt(σ) ≥ rOptN + L(rOptN , aOptN , σN ). (6.28)

Furthermore, we have
rOptN > tN−1 (6.29)

since otherwise sOptN ∈ σN−1 would hold. This gives us

SmarterStart(σ)
(6.27)
≤ tN−1 + L(tN−1, pN−1, σN−1) + L(rOptN , pN , σN )

(4.3)
≤ tN−1 + L(tN−1, pN−1, σN−1) + |aOptN − pN |

+L(rOptN , aOptN , σN )

(6.28)
≤ tN−1 + L(tN−1, pN−1, σN−1) + |aOptN − pN |+ Opt(σ)− rOptN

(6.29)
< L(tN−1, pN−1, σN−1) + |aOptN − pN |+ Opt(σ)

(4.3)
≤ |pN−1|+ L(tN−1, 0, σN−1) + |aOptN − pN |+ Opt(σ)

Lem 6.1
≤ (Θ− 1)tN−2 + L(tN−1, 0, σN−1) + |aOptN − pN |+ Opt(σ).

(6.30)

We have
Opt(σ) ≥ tN−2 + |aOptN − pN |, (6.31)
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because Opt has to visit both aOptN and pN after time tN−2: It has to visit aOptN to collect
sOptSN

and it has to visit pN to deliver some request of σN−1. In the case Θ ≥ 2, we have

SmarterStart(σ)
(6.30)
< (Θ− 1)tN−2 + L(tN−1, 0, σN−1) + |aOptN − pN |+ Opt(σ)

(6.31)
≤ 2Opt(σ) + L(tN−1, 0, σN−1) + (Θ− 2)tN−2

(6.31),(4.4)
≤ (Θ + 1)Opt(σ).

Thus, we may assume Θ < 2. Similarly as in inequality (6.13), we get

SmarterStart(σ)
(6.30)
< (Θ− 1)tN−2 + L(tN−1, 0, σN−1) + |aOptN − pN |+ Opt(σ)

(6.31)
≤ ΘOpt(σ) + L(tN−1, 0, σN−1) + (2−Θ)|aOptN − pN |

(6.1)
≤ ΘOpt(σ) + (Θ− 1)tN−1 + (2−Θ)|aOptN − pN |
≤ (2Θ− 1)Opt(σ) + (2−Θ)|aOptN − pN |,

where the last inequality follows, because of Opt(σ) ≥ tN−1.

The upper bound g
up
2,X(Θ) is slightly weaker than the upper bound g

up
2 (Θ). We use

Proposition 6.35 to compute a general upper bound for the competitive ratio of Smarter-
Start for open online Dial-a-Ride on general continuous metric spaces.

Theorem 6.36. The function max{gup1 , g
up
2,X} gives an upper bound for the competitive ratio

of SmarterStart for open online Dial-a-Ride in the general setting for all Θ > 1. Let
ΘD,X

S+ ≈ 1.6956 be the unique solution of gup1 (Θ) = g
up
2,X(Θ), i.e., of

2Θ2 −Θ+ 1

Θ2 − 1
= Θ + 1,

in the interval (1,∞). Then, ΘD,X
S+ is the unique minimum of the function max{gup1 , g

up
2,X}

and SmarterStart with scaling parameter ΘD,X
S+ is ρD,XS+ -competitive with

ρD,XS+ := g
up
1 (ΘD,X

S+ ) = g
up
2,X(ΘD,R

S+ ) ≈ 2.6956.

Proof. For the case where SmarterStart does wait before starting the final schedule we
have established the upper bound

SmarterStart(σ)
Opt(σ)

≤ 2Θ2 −Θ+ 1

Θ2 − 1
= g

up
1 (Θ)
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Figure 6.14: Functions gup1 (green) / gup2,X (red): upper bounds for competitive ratio for postponing / non-
postponing case, drawn solid if tight. Functions: glow2 and glow3 (blue): lower bounds for competi-
tive ratio. Red area: possible values for the competitive ratio, bounded by gup2 and gup2,X as well
as glow2 and glow3 .

in Proposition 6.3, and for the case where SmarterStart starts the final schedule imme-
diately after the second to final schedule we have established the upper bound

SmarterStart(σ)
Opt(σ)

≤ Θ+ 1 = g
up
2,X(Θ)

in Proposition 6.35. Thus, the maximum of both bounds is a general upper bound for
the competitive ratio of SmarterStart for open online Dial-a-Ride on the line that is
independent of SmarterStart’s behavior.
Function g

up
1 is strictly decreasing for Θ > 1 and function g

up
2,X is strictly increasing

for Θ > 1. Therefore, the minimum of max{gup1 , g
up
2,X} in the interval (1,∞) lies in the

intersection point of gup1 and g
up
2,X , i.e., in ΘD,X

S+ ≈ 1.6956. The resulting upper bound for
the competitive ratio is

ρD,XS+ = g
up
1 (ΘD,X

S+ ) = g
up
2,X(ρD,XS+ ) ≈ 2.6956.

