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Chapter 1

Introduction

The �rst of these factors is the compelling urge of man to explore and to discover, the

thrust of curiosity that leads men to try to go where no one has gone before. Most of the

surface of the earth has now been explored and men now turn on the exploration of

outer space as their next objective.

"Introduction to Outer Space", President’s Science Advisory Committee, 1958.

The exploration of an unknown environment is a central challenge in many applications ranging

from searching the internet or a large set of linked data [Pen+12; Mir+13] to physical exploration

of unknown terrain [BMS02; Plo+17] or even the universe [Mau03]. In this work, we consider an

abstraction of this exploration problem and model the unknown environment as a graph. In many

settings the environment is discrete (e.g., the webgraph describing links between pages of the World

Wide Web) or it can be discretized (e.g., road networks) without losing the essence of the problem.

Another perspective is to view exploration as an abstraction of a process of computing, where every

node of the graph corresponds to a con�guration (e.g., con�guration of a Turing machine or a di�er-

ent model of computation), edges correspond to possible transitions between con�gurations, and the

questions is what con�gurations are reachable starting in a given initial con�guration. In this con-

text, graph exploration has a close connection to complexity theory and the study of the relationship

between probabilistic and deterministic space-bounded algorithms [Sav73; CR80; Rei08].

The study of exploration in the context of theoretical computer science originates from inves-

tigating how to systematically search a labyrinth for an exit (imagine a garden maze with hedges).

One of the �rst fundamental results in this direction was discovered here in Berlin by Budach, who

showed that no �nite automaton can �nd a way out of every �nite labyrinth from any initial posi-

tion [Bud75; Bud78]. Around the same time Shah showed that by utilizing 5 pebbles, that is, some

additional markers than can be placed at an arbitrary position in the labyrinth and collected later,

a �nite automaton can search and �nd out of any �nite labyrinth [Sha74]. This result was subse-

quently improved by Blum and Kozen who showed that already 2 pebbles are su�cient [BK78] and

by Ho�mann who �nally showed that this is best possible, i.e., 1 pebble does not su�ce to search
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Chapter 1. Introduction

and �nd out of any �nite labyrinth [Hof81].

In the following decades the exploration of graphs, as a more abstract and general setting with

less structure, was the focus of most research. In these settings typically one or more so-called mo-

bile agents or robots have to deterministically visit all vertices of the given unknown graph. A large

variety of di�erent exploration problems have been considered mainly di�ering in the class of graphs

to be explored, the ability of the agent(s) and the objective function. While single agent exploration

has been studied for a lot of time and by now is quite well understood, exploration involving multiple

agents only has been considered rather recently. The communication between and coordination of

multiple robots adds another level of complexity to the exploration problem yielding many interest-

ing open problems in this �eld of research.

The main focus of this dissertation is to investigate the collaboration of agents in graph-like

environments. We study the memory requirement and energy e�ciency of collaborating agents

exploring a graph and the closely related problem of energy e�cient delivery by collaborating agents.

The three topics covered in this dissertation are:

Space E�cient Exploration. We study the problem of deterministically exploring an undirected

and initially unknown graph withn vertices either by a single agent equipped with a set of pebbles or

by a set of collaborating agents. Our goal is to understand how the memory requirement decreases

compared to the case of single agent exploration as the agent may mark vertices by dropping and

retrieving distinguishable pebbles, or when multiple agents jointly explore the graph. This problem

can be seen as a continuation of the starting point in graph exploration, where the central question

was how many pebbles does one agent need to explore any �nite labyrinth.

Energy E�cient Exploration. We assume that an agent consumes energy proportional to the

number of edges it traverses and we investigate the energy e�cient exploration of unknown trees by

multiple collaborating agents with a �xed energy budget. The objective is to maximize the number of

distinct vertices collectively visited by the given agents compared to an algorithm that has complete

knowledge of the tree in advance.

Energy E�cient Delivery. We consider the problem of di�erent mobile agents that have to de-

liver a set of messages in a weighted undirected graph while minimizing the total energy consump-

tion. In our model, the agents consume energy proportional to the distance they travel and di�erent

agents can have di�erent rates of energy consumption. The messages have di�erent starting vertices

and destinations and di�erent messages can be transported together if the capacity of the agents per-

mits it.

1.1 Contributions and Outline

In this section, we give an outline of the thesis together with a summary of the main results.
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1.1 Contributions and Outline

Chapter 1: Introduction. In the remainder of this chapter, we introduce the notation and most

important concepts used in this thesis. This includes a thorough introduction to the de�nitions

and main concepts common in graph exploration that are necessary to understand the related work

and this thesis. Moreover, we give a brief introduction to complexity theory as well as o�ine and

online optimization problems. We further present a detailed overview of previous research in graph

exploration and also cover the message delivery literature.

Chapter 2: Space E�cient Graph Exploration. We prove that for a single agent with constant

memory Θ(log logn) pebbles are both necessary and su�cient for exploring any undirected graph

with n vertices. We further show that collaborating agents are not more powerful than pebbles in

this setting as Θ(log logn) agents with constant memory each are necessary and su�cient for the

same task. Our results show that the memory requirement can be signi�cantly reduced by utilizing

additional pebbles or agents compared to theΘ(logn) bits of memory that are necessary and su�cient

to explore an undirected graph by a single agent without pebbles [Fra+05; Rei08].

For the upper bounds, we present an algorithm for a single agent with constant memory that

explores any n-vertex graph using O(log logn) pebbles. The algorithm does not require the number

of vertices n as input, terminates after a polynomial number of edge traversals and returns to the

starting vertex. We further show that an additional agent is at least as powerful as a pebble and

therefore O(log logn) agents with constant memory each can also explore any n-vertex graph.

To prove the lower bounds, we construct a family of graphs with O(s2
5k
) vertices that trap any

set of k collaborating agents with s states each. Our construction exhibits dramatically smaller traps

with only a doubly exponential number of vertices compared to the traps of size
˜O(s ↑↑ (2k +1)) and

˜O(s ↑↑ (k + 1)) due to Rollik [Rol80] and Fraigniaud et al. [Fra+06b], respectively. As a consequence

of our bound on the size of the trap, we are able to show that, even if we allow O((logn)1−ϵ ) bits of

memory for some constant ϵ > 0 for every agent, the number of agents needed for the exploration

task is at least Ω(log logn). This construction also yields the lower bound for a single agent with

pebbles, as p + 1 agents with O((logn)1−ϵ ) bits of memory each are more powerful than one agent

with O((logn)1−ϵ ) bits of memory and p pebbles.

Our results allow to fully characterize the tradeo� between the number of agents and the memory

of each agent. When agents have Ω(logn) memory, a single agent without pebbles explores all n-

vertex graphs. For agents withO((logn)1−ϵ )memory, Ω(log logn) agents are needed and it is possible

to reduce the memory of every agent to a constant in this case. The tradeo� is similar for pebbles.

For an agent with Ω(logn) bits of memory, no pebbles are required for the exploration task, whereas

for an agent with O((logn)1−ϵ ) bits of memory, already Ω(log logn) pebbles are required. Then again

with Ω(log logn) pebbles already a constant number of bits of memory are su�cient for exploration.

Chapter 3: Energy E�cient Tree Exploration. We consider the problem of exploring an un-

known tree by k agents initially located at the root of the tree. Every agent has only limited energy

and hence can traverse at most B edges. At the beginning, the agents have no knowledge about the
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Chapter 1. Introduction

structure of the tree, but they gradually learn its topology as they traverse new edges. We assume

that the agents can communicate with each other at arbitrary distances and thus the knowledge ob-

tained by one agent after traversing an edge is instantaneously available to the agents. Our goal is to

maximize the number of distinct vertices collectively visited by the agents. We design an online al-

gorithm that carefully balances between sending agents in a depth-�rst manner to avoid visiting the

same set of vertices too often and exploring the tree in a breadth-�rst manner to make sure that there

is no large set of vertices close to the root that was missed by the online algorithm. We show that

our algorithm is 3-competitive compared to an optimal solution that we could obtain if we knew the

map of the tree in advance. We also show that our analysis is tight by giving a sequence of instances

showing that the algorithm is not better than 3-competitive. While it is easy to see that no algorithm

can be better than 2-competitive, we give a non-trivial lower bound of 2.17 on the competitive ratio

of any online algorithm.

Chapter 4: Energy E�cientDelivery. We study the problem of delivering a set of messages, which

are speci�ed as source-target pairs in an undirected weighted graph, by k mobile agents starting at

distinct vertices of the graph. Every agent conumes energy proportional to the distance it travels

in the graph and the rate of energy consumption may be di�erent for di�erent agents. The goal is

to deliver all messages by the agents while minimizing the total energy consumption for this task.

The purpose of this chapter is to investigate how the agents bene�t from collaborating on delivering

the messages compared to the case that every message is only transported by a single agent. We

show how an optimal solution to the delivery problem can be 2-approximated by a solution, where

messages are only transported by a single agent. We further prove that this is best possible for

arbitary number of messages and agent capacity, i.e., number of messages that can be transported at

the same time, becomes arbitrarily large. Moreover, for a single message, we present an algorithm

that determines an agent which can deliver the message with at most 1/ln 2 ≈ 1.44-times the cost of

an optimal solution improving the general bound of 2. We also show that this is best possible for a

single message.

1.2 Preliminaries

In this section, we give an introduction of the terminology and notation of this work. We assume

that the reader is familiar with the basic concepts in graph theory, complexity theory and algorithms

and therefore only brie�y recall the respective de�nitions in order to introduce a consistent notation.

A general introduction to these topics can be found in the textbooks by Korte and Vygen [KV18] or

Cormen et al. [CLR89], for instance. We also introduce the basic concepts and de�nitions used in

the context of graph exploration which are necessary to understand the related work and this thesis.

Additional more speci�c de�nitions can be found in the respective chapters.
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1.2 Preliminaries

1.2.1 Graphs

An graph is a tuple G = (V , E), whereV is a �nite non-empty set and E ⊆ {(v,w) | v,w ∈ V ,v , w}

if G is directed and E ⊆
(V

2

)
if G is undirected. In both cases, we call the elements in V vertices

or nodes and the elements of E edges. We let n := |V | denote the order or number of vertices

of G and m := |E | the number of edges. If we additionally have a function w : E → R assigning a

weight or length to every edge, then we call G a weighted graph. All graphs considered in this

work are simple, that is, for any vertex v ∈ V there is at most one edge {v,w} or (v,w) in E for

every vertex w , v and there are no loops, i.e., {v,v} < E or (v,v) < E for all v ∈ V . For an edge

e = {v,w} or e = (v,w), we call v and w endpoints of e and say that v and w are incident with

e . The degree dv of a vertex v is the number of edges incident to v. If dv = d for all v ∈ V , then

we call the graph d-regular or simply regular. A graph G ′ = (V ′, E ′) is called a subgraph of a

graph G = (V , E) if V ′ ⊆ V and E ′ ⊆ E. If E ′ contains all edges in E that have both endpoints in V ′,

then G ′ is called an induced subgraph or the subgraph induced by V ′
.

A walk in G is a sequence of vertices (v0,v1, . . . ,vk ) such that {vi ,vi+1} ∈ E or (vi ,vi+1) ∈ E for

all i ∈ {0, . . . ,k −1}. As we only consider simple graphs, the sequence of vertices of a walk uniquely

determine the edges between the vertices. We call v0 the starting vertex or �rst vertex and vk the

end vertex or last vertex of the walk. A walk is closed, if v0 = vk . A closed walk is also called a

tour. If additionally all edges along the closed walk are distinct, then the walk is called a cycle. A

walk where all vertices v0,v1, . . . ,vk are distinct is called a path. The length of a path is the number

of its edges. A Eulerian walk or Eulerian tour is a closed walk containing every edge of the graph.

A graph containing a Eulerian tour is called Eulerian.

An undirected graphG is connected if for any two distinct verticesv andw , there is a path fromv

to w in G. An undirected connected graph without any cycles is called a tree. The minimum length

of a path connecting two distinct vertices v and w in G is called the distance between v and w . The

maximum distance over all vertices v and w in G is the diameter of G.

1.2.2 Exploration

Formally we model an agent exploring a graph as a �nite automaton A = (Σ, Σ̄, δ ,σ ∗), where Σ

is a set of states, Σ̄ ⊆ Σ is a set of halting or �nal states, σ ∗ ∈ Σ is the starting state of the

agent, and δ is its transition function. The transition function describes how the agent interacts

with the graph and possible other agents. Its exact speci�cs depend on the problem considered,

i.e., whether we consider a single agent or a group of agents and whether we allow the agents to

use additional markers. In every exploration step an agent A observes the local environment at the

current vertex and possible additional information, such as the states of other agents or position of

markers, and then performs actions, e.g., traverses an edge, according to the transition function δ .

In Section 2.1 we give a formal introduction to some agent models including a full description of the

transition function δ . In most settings, however, the agent capabilities are described on an informal

and intuitive level as the exact implementation is not important for the analysis.
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Chapter 1. Introduction

If an agent can distinguish di�erent vertices and in particular the transition function can depend

on the speci�c vertex of the given graph G, then we call G vertex-labeled or simply labeled. For-

mally, this means that there is a bijection λ : V → {1, . . . ,n} and the transition function δ can depend

on the label λ(v) of the current vertex v of the agent. In many graph exploration models, the agent

cannot identify or distinguish di�erent vertices and thus the transition can depend on the degree of

the current vertex, but not on its label. In this case, we call the graph unlabeled or anonymous. In

order to enable sensible navigation for an agent in this setting, we assume that the edges inciding to

a vertex v have distinct labels 0, . . . ,dv − 1 at v. Hence, every edge {v,w} ∈ E has two labels called

port numbers, one at v and one atw . These port numbers can be di�erent at both entpoints and we

assume no correlation between two port numbers of an edge. We call a graph with such a labeling a

locally edge-labeled graph.

A single agent then traverses an anonymous, locally edge-labeled graphG as follows: Starting in

a vertex v0, in every step it observes the degree of the current vertex as well as the local port number

of the edge leading back to the previous vertex. Depending on its current state, the vertex degree and

port number to the previous vertex, it then transitions to a state given by the transition function δ

and traverses the edge corresponding to the port number given by the transition function δ .

A di�erent way to specify the behavior of an agent in a regular graph are traversal sequences.

A traversal sequence is a sequence of integers l0, l1, l2, . . . with li ∈ {0, 1, . . . ,∆ − 1} determining

the walk of an agent A in a ∆-regular locally edge-labeled graph G. The agent follows a traversal

sequence l0, l1, . . . if it traverses the edges with port number l0, l1, . . . in this order. We further say

that a traversal sequence is universal for a class of undirected, connected, locally edge-labeled ∆-

regular graphs G if an agent following it explores every graph G ∈ G for any starting vertex in G,

i.e., for any starting vertex it visits all vertices of G. For a set M , we further use the notation M∗ :=⋃∞
i=1

M i
to denote the set of �nite sequences with elements in M . This allows use to use to compact

notation ω ∈ {0, 1, . . . ,∆ − 1}∗ for a �nite traversal sequence ω.

Note that traversal sequences are only de�ned for regular graphs and the port numbers to the

previous edge are not taken into account. In order to overcome these shortcomings, Koucký intro-

duced the concept of exploration sequences [Kou02]. An exploration sequence is a sequence of

integers e0, e1, e2, . . . with ei ∈ Z that guides the walk of an agent through a graph G as follows:

Assume an agent starts in a vertex v0 of an arbitrary locally edge-labeled graph G and let l0 = 0.

Let vi denote the agent’s location in step i and li the port number of the edge at vi leading back to the

previous location. Then, the agent follows the exploration sequence e0, e1, e2, . . . if, in each step i ,

it traverses the edge with port number (li + ei ) mod dvi at vi to the next vertex vi+1. This means

that an exploration sequence gives edge label o�set instead of absolute edge label. Thus, exploration

sequences are well-de�ned for arbitrary graphs and also allow backtracking, i.e., returning to the

previous vertex, by specifying the o�set 0. Analogously, we say that an exploration sequence is uni-

versal for a class of undirected, connected, locally edge-labeled graphs G if an agent following it

explores every graph G ∈ G for any starting vertex in G.

In order to give an agent in an anonymous graph the power to distinguish a limited number of
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vertices, it is possible to equip the agent with one or multiple pebbles. A pebble is a tool to mark

vertices. It can be dropped at a vertex and picked up again later. Every time an agent visits a vertex

where it has dropped a pebble, it will observe this marker. Pebbles can be distinguishable, i.e., every

pebble has some unique identi�er, or indistinguishable, i.e., the agent only observes the number

of pebbles at the current vertex.

Multiple agents can exchange information when exploring a graph. This exchange of information

can only be possible locally, i.e., if the agents share a vertex or are only a small distance appart,

or globally, i.e., independent of the agents location in the graph. We can model the case of local

communication by allowing δ to depend on the state of the agents colocated at the same vertex

and for the case of global communication to allow δ to depend on the state of all other agents.

Another way to allow agents to communicate is by means of so-called whiteboards. These are local

storages at every vertex that the agents can write to and read information from. The amount of local

storage available at a node is typically limited. Whiteboards, similar to pebbles, can also be used to

mark certain nodes.

The goal in graph exploration is to visited all vertices of the given graph. We say that a graph G

is explored when each vertex ofG has been visited by at least one agent. There are three variants of

the exploration problem, which are in increasing order of di�culty: perpetual exploration, explo-

ration with stop and exploration with return. If we want to achieve perpetual exploration, then

the agent(s) are not required to terminate, but can traverse the graph inde�nitely. For exploration

with stop, we require the agent(s) to terminate, i.e., transition to a halting state, after a �nite number

of steps. Lastly, for exploration with return we require all agents to return to the starting vertex

and then terminate. Note that in some cases, the agent(s) may not be able to recognize if the whole

graph is explored and only perpetual exploration is feasable, or in other cases the agent(s) may not

be able to return to the starting vertex. See the related work in Section 1.3 for details. A graph that

cannot be explored by an agent (a set of agents) is called a trap for the agent(s). In some problems,

it is additionally required that the agent(s) map the given graph, i.e., construct a representation of

an edge-labeled graph isomorphic to the given graph.

1.2.3 Complexity

For a detailed introduction of the concepts presented in this section, the reader can refer to the

textbook by Garey and Johnson [GJ79] or the respective chapter in the textbook by Korte and Vy-

gen [KV18].

Informally, an algorithm is a sequence of well-de�ned operations or instruction for a set of

valid inputs. The time complexity or running time of an algorithm is the number of operations

of the algorithm on a given input, whereas the space complexity is the amount of space or mem-

ory required to store additional information during the execution of the algorithm. According to

Church-Turing thesis everything that is computable by this intuitive idea of an algorithm can also be

computed on a Turing machine [Chu36]. There are several equally powerful other formal models for
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computation, such random access machines, which are equivalent in terms of time complexity and

space complexity, i.e., for a suitable time measure and space measure the machines can simulate each

other with polynomial overhead in time and constant factor overhead in space [GJ79; SE84]. That

is the reason why we present most algorithms in pseudcode similar to modern programming lan-

guages as it would be extremely tedious to give a complete description in terms of a Turing machine.

In Chapter 2, however, we also work with a description of an algorithm in form of a Turing machine

and introduce an agent model which internally is utilizing a Turing machine. We therefore give an

introduction to this model of computation and further cover some complexity classes relevant for

this thesis.

A Turing machine consists of an in�nite tape divided into cells, a read-write head, a �nite set of

states and a transition function decribing how the Turing machine transitions from one state to the

next depending on the current state and the symbol read from the tape at the current position of the

read-write head. Formally, a deterministic Turing machineM is a tuple (Q ,q0,q, δ ), where

• Q is the �nite set of states of M ,

• q0 ∈ Q is the starting state of M ,

• q ∈ Q is the stop state of M ,

• δ : Q \ {q} × {0, 1,t} → Q × {0, 1,t} × {L,R} is the transition function of M , where {0, 1} is

the set of input symbols and t is the blank symbol representing an empty tape cell.

For an input x ∈ {0, 1}∗, we assume that initially the input x is contained in the tape cells, the head of

the Turing machine M is at the �rst symbol of x and all other symbols of x follow to the right of the

head position. Every tape cell not containing a symbol of x contains the blank symbol t. The Turing

machine M performs a computation as follows: If M reads the symbol a ∈ {0, 1,t} at the current

head possition, is in state q ∈ Q and δ (a,q) = (q′,a′, S), then it writes the symbol a′ ∈ {0, 1,t} to

the tape cell of the current head position, changes it state to q′ ∈ Q and moves the head left if S = L

or right if S = R. The Turing machine M continues its computation until it reaches its �nal state q

or it can also run forever.

We de�ne the output of the Turing machine to be the string y ∈ {0, 1}∗, that is contained in the

tape cells when the Turing machine terminates beginning from the head position to the right until

the �rst cell containing a blank symbol t.

The running time of the Turing machine M is described by the function tM : N → N ∪ {∞},

where tM (n) is the maximum number of computation steps that the Turing machine M needs on an

input x ∈ {0, 1}∗ with length n (or ∞ if M runs forever). If there exists a polynomial p such that for

all n ∈ N, we have tM (n) ≤ p(n), then M is a polynomial-time Turing machine.

The memory requirement of the Turing machine M is given by a functionmM : N→ N∪{∞},

where mM (n) is the total number of tape cells that are used in the computation, i.e., that do not

contain the blank symbol t at some point. In order to overcome the fact that the input length as well

as the output length is always a lower bound on the memory requirement with this de�nition, we

extend the de�nition of the Turing machine above to a Turing machine with three tapes and three
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1.2 Preliminaries

heads: a read-only input tape, a read-and-write working tape and a write only output tape. Then

the memory requirement is de�ned as the total number of tape cells of the working tape that are

used in the computation of the Turing machine.

In general, Turing machines are de�ned over an input symbols Σ, but for our purpose the case Σ =

{0, 1} is su�cient and we therefore introduce the Turing machine as above. Note that this does not

change the computational power of the Turing machine.

A languageL is a subset of {0, 1}∗ and the elements of {0, 1}∗ are calledwords or binary strings.

We say that a deterministic Turing machine M accepts a word x ∈ {0, 1}∗ if and only if M terminates

on the input x and outputs 1. We further say that M decides a language L if M terminates on

every x ∈ {0, 1}∗ and it accepts x ∈ {0, 1}∗ if and only if x ∈ L. If additionally M is a polynomial-

time Turing machine, then we say that L is decidable in polynomial time. A decision problem

is a pair P = (X ,Y ), where X ⊆ {0, 1}∗ is a language decidable in polynomial time and Y ⊆ X . We

refer to the elements ofX as instances, the elements ofY as yes-instances and those ofX \Y as no-

instances. Moreover, we say that a deterministic Turing machineM decides a decision problemP =

(X ,Y ), if M accepts exactly all x ∈ Y .

Another variant of a Turing machine is anon-deterministic Turingmachine. A non-deterministic

Turing machine di�ers from a deterministic Turing machine in the transition function that is a tran-

sition relation for a non-deterministic Turing machine, i.e., δ ⊆ Q×{0, 1,t} → Q×{0, 1,t}×{L,R}.

If a non-deterministic Turing machine M reads the symbol a ∈ {0, 1,t} at the current head position,

is in state q ∈ Q , than it can non-deterministically choose any (a,q,q′,a′, S) ∈ δ , transition to the

state q′, writes a′ ∈ {0, 1,t} to the current tape cell, changes it state to q′ ∈ Q and moves the head

left if S = L or right if S = R. For a given input x ∈ {0, 1}∗, there can now be di�erent possible

outputs of the Turing machine depending on the computation path, i.e., the transitions chosen in

every step of the computation.

The running time for a non-deterministic Turing machine M on an input x ∈ {0, 1}∗ is de�ned

as the maximum number of computation steps over all computations paths and similarly the mem-

ory requirement as the maximum number of tape cells used over all computation paths. These

de�nitions allow us to analogously de�ne the running time and memory requirement for non-

deterministic Turing machines. Furthermore, we say that a non-deterministic Turing machine M

accepts a word x ∈ {0, 1}∗ if and only if there is one possible computation path of M on input x

such that M terminates and outputs 1. The decidability of languages and decision problems for non-

deterministic Turing machines is again de�ned analogously.

We further de�ne the con�guration of a Turing machine as a tuple (q, t ,p), whereq is the current

state of the Turing machine, t ∈ {0, 1,t}Z is the tape content andp ∈ Z is the head position. Here we

identify every tape cell with an integer z ∈ Z. Note that the con�guration of a deterministic Turing

machine completely describes the current state of the computation and uniquely determines the

next con�guration in the computation. We call a non-deterministic Turing machine symmetric if

the graph describing the transitions between the con�gurations of the Turing machine is symmetric,

i.e., if the Turing machine can change from a con�guration (q, t ,p) to a con�guration (q′, t ′,p ′)

9
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by making a transition according to δ , then it can also a make a transition from the con�guration

(q′, t ′,p ′) to change to (q, t ,p). For a detailed introduction of symmetric Turing machines and related

complexity classese, see [LP82].

We are now ready to de�ne the following complexity classes.

P The class containing all decision problems P for which there is a polynomial-time deterministic

Turing machine deciding P.

NP The class containing all decision problemsP for which there is a polynomial-time non-deterministic

Turing machine deciding P.

L The class containing all decision problems P for which there is a deterministic Turing machine

deciding P that uses logarithmic memory.

NL The class containing all decision problems P for which there is a non-deterministic Turing

machine deciding P that uses logarithmic memory.

SL The class containing all decision problems P for which there is a non-deterministic symmetric

Turing machine deciding P that uses logarithmic memory.

A decision problem P1 = (X1,Y1) polynomially transforms to a second decision problem P2 =

(X2,Y2) if there is a function f : X1 → X2 computable in polynomial time such that f (x1) ∈ Y2 if and

only if x1 ∈ Y1. A polynomial transformation is also referred to as a Karp reduction. Furthermore, a

decision problem P ∈ NP is NP-complete if all other problems in NP polynomially transform to P.

1.2.4 O�line and Online Optimization Problems

The introduction of the following concepts and notation in this section is based on the introduction

in the textbook of Borodin and El-Yaniv [BE98].

A discrete optimization problem problem is a set I ⊆ {0, 1}∗ of instances, a set of feasable

solutions SI for every instance I ∈ I, a cost function c : {(I , S) | I ∈ I, S ∈ SI} → R computable

in polynomial time and a goal, i.e., minimizing or maximizing the cost. For a given instance I ∈ I,

we write Opt(I ) := min{ c(I , S) | S ∈ SI} for the cost of an optimum solution in case of a

minimization problem and Opt(I ) := max{c(I , S) | S ∈ SI} for the cost of an optimum solution

in case of a maximization problem. An algorithm for an optimization problem computes a feasable

solution S ∈ SI for every instance I ∈ I with SI , ∅. We write Alg(I ) := c(I , S) if the considered

algorithm Alg computes solution S ∈ SI on input I . If Alg(I ) = Opt(I ) for all I ∈ I with SI , ∅,

then Alg is an exact algorithm.

A decision problem or discrete optimization problem P1 polynomially reduces to an optimiza-

tion P2 if there exists an exact polynomial algorithm for P1 using at most a polynomial number of

calls to an exact algorithm for P2. This type of reduction is also referred to as Turing reduction and

the algorithm for P1 using at most a polynomial number of calls to an exact algorithm for P2 is called

a polynomial time oracle algorithm. A formal de�nition of this concept using oracle Turing ma-
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chines can be found in [GJ79; KV18]. Moreover, an optimization problem or decision problem P is

called NP-hard if all problems in NP polynomially reduce to P.

Many interesting discrete optimization problems are NP-hard and there is thus no polynomial

exact algorithm solving them under the assumption that NP , P. In order to still �nd good (close to

optimal) solutions for those problems in acceptable practical running time (e.g. polynomial), one can

trade a loss in solution quality for a better running time, which leads to the concept of approximation

algorithms. More precisely, an algorithmAlg is called an asymptotic c-approximation algorithm

for a discrete optimization problem with the goal of minimization if

Alg(I ) ≤ c · Opt(I ) + α for all I ∈ I.

If α = 0, we call Alg a c-approximation algorithm. For a maximization problem, an (asymptotic)

c-approximation algorithm we require Alg(I ) ≤ 1/c · Opt(I ) + α for all I ∈ I. In both cases the

approximation factor or approximation ratio c satis�es c ≥ 1 and the better the approximation,

the closes the approximation factor c is to 1. A thorough introduction and study of approximation

algorithms is for example given in [WS11].

In classical optimization problems the whole input is available to an algorithm at the beginning.

There are many interesting problems, where this is not the case, and only a part of the input is

received at a time and the algorithm already needs to output decisions only based on this partial

input. Basically all graph exploration problems fall into this category. The graph to be explored

is initially unknown and the algorithm, in this case the agents, need to make decision, e.g., which

edges to traverse next, based on only the information they gathered so far, i.e., the part of the graph

traversed so far. These type of problems are called online problems and an algorithm for such a

problem is called an online algorithm. The classic optimization problems, where the whole input

is known in advance, are in contrast to that refered to as o�line problems and an algorithm which

receives the complete input at the beginning an o�line algorithm. An instance I ∈ I of an online

problem is called an input sequence in order to emphazise that the input is received in many parts.

We measure the performance of an online algorithm using the concept of competitive analysis

introduced by Sleator and Tarjan in [ST85]. In this framework, the cost of an online algorithm Alg

on an instance I ∈ I is compared to the cost of an optimal o�ine solution Opt(I ), i.e., an optimal

solution if the whole input is known in advance. An online algorithmAlg for a minimization problem

is c-competitive if there is a constant α such that

Alg(I ) ≤ c · Opt(I ) + α for all �nite input sequences I ∈ I.

For a maximization problem, a c-competitve algorithm Alg needs to satisfy Alg(I ) ≤ 1/c ·Opt(I )+α

for all for all �nite input sequences I ∈ I. If α ≤ 0, then Alg is strictly c-competitive. We further

call c the competitive ratio of the algorithm Alg. For further reading and a detailed introduction

to online algorithms and competitive analysis the reader can refer to [BE98], for instance.
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1.3 Related Work

The main aim of this section is to give a detailed systematic overview about the graph exploration

literature and also cover the message delivery literature. We focus on the part of graph exploration

literature most relevant for this thesis and give several pointers to other related work not covered in

this section.

The vast amount of research on graph exploration and large number of di�erent models makes

it di�cult to put the results in one general scheme. Nevertheless, we hope that our categorization

of the results provides a fast and easy way to grasp the state-of-the-art of graph exploration and the

main lines of research. Our main distinction is between single agent (Section 1.3.1) and collaborative

(Section 1.3.2) exploration and undirected and directed graphs. We further distinguish between the

objectives feasability, time, memory and energy. See also the Tables 1.1 and 1.2 for a concise overview

of the related work.

1.3.1 Single Agent Exploration

Undirected Graphs. The exploration of plane labyrinths, i.e., �nite connected subgraphs of the

in�nite 2-dimensional grid where edges are labeled with their cardinal direction, was the starting

point of graph exploration research. Shannon [Sha51] constructed an actual physical device – Shan-

non’s mouse – that could explore a 5 × 5 grid. Budach proved that one agent with constant memory

and without any pebble cannot explore any plane labyrinth [Bud75; Bud78]. Later Ho�mann showed

that also 1 pebble is not su�cient [Hof81]. On the positive side, Shah proposed an algorithm for an

agent with 5 pebbles that can explore any plane labyrinth [Sha74]. This result was improved by

Blum and Kozen who presented an algorithm using only 2 pebbles [BK78]. They also showed that

exploration can be achieved utilizing a counter of size O(logn) instead of 2 pebbles.

For many years a central open problem in graph exploration was the question how much memory

an agent needs to explore any undirected graph. It turned out that this problem is closely connected

to the space complexity of the s-t-connectivity problem in undirected graphs, i.e., the problem of

deciding if two vertices s and t are in the same connected component of a given graph. For instance,

any exploration algorithm can be turned into an algorithm deciding s-t-connectivity by letting an

agent start at s and returning yes if and only if the agent visits t during the exploration. The problem

of undirected s-t connectivity is complete for the complexity class SL ( see [LP82]), which was studied

in an e�ord to answer the question whether the complexity classes NL and the class L are the same.

A big step towards understanding the space complexity of s-t-connectiviy and also graph ex-

ploration was the work by Aleliunas et al. [Ale+79], who showed that a random walk of length

O(∆2n3
logn) in an undirected graph with n vertices and maximum degree ∆ visits all vertices with

high probability. Moreover, the authors show the existence of a universal traversal sequence for all

d-regular graphs on n vertices of length O(d2n3
logn). Note that by adding a counter that keeps track

of the number of edge traversals the �rst bound yields a randomized log-space exploration algorithm

that terminates after a polynomial number of steps and explores an undirected graph with high prob-
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ability if an upper bound on the number of vertices of the graph is known. In terms of complexity

classes, the result by by Aleliunas et al. implies that s-t-connectiviy is contained in the class RL, the

class of decision problems that can be solved by a randomized, log-space algorithm with one-sided

error and the relationship of the complexity classes is

L ⊆ SL ⊆ RL ⊆ NL.

Finally, Reingold [Rei08] showed that s-t-connectiviy can be decided in log-space and therefore L =

SL. His proof also yields a log-space constructible universal exploration sequence which can be used

to devise a log-spacce exploration algorithm for undirected graphs [Rei08, Corollary 5.5]. As this

algorithm utilizes an exploration sequence (and not a traversal sequence), it is essential that the agent

can observe the label of the edge by which it enters a vertex. Universal traversal sequences of length

O(nlogn) can be constructed in O(log
2 n) space using Nisan’s derandomization technique [Nis92].

Explicit construction of universal traversal sequences in log-space are only known for cycles [Ist88]

and it remains an open problem whether universal traversal sequences of polynomial length can be

constructed deterministically in log-space for general graphs.

Concerning a lower bound on the space complexity of graph exploration, the result by [Bud75;

Bud78] already shows that constant memory is not su�cient to explore any graph. Later, Rollik

constructed a trap for any set of k collaborating agents, i.e., a graph that the given set of agents do

not explore [Rol80]. Although he never computes it explicitly, his work already implies a memory

requirement of Ω(logn) space for graph exploration. Finally, Fraigniaud et al. [Fra+05] show that for

any agent with s states there exists a graph with s + 1 vertices which the agent does not explore. In

terms of the memory in bits this result yields the same lower bound as the construction by Rollik,

however, when considering the number of states of the agents the lower bound by Fraigniaud et al.

is stronger.

For trees with maximum degree ∆, Diks et al. [Dik+04] gave a perpetual exploration algorithm

that uses O(log∆) space, i.e., asymptotically not more than the space needed to store a single edge

label. They showed that Ω(log log logn) bits of memory are needed if the algorithm has to eventually

terminate. If, in addition, the algorithm is required to terminate at the same vertex where it started,

Ω(logn) bits of memory are needed. A matching upper bound for the latter result was given by

Ambuhl et al. [Amb+11].

Another natural objective for graph exploration is to minimize the exploration time, i.e., the

number of edge traversals until the given graph is explored. In labeled graphs, depth �rst search can

be used to explore an undirected graph with m edges in at most 2m steps. Note that m is a trivial

lower bound for the problem, as every edge needs to be traversed before the agent can be sure that it

explored the whole graph. In [PP99], Panaite and Pelc present an algorithm that requiresm+3n steps

for exploring a graph of n nodes andm edges. This is an improvement over the depth-�rst search for

dense graphs and shows that it is possible to exceed the lower bound m by a term depending only

linearly on n.

If, however, the given graph is anonymous, minimizing the exploration time becomes consider-
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ably harder. In a d-regular graph, for instance, an agent can gain no knowledge when traversing

the graph and also has no way of recognizing when exploration is completed. If the number of ver-

tices n or an upper bound on n is known, then it is possible to utilize universal traversal sequences

or universal exploration sequences to completely explore the graph in this case. The length of a

universal traversal sequence or universal exploration sequence for a d-regular graph is bounded by

O(dn3
logn) for d ≤ n/2−1 [Kou03; Kah+89] and by O(n3

logn) for d ≥ n/2 [Kou03; Cha+97]. By us-

ing a transformation of a universal exploration sequence for 3-regular graphs to general undirected

graphs (see [Kou03, Theorem 87] or Lemma 2.5 and its proof), we obtain a universal exploration

sequence of length O(n4
logn) for general graphs. Note that although the proof is not constructive,

this bound already implies the existence of a polynomial space exploration algorithm that needs

O(n4
logn) edge traversals to explore any anonymous undirected graph because an agent can �nd a

suitable exploration sequence in polynomial space by enumeration. There also is a lower bound of

Ω(n4) on the length of universal traversal sequences [BRT92]. However, this lower bound does not

translate to a lower bound on the number of steps required for exploring an undirected graph as an

agent can also make use of the fact that it observes the port number of the edge by which it enters

a vertex. But for symmetric directed graphs this yields that Ω(n4) steps are required for exploration

in the worst case. For symmetric directed graphs the upper bound of O(n5
logn) on the length of a

universal traversal sequences by Aleliunas et al. [Ale+79] implies the existence of a O(n5
logn) time

algorithm for symmetric directed graphs.

A setting that is in between unlabeled and labeled graph exploration is to allow the agents to only

distinguish certain vertices. Dudek et al. [Dud+91] showed that an agent provided with a pebble can

explore and map an undirected graph in time O(mn). For graphs with maximum degree ∆, Chalopin

et al. [CDK10] showed that if the starting node can be recognized by the agent, then the graph can

be explored and mapped in time O(n3∆) using O(n∆ logn) bits of memory.

Another line of research, refered to as piecemeal exploration, focuses on minimizing the explo-

ration time when the number of edge traversals an agent can do before returning to the starting

vertex for refueling is bounded by (2 + α)r , where α is some positive constant and r is the distance

to the furthest node from the starting vertex. The problem was �rst considered by Betke et al. in

[BRS95] and the authors presented an O(m) algorithm for exploration of grid graphs with rectangu-

lar obstacles. In [Awe+99] an algorithm for piecemeal exploration of general graphs was proposed

requiring O(m + n1+o(1)) edge traversals. Finally, Ducan et al. gave an optimal algorithm for piece-

meal exploration for generals graphs requiring only Θ(m) edge traversals [DKK06]. Their algorithm

also extends to weighted graph and a similar model, where the agent is tethered by a rope of length

(2 + α)r instead of requiring regular refueling.

Exploration of undirected weighted graphs was �rst considered by Kalyanasundaram and Pruhs

in [KP94]. In their model, the graph is labeled and an agent arriving at a vertex v learns about all

edge {v,w} ∈ E incident to v including the edge weight w({v,w}) and the vertex w at the other

endpoint. Every time an agent traverses an edge e , it incurs a cost of w(e), and the total exploration

time of an agent is the sum over all edge weights (with multiplicities) traversed by the agent. Note
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that it is important that an agent sees the neighbors of a vertex and thus does not need to traverse

all edges of the graph as otherwise

∑
e ∈E w({v,w}) is a trivial lower bound on the exploration time

and a depth-�rst search algorithm is already 2-competitive. The nearest neigbors greedy heuristic

for the traveling salesman problem already yields a Θ(logn)-competitive algorithm for this problem

[RSI77]. Kalyanasundaram and Pruhs propose a sophisticated algorithm which is 16-competitive on

planar graphs [KP94]. Megow et al. show that the algorithm is in fact 16(1+ 2g) for graphs of genus

at most g and provide a lower bound showing that it does not have a constant competitive ratio on

general graphs [MMS12]. They also present an alternative Θ(logn)-competitive algorithm for the

problem. It is an open problem, whether there exists a constant competitive algorithm in this model.