See Figure 6.14 for a visualization of the general upper bound for the competitive ratio of
SmarterStart for open online Dial-a-Ride presented in Theorem 6.36 together with the
general lower bound presented in Theorem 6.19.

We use Proposition 6.35 to compute a general upper bound for the competitive ratio of
SmarterStart for open online TSP on general contiuous metric spaces.

174



6.4 Upper Bounds in the General Setting
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Figure 6.15: Functions gup1,TSP (green) / gup2,X (red): upper bounds for competitive ratio for postponing /
non-postponing case, drawn solid if tight. Functions: gup2 , glow2 , glow5 (blue): lower bounds for
competitive ratio. Red area: possible values for the competitive ratio, bounded by gup2,X and gup2
as well as glow2 and glow5 .

Theorem 6.37. The function max{gup1,TSP, g
up
2,X} gives an upper bound for the competitive

ratio of SmarterStart for open online TSP in the general setting for all Θ > 1. Let
ΘT,X

S+ ≈ 1.6625 be the unique solution of gup1,TSP(Θ) = g
up
2,X(Θ), i.e., of

3Θ2 −Θ+ 1

2Θ2 −Θ− 1
= Θ + 1,

in the interval (1,∞). Then, ΘT,X
S+ is the unique minimum of the function max{gup1,TSP, g

up
2,X}

and SmarterStart with scaling parameter ΘT,X
S+ is ρT,XS+ -competitive with

ρT,XS+ := g
up
1,TSP(Θ

T,X
S+ ) = g

up
2,X(ΘT,R

S+ ) ≈ 2.6625.

Proof. For the case where SmarterStart does wait before starting the final schedule we
have established the upper bound

SmarterStart(σ)
Opt(σ)

≤ 3Θ2 −Θ+ 1

2Θ2 −Θ− 1
= g

up
1,TSP(Θ)

in Proposition 6.22, and for the case where SmarterStart starts the final schedule
immediately after the second to final schedule we have established the upper bound

SmarterStart(σ)
Opt(σ)

≤ Θ+ 1 = g
up
2,X(Θ)
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in Proposition 6.35. Thus, the maximum of both bounds is a general upper bound for
the competitive ratio of SmarterStart for open online Dial-a-Ride on the line that is
independent of SmarterStart’s behavior.
Function g

up
1,TSP is strictly decreasing for Θ > 1 and function g

up
2,X is strictly increasing

for Θ > 1. Therefore, the minimum of max{gup1,TSP, g
up
2,X} in the interval (1,∞) lies in the

intersection point of gup1,TSP and g
up
2,X , i.e., in ΘT,X

S+ ≈ 1.6625. The resulting upper bound
for the competitive ratio is

ρT,XS+ = g
up
1,TSP(Θ

T,X
S+ ) = g

up
2,X(ρT,XS+ ) ≈ 2.6625.

See Figure 6.15 for a visualization of the general upper bound for the competitive ratio of
SmarterStart for open online TSP presented in Theorem 6.37 together with the general
lower bound presented in Theorem 6.33.

6.5 Closed Version of Online DIAL-A-RIDE and TSP

SmarterStart for closed online Dial-a-Ride behaves very similar to Smartstart for
closed online Dial-a-Ride. The reason for this is that in the closed version every schedule
starts in the origin. Thus, the only difference between SmarterStart’s and Smartstart’s
waiting routine is that SmarterStart uses all known requests to compute its waiting
time, while Smartstart only uses the unserved requests. We will see that this has no
impact on the competitive ratio, i.e., the closed version of SmarterStart has the same
competitive ratio as Smartstart of exactly 2 for Dial-a-Ride and TSP on the line as well
as on general continuous metric spaces.

As in the open version of SmarterStart, we distinguish between two cases depending
on whether or not the final schedule is postponed. We start with the case that the final
schedule is postponed.

Proposition 6.38. In case SmarterStart for closed online Dial-a-Ride or closed online
TSP postpones executing SN , we have

SmarterStart(σ)
Opt(σ)

≤ Θ

Θ− 1
=: h

up
1 (Θ).

Proof. Assume SmarterStart postpones its final schedule, then we have

SmarterStart(σ) (4.1)
= tN + L(tN , 0, σN )

(6.2)
=

L(tN , 0, σ≤tN )

Θ− 1
+ L(tN , 0, σN )
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Lem 4.4
≤ Θ

Θ− 1
Opt(σ).

Next, we examine the case that the final schedule is not postponed by the waiting routine
and is instead started directly after the second to final schedule is finished.

Proposition 6.39. If SmarterStart for closed online Dial-a-Ride or closed online TSP
does not postpone the final schedule, we have

SmarterStart(σ)
Opt(σ)

≤ max

{︃
Θ+ 2

2
,Θ

}︃
=: h

up
2 (Θ).

Proof. Assume algorithm SmarterStart does not postpone the final schedule, i.e., Smar-
terStart starts the final schedule SN either immediately after finishing SN−1 or im-
mediately after the last requests are released. Let the latter be the case, then the final
schedule is started at the release time rn of the last request. Since Opt also has to serve
the last request, we have Opt(σ) ≥ rn and since the execution of the final schedule is not
postponed, we have rn > 1

Θ−1L(tN , 0, σ), i.e.,

L(tN , 0, σN ) ≤ L(tN , 0, σ) < (Θ− 1)Opt(σ). (6.32)

In total we have

Smartstart(σ) (4.1)
= tN + L(tN , 0, σN )

(6.4)
= rn + L(tN , 0, σN )

(6.32)
< ΘOpt(σ)

≤ max

{︃
Θ+ 2

2
,Θ

}︃
Opt(σ).

Now let the final schedule be started immediately after the second to final schdedule. We
have

SmarterStart(σ) (4.1)
= tN + L(tN , 0, σN )

(6.3)
= tN−1 + L(tN−1, 0, σN−1) + L(tN , 0, σN )

(4.4)
≤ tN−1 + L(tN−1, 0, σ≤tN ) + L(tN , 0, σN )

(6.2)
≤ ΘtN−1 + L(tN , 0, σN ). (6.33)
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Let sOptN be the first request of σN that is served by Opt and let aOptN be its starting position
and rOptN be its release time. We have

Opt(σ) ≥ rOptN + L(rOptN , aOptN , σN ) ≥ tN−1 + L(tN , aOptN , σN ). (6.34)

Since Opt has to return to the origin after serving sOptN , we have

Opt(σ) ≥ rOptN + d(0, aOptN ) ≥ tN−1 + d(0, aOptN ) (6.35)

and
d(0, aOptN ) ≤ 1

2
Opt(σ). (6.36)

To sum it up, we have

SmarterStart(σ)
(6.33)
≤ ΘtN−1 + L(tN , 0, σN )

(4.3)
≤ ΘtN−1 + d(0, aOptN ) + L(tN , aOptN , σN )

(6.35)
≤ (Θ− 1)tN−1 + d(0, aOptN ) + Opt(σ)

(6.35)
≤ max{0,Θ− 2}tN−1 +max{2−Θ, 0}d(0, aOptN )

+max{Θ, 2}Opt(σ)
(6.36)
≤ max{0,Θ− 2}tN−1 +max

{︃
Θ+ 2

2
, 2

}︃
Opt(σ)

Opt(σ) > tN−1

< max

{︃
Θ+ 2

2
,Θ

}︃
Opt(σ).

We summarize the upper bounds for the competitive ratio of SmarterStart for closed
online Dial-a-Ride and closed online TSP provided by the proposition above into one
general upper bound.