Directed Graphs. The main focus of research on exploration of directed graphs has been the

exploration time. Deng and Papadimitriou considered the exploration of unknown labeled directed

graphs, where the agent does not know the other endpoint of an edge that is has not traversed

[DP99]. The o�ine version of the problem, i.e., traversing all edges of a given directed graph with

the minimum number of edge traversals, is known as the Chinese postman problem and can be

solved in polynomial time [EJ73]. Deng and Papadimitriou propose an online algorithm for the

problem achieving a competitive ratio of dO (d ), where d is the de�ciency of the given graph G, i.e.,

the minimum number of edges that have to be added to make it Eulerian. They also show a lower

bound of Ω(d) on the competitive ratio for deterministic algorithms and of Ω(d/logd) for randomized

algorithms. Note that there is a simple online algorithm that explores the graph in polynomial time

O(nm) by traversing the nearest edge, which has not been traversed, in every step. Albers and

Henzinger propose the �rst algorithm with a subexponential competitive ratio of dO (logd )
for the

problem [AH00]. Finally, Fleischer and Trippen give a deterministic exploration algorithm with a

competitive ratio of O(d8), which is polynomial in d [FT05].

A variant of the above model is considered by Foerster and Wattenhofer in [FW16]. They consider

weighted, labeled directed graphs and the main di�erence is that in their model the agent observes

the vertex at the other endpoint of all outgoing edges at a vertex. This implies that an online algo-

rithm does not necessarily have to traverse all edges to ensure that exploration is complete and the

corresponding o�ine problem is the asymmetric traveling salesperson problem. They show that the

competitive ratio is Θ(n) for this problem, even for euclidean planar graphs or unweighted graphs.

Exploration becomes considerably more di�cult if the directed graph is unlabeled. In this case

it is possible to construct a graph given an arbitrary agent such that the agent needs an exponential

number of steps in n to visit all vertices, see the combination lock graph presented in [BS94] for

details. Note that this holds even if we allow the agent to use randomization. If the number of

vertices n or a bound on n is known, the exploration of a directed graph is still feasable by using a

brute-force approach for instance: Iterate over all directed graphs G on n vertices and possible start

positions v0 and in every iteration �rst compute the current position v reached in G when following

the edge labels traversed so far and then follow a sequence of edge labels exploring G.

If we allow the agent to utilize indistinguishable pebbles, the exploration time can be reduced to
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Graph Agent Goal Result Reference

class V E know task ter. obj.

laby a u -

O(1) memory,

dist. pebbles

expl y feas

2 pebbles necessary

and su�cient

[BK78]

[Hof81]

laby a u -

O(1) memory,

counter

expl y feas

exploration in O(n2) steps

counter of size O(logn)
[BK78]

tree a u - expl n mem O(log∆) memory su�cient [Dik+04]

tree a u - expl y mem

need Ω(log log logn)

memory, O(logn) su�cient

[Dik+04]

[Amb+11]

graph a u n expl y mem

Θ(logn) memory

necessary and su�cient

[Rol80]

[Rei08]

graph a u - O(1) memory expl y mem

Θ(log logn) pebbles

necessary and su�cient

Cor. 2.9

Cor. 2.26

graph a u ∆, n
O(logn)

memory

expl n time

rand. walk explores graph

in O(n3∆2
logn) steps whp.

[Ale+79]

graph a u n poly memory expl n time O(n4
logn) steps su�cient [Kou03]

graph a u -

l = (1 + α)r

rope or 2l fuel

map y time Θ(m + n/α) = Θ(m) [DKK06]

graph l u - poly mem expl n time at mostm + 3n steps [PP99]

graph l wu - poly mem expl n time

O(logn)-competitive alg.,

O(g)-competitive alg.

for graphs of genus g

[RSI77]

[MMS12]

graph a d n indist. pebbles map y time

need 1 pebbles

for expl. in poly time

[Ben+02]

graph a d - indist. pebbles map y time

need Θ(log logn) pebbles,

Ω(n log∆) memory

for expl. in poly time

[Ben+02]

[FI04]

graph l d -

sees labels

of neighbors

expl y time

O(d8) competitive on

graphs with de�ciency d
[FT05]

graph l wd -

unaware of

neighb. labels

expl y time

Θ(n) competitive

for weighted graphs

[FW16]

a=anonymous, l=labeled, (w)u=(weighted) undirected, (w)d=(weighted) directed, y=yes, n=no

Table 1.1: Summary of main results for single agent exploration.
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polynomial time, as shown by Bender et al. [Ben+02]. The authors gave an O(n8∆2)-time algorithm

that uses one pebble and explores (and maps) a directed graph with maximum degree ∆, when n or

an upper bound on n is known. For the case that such an upper bound is not available, they proved

that Θ(log logn) pebbles are both necessary and su�cient to explore the graph in polynomial time.

Concerning the space complexity of directed graph exploration in the same model, Fraigniaud and

Ilcinkas [FI04] showed that Ω(n log∆) bits of memory are necessary to explore any directed graph

with n vertices and maximum degree ∆, even with a linear number of pebbles. As an upper bound on

space complexity, they presented an algorithm requiring O(n∆ logn) bits of memory that explore a

graph in exponential time with a single pebble and terminates. They also gave an O(n2∆ logn)-space

algorithm running in polynomial time and using O(log logn) indistinguishable pebbles for the case

that n is not known.

Further related work. A lot of research has been done in more geometric and applied exploration

settings, see the survey in [Rao+93] and [DS17].

Search problems, i.e., problems where a speci�c target t needs to be located in an unknown

environment, are quite similar to exploration problems. In the worst case, for instance, the whole

environment needs to be searched in order to locate the target t . If the target is found earlier, how-

ever, the algorithm can already terminate whereas in exploration we typically require the whole

environment to be always visited. This fact leads to a di�erent notion of (o�ine) optimum solution

that a solution for a search problem is compared to. For a detailed introduction to search algorithms

the reader can refer to the textbook [AG03]. A survey covering both search and exploration problems

is given in [Ber98]. Another survey with the focus of exploration or search on the plane is given in

[GK10].

Randomized graph exploration and the study of memory e�cient graph exploration if the envi-

ronment can be manipulated by providing a suitable labeling of the graph, for instance, is further

considered in the survey [GR08]. Another line of research is the study of exploration of graphs that

change over time as studied in [FMS09; EHK15].

1.3.2 Collaborative Exploration

Undirected Graphs. The �rst main focus of research for collaborative exploration was the feasi-

bility and memory requirement for exploration of mazes and planar graphs. Blum and Kozen [BK78]

showed that any maze 2-dimensional maze can be explored by two agents with constant memory.

In the same work, the authors also show that 3-regular graphs are more di�cult to explore than

2-dimensional mazes by exhibiting that no 3 agents with constant memory can explore all 3-regular

graphs. In [BS77], Blum and Sakoda showed that no �nite set of �nite agents can explore any �-

nite 3-dimensional maze, i.e., �nite subgraphs of the 3-dimensional lattice graph Z3
. A similar result

was later obtained by Rollik [Rol80] for 3-regular graphs. He showed that for any set of k agents

with s states each there is a planar graph that cannot be explored by the agents. Fraigniaud et

al. [Fra+06b] revisited his construction and bounded the order of his trap for k agents with s states
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by
˜O(s ↑↑ (2k + 1)), where a ↑↑ b := aa

.. a
with b levels in the exponent. They further improve the

bound on the order of the trap to
˜O(s ↑↑ (k + 1)). Note that the order of the barrier directly implies a

lower bound on the memory requirement for k agents given a graph of size n. Concerning an upper

bound for the memory requirement of collaborative graph exploration, we are not aware of any pre-

vious work that improves the O(logn) bits of memory algorithm for one agent. In Chapter 2 of this

thesis, we present an algorithm that breaks the barrier of construct O(logn) bits and also construct

a dramatically smaller trap. We thereby establish that Θ(log logn) agents can explore every graph

on n vertices in polynomial time and terminate.

Collaborative exploration with the objective of minimizing the exploration time was �rst consid-

ered by Fraigniaud et al. in [Fra+06a]. The authors present an algorithm for agents using whiteboard

communication that explores any tree in time O(D+n/logk), where D is the diameter of the tree and

k is is the number of collaborating agents. They also that the the o�ine problem of minimizing the

exploration time of k collaborating agents is NP-hard even for tree topologies. Note that an optimal

o�ine algorithm can explore a tree in time Θ(D +n/k) by dividing a depth-�rst traversal of the tree

in k equal parts. Thus the algorithm in [Fra+06a] achieves a competitive ratio of O(k/logk). The

authors also give a lower bound of Ω(2−1/k) on the competitive ratio. Later, Dynia et al. proposed a

di�erent algorithm, which is O(D1−1/p ) competitive, where p is the density of the tree, i.e., the min-

imum number p ∈ N which satis�es |V ′ | ≤ 4|h(T ′)|p for all induced subtrees T ′ = (V ′, E ′) of T . As

p ≤ logn, the algorithm is O(D) in general. Their algorithm only requires local communication, that

is, agents can exchange information if they are at distance at most 1. For k ≤
√
n agents, Dynia et al.

constructed an improved lower bound of Ω(logk/log logk) in [DŁS07]. Later, Disser et. al construct

a di�erent a di�erent family of trees showing that the same lower bound on the competitive ratio

also holds for k ≤ nlogcn agents for any c ∈ N [Dis+17]. Another algorithm is presented by Brass et

al. in [Bra+11] achieving a competitive ratio of O(n/k + (k + D)k−1), which is an improved over the

algorithm by Fraigniaud et al. for small values of k and D compared to n. They algorithm also relies

on whiteboards communication of the agents. The special case of grid graphs is considered by Ortolf

and Schindelhauer in [OS12]. They present an algorithm for exploring grid graphs which obtains a

competitive ratio of O(log
2 n) and also show a general lower bound of Ω(logk/log logk) on the com-

petitive ratio if k ≤ n. In [OS14], Ortolf and Schindelhauer adopted a recursive approach using global

communication between the agents to improve the upper bound on the competitive ratio for certain

values of the parameters n, k and D. In [Hig+14], they authors introduce a class of algorithm called

greedy algorithms for the collaborative exploration of trees and show a lower bound of O(k/logk)

on the competitive ratio of any greedy algorithm for weighted trees. Surprisingly, Dereniowski et

al. show in [Der+15] that for k ≥ Dnc agents for some constant c > 1, any graph can be explored

in time Θ(D) using only local communication where agents can only exchange information at the

same vertex. This means that for a large number of agents the competitive ratio is O(1).

Another line of research in collaborative graph exploration is energy e�cient graph exploration,

where the number of edge traversals of an agent is bounded or the maximum number of edge traver-

sals of an agents is to be minimized. Dynia et al. [DKS06] consider the problem of collaborative
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exploration with a �xed number of agents while minimizing the maximum number of edges tra-

versed by an agent. The agents can communicate at distance at most one and have to return to the

starting vertex at the end. They presented an 8-competitive algorithm for trees and showed a lower

bound of 1.5 on the competitive ratio for any deterministic algorithm. The upper bound was later

improved to 4− 2/k in [DŁS07]. The authors in [DDK15] considered tree exploration with no return

for the case where the amount of energy B available to the agents is �xed and the goal is to minimize

the number of agents used. They presented an algorithm with a competitive ratio of O(logB) for

the case that the agents need to meet in order to communicate and showed that this is best possible.

In our model considered in Chapter 3 the number of agents as well as the bound on the energy is

�xed and we do not require the agents to explore the whole graph. Instead, we measure the per-

formance of an online algorithm by the number of vertices explored by it compared to an optimal

o�ine algorithm.

A very di�erent variant of collaborative exploration, in which the agents are identical and ini-

tially dispered amoung the vertices of the graph, is considered in [Das+06; Das+07]. The agents

further move asynchronously and can communicate by writing to whiteboards at every node. As

the agents follow exactly the same protocol, exploration with termination is not always feasable be-

cause of symmetries (e.g., consider two agents starting on opposite vertices of an even length cicle).

In [Das+07], the authors show that the problem of exploration with termination, leader election (i.e.

selecting a leader among the agents) and rendezvous (i.e. gathering all agents at one vertex) are

equivalent in this setting. present an algorithm achieving exploration with termination if k and n

are coprime and using at most O(m ·k) edge traversals and at most O(logn) bits of whiteboard mem-

ory at every node. The cases where exploration is possible are characterizied in [Das+06] including

an algorithm that achieves leader election and thus also exploration with termination in all solvable

cases. There are di�erent variants of the algorithm with a di�erent tradeo� between the number of

edge traversals and whiteboard memory.

Directed Graphs. There has been only little research on collaborative exploration of directed

graphs that we are aware of. For unlabeled, directed graphs Bender and Slonim show that two

randomized agents can explore and map the given graph in expected polynomial time when global

communication is allowed and n is not known [BS94]. Recall that in [Ben+02] the authors show that

the same task can be achieved by one agent with O(log logn) instinguishable pebbles.

Further related work. A survey covering both single agent and multi agent exploration and cov-

ers similar topics as this related work is given in [Das13].

A lot of research also has been done on collaborative exploration involving malacious software

or a malacious environment that can destroy agents. The task is to explore the graph while removing

the malacious software or locating malacious vertices that destroy agents. Surveys for collaborative

exploration in unsafe environments are given in [FS06; Mar12].

The rendezvous problem, i.e., the task of gathering multiple, often identical agents at one location
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Graph Agent Goal Result Reference

class V E know task ter. obj.

laby a u - O(1) mem. expl y feas

2 agents

necessary and su�cient

[BK78]

graph a u -

identical,

local com.

via whiteboards

expl y feas

algorithm using

O(m · k) edge traversals

in all feasable cases

[Das+06]

[Das+07]

graph a u -

O(1) mem.

local com.

expl y feas

Θ(log logn) agents

necessary and su�cient

Cor. 2.10

Cor. 2.25

tree a u - expl y time

CR ≤ O(k/logk),

CR ≥ Ω(logk/log logk) for

k ≤ nlogcn agents, c ∈ N

[Fra+06a]

[DŁS07]

[Dis+17]

tree a u - expl y time

CR = O(1) for

k ≥ Dnc agents, c ∈ N,

tree with diameter D

[Der+15]

tree a u -

global com.,

�xed # agents

expl y energy

3/2 ≤ CR ≤ 4 − 2/k for

minimizing max. # edges

traversed by an agent

[DKS06]

[DŁS07]

tree a u -

local com.,

�xed energy B
expl y energy

CR = Θ(logB)

for minimizing # agents

[DDK15]

tree a u -

global com.,

�xed energy B

�xed # agents

expl y energy

2.17 ≤ CR ≤ 3 for

maximizing

total # vertices visited

Theo. 3.2

Theo. 3.6

graph a d -

randomized,

global com.

map y time

2 agents can map graph

in polynomial time

[BS94]

a=anonymous, l=labeled, u= undirected, d=directed, com.=communication, y=yes, n=no

Table 1.2: Summary of main results for collaborative exploration.
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of the environment, is closely related to collaborative graph exploration. Connections betweeb graph

exploration and rendezvous were already mentioned in the related work above, see [Das+06; Das+07]

for an example. A detailed introduction to rendezvous problems is given in the textbook by Gal and

Alpern [AG03]. Surveys about rendezvous research are further given in [Pel12] and [Alp+13].

1.3.3 Message Delivery

The problem of transporting goods between sources and destinations has many real-world applica-

tions in logistics and has been studied in a lot of di�erent variants.

In some cases the transportation of goods can be modeled as a network �ow problem. Two promi-

nent well-studied models are the minimum-cost �ow problem for a single good or more generally the

multi-commodity �ow problem for multiple goods [KV18, Chapter 9 and 19]. While the �rst problem

admits a polynomial time algorithm [EK72], the latter problem is known to be NP-hard [EIS76]. In

contrast to our model, where the agents transporting the messages have capacity limits and trans-

porting messages together does not incur additional costs, in these models there is a capacity limit

on the edges and the cost of transportation grows linearly with the amount of goods transported.

More closely related to our problem is the point-to-point delivery problem studied in [LMS92]. In

their model, a set of items have to be transported from di�erent sources to di�erent destinations and

up to κ items can be transported together on an edge by an agent while the costs increase linearly in

the number of agents used. The main di�erence to our model is that in this model there is an in�nite

supply of agents and agents can move for free if they do no transport any item. The authors show

that the problem is NP-hard for κ ≥ 2 and moreover give a polynomial algorithm for the case the

number of items is constant.

In the vehicle routing problem, introduced by Dantzig and Ramser in [DR59], a set of items have

to be delivered from a common source called depot to di�erent destinations in a network by �eet of

vehicles that all start at the depot. The number of items transported by a vehicle is further bounded

by a capacity limit κ. For the special case of unbounded capacity, the vehicle routing problem corre-

sponds to the traveling salesman problem, which is known to be NP-hard [GJ79]. A large number of

variants of the vehicle routing problem have been considered since, di�ering in whether the vehicles

start at a single depot or at di�erent locations, the item sources are all at the depot or at di�erent

locations, the vehicles are identical or have di�erent capacities or speeds. Moreover, variants with

additional constraints motivated by applications have been considered such as a time window until

deliveries must be made. Almost all variants of the vehicle routing problem are also NP-hard and

most research focuses on integer programming techniques and heuristics. A survey of many types of

vehicle routing problems is given int he book [TV02]. A survey about several vehicle routing prob-

lems with a hetereogeneous �eet of vehicles is further given in [BBV08]. The class of vehicle routing

problem with pickup and delivery as well as time window contraints is referred to as dial-a-ride

problems and covered in the survey [CL07].

The Chinese postman problem, i.e., the problem of �nding the shortest tour traversing all edges of
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a given undirected or directed graph, can also be viewed as a delivery problem and it can be solved

in polynomial time [EJ73]. A generalization of this problem is the stacker crane problem introduced

in [FHK78], which requires the tour to only traverse a given set of arcs of a mixed graph. The

authors show that the stacker crane problem is NP-hard and also consider the k-person variants

of the traveling salesman problem, Chinese postman problem and stacker crane problem. In the k-

person variant, the goal is to �nd k tours starting and ending at the same vertex while minimizing

the maximum cost of the k tours. This objective function is one of the main di�erences to the class of

vehicle routing problems and our problem considered in Chapter 4, where we minimize the overall

cost. In [FHK78] the authors show that all three k-person variants are NP-hard and they further

present approximation algorithms for the problems.

Another related problem is the study of how to move a set of identical agents in a graph from

a starting con�guration to a desired �nal con�guration while minimizing the overall or maximum

movement of the agents. Demaine et al. [Dem+09] gave several approximation algorithms and inap-

proximability results for this problem on graphs. Moverover, for agents on a simple polygons several

algorithms and inapproximability are presented in [Bil+13].

The delivery of multiple pieces of data or messages from di�erent sources to di�erent destina-

tions by collaborating agents with di�erent energy budgets, i.e., bounds on the distance they can

travel, is called the budgeted delivery problem. The problem was �rst considered in [Cha+13] under

the additional assumption that all destinations are the same. The authors show that the problem

is strongly NP-hard even for a single source and uniform energy budgets and further present ap-

proximation and resource augmentation algorithms for the problem. In [Cha+14], it is shown that

the problem is already weakly NP-hard for transporting a single piece of data from a source to a

destination on the line. The general budgeted delivery problem with di�erent sources and sinks is

considered in [Bär+16]. The authors provide both hardness results and resource augmentation al-

gorithm for the general budgeted delivery problem as well as a returning variant, where the agents

additionally need to return to their starting vertex. Another variant of the problem where robots can

share energy was considered in [Bam+17].