Theorem 6.40. The function max{hup1 , h
up
2 } gives an upper bound for the competitive ratio

of SmarterStart for closed online Dial-a-Ride and closed online TSP for all Θ > 1. Let
Θclosed

S+ = 2 be the unique solution of hup1 (Θ) = h
up
2 (Θ), i.e., of

Θ

Θ− 1
= max

{︃
Θ+ 2

2
,Θ

}︃
,

in the interval (1,∞). Then, Θclosed
S+ is the unique minimum of the function max{hup1 , h

up
2 }

and SmarterStart with scaling parameter Θclosed
S+ is ρclosedS+ -competitive with

ρclosedS+ := h
up
1 (Θclosed

S+ ) = h
up
2 (Θclosed

S+ ) = 2.
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Proof. For the case where SmarterStart postpones the final schedule we have established
the upper bound

SmarterStart(σ)
Opt(σ)

≤ Θ

Θ− 1
= h

up
1 (Θ)

in Proposition 6.38, and for the case where SmarterStart does not postpone the final
schedule we have established the upper bound

SmarterStart(σ)
Opt(σ)

≤ max

{︃
Θ+ 2

2
,Θ

}︃
= h

up
2 (Θ)

in Proposition 6.39. Thus, the maximum of both bounds is a general upper bound for the
competitive ratio of SmarterStart for closed online Dial-a-Ride and closed online TSP
that is independent of SmarterStart’s behavior before the final schedule.

The function h
up
1 is strictly decreasing forΘ > 1 and the function h

up
2 is strictly increasing

for Θ > 1. Therefore, the minimum of max{hup1 , h
up
2 } in the interval (1,∞) lies in the

intersection point of hup1 and h
up
2 , i.e., in Θclosed

S+ = 2. The resulting upper bound for the
competitive ratio is

ρclosedS+ = h
up
1 (Θclosed

S+ ) = h
up
2 (ρclosedS+ ) = 2.

The main theorem of this section follows by combining Theorem 6.40 and Theorem 4.3.

Theorem 6.41. The competitive ratio of SmarterStart for closed online Dial-a-Ride and
closed online TSP with scaling parameter Θclosed

S+ = 2 is exactly

ρclosedS+ = h
up
1 (Θclosed

S+ ) = h
up
2 (Θclosed

S+ ) = 2.

There is no scaling parameter Θ > 1 with Θ ̸= ΘD,R
S+ that yields a better competitive ratio

than ρclosedS+ .

Conclusion and Outlook

We provided a conclusive analysis for SmarterStart in this chapter. We computed tight
bounds for the competitive ratio for open online Dial-a-Ride and open online TSP on the
line and provided upper bounds for the open online Dial-a-Ride and open online TSP in
the general setting. For the closed version, we provided tight bounds for the competive
ratio of online Dial-a-Ride and online TSP for both the real line and the general setting.
For the open version of online Dial-a-Ride on the line we have shown a tight competitive
ratio of 2.6662: The upper bound was proven in Theorem 6.5 and the lower bound was
proven in Theorem 6.19. For the open version of online TSP on the line we have shown
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a tight competitive ratio of 2.6288: The upper bound was proven in Theorem 6.23 and
the lower bound was proven in Theorem 6.33. While we have tight results on the line
for open online TSP, it remains unclear if SmarterStart performs worse in the general
setting: We provided an upper bound of 2.6956 for the competitive ratio of SmarterStart
for open online Dial-a-Ride and an upper bound of 2.6625 for the competitive ratio of
SmarterStart for open online TSP. The lower bounds obtained on the real line carry
over to the general setting. See Table 2.8 for a summary of the results.
If we compare SmarterStart with Smartstart, we see that SmarterStart has a

better competitive ratio for the open version of the problems, while achieving the same
competitive ratio as Smartstart for the closed version. Consequently, SmarterStart
further improves the upper bound for the competitive ratio of online Dial-a-Ride on
the real line as well as on general continuous metric spaces, improving the best known
bound from Smartstart’s 2.9377 to 2.6662 on the real line and from 3 to 2.6956 in the
general setting. Moreover, for open online Dial-a-Ride on the line, the gap between the
upper bound for the competitive ratio of SmarterStart of 2.6662 and the best known
lower bound for the competitive ratio of schedule-based algorithms of 2.5 is rather small.
Nonetheless, it remains unclear, if there is a better schedule-based algorithm for open
online Dial-a-Ride on the line. For open online TSP on the line the gap is a bit larger:
While SmarterStart is roughly 2.6288-competitive, our lower bound for schedule-based
algorithms is 7

3 . Again, it remains unclear, if there is a better schedule-based algorithm for
open online TSP on the line.
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After having analyzed schedule-based algorithms thoroughly, we now examine an online
algorithm for online Dial-a-Ride and online TSP that has a completely different design
philosophy. Like schedule-based algorithms, the algorithm Replan (see Algorithm 5)
executes optimum offline walks. However, unlike schedule-based algorithms, these walks
are recomputed every time a new request is released.