In the weighted delivery problem considered in Chapter 4, the agents can travel an arbitrary dis-

tance, but every agent has a di�erent energy e�ciency, which is the rate of energy consumption

per unit distance traveled by the agent. The goal is to delivery all messages while minimizing the

total energy consumption. A variant of this problem is considered in [BT17], where instead both the

energy consumption as well as the delivery time is supposed to be minimized.

Further related is the problem of convergecast, i.e., in which every agent initially has a piece of

information and one agent has to collect the information of all agents, and broadcast, i.e., in which

the information of one agent has to be transferred to all other agents, as considered in [Ana+16;

Czy+17].
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Chapter 2

Space E�cient Graph Exploration

The space complexity of undirected graph exploration for one agent has received a lot of atten-

tion in the literature as it is closely related to the problem of undirected s-t-connectivity, which is

complete for the complexity class SL. In his breakthrough result [Rei08], Reingold showed that undi-

rected s-t-connectivity lies in L and therefore L = SL. His result also gave rise to a deterministic

exploration algorithm that explores any anonymous undirected graph of size n in polynomial time

and O(logn) space. Logarithmic memory is in fact necessary to explore all anonymous graphs with

n vertices, see Fraigniaud et al. [Fra+05].

Already the early literature on graph exploration problems is rich with examples where explo-

ration is made feasible or the time or space complexity of exploration by a single agent can be de-

creased substantially by either allowing the agent to mark vertices with pebbles or by cooperating

with other agents. For instance, two-dimensional mazes can be explored by a single agent with �nite

memory using two pebbles [Sha74; BS77; BK78], or by two cooperating agents with �nite memory

[BK78], while a single agent with �nite memory (and even a single agent with �nite memory and a

single pebble) does not su�ce [Bud78; Hof81]. Directed anonymous graphs can be explored in poly-

nomial time by two cooperating agents [BS94] or by a single agent withΘ(log logn) indistinguishable

pebbles and O(n2∆ logn) bits of memory [Ben+02; FI04], where ∆ is the maximum out-degree in the

graph. Note that a single agent needs at least Ω(n log∆) bits of memory in this setting even if it

is equipped with a linear number of indistinguishable pebbles [FI04] and it needs exponential time

for exploration if it only has a constant number of pebbles and no upper bound on the number of

vertices is known [Ben+02].

Less is known regarding the complexity of general undirected graph exploration by more than

one agent or an agent equipped with pebbles, which we study in this chapter. The only result in this

direction is due to Rollik [Rol80] showing that there are �nite graphs, henceforth called traps, that a

�nite set of k agents each with a �nite number s of states cannot explore. Fraigniaud et al. [Fra+06b]

revisited Rollik’s construction and observed that the traps have
˜O(s ↑↑ (2k + 1)) vertices, where

a ↑↑ b := aa
.. a

with b levels in the exponent and
˜O suppresses lower order terms. Fraigniaud et
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al. also gave an improved upper bound of
˜O(s ↑↑ (k + 1)). While it is a rather straightforward

observation that an agent with s states and p pebbles is less powerful than a set of p + 1 agents with

s states each, no better bounds for a single agent with pebbles were known. Even more striking is

the lack of any non-trivial upper bounds for the exploration with several agents or the single agent

exploration with pebbles for undirected graphs. Speci�cally, there was no algorithm known that

explores an undirected graph with sublogarithmic space when more than one agent and/or pebbles

are allowed.

We �rst give a formal introduction of the agent models for an agent with pebbles and multiple

collaborating agent in Section 2.1. We further prove that an additional agent is more powerful than

a pebble and a pebble is more powerful than a bit of memory.

Afterwards, in Section 2.2, we develop an algorithm that explores any graph withn vertices using

O(log logn) pebbles. Our algorithm terminates after having explored the graph and returns to the

starting vertex. We further show that the exploration time, i.e., the number of edge traversals of

the agent, is polynomial in the size of the graph. Our algorithm does not require n to be known

and gradually increases the number of used pebbles during the course of the algorithm such that

for any n-vertex graph at most f (n) pebbles are used where f (n) ∈ O(log logn). The fact that an

additional agent is more powerful than a pebble allows to rephrase our single agent exploration

algorithm with O(log logn) pebbles as a multi-agent exploration algorithm with O(log logn) agents

and constant memory each.

As a perhaps surprising result, we show in Section 2.3 that this is optimal in terms of the asymp-

totic number of agents. To prove this lower bound, we construct a family of graphs with O(s2
5k
) ver-

tices that trap any set of k agents with s states each. Our construction exhibits dramatically smaller

traps with only a doubly exponential number of vertices compared to the traps of size
˜O(s ↑↑ (2k+1))

and
˜O(s ↑↑ (k + 1)) due to Rollik [Rol80] and Fraigniaud et al. [Fra+06b], respectively. As a conse-

quence of our improved bound on the size of the trap, we are able to show that, even if we allow

O((logn)1−ϵ ) bits of memory for an arbitrary constant ϵ > 0 for every agent, the number of agents

needed for exploration is at least Ω(log logn). This construction also yields the lower bound for a

single agent with pebbles, as p + 1 agents with O((logn)1−ϵ ) bits of memory each are more pow-

erful than one agent with O((logn)1−ϵ ) bits of memory and p pebbles. Our results allow to fully

describe the tradeo� between the number of agents and the memory of each agent. When agents

have Ω(logn) memory, a single agent without pebbles explores all n-vertex graphs. For agents with

O((logn)1−ϵ ) memory, Ω(log logn) agents are needed. On the other hand, when Ω(log logn) agents

are available it is su�cient that each of them has only constant memory. In fact, already one agent

with constant memory and Ω(log logn) pebbles are su�cient.

Bibliographic Information The results presented in this chapter are joint work with Yann Disser

and Max Klimm. Parts of the results appeared in [DHK16], a more extensive version was published

in [DHK18].
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2.1 Agent Models

2.1 Agent Models

In this section, we formally introduce the agent model. We further give proofs of the intuitive facts

that for undirected graph exploration an additional agent (with two states) is more powerful than

a pebble, by showing that one of the agents can replicate the moves of the single agent while the

others do not move independently and simply act as pebbles (Lemma 2.2). Moreover, we show that

a pebble is more powerful than a bit of memory as one bit of memory can basically be encoded by

either dropping or picking up a pebble Lemma 2.1. Note that all graphs considered in this chapter

are undirected, anonymous, locally edge-labeled and connected.

We model an agent as a tuple A = (Σ, Σ̄, δ ,σ ∗), where Σ is its set of states, Σ̄ ⊆ Σ is its set of

halting states, σ ∗ ∈ Σ is its starting state, and δ is its transition function. The transition function

governs the actions of the agent and its transitions between states based on its local observations. Its

exact speci�cs depend on the problem considered, i.e., whether we consider a single agent or a group

of agents and whether we allow the agents to use pebbles. Exploration terminates when a halting

state is reached by all agents. Our model for an agent is based on a Mealy automaton. In particular

this means that the output, i.e., the actions of the agent, can depend on the current state of the agent

and the input, i.e., the local environment. This allows for a more memory e�cient representation of

the agents in contrast to a Moore automaton, whose output online depends on its current state.

2.1.1 Single Agent without Pebbles

The most basic model is that of a single agentAwithout any pebbles. In each step, the agent observes

its current state σ ∈ Σ, the degree dv of the current vertex v and the port number at v of the edge

from which v was entered. The transition function δ then speci�es a new state σ ′ ∈ Σ of the agent

and a move l ′ ∈ {0, . . . ,dv − 1} ∪ {⊥}. If l ′ ∈ {0, . . . ,dv − 1} the agent enters the edge with the local

port number l ′, whereas for l ′ = ⊥ it stays at v. Formally, the transition function is a partial function

δ : Σ × N × N→ Σ × (N ∪ {⊥}),

(σ ,dv , l) 7→ (σ
′, l ′).

Note that the transition function only needs to be de�ned for l with l < dv and degrees dv that

actually appear in the class of graphs considered. It is standard to de�ne the space requirement of

an an agent with states Σ as log |Σ| as this is the number of bits needed to encode every state, see,

e.g., Cook and Racko� [CR80].

2.1.2 Single Agent with Pebbles

We may equip the agent A with a set P = {1, . . . ,p} of unique and distinguishable pebbles. At the

start of the exploration the agent is carrying all of its pebbles. As before, the agent observes in each

step the degree dv of the current vertexv and the port number from whichv was entered. In addition,

the agent has the ability to observe the set of pebbles PA that it carries and the set of pebbles Pv
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present at the current vertex v. The transition function δ then speci�es the new state σ ′ ∈ Σ of

the agent, and a move l ′ ∈ {0, . . . ,dv − 1} ∪ {⊥} as before. In addition, the agent may drop any

subset Pdrop ⊆ PA of carried pebbles and pick up any subset of pebbles Ppick ⊆ Pv that were located

at v, so that after the transition the set of carried pebbles is P ′A =
(
PA \ Pdrop

)
∪ Ppick and the set of

pebbles present at v is P ′v =
(
Pv \ Ppick

)
∪ Pdrop. Formally, we have

δ : Σ × N × N × 2
P × 2

P → Σ × (N ∪ {⊥}) × 2
P × 2

P ,

(σ ,dv , l , PA, Pv ) 7→ (σ
′, l ′, P ′A, P

′
v ).

The transition function δ is partial as it is only de�ned for PA ∩ Pv = ∅. We assume that the pebbles

are actual physical devices dropped at the vertices so that no space is needed to manage the pebbles,

thus, the space requirement of the agent is again log |Σ|.

2.1.3 Collaborating Agents without Pebbles

Consider a set ofk cooperative agentsA1 = (Σ1, Σ̄1, δ1,σ
∗
1
), . . . ,Ak = (Σk , Σ̄k , δk ,σ

∗
k ) jointly exploring

the graph. We assume that all agents start at the same vertex v0 of the given graphG. In each step, all

agents synchronously determine the set of agents they share a location with, as well as the states of

these agents. Then, all agents move and alter their states synchronously according to their transition

functions δ1, . . . , δk . The transition function of agent i determines a new state σ ′ and a move l ′ as

before. Formally, let

Σ−i = (Σ1 ∪ {⊥}) × · · · × (Σi−1 ∪ {⊥}) × (Σi+1 ∪ {⊥}) × · · · × (Σk ∪ {⊥})

denote the states of all agents potentially visible to agentAi where a⊥ at position j (or (j−1) if j ≥ i)

stands for the event that agent Ai and agent Aj are located on di�erent vertices. Then, the transition

function δi of agent Ai is a partial function

δi : Σi × Σ−i × N × N→ Σi × (N ∪ {⊥}),

(σi ,σ−i ,dv , l) 7→ (σ
′
i , l
′
i ).

The overall memory requirement is

∑k
i=1

log |Σi |.

2.1.4 Relationship between Agent Models

In order to compare the capability of an agent A with s states and p pebbles to another agent A′ with

s ′ states and p ′ pebbles or a set of agents A, we use the following notion: We say that the walk of

an agent A is reproduced by an agent A′ in a graph G, if the sequence of edges traversed by A is a

subsequence of the edges visited by A′ in G. Put di�erently, A traverses the same edges as A′ in the

same order, but for every edge traversal ofA the agentA′ can do an arbitrary number of intermediate

edge traversals. Similarly, we say that a set of agents A reproduces the walk of an agent A in G, if

there is an agent A′ ∈ A such that A′ reproduces the walk of A in G.

We �rst formally show the intuitive fact that pebbles are more powerful than memory bits.
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Lemma 2.1. Let A be an agent with s states and p pebbles exploring a set of graphs G. Then there is

an agent A′ with six states and p + dlog se pebbles that reproduces the walk of A on every G ∈ G and

performs at most three edge traversals for every edge traversal of A.

Proof. As the set of graphs G that can be explored by an agent with s states and p pebbles is non-

decreasing in s , it su�ces to show the claimed result for the case that s is an integer power of two.

Let A = (Σ, Σ̄, δ ,σ ∗) be an agent with a set of p pebbles P and s = |Σ| = 2
r
, r ∈ N states exploring

all graphs G ∈ G. In the following, we construct an agent A′ = (Σ′, Σ̄′, δ ′,σ ∗′) with six states

Σ′ = {σ ∗′,σcomp, σ̄halt,σback−1,σback−2,σswap}, one halting state Σ̄′ = {σ̄halt}, and a set P ′ of |P ′ | =

p+r pebbles. The general idea is to letA′ store the state ofA by dropping and retrieving the additional

r pebbles. To this end, we identifyp of the pebbles ofA′with thep pebbles ofA and call the additional

set of r pebbles P ′Σ, i.e., P ′ = P ∪ P ′Σ with |P | = p and |P ′Σ | = r , respectively. Since |P ′Σ | = r and

|Σ| = s = 2
r
, there is a canonical bijection f : Σ→ 2

P ′Σ . Every edge traversal of agent A in a state σ ,

will be simulated by agent A′ in the computation state σcomp while carrying the set of pebbles f (σ )

plus the additional pebbles that A is carrying. We need the additional states σback−1, σback−2, σswap to

move all pebbles in P ′Σ encoding the state of A to the next vertex in some intermediate steps.

At the start of the exploration, A′ remains at the starting vertex and stores the starting state σ ∗

of agent A by dropping the set of pebbles (P ′Σ \ f (σ
∗)). Formally, we de�ne the transition from the

starting state σ ∗′ of agent A′ as

δ ′(σ ∗′,dv , l , P
′, ∅) = (σcomp,⊥, f (σ

∗) ∪ P , (P ′Σ \ f (σ
∗)).

for all dv , l ∈ N.

Next, we de�ne the transition function δ ′ ofA′ for the case thatA′ is in its computing state σcomp,

i.e., we want to simulate the change of state of A and traverse the same edge. If σ = f −1(PA′ ∩ P
′
Σ) is

the current state of agent A and agent A transitions according to

δ (σ ,dv , l , PA′ ∩ P , Pv ∩ P) = (σ
′, l ′, P ′A, P

′
v ) (2.1)

with σ ′ ∈ Σ, l ′ ∈ N and P ′A, P
′
v ∈ 2

P ′
, then we de�ne

δ ′(σcomp,dv , l , PA′ , Pv ) =


(σcomp, l ′, P ′A ∪ f (σ ′), P ′v ∪ (P

′
Σ \ f (σ

′)) if l ′ = ⊥ and σ ′ < Σ̄,

(σback−1, l
′, P ′A ∪ f (σ ′), P ′v ∪ (P

′
Σ \ f (σ

′)) if l ′ , ⊥ and σ ′ < Σ̄,

(σhalt, l ′, P ′A ∪ f (σ ′), P ′v ∪ (P
′
Σ \ f (σ

′)) else.

(2.2)

Note that before and after this transition the subset of pebbles from P ′Σ carried by A′ encodes the

state of A via the bijection f . However, if A traverses an edge without entering a halting state, we

also need to fetch the remaining pebbles from P ′Σ from the previous vertex to be able to encode the

state of A in the future. To this end, A′ switches to the state σback−1. The fetching will be done in

three steps: First, A′ drops all pebbles in f (σ ′), moves to the previous vertex and changes its state

to σback−2. Formally, this means

δ ′(σback−1,dv , l , PA′ , Pv ) =
(
σback−2, l , PA′ \ P

′
Σ, Pv ∪

(
P ′Σ ∩ PA′

) )
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for all dv , l ∈ N and PA′ , Pv ∈ 2
P ′

with PA′ ∩ Pv = ∅. Then it picks up the pebbles in

(
P ′Σ \ f (σ

′)
)
,

returns to the current vertex of A and changes its state to σswap, i.e.,

δ ′(σback−2,dv , l , PA′ , Pv ) =
(
σswap, l , PA′ ∪

(
P ′Σ ∩ Pv

)
, Pv \ P

′
Σ

)
for all dv , l ∈ N and PA′ , Pv ∈ 2

P ′
with PA′ ∩ Pv = ∅. Lastly, agent A′ swaps the set of carried

pebbles P ′Σ \ f (σ
′) and the set f (σ ′) of pebbles on the current vertex by performing the transition

δ ′(σswap,dv , l , PA′ , Pv ) =
(
σcomp,⊥, PA′ ∪

(
P ′Σ ∩ Pv

)
, Pv ∪

(
P ′Σ ∩ PA′

) )
for all dv , l ∈ N and PA′ , Pv ∈ 2

P ′
with PA′ ∩ Pv = ∅.

A simple inductive proof establishes that the state σ of A in every step of the exploration of a

graph G ∈ G corresponds to the set of pebbles in P ′Σ carried by A′ in its computation state σcomp,

i.e., σ = f −1
(
PA′ ∩ P

′
Σ

)
. Moreover, if agent A in state σ traverses an edge {v,w} from a vertex v to

a vertex w and does not move to a halting state, then A′ will traverse the edge {v,w} three times

and afterwards again the set of pebbles carried by A will correspond to PA′ ∩ P and the state of A to

σ = f −1
(
PA′ ∩ P

′
Σ

)
. If A remains at the same vertex or moves to a halting state then this transition

is mirrored by a single transition of agent A′. In particular, agent A′ visits exactly the same vertices

as A in every graph G ∈ G while performing at most three times the number of edge traversals.

Next, we show the intuitive result that an additional agent is more powerful than a pebble.

Lemma 2.2. Let A be an agent with s states and p pebbles exploring a set G of graphs. Then, there is

a set A = (A0, . . . ,Ap ) of p + 1 agents, where A0 has s states and all other agents have two states, that

reproduce the walk of A in every graphG ∈ G. Moreover, for every edge traversal of A each agent inA

performs at most one edge traversal.

Proof. LetA = (Σ, Σ̄, δ ,σ ∗) be an agent with |Σ| = s and a set P = {1, . . . ,p} ofp pebbles exploring all

graphs G ∈ G. We proceed to construct a set A = {A0, . . . ,Ap } of p + 1 agents Ai = (Σi , Σ̄i , δi ,σ
∗
i ),

i ∈ {0, . . . ,p} that reproduces the walk of A on all graphs G ∈ G. In this construction, agent A0

represents the original agent A while every agent Ai for i > 0 represents a pebble.

For agent A0, we set Σ0 = Σ, Σ̄0 = Σ̄, and σ ∗
0
= σ ∗. For every agent Ai with i ∈ P , we set

Σi = {ci ,di }, Σ̄i = Σi , and σ ∗i = ci . Intuitively, the state ci simulates that pebble i is carried and di

simulates that the pebble is dropped. In every step, we let agent A0 and the agents Ai corresponding

to a carried pebble do the same transitions as agentA. Agents that are not sharing their current vertex

with A0 remain at their vertex and in their state. Let σ−i , j for i , j ∈ {0, . . . ,p} with i , j denote the

state of agent Aj visible to agent Ai , i.e., σ−i , j = σj if Ai and Aj share the same vertex and σ−i , j = ⊥

otherwise. Speci�cally, to de�ne the transition functions δi (σi ,σ−i ,dv , l) for i ∈ {0, . . . ,p}, σi ∈ Σi ,

σ−i ∈ Σ−i and dv , l ∈ N, we �rst compute

δ (σ0,dv , l , {i ∈ P : σ−0,i = ci }, {i ∈ P : σ−0,i = di }) = (σ
′
0
, l ′, P ′A, P

′
v )

with σ ′
0
∈ Σ, l ′ ∈ N, and P ′A, P

′
v ∈ 2

P
. We then set

δ0(σ0,σ−0,dv , l) = (σ
′
0
, l ′)
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and

δ j (σj ,σ−j ,dv , l) =


(σj ,⊥) if σ0 = ⊥

(c j , l
′) if σ0 , ⊥ and j ∈ P ′A

(dj ,⊥) if σ0 , ⊥ and j ∈ P ′v

for all j ∈ P .

To �nish the proof, �x a graph G ∈ G and consider the transitions of agent A and the set of

agents A in G. A simple inductive proof shows that after i transitions, the state and position of

agent A equals the state and position of agent A0, the position of agent Aj equals the position of

pebble j and σj = c j if and only if pebble j is carried by A for all j ∈ P . This implies the claim.

Note that, for ease of presentation, we allow agents to make transitions even when they are in

one of their halting states. We need this property in the proof above to show that two-state agents

are more powerful than pebbles (cf. Lemma 2.2) in general. However, this reduction only needs

agents to make transitions from their halting states to other halting states, and only when colocated

with another agent that has not yet reached a halting state. Furthermore, our main algorithm for

single-agent exploration with pebbles that we devise in Section 2.2 has the special property that the

agent A0 returns to the starting vertex carrying all pebbles after having explored the graph. Thus,

for our algorithm it is not necessary that agents can make transitions from halting states as we could

add an additional halting state to the two-state agents to which they transition once exploration is

complete and A0 has returned to the starting vertex.

2.2 Exploration Algorithms

In this section, we devise an agent exploring any graph on at mostn vertices withO(log logn) pebbles

and O(log logn) memory. By the reductions between the agents’ models given in Section 2.1.4 this

implies that an agent with O(log logn) pebbles and constant memory can explore any n-vertex graph

and that a set of O(log logn) agents with constant memory each can explore any n-vertex graph.

For the algorithm, we use the concept of universal exploration sequences due to Koucký [Kou02],

see Section 1.2.2. One of our main building blocks is the algorithm of Reingold [Rei08] that takes n

and d as input and deterministically constructs an exploration sequence universal to all d-regular

graphs using O(logn) bits of memory. The general idea of our algorithm is to run Reingold’s algo-

rithm with a smaller amount of seed memorya. As the seed memory is substantially less thanO(logn),

the algorithm will, in general, fail to explore the whole graph. We show in Lemma 2.5, however, that

the algorithm will visit 2
Ω(a)

distinct vertices. Reinvoking Reingold’s algorithm allows us to deter-

ministically walk along these vertices in the order of exploration of Reingold’s algorithm. Using this

traversal, we encode additional memory by placing a subset of pebbles on the vertices along the

walk as explained formally in Theorem 2.7. Having boosted our memory this way, we again run

Reingold’s algorithm, this time with more memory, and recurse. At some recursion depth, running
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Reingold’s algorithm with a∗ bits of memory will visit less than 2
Ω(a∗)

distinct vertices. In the proof

of Theorem 2.8, we show that this can only happen when the graph is fully explored which allows

to terminate the algorithm when this event occurs and return to the starting vertex . The ability of

our algorithm to terminate and return to the starting vertex after successful exploration, stands in

contrast to Reingold’s algorithm that is only able to terminate when being given the number n of

vertices as input.

There are a couple of technical di�culties to make these ideas work. The main challenge is

that the memory generated by placing pebbles along a walk in the graph is implicit and can only

be accessed and altered locally. To still make use of the memory, we do not work with Reingold’s

algorithm directly but consider an implementation of Reingold’s algorithm on a Turing machine with

logarithmically bounded working tape. We show that the tape operations on the working tape can

be reproduced by the agent by placing and retrieving the pebbles on the walk as explained in detail

in the proof of n Theorem 2.7. This allows to use the memory encoded by the pebble positions for

further runs of Reingold’s algorithm. In each recursion, we only need a constant number of pebbles

and additional states. We further show in Theorem 2.8 that O(log logn) recursive calls are su�cient

to explore an n-vertex graph so that the total number of pebbles needed is O(log logn).

A second challenge is that Reingold’s algorithm produces a universal exploration sequence for

regular graphs which our graph need not be. A natural approach to circumvent this issue is to apply

the technique of Koucký [Kou03] that allows to locally view vertices with degree d as cycles of 3d

subvertices with degree 3 each. Unfortunately, this approach requires O(logd) bits of memory if we

keep track of the current subvertex which may exceed the memory of our agent. To circumvent this

issue, we store the current subvertex only implicitly and navigate the graph in terms of subvertex

index o�sets instead of the actual subvertex indices. This technique is explain in detail in the proof

of Lemma 2.5

The following fundamental result of Reingold [Rei08] establishes that universal exploration se-

quences can be constructed in logarithmic space.

Theorem 2.3 ([Rei08, Corollary 5.5]). There exists an algorithm takingn andd as input and producing

in O(logn) space an exploration sequence universal for all connected d-regular graphs on n vertices.

Reingold’s result implies in particular that there is an agent without pebbles and O(nc ) states for

some constant c that explores any d-regular graph with n vertices when both n and d are known. We

further note that Reingold’s algorithm can be implemented on a Turing machine that has a read/write

tape of length O(logn) as work tape and writes the exploration sequence to a write only output tape,

see [Rei08, Section 5] for details. For formal reasons the Turing machine in [Rei08] additionally has

a read-only input tape from which it reads the values of n and d encoded in unary so that the space

complexity of the algorithm is actually logarithmic in the input length. For our setting, it is su�cient

to assume that n and d are given as binary encoded numbers on the working tape of length O(logn),

as we care only about the space complexity of exploration in terms of the number of vertices n.

As a �rst step, we show in Lemma 2.4 how to modify Reingold’s algorithm for 3-regular graphs
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Algorithm 2.1: Turing machine M computing exploration sequence for 3-regular graphs.

Input: z ∈ N

Output: exploration sequences w ∈ {0, 1, 2}∗

1 for t ∈ {1, . . . , 2a} do

2 if t ≤ a then

3 run M0 for t steps to obtain element et of the exploration sequence generated by M0

4 output et

5 else if t = a + 1 then

6 output 0

7 else if t ≥ a + 2 then

8 run M0 for 2a + 2 − t steps to obtain element e2a+2−t of exploration sequence of M0

9 output −e2s+2−t mod 3

to yield a closed walk containing an exponential number of vertices in terms of the memory used.

Afterwards, we extend this result to general graphs in Lemma 2.5.

Lemma 2.4. For any z ∈ N, there exists a O(log z)-space algorithm producing an exploration sequence

w ∈ {0, 1, 2}∗ such that for all connected 3-regular graphs G with n vertices the following hold:

(a) an agent followingw in G explores at least min{z,n} distinct vertices,

(b) w yields a closed walk in G,

(c) the length ofw is bounded by zO(1).

Proof. By Theorem 2.3, there is a Turing machine M0 with a tape of length O(log z) producing a

universal exploration sequence e1, e2, . . . for any 3-regular graph on exactly 4z vertices. Let cM0
be

the number of con�gurations of M0 and a := 12zcM0
+ 1. Here the number of con�gurations of M0 is

the number of possible combinations of Turing state, tape contents and head position of M0.

The Turing machine M producing an exploration sequencew with the desired properties is given

in Algorithm 2.1. By construction, the sequence w produced by M is

e1, e2, . . . , ea , 0, (−ea mod 3), (−ea−1 mod 3), . . . , (−e2 mod 3).

We �rst show that this sequence corresponds to a closed walk in any 3-regular graph. Let an

agent A start at a vertex v0 in some graph 3-regular G, follow the exploration sequence w , and,

for i ∈ {1, . . . ,a}, let vi be the vertex reached after following w up to ei . Then the o�set 0 takes the

agent back from va to va−1 and afterwards −ei mod 3 takes agent A from vi−1 to vi−2. Thus, at the

end the agent returns to v0, which yields property (b).

Moreover, the number of con�gurations cM0
of the Turing machine M0, i.e., the number of possi-

ble combinations of state, head position, and tape contents, is bounded by zO(1), because the working

tape has length O(log z). Hence, the length of w , i.e., 2a = 2 · (12zcM0
+ 1), is also bounded by zO(1),
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which yields property (c). As the auxiliary variable t ranges from 1 to 2a and running the Turing

machine M0 for t steps can be implemented in O(log z) space, the Turing machine M can be imple-

mented to run in O(log z) space.

It is left to show is that an agent following w in an arbitrary connected 3-regular graph with n

vertices explores at least min{z,n} vertices. For the sake of contradiction, assume there exists some 3-

regular graphG on n vertices so that an agent A starting in a vertex v0 and following the exploration

sequence w produced by M only visits a set of vertices V0 with |V0 | < min{z,n}. Let G0 be the

subgraph of G induced by V0. Note that, since |V0 | < n by assumption, at least one vertex in G0 has

degree less than 3. We now extend G0 to a connected 3-regular graph with 4z vertices as follows.

First, we letG1 be the graphG0 after adding an isolated vertex ifV0 is odd and we letV1 be the vertex

set ofG1. We further letG2 be a cycle of length 4z− |V1 | with opposite vertices connected by an edge.

Note that 4z and |V1 | are even andG2 is 3-regular. As long asG1 contains at least one vertex of degree

less than 3, we delete an edge {w ,w ′} connecting opposite vertices in the cycle in G2 and for w and

thenw ′ add an edge from this vertex to a vertex of degree less than 3 inG1 (possibly the same). This

procedure terminates when all vertices in G1 have degree 3, since G2 contains 4z − |V1 | ≥ 3z ≥ 3|V1 |

vertices and there cannot be a single vertex of degree 2 left in G1, as this would mean that the sum

of all vertex degrees inG1 is odd. The labels in {0, 1, 2} at both endpoints of every edge not inG0 are

chosen arbitrarily. Let H be the resulting 3-regular graph with 4z vertices containing G0 as induced

subgraph.

By construction, the walk of an agent A starting in H at v0 and following w is the same as the

walk in G starting in v0 and following w . In particular, the agent A does not explore H . Let now

A0 be an agent following the exploration sequence w0 produced by M0 starting in vertex v0 in H .

As the �rst a values of w and w0 coincide, the walk of agent A0 in H up to step a is the same as

that of agent A. Recall that a = 3 · 4zcM0
+ 1. This implies that in the �rst a steps there must be a

vertex v in H visited twice by agent A0 (there are 4z vertices in H ) and in both visits, the label to

the previous vertex (there are 3 possible labels) is the same and the Turing machine M0 producing

the exploration sequence w0 is in the same con�guration (there are cM0
possible con�gurations) in

both visits. But this implies that the behaviour of A0 in H becomes periodic and it only visits the set

of vertices already visited in the �rst a steps, i.e., the set of vertices V0. We conclude that A0 does

not explore H , contradicting that w0 is a universal exploration sequence for all 3-regular connected

graphs on 4z vertices.

We proceed to give a similar result for non-regular graphs.

Lemma 2.5. For any z ∈ N, there exists a O(log z)-space algorithm producing an exploration sequence

w ∈ {−1, 0, 1}∗ such that for all connected graphs G with n vertices the following hold:

(a) an agent followingw in G explores at least min{z,n} distinct vertices,

(b) w yields a closed walk in G,

(c) the length ofw is bounded by zO(1).
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(b) 3-regular graph Greg.

Figure 2.1: Example for the transformation of a graph G to a 3-regular graph Greg. A vertex v of

degree 2 is transformed to a cycle containing 6 vertices and for the edge {v,w}, three edges are added

to the graph.

Proof. Let Mreg be the Turing machine of Lemma 2.4 with a tape of length bounded by O(log z)

producing a universal exploration sequence wreg ∈ {0, 1, 2}
∗

such that an agent following wreg in

some 3-regular graph with n vertices visits at least min{3z2,n} distinct vertices.

To prove the statement, we transform this universal exploration sequence for 3-regular graphs

to a universal exploration sequence universal for general graphs by using a construction taken from

Koucký [Kou03, Theorem 87]. In this construction, an arbitrary graph G with n vertices is trans-

formed into a 3-regular graph Greg as follows: We replace every vertex v of degree dv by a circle

of 3dv vertices (v, 0), . . . , (v, 3dv − 1), where the edge {(v, i), (v, i + 1 mod 3dv )} has port number 0

at (v, i) and port number 1 at (v, i + 1 mod 3dv ), see also Figure 2.1 for an example of this con-

struction. For any edge {v,w} in G with port number i at v and j at w , we add the three edges

{(v, i), (w , j)}, {(v, i + dv ), (w , j + dw )}, {(v, i + 2dv ), (w , j + 2dw )} with port numbers 2 at both end-

points to Greg.

Observe that there are only two labelings of edges in Greg, edges with port number 2 at both

endpoints and edges with port numbers 0 and 1. In particular, one port number of an edge can be

deduced from the other port number. As a consequence, given the previous edge label and the edge

o�sets from the exploration sequence wreg produced by Mreg, the next edge label can be computed

without knowing the edge label of the edge by which the vertex was entered. In other words, we can

transform the sequence of edge label o�sets given by wreg to a traversal sequence, i.e., a sequence of

absolute edge labels l0, l1, . . . of Greg.

We proceed to de�ne the Turing machine M producing an exploration sequence w ∈ {−1, 0, 1}∗

with the desired properties as shown in Algorithm 2.2. First of all, note that the next edge label li

inGreg can be computed from the last edge label inGreg and the o�setwreg(i) in constant space (line 5

of Algorithm 2.1). Thus, M can be implemented in O(log z) space. By assumption, the length of the
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Algorithm 2.2: Turing machine M computing exploration sequence for arbitrary graphs.

Input: z ∈ N

Output: exploration sequences w ∈ {−1, 0, 1}∗

1 i := 0

2 output 0, 0

3 whileMreg has not terminated do

4 obtain next o�set wreg(i) from Mreg

5 compute edge label li in Greg

6 if li = 0 then

7 output 1, 0

8 else if li = 1 then

9 output −1, 0

10 else if li = 2 then

11 output 0

12 i := i + 1

exploration sequence produced byMreg is bounded by zO(1). Hence, also the length of the exploration

sequence produced by M is bounded by zO(1) showing (c).

LetAreg be an agent followingwreg inGreg andA be an agent following the exploration sequencew

produced by M in G. What is left to show is that A traverses G in a closed walk and visits at least

min{z,n} distinct vertices. In order to show this, we �rst establish the following invariants that hold

after every iteration i of the while-loop in Algorithm 2.2:

1. If agent Areg is at vertex (vi ,ai ) in Greg after i steps, then after following the exploration se-

quence output by M up to the end of iteration i agent A is at vi and ai mod dvi is the label of

the edge to the previous vertex.

2. If (vi ,ai ) is visited by Areg inGreg, then inG both vi and the neighbor incident to the edge with

label (ai mod dvi ) are visited by A.

We show the invariants by induction. The starting vertex of Areg in Greg is (v0, 0) and the starting

vertex of A in G is v0. Note that at the beginning the Turing machine M outputs 0,0 so that in G

agent A visits the neighbor of v0 incident to the edge 0 and then returns to v0. Thus, both invariants

hold before the �rst iteration of the while-loop.

Now assume that before iteration i both invariants hold. We show that then they also hold

after iteration i . If agent Areg is at the vertex (v,a) after i − 1 steps and the edge traversed by Areg

in step i has label 0, i.e., li = 0, then Areg moves to vertex (v, (a + 1) mod 3dv ) by the de�nition

of Greg, see also Figure 2.1. By assumption, agent A is at vertex v in G and the last edge label is

a mod dv . Thus, if agent A follows the exploration sequence 1, 0 output by M in iteration i (line 7

of Algorithm 2.2), then it �rst traverses the edge labeled (a + 1) mod dv and then returns to v. This
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means that after iteration i , the current vertex of A inG is v and the edge label to the previous vertex

is (a + 1) mod dv = ((a + 1) mod 3dv ) mod dv . Moreover, agent A visited both v and the neighbor

of v incident to the edge with label (a + 1) mod dv . Thus, both invariants hold after iteration i in this

case.

The case that li = 1 is analogous except that edges with label li = 1 inGreg lead from a vertex (v,a)

to a vertex (v, (a−1) mod 3dv ). The equivalent movement ofA inG is achieved by the sequence −1, 0

(line 9 in Algorithm 2.1).

So assume that agent Areg in step i traverses an edge with label li = 2 from a vertex (v,a) to a

vertex (v′,a′). This means that there is an edge {v,v′} inG with port number a mod dv at v and port

number a′ mod dv ′ at v′. By assumption, at the beginning of iteration i agent A is at v and a mod dv

is the label of the edge to the previous vertex. So if A follows the exploration sequence 0 output in

iteration i (line 11 of Algorithm 2.2), then it moves to v′. Now the label to the previous vertex at v′ is

a′ mod dv ′ and A visited both v and v′ so that both invariants hold again.

Finally, for property (c) in the lemma, we know that the traversal of agent Areg inGreg is a closed

walk by Lemma 2.4 and hence the traversal of A in G also is a closed walk by the �rst invariant.

What is left to show is thatA visits at least min{z,n} distinct vertices inG. IfGreg has at most 3z2

vertices, then Areg visits all vertices in Greg by assumption and thus A also visits all vertices in G by

the second invariant. Otherwise, we know that Areg visits at least 3z2
distinct vertices in Greg. Note

that this implies z < n as Greg contains at most 3n(n − 1) vertices.

Assume, for the sake of contradiction, that A visits less than z vertices in G. Let V̄reg be the set

of vertices visited by Areg in Greg. As |V̄reg | ≥ 3z2
by assumption, at least one of the two following

cases occurs:

1. The cardinality of V̄ := { v | (v, j) ∈ V̄reg for some j } is at least z.

2. There is a vertex v̄ in G such that Mv̄ := { j | (v̄, j) ∈ V̄reg } has cardinality ≥ 3z.

We show that both cases lead to a contradiction.

Note that by the second invariant agent A visits all vertices in V̄ . Thus, if |V̄ | ≥ z, then A visits

at least z distinct vertices in G, a contradiction.

Assume the second case occurs and let v̄ in G be a vertex such that |Mv̄ | ≥ 3z. Then we have

|{j mod dv̄ | j ∈ Mv̄ | ≥ z implying that agent A visits at least z neighbors of v̄ in G by the second

invariant. This again is a contradiction.

To make the results above usable for our agents with pebbles, we need more structure regarding

the memory usage of the agent. To this end, we formally de�ne a walking Turing machine with access

to pebbles which we will refer to as a pebblemachine. Formally, we can view such a walking Turing

machine as a speci�cation of the general agent model with pebbles described in Section 2.1.2, where

the states of the agent correspond the state of the working tape, the position of the head, and the

state of the Turing machine.
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Definition 2.6. Let s ,p,m ∈ N. An (s,p,m)-pebble machine T = (Q , Q̄ , P ,m, δin, δTM, δout,q∗) is
an agent A = (Σ, Σ̄, δ ,σ ∗) with a set P = {1, . . . ,p} of p pebbles and the following properties:

(a) The set of states is Σ = Q × {0, 1}m × {0, . . . ,m − 1}, where each state consists of a Turing state,

the state of the working tape of lengthm, and a head position on the tape.

(b) In the initial state σ ∗ the Turing state is q∗, the head position is 0, and the tape has 0 at every

position.

(c) The agent’s transition function δ : Σ ×N ×N × 2
P × 2

P → Σ × (N ∪ {⊥}) × 2
P × 2

P
is computed

as follows:

(i) The agent �rst observes its local environment according to the function δin : Q × N × N ×

2
P × 2

P → Q that maps a vector (q,dv , l , PA, Pv ) consisting of the current Turing state, the

degree dv of the current vertex, the label l of the edge leading back to the vertex last visited,

the set PA of carried pebbles and the set Pv of pebbles located at the current vertex to a new

Turing state q′.