Algorithm 5 Replan
repeat

if new request appears then
Start optimal walk serving unserved requests Rt starting from current position

The algorithm Replan was first examined in [5]. Ascheuer et al. showed that the algorithm
is 5

2 -competitive for closed online Dial-a-Ride with capacity c = 1. Krumke [32], one of
the authors of [5], examined the algorithm more thoroughly in his PhD thesis. He showed
that the algorithm is 7

2 -competitive for closed online Dial-a-Ride with capacity c > 1 and
3-competitive for open online Dial-a-Ride with capacity c = 1 as well as 9

2 -competitive for
open online Dial-a-Ride with capacity c > 1. For open online TSP, Ausiello et al. showed
that the algorithm has a tight competitive ratio of 5

2 [8]. Replan was the best known
online algorithm for open online TSP until Bjelde et al. published a 2.4142-competitive
algorithm in [13]. See Table 2.4 for a summary of known results.
In this thesis, we present a lower bound of 2 for the competitive ratio of Replan for

closed online TSP on the line (Thm 7.4). We complement this lower bound with a matching
upper bound for closed online TSP on the line (Thm 7.5). The upper bound for closed
online TSP in the general setting remains 5

2 . For closed online Dial-a-Ride, we provide
an upper bound of 3 for capacity c > 1 and on the line (Thm 7.6) and an upper bound
of 5

2 for capacity c =∞ in the general setting (Thm 7.7). For the open version of online
Dial-a-Ride, we improve Krumke’s upper bound of 9

2 for capacity c > 1 to a bound of 4
for capacity 1 < c <∞ (Thm 7.8) and to a bound of 3 for capacity c =∞ (Thm 7.9). We
begin our analysis with the lower bound construction for closed online Dial-a-Ride and
closed online TSP and analyze open online TSP and online Dial-a-Ride in the second
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section of this chapter.

7.1 Bounds for Closed Online DIAL-A-RIDE and online TSP

We start by proving that the competitive ratio of the closed version of Replan is larger
or equal to 2. Essentially, the idea of the lower bound construction is to force the server
to stay in ε range to the origin until the last request is released. This way, after the last
request is released, Replan still has to move almost the complete distance Opt moves.
Consequently, Replan’s total completion time is almost twice as large as Opt’s. To be
more precise: For every sufficiently small ε > 0, we provide a request sequence σcl

RP,m such
that

Replan(σcl
RP,m) = (2− ε)Opt(σcl

RP,m).

We start by defining the request sequence σcl
RP,m.

Definition 7.1. Let m ∈ N with m ≥ 2. We define

σcl
RP,m := (sL0 , s

R, sL1 , . . . , s
L
2m−2)

with

sL0 =

(︃
− 1

m
; 0

)︃
,

sR =

(︃
1− 1

m
;
1

m

)︃
,

sLi =

(︃
− 1

m
;
i

m
+

1

2m

)︃
for i ∈ {1, . . . , 2m− 2}.

We begin our analysis of σcl
RP,m with the computation of Opt(σcl

RP,m).

Lemma 7.2. We have
Opt(σcl

RP,m) = 2.

Proof. Opt performs the walk

0→ 1− 1

m
→ − 1

m
→ 0.

An illustration of Opt’s walk is presented in blue in Figure 7.1. We show that all requests
are served this way: Opt collects sR at time 1 − 1

m which is after time rR = 1
m since
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m ≥ 2. The last request on the other side of the origin at position − 1
m is released at time

rL2m−2 = 2− 3
2m , which is before Opt reaches position aLi = − 1

m at time 2− 1
m . Therefore,

we have
Opt(σcl

RP,m) = D

(︃
0→ 1− 1

m
→ − 1

m
→ 0

)︃
= 2.

Next, we compute Replan’s completion time.

Lemma 7.3. We have
Replan(σcl

RP,m) = 4− 2

m
.