(ii) The agent does computations on the working tape like a regular Turing machine according to

the function δTM : Q×{0, 1} → Q×{0, 1}×{le�, right} that maps the tuple consisting of the

current Turing state and the symbol at the current head position (q,a) to a tuple (q′,a′,d)

meaning that the machine transitions to the new state q′, writes a′ at the current position of

the head andmoves the head in directiond ; this process is repeated until a halting state q̄ ∈ Q̄

is reached (note that we only consider Turing machines that eventually halt).

(iii) It performs actions according to the function δout : Q̄ × 2
P × 2

P ×N×N→ 2
P × 2

P ×N that

maps a tuple (q, PA, Pv ) containing the current Turing state q, the set of carried pebbles PA

and the set of pebbles Pv at the current vertex v to a tuple (P ′A, P
′
v , l
′) meaning that it drops

and retrieves pebbles such that it carries P ′A, leaves P
′
v at v and takes the edge locally labeled

by l ′.

When considering a pebble machineT = (Q , Q̄ , P ,m, δin, δTM, δout)we will call the Turing statesQ

simply states and we will call the set of states Σ of the underlying agent model con�gurations. As

the con�guration of a pebble machine is fully described by the (Turing) state q ∈ QT , the head po-

sition, and the state of the working tape, it has sm2
m

con�gurations. We further call a transition of

the agent according to the transition function δTM a computation step. Note that an agent remains

at the same vertex and only changes its con�guration when performing a computation step.

In the following theorem, we explain how to place pebbles on a closed walk and use them as

additional memory.

Theorem 2.7. There are constants c , c ′ ∈ N, such that for every (s ,p, 2m)-pebble machine T there

exists a (cs ,p + c ,m)-pebble machine T ′ with the following properties:

(a) For every graph G with n < 2
m/c ′

vertices, the pebble machine T ′ explores G in a closed walk,

collects all pebbles, returns to the starting vertex and terminates. The overall number of edge

traversals and computation steps needed by the pebble machine T ′ is bounded by 2
O(m)

.

36
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(b) For every graphG withn ≥ 2
m/c ′

vertices,T ′ reproduces the walk ofT inG while the positions ofp

of the p+c pebbles correspond to the positions of the p pebbles ofT . For the initialization,T ′ needs

2
O(m)

edge traversals and computations steps. Afterwards, the number of edge traversals and

computation steps needed by the pebble machineT ′ to reproduce one edge traversal or computation

step of T is bounded by 2
O(m)

.

Proof. The general idea of the proof is thatT ′ places the constant number of additional pebbles on a

closed walk ω in order to encode the tape content of the pebble machine T . Using these pebbles, T ′

can also count the number of distinct vertices on the closed walk ω. If the closed walk is too short,

thenT ′ already explored the graph and the condition for (a) is satis�ed. Otherwise, the closed walk is

long enough to allow for a su�cient number of distinct positions of the pebble and we are in part (b)

of the statement of the theorem.

LetQ be the set of states ofT . We de�ne the set of states ofT ′ to beQ ×Q ′ for a setQ ′, i.e., every

state ofT ′ is a tuple (q,q′), where q corresponds to the state ofT in the current step of the traversal.

The pebble machineT ′ observes the input according to δin and performs actions according to δout just

asT , while only changing the �rst component of the current state. T ′ uses p pebbles in the same way

asT and possesses a set {pstart,ptemp,pnext,p0,p1, . . . ,pc−4} of additional pebbles. The pebble pstart is

dropped by T ′ right after observing the input according to δin in order to mark the current location

of T during the traversal. The purpose of the pebbles ptemp and pnext will be explained later. The

other pebbles {p0,p1, . . . ,pc−4} are placed along a closed walk ω to simulate the memory ofT , while

the states Q ′ and the tape of T ′ are used to manage this memory.

To this end, we divide the tape ofT ′ into a constant number c0 of blocks of sizem/c0 each. In the

course of the proof, we will introduce a constant number of variables to manage the simulation of

the memory ofT with pebbles. Each of these variables is stored in a constant number of blocks. The

constant c0 is chosen large enough to accommodate all variables on the tape of T ′. By Lemma 2.5,

there is a constant c1 such that for any r ∈ N there is a Turing machine M with at most c1 states

and a tape of length c1 · r outputting an exploration sequence that gives a closed walk of length at

most 2
c1 ·r

visiting at least min{2r ,n} vertices in any graph with n vertices. Let m1 := m/(c0c1) and

letm0 ∈ N be such that for allm′ ∈ N withm′ ≥ m0 we have c1 ≤ 2
m′/c0

and 2
m′/c0 > 2m′.

In the following, we show how the simulated memory is managed by providing algorithms in

pseudocode (see ?? 2.3–2.8). These can be implemented on a Turing machine with a constant number

of states cAlg. Let c = max

{
2

2m0 , 2c0c1 + 3, cAlg

}
and c ′ := c0c1. Note that c only depends on the

constants c0, c1 and cAlg, but not on m or p. It is without loss of generality to assume m ≥ m0,

because, for m < m0, we can store the con�guration of the tape of T in the states Q ′ of T ′, since

c ≥ 2
2m0

.

We proceed to show that the computations on the tape of length 2m performed by T according

to the transition function δTM can be simulated using the pebbles {pstart,ptemp,p0,p1, . . . ,pc−4}. The

proof of this result proceeds along the following key claims.

1. We can �nd a closed walk ω containing 2
m1

distinct vertices so that c − 3 pebbles placed along
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(b) Memory encoded by pebbles

Figure 2.2: Memory encoding by pebbles on a closed walk. The state of the tape of length 2m = 12 in

(a) is encoded by the position of the c − 3 = 4 pebbles in (b). The number of the vertices corresponds

to the order of �rst traversal by the closed walk ω starting in 0. The position of each pebble encodes

m1 = 3 bits.

this walk can encode all con�gurations of the tape of T .

2. We can move along ω while keeping track of the number of steps and counting the number of

distinct vertices until we have seen 2
m1

distinct vertices.

3. We can read from and write to the memory encoded by the placement of the pebbles along ω.

4. If the closed walk ω starts at vertex v and T moves from vertex v to vertex v′, we can move all

pebbles to a closed walk ω ′ starting in v′ while preserving the content of the memory.

1. Finding a closed walkω. Lemma 2.5 yields a Turing machine Mwalk with c1 states and a tape

of lengthm/c0 that produces an exploration sequence corresponding to a closed walkω that contains

at least min{n, 2m1 } distinct vertices and has length at most 2
c1m1 = 2

m/c0
. We use a variable Rwalk

of size m/c0 for the memory of Mwalk, which is initially assumed to have all bits set to 0. If 2
m1 > n,

then the exploration sequence produced by Mwalk is a walk exploring G. Note that by de�nition

we have m/c ′ = m1. So this happens exactly when the condition for (a) in the theorem is satis�ed.

Below we will show how to count the number of unique vertices on the closed walk of Mwalk. Hence,

the pebble machine T ′ can initially walk along the closed walk ω counting the number of distinct

vertices. If this number is smaller than 2
m1

, we know that we have visited all vertices of G so that

we can collect all pebbles and return to the pebble pstart, which has not been moved and therefore

marks the starting vertex of T . We show at the end of the proof that this takes at most 2
O(m)

edge

traversals and computation steps.

From now on, we can therefore assume that ω contains at least 2
m1

distinct vertices. We need to

show that c − 3 pebbles placed along the walk ω can be used to encode all of the 2
2m

con�gurations

of the tape of T . Figure 2.2 shows how each pebble encodes a certain part of the tape of T . The

idea is that each pebble can be placed on one of 2
m1

di�erent vertices, thus encoding exactlym1 bits.

We divide the tape of length 2m into 2m/m1 = 2c0c1 parts of size m1 each, such that the position of

pebble pi encodes the bits {im1, . . . , (i + 1)m1 − 1}, where we assume the bits of the tape of T to be

numbered 0, 1 . . . , 2m − 1. As c ≥ 2c0c1 + 3, we have enough pebbles to encode the con�guration of
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Algorithms 2.3: Auxiliary functions for moving along the closed walk ω.

1 function step()

2 traverse edge according to value of exploration sequence output by Mwalk

3 Rsteps ← Rsteps + 1

4 function findPebble(pi )

5 while not observe(pi ) do

6 step()

7 function restart()

8 findPebble(pstart)

9 Rsteps ← 0

10 Rid ← 0

11 Rwalk ← 0

the tape of T .

2. Navigating ω. Let Rsteps be a variable counting the number of steps along ω and Rid be

a variable for counting the number of unique vertices visited along ω after starting in the vertex

marked by pstart. Note that Rid gives a way of associating a unique identi�er to the �rst 2
m1

distinct

vertices along ω. As m1 ≤ m/c0 holds, m/c0 tape cells su�ce for counting the �rst 2
m1

distinct

vertices alongω. The overall number of steps along the closed walk is bounded by 2
m/c0

and therefore

m/c0 tape cells also su�ce for counting the steps along ω.

It remains to show that we can move along the closed walk ω while updating Rsteps and Rid,

such that, starting from the vertex marked by pstart, the variable Rsteps contains the number of steps

taken and Rid contains the number of distinct vertices visited. Let drop(pi ) denote the operation of

dropping pebble pi at the current vertex, pickup(pi ) the operation of picking up pi from the current

vertex if possible, and let observe(pi ) be “true” if and only if pebble pi is located at the current

vertex. Consider the auxiliary functions shown in Algorithms 2.3. The function step() moves one

step along ω and updates Rsteps accordingly. The function findPebble(pi ) moves along ω until it

�nds pebble pi . The function restart() goes back to the starting vertex marked by pstart, sets both

variables Rsteps and Rid to 0, and restarts Mwalk by setting the variable Rwalk to 0. Finally, the function

nextDistinctVertex() in Algorithm 2.4 does the following: If the number of distinct vertices visited

is already 2
m1

, then we go back to the start. Otherwise, we continue along ω until we encounter a

vertex we have not visited before. We repeatedly traverse an edge, drop the pebble ptemp, store the

number of steps until reaching that vertex, then we restart from the beginning and check if we can

reach that vertex with fewer steps. If not, we found a new distinct vertex. Note that we use the

auxiliary variables R′
steps

and R′
walk

, which both need a constant number of blocks of sizem0/c0.

3. Reading from and writing to simulated memory. We show how to simulate the changes

to the tape of T by changing the positions of the pebbles along ω. The transition function δTM of T
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Algorithm 2.4: Moving along the closed walk ω while updating Rsteps and Rid.

Input: local environment observed by pebble machine T ′

1 function nextDistinctVertex()

2 if Rid ≡ 2
m1 − 1 then

3 restart()

4 return

5 Rid ← Rid + 1

6 R′
steps
← Rsteps

7 repeat

8 step()

9 R′
steps
← R′

steps
+ 1

10 drop(ptemp)

11 R′
walk
← Rwalk

12 restart()

13 findPebble(ptemp)

14 pickup(ptemp)

15 Rwalk ← R′
walk

16 until Rsteps ≡ R′
steps

determines howT does computations on its tape and, in particular, howT changes its head position.

We use a variable Rhead of sizem/c0 to store the head position. By assumption,m ≥ m0 and therefore

2
m/c0 > 2m, i.e., the size of Rhead is su�cient to store the head position. In order to simulate one

transition ofT according to δTM, we need to read the bit at the current head position and then write

to the simulated memory and change the head position accordingly. Reading from the simulated

memory is done by the function readBit() in Algorithm 2.7 and writing of a bit b to the simulated

memory is performed by the function writeBit(b) in Algorithm 2.8.

First, let us consider the two auxiliary functions getPebbleId(pi ) and putPebbleAtId(pi , id)

(cf. Algorithms 2.5 and 2.6). As the name suggests, the function getPebbleId(pi ) returns the unique

identi�er associated to the vertex marked by pi . Recall that vertices are indistinguishable. Here,

unique identi�er refers to the number of distinct vertices on the walk ω before reaching the vertex

marked withpi for the �rst time. Given an identi�er id, we can use the function putPebbleAtId(pi ,id)

for placing pebble pi at the unique vertex corresponding to id. By the choice of our encoding, if

Rhead = i ·m1 + j with j ∈ {0, . . . ,m1 − 1}, then the j-bit of the binary encoding of the position of

pebblepi encodes the contents of the tape cell speci�ed byRhead. Thus, for reading from the simulated

memory, we have to compute i and j and determine the position of the corresponding pebble in the

function readBit(). For the function writeBit(b), we also compute i and j. Then, we move the

pebble pi by 2
j

unique vertices forward if the bit �ips to 1 or by 2
j

unique vertices backward if the

bit �ips to 0.
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Algorithm 2.5: Reading position of a pebble on the closed walk ω.

Input: pebble pi

Output: identi�er id ∈ {0, . . . , 2m1 − 1} corresponding to position of pebble pi

1 function getPebbleId(pi )

2 restart()

3 while not observe(pi ) do

4 nextDistinctVertex()

5 return Rid

Algorithm 2.6: Putting a pebble at a speci�c position on the closed walk ω.

Input: pebble pi , identi�er id ∈ {0, . . . , 2m1 − 1}

1 function putPebbleAtId(pi , id)

2 findPebble(pi )

3 pickup(pi )

4 restart()

5 while id>0 do

6 id← id − 1

7 nextDistinctVertex()

8 drop(pi )

4. Relocatingω. WhenT moves from a vertex v to another vertex v′, the walkω and the pebbles

on it need to be relocated. Recall that T ′ marked the current vertex v with the pebble pstart. After

having computed the label of the edge to v′, T ′ drops the pebble pnext at v′. Then T ′ moves the

pebbles placed along the walk ω to the corresponding positions along a new walk ω ′ starting at v′ in

the following way. We iterate over all c−3 pebbles and for each pebble pi we start in v, determine the

identi�er id of the vertex marked by pi via getPebbleId(pi ), pick up pi , move to pnext and place pi

onω ′ using the function putPebbleAtId(pi , id). In this call of putPebbleAtId(pi , id) all occurrences

of pstart are replaced by pnext. This way, we can carry the memory simulated by the pebbles along

during the graph traversal.

Thus, we have shown the �rst part of (a) and (b), i.e., T ′ either explores G or it can simulate the

traversal of T in G while using a tape with half the length, but c additional pebbles and a factor of

c additional states.

Finally, we bound the number of edge traversals and computation steps in both (a) and (b).

First, we bound the number of edge traversals that T ′ needs for simulating one computation step

of T . Recall that T ′ needs at most 2
m/c0 ≤ 2

m
edge traversals for moving once along the whole

closed walk ω. A call of the function step() corresponds to one edge traversal, a call of findPeb-

ble(pi ) thus corresponds to at most 2
m

edge traversals and also a call of restart() corresponds

41



Chapter 2. Space E�icient Graph Exploration

Algorithm 2.7: Reading the bit at the current head position from the simulated memory.

Output: bit b ∈ {0, 1} at current head position of the simulated memory

1 function readBit()

2 i ← bRhead/m1c

3 j ← Rhead −m1 · i

4 id← getPebbleId(pi )

5 return j-th bit of id (in binary)

Algorithm 2.8: Writing the bit b to the simulated memory at the current head position.

Input: bit b ∈ {0, 1} to be written to simulated memory at current head position

1 function writeBit(b)

2 i ← bRhead/m1c

3 j ← Rhead −m1 · i

4 id← getPebbleId(pi )

5 if b ≡ 1 and readBit() ≡ 0 then

6 id← id + 2
j

7 else if b ≡ 0 and readBit() ≡ 1 then

8 id← id − 2
j

9 putPebbleAtId(pi ,id)

to at most 2
m

edge traversals. Moreover, one iteration of the loop in nextDistinctVertex() ac-

counts for at most 2
m

edge traversals and therefore executing the whole function results in at most

2
m · 2m = 2

2m
edge traversals. This means that one call of getPebbleId(pi ) or putPebbleAtId(pi ,id)

incur at most 2
O(m)

edge traversals and this also holds for readBit() and writeBit(b). Hence, for

every computation step performed by T according to δTM, the pebble machine T ′ performs actions

according to readBit() and writeBit(b) and overall does at most 2
O(m)

edge traversals. The above

argument also shows that at most 2
O(m)

edge traversals are necessary to count the number of distinct

vertices on the closed walk ω at the beginning.

Next, let us bound the number of edge traversals thatT ′ needs for reproducing one edge traversal

of T . This means that we need to count how many edge traversals are necessary to relocate all

pebbles placed along the walk ω to the new walk ω ′. For every pebble pi , we call getPebbleId(pi )

which results in at most 2
m

edge traversals, we pick up pi and move to pnext which again needs

at most 2
m

edge traversals, and place pi on ω ′ using the function putPebbleAtId(pi , id) which also

needs 2
m

edge traversals. Overall, this procedure is done for a constant number of pebbles and hence

requires at most 2
O(m)

edge traversals.

Next we bound the number of computation steps of T ′ by using the bounds on the number of

edge traversals. Recall that the state of T ′ is a tuple (q,q′), where q corresponds to the state of T .
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In the computation only the second component of the state of T ′ changes and therefore there are

only at most c possible states. The tape length and number of possible head positions of the Turing

machine ism. Since we may assume without loss of generality thatm ≥ 2, we can bound the number

of distinct con�gurations of T ′ in each computation by 2
O(m)

. Hence, after every edge traversal T ′

does at most 2
O(m)

computation steps. This implies that in part (a) of the theorem, the number of

computation steps is bounded by 2
O(m)

because the number of edge traversals is bounded by 2
O(m)

as

shown above. Similarly, in part (b) of the theorem the total number of computation steps after 2
O(m)

edge traversals is bounded by 2
O(m)

. Sincem ≥ 2 this means that also the sum of computation steps

and edge traversals can be bounded by 2
O(m)

both for one computation step and one edge traversal

of T .

Finally, we show that by recursively simulating a pebble machine by another pebble machine

with half the memory but a constant number of additional pebbles we can explore any graph with

at most n vertices while using O(log logn) pebbles and only O(log logn) bits of memory.

Theorem 2.8. Any connected undirected graph on at most n vertices can be explored by an agent in a

polynomial number of steps using O(log logn) pebbles and O(log logn) bits of memory. The agent does

not require n as input and terminates at the starting vertex with all pebbles after exploring the graph.

Proof. Let c , c ′ ∈ N be the constants from Theorem 2.7. Let r ∈ N be arbitrary and consider a

(c , 0, c ′2r+1)-pebble machineT (r ) that simply terminates without making a computation step or edge

traversal. Applying Theorem 2.7 for the pebble machineT (r ) gives a (c2, c , c ′2r )-pebble machineT (r )r

with the following properties. If n < 2
2
r
, then T (r )r explores the graph and returns to the starting

vertex. If, on the other hand, n ≥ 2
2
r
, then T (r )r reproduces the walk of T (r ) (which in this case is

of course trivial). Note that these properties hold even though the number n of vertices is unknown

and, in particular, not given as input to T (r )r .

Applying Theorem 2.7 iteratively, we obtain a (cr+2−i , (r + 1 − i)c , c ′2i )-pebble machine T (r )i for

all i ∈ {0, . . . , r − 1} that reproduces the walk of T (r )i+1
or it already explores the given graph and

returns to the start vertex. For a graph G with n < 2
2
r
, T (r )r explores G and returns to the start

with all pebbles and terminates. Thus for such a graphG it does not matter which case occurs when

applying Theorem 2.7, as in both cases we can conclude that T (r )i for i ∈ {0, . . . , r − 1} explores the

graph, returns with all pebbles to the start vertex and terminates.

If we have n ≥ 2
2
r
, then n ≥ 2

2
i

holds for all i ∈ {0, . . . , r − 1} and in particular T (r )
0

reproduces

the walk of T (r ) in G, i.e., remains at the starting vertex and terminates.

The desired pebble machine T exploring any graph G with O(log logn) pebbles and O(log logn)

bits of memory works as follows: We have a counter r , which is initially 1 and is increased by one

after each iteration until the given graphG is explored. In iteration r , pebble machineT does the same

as the (cr+2, (r + 1)c , c ′)-pebble machine T (r )
0

until it terminates. The pebble machine T terminates

as soon as for some r ∈ N the pebble machineT (r )
0

recognizes that it explored the whole graph. This

happens when r = dlog logne + 1. Hence, T uses at most O(log logn) pebbles.
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Concerning the memory requirement of T , note that T needs to store the state of T (r )
0

, the tape

content of T (r )
0

and the current value of r . There are cr+2
states of the pebble machine T (r )

0
, its tape

length is c ′ and r ≤ dlog logne + 1 in every iteration, so thatT can be implemented with O(log logn)

bits of memory.

It is left to show is that the number of edge traversals of T in the exploration of a given graph G

with n vertices is polynomial in n. To this end, we �rst show that the number of edge traver-

sals of the pebble machine T (r )
0

is bounded by nO(1) for all r ∈ {1, . . . , dlog logne + 1}. Let r ∈

{1, . . . , dlog logne + 1} be arbitrary and let ti denote the sum of the number of edge traversals

and computation steps of T (r )i in the given graph G. The pebble machine T (r )r has a tape of length

of m = c ′2r . Applying Theorem 2.7, we get that either T (r )r explores G and uses at most 2
O(m)

edge

traversals and computation steps orT (r )r simulates the walk of a pebble machine that does not make a

single edge transition and uses at most 2
O(m)

edges traversals and computation steps. In both cases,

we obtain

tr ≤ 2
O(2r ) ≤ 2

O(2log logn ) = 2
O(logn) = nO(1).

This shows the desired bound for tr . Furthermore, one computation step or one edge traversal of

T (r )i leads to at most 2
O(c ′ ·2i ) = 2

O(1)2i
edge traversals and computation steps ofT (r )i−1

by Theorem 2.7.

Hence, we obtain

ti−1 ≤ 2
O(1)2i ti ∀ i ∈ {1, . . . , dlog logne + 1}. (2.3)

By iterative application of (2.3), we obtain

t0 ≤ 2
O(1)2i t1 ≤ . . . ≤ 2

O(1)
∑dlog logne+1

i=1
2
i
· t dlog logn e+1 ≤ 2

O(1)2dlog logne
· nO(1) ≤ nO(1).

Thus, the number of edge traversals t0 of T (r )
0

is polynomial in n. As T performs at most nO(1) edge

traversals according toT (r )
0

for at most dlog logne + 1 distinct values of r , the overall number of edge

traversals of T is also bounded by nO(1).

Since an additional pebble is more powerful than a bit of memory (Lemma 2.1), we obtain the

following direct corollary of Theorem 2.8.

Corollary 2.9. Any connected undirected graph on at most n vertices can be explored by an agent

in a polynomial number of steps using O(log logn) pebbles and constant memory. The agent does not

require n as input and terminates at the starting vertex with all pebbles after exploring the graph.

Since an additional agent is more powerful than a pebble (Lemma 2.2), we obtain the following

direct corollary of Theorem 2.8 and Corollary 2.9.

Corollary 2.10. Any connected undirected graph on at most n vertices can be explored in polynomial

time by a set of O(log logn) agents with constant memory each. The agents do not require n as input

and terminate at the starting vertex after exploring the graph.

44



2.3 Lower Bounds

Remark 2.11 The agent in Theorem 2.8 requiresO(log logn) bits of memory and the agents in Corol-

lary 2.9 and Corollary 2.10 only O(1) bits of memory. An interesting question is how much memory

is necessary to fully encode the transition function

δ : Σ × N × N × 2
P × 2

P → Σ × (N ∪ {⊥}) × 2
P × 2

P ,

of an agent (see Section 2.1.2). Naively encoding it as a table with a row for every possible state,

vertex degree, previous edge label and possible combination of O(log logn) pebbles/agents at the

current vertex takes (logn)O(1) bits of memory.

However, we can obtain a much more compact encoding by exploiting the speci�c structure of

our algorithm: First of all, we never explicitly use the degree of the current vertex. Moreover, the

Turing machine from Lemma 2.5 that we internally use produces an exploration sequence of the

form {−1, 0, 1}∗. This means that our transition function can be expressed more concisely if we

would allow in our model to specify transitions relative to the label of the previous edge.

Furthermore, our algorithm only interacts with a constant number of pebbles in every level of

the recursion (cf. Theorem 2.7). We can express the state ofT in the proof of Theorem 2.8 as a vector,

where each component encodes the state in a di�erent level of the recursion. In every transition,

only two consecutive entries of this vector can change, as one level of recursion only interacts with

the level of recursion below to access the simulated memory.

Since there are only a constant number of states per recursive level, and only a constant number

of pebbles involved, all transitions regarding two consecutive levels can be encoded in constant

memory. If we therefore explicitly encode all O(log logn) levels of recursion and additionally allow

to only give the edge label o�set in the transition function, the entire transition function can be

encoded with O(log logn) bits of memory.

2.3 Lower Bounds

In this section, we present a general lower bound relating the memory requirement and number of

collaborating agent needed for collaborative exploration. Speci�cally, we show that for a set of coop-

erative agents with sublogarithmic memory ofO((logn)1−ε ) for some constant ε > 0, Ω(log logn) agents

are needed to explore any undirected graph with n vertices. In light of our reduction presented

in Section 2.1.4, this implies that an agent with sublogarithmic memory needs Ω(log logn) pebbles

to explore any n-vertex graph.

To prove the lower bound, we use the concept of an r -barrier introduced in De�nition 2.12.

Informally, an r -barrier is a graph with two special entry points such that any subset of up to r

agents with s states cannot reach one entry point when starting from the other. Moreover, a set of

r+1 agents can explore an r -barrier, but the agents can only leave the barrier via the same entry point.

We construct an r -barrier by replacing every edge of a graph G by a (r − 1)-barrier. The resulting

graph has the property that a set of r agents traversing this graph needs to stay close to each other to

be able to traverse the barriers and make progress, as shown in Lemma 2.18. However, if the agents
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Figure 2.3: The r -barrier B on the left with two distinguished edges {u,v}, {u ′,v′} can be connected

to an arbitrary graph G, as shown on the right.

stay close to each other, the states and relative positions of the agents repeat and their behaviour

becomes periodic. This property is formally expressed in Lemma Lemma 2.19. In Theorem 2.20, we

then show how to use these two key properties in order to construct an r -barrier for a set of k agents

given an (r − 1)-barrier.

By carefully bounding the size of the r -barriers in our recursive construction via Lemma 2.22, we

obtain a trap of size O(s2
5k
) for any given set of k agents with at most s states each (Theorem 2.24).

In Theorem 2.25, we show that the size of the trap directly implies that the number of agents with at

most O((logn)1−ε ) bits of memory needed for exploring any graph of size n is at least Ω(log logn).

The graphs involved in our construction are 3-regular and allow a labeling such that the two

port numbers at both endpoints of any edge coincide. We therefore speak of the label of an edge and

assume the set of labels to be {0, 1, 2}.

The most important building block for our construction are barriers. Intuitively, a barrier is a

subgraph that cannot be crossed by a subset of the given set of agents. To de�ne barriers formally,

we need to describe how to connect two 3-regular graphs. Let B be a 3-regular graph with two

distinguished edges {u,v} and {u ′,v′} both labeled 0, as shown in Figure 2.3. An arbitrary 3-regular

graphG with at least two edges labeled 0 can be connected toB as follows: We remove the edges {u,v}

and {u ′,v′} from B and two edges labeled 0 from G. We then connect each vertex of degree 2 in G

with a vertex of degree 2 in B via an edge labeled 0.

Definition 2.12. For 1 ≤ r ≤ k , the graph B is an r -barrier for a set of k s-state agents A if for all

graphs G connected to B as above, the following two properties hold:

(a) For all subsets of agents A ′ ⊆ A with |A ′ | ≤ r and every pair (a,b) in {u,v} × {u ′,v′} the

following holds: If initially all agents A are at vertices of G, then no agent in the set A ′ can

traverse B from a to b or vice versa when only agents in A ′ enter the subgraph B at any time

during the traversal. We equivalently say that no subset of r agents can traverse B from a to b or

vice versa.

(b) Whenever a subset of agentsA ′ ⊆ A with |A ′ | = r+1 enters the subgraph B during the traversal,

all agents in A ′ leave B either via u and v or via u ′ and v′ if no other agents visit B during this
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Figure 2.4: Constructing a trap given two k-barriers H1 and H2.

traversal. In other words, the set of agentsA ′ cannot split up such that a part of the agents leaves B

via u or v and the other part via u ′ or v′.

A k-barrier immediately yields a trap for a set of agents.

Lemma 2.13. Given a k-barrier with n vertices for a set of k agents A, we can construct a trap with

2n + 4 vertices for A.

Proof. LetH1 andH2 be two copies of ak-barrier for the set of agentsAwith distinguished edges {ui ,vi },

{u ′i ,v
′
i } of Hi . We connect the two graphs and four additional vertices, as shown in Figure 2.4. If the

agents start in the vertex v0, then none of the agents can reach u ′
1

or v′
1

via the k-barrier H1 or via

the k-barrier H2. Thus the agents A do not explore the graph. The constructed trap for the set of

agents A contains 2n + 4 vertices.

Our goal for the remainder of the section is to construct a k-barrier for a given set of k agentsA

and to give a good upper bound on the number of vertices it contains. This will give an upper bound

on the number of vertices of a trap by Lemma 2.13. The construction of the k-barrier is recursive.

We start with a 1-barrier which builds on the following useful result by Fraigniaud et al. [Fra+06b]

stating that, for any set of non-cooperative agents, there is a graph containing an edge which is not

traversed by any of them. A set of agents is non-cooperative if the transition function δi of every

agentAi is completely independent of the state and location of the other agents, i.e., δi is independent

of σ−i , see Section 2.1.3.

Theorem 2.14 ([Fra+06b, Theorem 4]). For any k non-cooperative s-state agents, there exists a 3-

regular graphG on O(ks) vertices with the following property: There are two edges {v1,v2} and {v3,v4}

inG, the former labeled 0, such that none of the k agents traverses the edge {v3,v4} when starting in v1

or v2.

We proceed to generalize this construction towards arbitrary starting states and collaborating

agents.
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Figure 2.5: A 1-barrier B for A for the case that l ∈ {1, 2}.

Lemma 2.15. For every set of k collaborating s-state agents A, there exists a 1-barrier B with O(ks2)

vertices. Moreover, B remains a 1-barrier even if for all i ∈ {1, . . . ,k} agent Ai starts in an arbitrary

state σ ∈ Σi instead of the starting state σ
∗
i .

Proof. Let A = {A1, . . . ,Ak }, let Σi be the set of states of Ai and let σ ∗i be its starting state. For

all i ∈ {1, . . . ,k} and all σ ∈ Σi , we de�ne agent A(σ )i to be the agent with the same behavior as Ai ,

but starting in state σ instead of σ ∗i . That is, A(σ )i has the same set of states Σi as Ai and it transitions

according to the function δi of Ai . Moreover, let S := {A(σ )i | i ∈ {1, . . . ,k}, σ ∈ Σi }.

Applying Theorem 2.14 for the set of agents S yields a graphH with an edge {v1,v2} labeled 0 and

an edge {v3,v4} labeled l ∈ {0, 1, 2} so that any agent A(σ )i that starts in v1 or v2 does not traverse the

edge {v3,v4}. Let B be the graph consisting of two connected copies of H and 8 additional vertices,

as illustrated in Figure 2.5. The edges {v1,v2} and {v′
1
,v′

2
} are replaced by {v1,v

′
1
} and {v2,v

′
2
}, which

are also labeled 0. The edges {v3,v4} and {v′
3
,v′

4
} with label l are deleted and v3 and v4 are connected

each to one of the two two-degree vertices of a diamond graph by an edge with label l . The same

connection to a diamond graph is added for v′
3

and v′
4

as shown in Figure 2.5. The edge labels of the

two diamond graphs are arbitrary. Since each diamond graph has two vertices of degree three, each

diamond graph has at least one edge with label 0. We choose one edge with label 0 and call the end

vertices u and v (resp. u ′,v′). Note that in Figure 2.5 we have l ∈ {1, 2}; for the case that l = 0 the

edge {u,v} is the unique edge between the two vertices that are not adjacent to v3 or v4.

We claim that B is a 1-barrier forA with the distinguished edges {u,v} and {u ′,v′}. Assume for

the sake of contradiction, that property (a) of the 1-barrier does not hold, i.e., there is a graphG that

can be connected to B via the pairs of vertices {u,v} and {u ′,v′} so that if the agentsA start inG in

an arbitrary state, there is an agent Aj that walks (without loss of generality) from u to u ′ in B while

there are no other agents in B. Then Aj in particular walks from v′
1

or v′
2

to v′
3

or v′
4

in H ′ and starts

this walk in a state σ ∈ Σj . But the traversal sequence of Aj in H ′ is the same as that of A(σ )j that

starts at v′
1

or v′
2
. This would imply that A(σ )i traverses the edge {v3,v4} in the original graph H when

starting in v1 or v2, which contradicts Theorem 2.14.

To prove property (b) of a 1-barrier, assume that there is a set of two agents, such that both

enter B during the traversal and one of them exits B via u or v and the other via u ′ or v′. But then

again one of the agents must have traversed H starting in v1 or v2 in a state σ and �nally traversed

the edge with label l incident to v3 or v4 or similarly in H ′ with v′
1
,v′

2
,v′

3
,v′

4
. This leads to the same
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contradiction as above.

The whole proof does not use the speci�c starting states of the agents A and, in particular, the

de�nition of S is independent of the starting states of the agents. Consequently, B is a 1-barrier forA

even if we change the starting states of the agents.

Since every agent has s states, we obtain that the cardinality of S is bounded by O(ks) and, hence,

the graph B has O(ks2) vertices by Theorem 2.14.

The proof of Theorem 2.14 in [Fra+06b] uses the fact that when traversing a 3-regular graph the

next state of an s-state agent only depends on the previous state and the label l ∈ {0, 1, 2} of the edge

leading back to the previous vertex. Thus, after at most 3s steps, the state of the agent and therefore

also the next label chosen need to repeat with a period of length at most 3s . For cooperative agents,

however, the next state and label that are chosen may also depend on the positions and states of the

other agents. We therefore need to account for the positions of all agents when forcing them into a

periodic behavior. To this end, we will consider the relative positions of the agents with respect to

a given vertex v. For our purposes, it is su�cient to de�ne the relative position of an agent Ai by

the shortest traversal sequence, i.e., the traversal sequence corresponding to a shorted path, leading

from v to the location of Ai . This motivates the following de�nition.

Definition 2.16. The con�guration of a set of k agentsA = {A1, . . . ,Ak } in a graphG with respect

to a vertex v is a (3k)-tuple (σ1, l1, r1,σ2, l2, r2, . . . ,σk , lk , rk ), where σi is the current state of Ai , li is

the label of the edge leading back to the previous vertex visited by Ai and ri is the shortest traversal

sequence from v to Ai , where ties are broken in favor of lexicographically smaller sequences and where

we set ri = ⊥ if the location of Ai is v.

In order to limit the number of possible con�gurations, we will force the agents to stay close

together. Intuitively, we can achieve this for any graphG by replacing all edges with (k −1)-barriers.

This way, only all agents together can move between neighboring vertices of the original graph G.

To formalize this, we �rst need to explain how edges of a graph can be replaced by barriers. Since

our construction may not be 3-regular, we need a way to extend it to a 3-regular graph.

Definition 2.17. Given a graph G, with vertices of degrees 2 and 3, we de�ne the 3-regular exten-
sion G as the graph resulting from copying G and connecting every vertex v of degree 2 to its copy v′.

As the edges incident to v and v′ have the same labels, it is possible to label the new edge {v,v′} with a

locally unique label in {0, 1, 2}.

Note that the 3-regular extension only increases the number of vertices of the graph by a factor

of 2. Given a 3-regular graph G and an r -barrier B for a set of k agents A with k ≥ r , we replace

edges ofG using the following construction. First, for every l ∈ {0, 1, 2} we replace every edge {a,b}

labeled l with the gadget B(l) shown in Figure 2.6, and we call the resulting graph G1(B). By con-

struction, the labels of the edges incident to the same vertex in G1(B) are distinct. However, certain

vertices only have degree 2. We take the 3-regular extension ofG1(B) and de�ne the resulting graph

as G(B) := G1(B).
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Figure 2.6: An edge {a,b} labeled l is replaced with the gadget B(l) containing an r -barrier B. Only

the dotted edges incident to a0 and b0 that are not labeled l are part of the gadget. Consequently, the

gadget contains two vertices of degree 2. The vertices a and b are macro vertices of the graph G(B).

The graph G(B) contains two copies of G1(B). To simplify exposition, we identify each vertex v

with its copyv′ inG(B). Then, there is a canonical bijection between the vertices inG and the vertices

in G(B) which are not part of a gadget B(l). These vertices can be thought of as the original vertices

of G, and we call them macro vertices.

We now establish that the agents always stay close to each other in the graph G(B).

Lemma 2.18. LetG be a connected 3-regular graph and let B be a (k−1)-barrier for a set of k agentsA

with s states each. Then, the following statements hold for the graph G(B):

(a) For all edges {v,v′} in G no strict subset A ′ ( A of the agents can get from macro vertex v to

macro vertex v′ in G(B) without all other agents also entering the gadget B(l) between v and v′,

where l ∈ {0, 1, 2}.

(b) At each step of the walk ofA inG, there is some macro vertex v such that all agents are at v or in

one of the surrounding gadgets B(0), B(1) and B(2).

Proof. For the sake of contradiction, assume that there is a strict subset of agents A ′ ( A that

walks from a macro vertex v in G(B) to a distinct macro vertex v′ without the other agents entering

the gadget between v and v′ at any time during the traversal. The graph G(B) contains two copies

of G1(B), but all vertices in the (k − 1)-barriers within G1(B) have degree 3. Thus, A ′ must have

traversed some (k − 1)-barrier B while only agents inA ′ enter B at any time of the traversal. This is

a contradiction, as |A ′ | ≤ k − 1 and B is a (k − 1)-barrier. Therefore, the agents A need to all enter

the gadget between v and v′ to to get from a macro vertex v to a distinct macro vertex v′. This shows

the �rst part of the claim.

For the second part of the claim, note that because of property (b) of the barrier B the agents

cannot split up into two groups such that after the traversal of the gadget between v and v′ one

group is at v (or one of the vertices at distance at most 4 from v which are not part of the barrier B)

and the other group is at v′ (or one of the vertices at distance 4 from v′ which are not part of the

barrier B). This implies that if we consider the positions of the agents after an arbitrary number of

steps and let v be the macro vertex last visited by an agent inA, then all agents must be located at v

or one of the three surrounding gadgets.
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Figure 2.7: A macro vertex v in a graph G(B) surrounded by the three gadgets B(0),B(1) and B(2).

We will frequently consider the con�guration of A in a graph of the from G(B) with respect

to some macro vertex v. Recall from the de�nition that the graph G(B) contains two copies of the

graph G1(B) and actually there exists a macro vertex v and a copy v′. Thus, when we talk about

con�gurations of A in G(B) with respect to some macro vertex v, we mean that we consistently

choose one of the copiesG1(B) and consider the con�guration ofA with respect to the macro vertex

in this copy.