Proof. Replan’s walk is presented in green in Figure 7.1. We show that at the release
times of sLi for i ≥ 1, Replan is always at position − 1

2m . Since no requests except sL0 are
released before time 1

m , Replan serves request sL0 at time 1
m , i.e., Replan is at position

− 1
m at time 1

m and then moves towards the origin. Thus, at time rL1 = 3
2m , when sL1 is

released, Replan is at position − 1
2m as claimed. Now assume, Replan is at position − 1

2m
at time rLi = 2i+1

2m , when sLi is released. The shortest walk serving sR before sLi has length

D

(︃
− 1

2m
→ 1− 1

m
→ − 1

m
→ 0

)︃
= 2 +

1

2m
.

On the other hand, the shortest walk serving sR after sLi has length

D

(︃
− 1

2m
→ − 1

m
→ 1− 1

m
→ 0

)︃
= 2− 1

2m
.

Thus, Replan proceeds to serve sLi first and then walks towards aR. Therefore, Replan is
again at position 1

2m at time rLi+1 = 2(i+1)+1
2m . In particular, Replan is at position 1

2m at
time rL2m−2 = 2− 3

2m . In total, we have

Replan(σcl
RP,m) = 2− 3

2m
+D

(︃
− 1

2m
→ − 1

m
→ 1− 1

m
→ 0

)︃
= 4− 2

m
.

Equipped with Lemmas 7.2 and 7.3, we can compute a lower bound for the competitive
ratio of Replan for closed online TSP on the line.

Theorem 7.4. For every sufficiently small ε > 0, we have

Replan(σcl
RP,m)

Opt(σcl
RP,m)

≥ 2− ε.
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0

pos

time

Replan
Opt

Opt(σcl
RP,m) Replan(σcl

RP,m)1
m

1− 1
m

Figure 7.1: Replan’s and Opt’s walk serving σcl
RP,m with m = 6. Request sR is yellow and requests sLi are

red .

Proof. Let ε ≤ 1
m . By Lemma 7.3, we have

Replan(σcl
RP,m) = 4− 2

m
.

Lemma 7.2 implies
Opt(σcl

RP,m) = 2.

Since we have ε ≤ 1
m , we obtain

Replan(σcl
RP,m)

Opt(σcl
RP,m)

= 2− 1

m
≥ 2− ε.

Next, we examine Replan for closed online Dial-a-Ride and online TSP on the line,
presenting a tight upper bound using line-specific features. Recall that we denote by

xmin := min{0, a1, . . . , an, b1, . . . , bn}

the leftmost and by
xmax := max{0, a1, . . . , an, b1, . . . , bn}

the rightmost position that needs to be visited by the server to serve σ. We have

Opt(σ) ≥ 2xmax + 2|xmin|, (7.1)

since Opt has to visit both extreme points and has to return to the origin.

Theorem 7.5. Replan for closed online TSP on the line is 2-competitive.
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Proof. Let rn be the time when the last request is released. Replan’s position pos(rn) at
time rn is in the interval [xmin, xmax]. All requests are already released at time rn, i.e.,
Replan can serve all remaining requests by visiting both extreme points and returning to
the origin. If we have pos(rn) ≥ 0, we obtain

Replan(σ) ≤ rn +D
(︂
pos(rn)→ xmax → xmin → 0

)︂
≤ rn + 2xmax + 2|xmin|

(7.1)
≤ rn + Opt(σ)

Opt(σ) ≥ rn
≤ 2Opt(σ).

Analogously, if we have pos(rn) < 0, we obtain

Replan(σ) ≤ rn +D
(︂
pos(rn)→ xmin → xmax → 0

)︂
< rn + 2xmax + 2|xmin|

(7.1)
≤ rn + Opt(σ)

Opt(σ) ≥ rn
≤ 2Opt(σ).

Next, we examine closed online Dial-a-Ride on the line for capacity c > 1 and provide an
improved upper bound of 3 for Replan’s competitive ratio.

Theorem 7.6. Replan for closed online Dial-a-Ride on the line with capacity c > 1 is
3-competitive.

Proof. Let rn be the time when the last request is released. We consider two cases
depending on whether or not the Replan server has loaded requests at time rn. Assume
the server is at position pos(rn) at time rn and is empty. Then Replan can serve all
remaining requests by returning to the origin and starting an optimum offline walk from
there. This gives us

Replan(σ) ≤ rn + d(pos(rn), 0) + Opt(σ)
Opt(σ) ≥ rn
≤ d(pos(rn), 0) + 2Opt(σ)

Opt(σ) ≥ 2d(pos(rn), 0)
≤ 5

2
Opt(σ).
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Note that we have Opt(σ) ≥ 2d(pos(rn), 0) since Opt has to visit pos(rn) and has to return
to the origin. Now assume the server has loaded k ≤ c requests. Replan’s position pos(rn)
at time rn is in the interval [xmin, xmax]. Replan can deliver all loaded requests by visiting
both extreme points. Afterwards, Replan can serve all remaining requests by returning to
the origin and starting an optimum offline walk from there. If we have pos(rn) ≥ 0, we
obtain

Replan(σ) ≤ rn +D
(︂
pos(rn)→ xmax → xmin → 0

)︂
+ Opt(σ)

≤ rn + 2xmax + 2|xmin|+ Opt(σ)
(7.1)
≤ rn + 2Opt(σ)

Opt(σ) ≥ rn
≤ 3Opt(σ).

Analogously, if we have pos(rn) < 0, we obtain

Replan(σ) ≤ rn +D
(︂
pos(rn)→ xmin → xmax → 0

)︂
+ Opt(σ)

< rn + 2xmax + 2|xmin|+ Opt(σ)
(7.1)
≤ rn + 2Opt(σ)

Opt(σ) ≥ rn
≤ 3Opt(σ).

Finally, we examine the closed version of Replan in the general setting for capacity c =∞.

Theorem 7.7. Replan for closed online Dial-a-Ride with c =∞ is 5
2 -competitive.

Proof. Let rn be the time when the last request is released and let pos(rn) be the position
of the Replan server at time rn. Since the server has an infinite capacity, Replan can just
return to the origin and start an optimum offline walk from there serving all remaining
requests. This gives us

Replan(σ) ≤ rn + d(pos(rn), 0) + Opt(σ)
Opt(σ) ≥ rn
≤ d(pos(rn), 0) + 2Opt(σ)

Opt(σ) ≥ 2d(pos(rn), 0)
≤ 5

2
Opt(σ).

Note that we have Opt(σ) ≥ 2d(pos(rn), 0) since Opt has to visit pos(rn) and has to return
to the origin.
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7.2 Bounds for Open Online DIAL-A-RIDE and Online TSP

In this subsection we provide improved bounds for the open version of Replan. We start
with the case that the server has a capacity larger than 1.

Theorem 7.8. Replan for open online Dial-a-Ride on the line with capacity c > 1 is
4-competitive.

Proof. Let rn be the time when the last request is released. We consider two cases
depending on whether or not the Replan server has loaded requests at time rn. Assume
the server is at position pos(rn) at time rn and is empty. Then Replan can serve all
remaining requests by returning to the origin and starting an optimum offline walk from
there. This gives us

Replan(σ) ≤ rn + d(pos(rn), 0) + Opt(σ)
Opt(σ) ≥ rn
≤ d(pos(rn), 0) + 2Opt(σ)

Opt(σ) ≥ d(pos(rn), 0)
≤ 3Opt(σ).

Now assume the server has loaded k ≤ c requests. Replan serves all remaining requests by
delivering all loaded requests, returning to the origin and starting an optimum offline walk
from there. By construction, Replan’s position pos(rn) is on the shortest way between
two positions x, y ∈ X with

x, y ∈ {0, a1, . . . , an, b1, . . . , bn}.

LetW be an optimum open offline walk with length c(W ) starting from the origin, visiting
all destinations of the requests currently loaded by Replan as well as x and y, and ending
in some position z ∈ X. Since Opt also has to visit all destinations of the requests currently
loaded by Replan as well as x and y, we have Opt(σ) ≥ c(W ). Furthermore, by triangle
inequality, we have

Opt(σ) ≥ c(W )

≥ D(0→ x→ y → z)

= D(0→ x→ pos(rn)→ y → z)

≥ D(0→ pos(rn)→ z)

≥ d(pos(rn), z). (7.2)
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Note that we used the fact that pos(rn) lies on a shortest way between x and y in the
inequality above. Replan can deliver all loaded requests and return to the origin by
moving from pos(rn) to z and then walking the walk W backwards. To sum it up, we have

Replan(σ) ≤ rn + d(pos(rn), z) + c(W ) + Opt(σ)
Opt(σ) ≥ c(W )

≤ rn + d(pos(rn), z) + 2Opt(σ)
(7.2)
≤ rn + 3Opt(σ)

Opt(σ) ≥ rn
≤ 4Opt(σ).

For capacity c =∞ we prove a stronger bound of 3.

Theorem 7.9. Replan for open online Dial-a-Ride with capacity c =∞ is 3-competitive.

Proof. Let rn be the time when the last request is released and let pos(rn) be the position
of the Replan server at time rn. Since the server has an infinite capacity, Replan can just
return to the origin and start an optimum offline walk from there serving all remaining
requests. This gives us

Replan(σ) ≤ rn + d(pos(rn), 0) + Opt(σ)
Opt(σ) ≥ rn
≤ d(pos(rn), 0) + 2Opt(σ)

Opt(σ) ≥ d(pos(rn), 0)
≤ 3Opt(σ).

Conclusion and Outlook

In this chapter, we improved several bounds for the competitive ratio of algorithm Replan.
While we were able to prove tight bounds for closed online TSP on the line, a gap remains
for most other versions of the algorithm. It is not clear, if Replan has different compatitive
ratios for online Dial-a-Ride and online TSP. All known lower bounds for its competitive
ratios only utilize TSP requests. Furthermore, it is not clear if Replan’s competitiveness
on the line is different to its competitiveness in the general setting since all known lower
bounds are constructed on the line. Significant is that the best known upper bounds not
only differ between finite and infinite capacities but also between unit capacity and larger
capacities. Again, it is not clear if Replan’s competitiveness is dependent on the capacity
of the server or if just the necessary tools to conduct tighter analyses for larger capacities
are missing. For an overview of all known bounds for Replan’s competitive ratio including
the bounds shown in this thesis, see Table 2.9.
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In this thesis, we analyzed the online optimization problem online Dial-a-Ride and its
special case online TSP. In Chapter 3, we provided new lower bounds for the competitive
ratio of open and closed online Dial-a-Ride on the line with finite capacity. Both bounds
are inspired by the lower bound construction for open online TSP on the line from [13,
Thm 4]. However, while the original construction relies on an iterative first stage, the
bounds from this thesis only use a single iteration as first stage. It remains unclear if
an iterative approach can also be applied to our lower bounds, potentially leading to
improvements.
Concerning upper bounds, we analyze several online algorithms. The algorithms Ig-

nore, Smartstart and SmarterStart have a similar design and belong to the class
of schedule based algorithms. Algorithm SmarterStart attains the best competitive
ratios of the three algorithms and is the best known online algorithm for open online
Dial-a-Ride with finite capacity. However, there still remains a gap between Smarter-
Start’s competitive ratio of roughly 2.6662 and the lower bound for the competitive ratio
of open schedule-based algorithms of 2.5. It remains unclear, if SmarterStart’s waiting
routine can be improved or if the lower bound can be lifted. While SmarterStart uses
the information about all released requests for the computation of its waiting time, it does
not use the current position of the server for its computation. Using this information in a
smart way could further improve SmarterStart. However, even if SmarterStart can be
further improved to achieve a competitive ratio of 2.5 matching the lower bound for open
schedule-based algorithms, its competitiveness still would be weaker than the competitive
ratio of 2.4142 of the currently best known online algorithm for open online Dial-a-Ride
with infinite capacity. This indicates that the schedule-based design, albeit achieving good
results, is not optimal for open online Dial-a-Ride.

For the closed version of online Dial-a-Ride and online TSP, this is different. Smarter-
Start is the best possible schedule-based algorithm for closed online Dial-a-Ride and
closed online TSP on the line as well as in the general setting with a competitive ratio
of 2. Therefore, schedule-based algorithms for closed online Dial-a-Ride and online TSP
are fully understood. Moreover, for the general setting, SmarterStart is a best-possible
algorithm matching the lower bound of [8, Thm 3.2]. This shows that, at least for the
general setting, the schedule-based design is best-possible for the closed version of online
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Dial-a-Ride and online TSP. On the line, on the other hand, the general lower bound
is roughly 1.7636, which raises the question if there is an online algorithm for closed
online Dial-a-Ride that attains a competitive ratio strictly below 2. It is clear that such an
algorithm cannot be schedule-based.
A good candidate seemed to be Replan. However, we showed that Replan for closed

online Dial-a-Ride and TSP is at best 2-competitive. Additionally, since Replan for open
online Dial-a-Ride and online TSP is at best 2.5-competitive, Replan’s competitiveness
is not better than the competitiveness of schedule-based algorithms. A hybrid of both
designs could lead to an improvement, but for now this remains an open question.
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