Let B be a (k − 1)-barrier for a set of k cooperative s-state agents A = {A1, . . . ,Ak } that all

start in some macro vertex v0 of G(B). Iteratively, de�ne t0 = 0 and ti to be the �rst point in time

after ti−1, when one of the agents inA visits a macro vertexvi distinct fromvi−1. Thenvi is a neighbor

of vi−1 in G and by Lemma 2.18, all agents are at vi or one of the incident gadgets. The sequence of

macro vertices v0,v1, . . ., which is a sequence of neighboring vertices inG, yields a unique sequence

of labels l0, l1, . . . of the edges between the neighboring vertices in G, which we call the macro

traversal sequence ofA starting in vertex v0 inG(B). Note that the macro traversal sequence may

be �nite.

Consider the traversal sequence l0, l1, . . . of a single agent in a 3-regular graphG and the traversal

sequence l ′
0
, l ′

1
, . . . of the same agent in another 3-regular graphG ′. If the state of the agent and label

of the edge to the previous vertex in G after i steps is the same as the state in G ′ after j steps, then

the traversal sequences coincide from that point on, i.e., li+h = l ′j+h holds for all h ∈ N. The reason

is that the graphs we consider are 3-regular and the label of every edge {u,v} is the same at u and

at v. Therefore, once the state and label to the previous vertex are the same, the agent makes the

same transitions as it can gain no new information while traversing the graph. We want to obtain a

similar result for a set of agents. However, in general it is not true that if the con�guration of a set

of agents in a graphG after i steps is the same as after j steps inG ′, then the next con�gurations and

chosen labels of each agent coincide. This is because an agent can be used to mark a particular vertex

and this can be used to detect di�erences in two 3-regular graphs G and G ′. For instance, one agent

could remain at a vertex v while the other one walks in a loop that is only part of one of the graphs

and this may lead to di�erent con�gurations. That is why we consider graphs of the form G(B). In
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these graphs, all macro vertices look the same, as they are surrounded by the same gadgets, and the

agents have to stay close together, making it impossible for the agents to detect a loop that is part of

one of the graphs, but not the other. This intuition is formally expressed in the following technical

lemma.

Lemma 2.19. Let B be a (k − 1)-barrier for a set of k s-state agents A, and let G and G ′ be two 3-

regular graphs. Let v0,v1, . . . be the sequence of macro vertices visited byA inG(B), let l0, l1, . . . be the

corresponding macro traversal sequence, let t0 = 0, and let ti be the �rst time after ti−1 that an agent

in A visits vi . Let v
′
0
,v′

1
, . . . and l ′

0
, l ′

1
, . . . and t ′i be de�ned analogously with respect to G ′(B). If there

are t ∈ {ti , . . . , ti+1 − 1} and t ′ ∈ {t ′j , . . . , t
′
j+1
− 1} for some i , j ∈ N, such that after t steps in G(B)

the con�guration of A with respect to vi is the same as after t ′ steps in G ′(B) with respect to v′j , then:

(a) We have li+h = l
′
j+h for all h ∈ N.

(b) The con�guration of A in G(B) after ti+h steps with respect to vi+h is the same as con�guration

of A in G ′(B) after t ′j+h steps with respect to v′j+h for all h ∈ N, h > 0.

Proof. In order to simplify the notation of the proof, we abuse notation and overwrite the de�nition

of ti and t ′j by setting ti := t , t ′j := t ′. By induction on h ∈ N, we show that the con�guration of A

after ti+h steps in G(B) with respect to vi+h is the same as the con�guration of A after t ′j+h steps

in G ′(B) with respect to v′j+h . The induction step also shows that we have li+h = l
′
j+h for all h ∈ N.

For h = 0 we have by assumption (and as we rede�ned ti and t ′j ) that after ti steps in G(B) the

con�guration of A with respect to vi is the same as after t ′j steps in G ′(B) with respect to v′j .

Now, assume that the statement holds for some h ∈ N. The idea of the proof is that, in between

visits to macro vertices, the agents behave the same in the two graphs and, in particular, they traverse

the same gadget B(l) in both settings in such that li+h = l
′
j+h .

The graphs G(B) and G ′(B) locally look the same to the agents in vi+h and v′j+h as both macro

vertices are surrounded by the same gadgets, as shown in Figure 2.7. Formally, there is a canonical

graph isomorphismγ from the induced subgraph ofG(B) containingvi+h and all surrounding gadgets

to the induced subgraph of G ′(B) containing v′j+h and all surrounding gadgets. Moreover, γ respects

the labeling and maps vi+h to v′j+h . As the con�guration of A after ti+h steps with respect to vi+h

is the same as the con�guration of A after t ′j+h steps with respect to v′j+h , the isomorphism also

respects the positions of all the agents. As vi+h+1 is the �rst macro vertex visited after vi+h , all agents

are at vi+h or any of the surrounding gadgets until the agents A reach vi+h+1 by Lemma 2.18. The

same holds for v′j+h and v′j+h+1
. Iteratively, for c = 0, 1, . . . the following holds until the agents reach

the next macro vertex vi+h+1 or v′j+h+1
:

1. For every agent A ∈ A, the state of A and the edge label to the previous vertex after ti+h + c

steps inG(B) is the same as the state ofA and the edge label to the previous vertex after t ′j+h +c

steps in G ′(B).

2. The isomorphism γ maps the position of every agent A ∈ A after ti+h + c steps in G(B) to the

position of A after t ′j+h + c steps in G ′(B).
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This implies that macro verticesvi+h andvi+h+1 are connected with the same gadget asv′j+h andv′j+h+1
,

i.e., li+h = l ′j+h . Furthermore, there is c̄ such that ti+h+1 = ti+h + c̄ and t ′j+h+1
= t ′j+h + c̄ . Moreover,

the con�guration of A with respect to vi+h+1 after ti+h+1 steps is the same as with respect to v′j+h+1

after t ′j+h+1
steps.

Let 2 ≤ r ≤ k . In order to construct an r -barrier B′ for a set A of k cooperative s-state agents

given an (r − 1)-barrier B, we need to examine the behavior of all subsets of r agents. There are

(k
r

)
subsets of r agents and the behavior of two di�erent subsets of r agents may be completely di�erent.

We denote these

(k
r

)
subsets of r agents by A

(r )
1
, . . . ,A

(r )

(kr )
.

Assume, we have an (r − 1)-barrier B for a set of k agents A. For 1 ≤ j ≤
(k
r

)
, consider the

behavior of only the subset of agentsA
(r )
j in a graph of the formG(B). Let v0,v1, . . . be the sequence

of macro vertices, l0, l1, . . . the corresponding macro label sequence, t0 = 0, and ti be the �rst time

after ti−1 that an agent inA
(r )
j visits vi . Between steps ti−1 and ti all agents are located at vi−1 or one

of the surrounding gadgets B(0),B(1),B(2) by Lemma 2.18. Thus, the number of possible locations

of the agents can be bounded in terms of the size of the gadgets B(0), B(1), and B(2). In addition,

every agent has at most s states. Therefore the number of con�gurations of A
(r )
j with respect to vi

between steps ti−1 and ti can also be bounded in terms of s and the size of the gadgets. In particular,

this bound is independent of the speci�c subset of agents A
(r )
j . For a su�ciently large number of

steps, a con�guration must repeat and, by applying Lemma 2.19 forG = G ′, the macro label sequence

becomes periodic. The other crucial property that follows from Lemma 2.19 is that the macro label

sequence is independent of the underlying 3-regular graph G. As a consequence, we may denote

by αB the maximum over all j ∈
{
1 . . .

(k
r

)}
of the number of steps in the macro label sequence

until A
(r )
j is twice in the same con�guration in G(B) with respect to two macro vertices, i.e., there

are a, b ≤ αB such that the con�guration of A
(r )
j at ta with respect to va is the same as at tb with

respect to vb . Note that the value of αB depends on the size of the barrier B and thus also on the

values of s and r .

Given the de�nition of αB , we are now in position to present the construction of an r -barrier

given an (r − 1)-barrier. We will later bound αB and, thus, the size of the r -barrier in Lemma 2.22.

Theorem 2.20. Given an (r − 1)-barrier B with n vertices for a setA of k agents with s states each, we

can construct an r -barrier B′ for A with the following properties:

(a) We have B′ = H (B) for a suitable 3-regular graph H .

(b) If {u,v} and {u ′,v′} are the two distinguished edges of B′, then any path from u or v to u ′ or v′

contains at least 3 distinct barriers B.

(c) The r -barrier B′ contains at most O

( (k
r

)
· n · α2

B

)
vertices.

Proof. For j ∈
{
1, 2, . . . ,

(k
r

)}
, consider a subset of r agentsA

(r )
j starting at a vertexv0 in a graphG(B).

Let t0 = 0 and for i = 1, 2, . . . iteratively de�ne ti to be the �rst point in time after ti−1, when an agent

inA
(r )
j visits a macro vertex vi distinct from vi−1. Then v0,v1, . . . is the macro label sequence ofA

(r )
j
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H(kr ) u ′ v′

0
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00
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Figure 2.8: Connecting the graphs H1,H2, . . . ,H(kr )
to a graph H , yields the r -barrier H (B).

in G(B) with a corresponding macro label sequence l0, l1, . . .. After at most αB steps, the agents

inA
(r )
j are twice in the same con�guration with respect to two macro vertices, i.e., there are a,b ∈ N

with a < b ≤ αB such that after ta steps the con�guration of A
(r )
j with respect to va is the same as

after tb steps with respect to vb . Note that αB is a bound on the maximum possible number of steps

until the con�guration repeats and therefore independent of the speci�c subset of agents A
(r )
j . The

possible con�gurations of A at times t0, t1, . . . can hence be enumerated x1, . . . , xαB .

By Lemma 2.19, the con�guration of the set of agents A(r )j uniquely determines the next label in

the macro label sequence ofA(r )j , independently of the underlying graphG. We can therefore de�ne a

single agent Āj whose state corresponds to the con�guration of the set of agentsA(r )j and whose label

sequence is the macro label sequence ofA(r )j . More precisely we de�ne Āj as follows: The set of states

of Āj is {σ1, . . . ,σαB }. Moreover, in state σh the agent Āj traverses the edge labeled l and transitions

to σh′ if the set of agentsA
(r )
j in con�guration xh at a time ti will traverse the gadget B(l) to the next

vertex vi+1 in the macro vertex sequence where it arrives in con�guration xh′ at time ti+1 (this means

that l = li is the next label in the macro label sequence of A
(r )
j in con�guration xh ). The starting

state of Āj corresponds to the con�guration, where all the agents in A
(r )
j are in their starting states

and located at the same vertex. Note that the transition function
¯δ of Āj described above is well-

de�ned because, by Lemma 2.19, the next label li in the macro label sequence of A
(r )
j only depends

on the con�guration ofA
(r )
j at ti and is independent of the underlying graphG. By construction, the

macro traversal sequence of A
(r )
j in G(B) is exactly the same as the traversal sequence of Āj in G,

independently of the graphG. Applying Lemma 2.15 for the single agent Āj , we obtain a 1-barrierHj

with O(α2

B ) vertices that cannot be traversed by Āj , irrespective of its starting state.

We now connect the graphsH1, . . . ,H(kr )
as shown in Figure 2.8, and we letH denote the resulting

graph. We �rst show that the graph B′ := H (B) is an r -barrier for A and and then show the three

additional properties in the claim.

For property (a) of an r -barrier, assume, for the sake of contradiction, that there is a subset

of r agents A
(r )
j and some graph G connected to H (B) such that the agents A

(r )
j can traverse H (B)

from u to u ′. Then there must be a consecutive subsequence w0,w1, . . . ,wh of the macro vertex se-

quence of A
(r )
j during the traversal ofH (B)with the following properties: The verticesw1, . . . ,wh−1

are contained inHj (B),w0 andwh are not contained inHj (B),w1 andwh−1 (as vertices in the 1-barrier

Hj ) are incident to di�erent distinguished edges (i.e., {u,v} or {u ′,v′} in Figure 2.5) of the 1-barrier
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Hj . Thus, the set of agentsA
(r )
j starting inw0 in a suitable con�guration xi traverses the graphHj (B)

from w1 to wh−1. This means that for a suitable graph G ′ and starting state σi the agent Āj can tra-

verse Hj . But this is a contradiction as we constructed Hj as a 1-barrier for Āj using Lemma 2.15 and

the 1-barrier Hj is independent of the starting state of Āj .

For property (b) of an r -barrier, letA ′ ⊆ A be a set of agents with |A ′ | = r + 1. Assume, for the

sake of contradiction, that there is some graphG connected to H (B) such that after the agents ofA ′

(and no other agents) enter H (B) a subset ∅ , A ′
1
( A ′ leaves H (B) via u or v and the other agents

A ′
2

:= A ′ \ A ′
1

via u ′ or v′. Since B is an (r − 1)-barrier, no set of at most r − 1 agents can get from a

macro vertex to a distinct macro vertex in H (B). Thus, we must have |A ′
1
| ≥ r or |A ′

2
| ≥ r . Without

loss of generality, we assume that the �rst case occurs, which implies |A ′
1
| = r and |A ′

2
| = 1. For the

single agent inA ′
2

to leaveH (B) viau ′ or v′ at least r −1 agents fromA ′
1

must be in a gadget adjacent

to u ′ or v′. But all these r − 1 agents afterwards leave H (B) via u or v and they need the remaining

agent in A ′
1

to even get to a distinct macro vertex. But then the set of r agents A ′
1

traverses the

subgraphs Hj (B) for all j ∈ {1, . . . ,
(k
r

)
}, which again leads to a contradiction as in the proof for the

�rst property (for j such that A ′
1
= A

(r )
j ).

Finally, we obviously have B′ = H (B) for a 3-regular graph H by construction and the second

additional property follows from the fact that any path from u or v to u ′ or v′ in H has length at

least 3. Further, each Hj contains O(α2

B ) vertices and therefore H has at most O(
(k
r

)
· α2

B ) vertices.

As B has n vertices, the number of vertices of B′ = H (B) is at most O(
(k
r

)
· n · α2

B ), where we use

that H is 3-regular and therefore the number of edges of H that are replaced by a copy of B is 3/2

times the number of its vertices.

We now �x a set of k agentsA with s states each and let B1 be the 1-barrier given by Lemma 2.15

and Br for 1 < r ≤ k be the r -barrier constructed recursively using Theorem 2.20. Moreover, we

let nr be the number of vertices of Br and αr := αBr−1
be the maximum number of steps in the macro

label sequence that a set of r agents from A can execute in a graph of the form G(Br−1) until their

con�guration repeats.

We want to bound the number of vertices nk of Bk and thus, according to Lemma 2.13, also

the number of vertices of the trap for A. By Theorem 2.20, there is a constant c ∈ N such that

nr ≤ c
(k
r

)
nr−1α

2

r . In order to bound nr , we therefore need to bound αr .

One possible way to obtain an upper bound on αr is to use Lemma 2.18 stating that there always

is a macro vertex v such that all agents are located at v or inside one of the surrounding gadgets.

Counting the number of possible positions within these three gadgets and states of the agents then

gives an upper bound on αr . For the tight bound in our main result, however, we need a more careful

analysis of the recursive structure of our construction and also need to consider the con�gurations

of the agents at speci�c times. We start with the following de�nition and a technical lemma.

For j ∈ {1, . . . , r − 1}, we say that a vertex w ′ is j-adjacent to some other vertex w if there is a

path P from w to w ′ that does not traverse a j-barrier Bj , i.e., P does not contain a subpath leading

from one vertex of the distinguished edge {u,v} to a vertex of the other distinguished edge {u ′,v′}
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Br−1

Br−2

v

Figure 2.9: Recursive structure of B(l) containing i-barriers for i ∈ {1, . . . , r − 1}.

in Bj . As a convention, every vertex w is j-adjacent to itself for all j ∈ {1, . . . , r − 1}. Note that a

vertexw ′ contained inside a j-barrier may be j-adjacent to some vertexw outside the barrier if there

is a path from w to w ′ that does not traverse a distinct j-barrier.

Lemma 2.21. Let v be a macro vertex in G(Br−1). Then for j ∈ {1, . . . , r − 1} the number of vertices

that are j-adjacent to v is bounded by 2
4(r−j)nj .

Proof. In order to bound the number of j-adjacent vertices, we examine the recursive structure of

one of the gadgets B(l) incident to v, as shown in Figure 2.9. By Theorem 2.20 an (r − 1)-barrier B′

for r ≥ 3 is constructed from a 3-regular graphH and an (r −2)-barrier B such that B′ = H (B). Hence,

the gadget B(l), which contains the barrier Br−1, also contains many copies of the barrier Br−2, which

again contain many copies of the barrier Br−3 (if r ≥ 4) and so on.

We �rst observe that the distance from v to any j-adjacent vertex, which is not contained in a

barrier Bj , is at most 3(r − j) + 1. This observation is clear for j = r − 1 and follows for r − 2, r −

3, . . . by examining the recursive structure given in Figure 2.9. As G(Br−1) is 3-regular, there are at

most 2
3(r−j)+1

such vertices. Moreover, any j-barrier Bj containing vertices that are j-adjacent to v, in

particular contains a vertex with a distance of exactly 3(r− j) tov. AsG(Br−1) is 3-regular, there are at

most 2
3(r−j)

vertices of distance exactly 3(r−j) fromv and therefore at most 2
3(r−j)

di�erent j-barriers,

with nj vertices each, containing j-adjacent vertices. Thus, there are at most 2
3(r−j)nj vertices that

are j-adjacent to v and contained in a barrier Bj . Overall, the number of j-adjacent vertices to v can

therefore be bounded by

2
3(r−j)nj + 2

3(r−j)+1 ≤ 2
4(r−j)nj ,

where we used nj ≥ 2 and j ≤ r − 1.

The idea now is to consider the con�guration of the agents with respect to a macro vertex vi

exactly at the time t when at least dr/2e + 1 agents are dr/2e-adjacent to vi . We then further use

the fact that it is not possible to partition the agents A into two groups A ′ and A ′′ with at most

i ≥ dr/2e agents each that are separated on any path by at least two i-barriers. This yields the

following bound on αr .
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Br−j+1

Br−j

a

b

vi

Figure 2.10: An (r − j + 1)-barrier adjacent to vi containing (r − j)-barriers.

Lemma 2.22. Let A be a set of k agents, s ≥ 2 and r ∈ {2, . . . ,k}. We then have

αr ≤ s7r 2

· n dr/2e
dr/2e · nr−1 ·

r−1∏
j= dr/2e+1

nj .

Proof. Let A(r ) ⊆ A be an arbitrary subset of r agents. In order to bound αr , we consider the

behaviour of this subset A(r ) of agents in a graph of the form G(Br−1). We let v0 be the starting

vertex of the set of agents A(r ) in G(Br−1) and let t0 = 0. Again, we iteratively de�ne ti be the �rst

point in time after ti−1, when an agent in A(r ) visits a macro vertex vi distinct from vi−1.

Because of the recursive structure of the barriers, see Figure 2.9, every macro vertex is surrounded

by dr/2e-barriers and any path between two consecutive macro vertices vi−1 and vi contains at least

one barrier B dr/2e (note that r ≥ 2 by assumption). In order to reach the vertex vi after visiting vi−1,

at least dr/2e + 1 agents from A(r ) are necessary to traverse such an dr/2e-barrier. Thus, at some

time t ∈ {ti−1, . . . , ti − 1} at least dr/2e + 1 agents must be at a vertex that is dr/2e-adjacent to vi , as

otherwise the agents would not be able to reach vi .

The crucial observation at this point is that by Lemma 2.19 the number of possible con�gurations

at this time t also bounds αr , the number of possible steps in the macro label sequence after which

a con�guration ofA(r ) with respect to a macro vertex must repeat. The reason is that whenever the

set of agentsA(r ) traverse a gadget B(l) there has to be a time t with the properties described above.

Let A1 denote the set of agents that are at a vertex that is dr/2e-adjacent to vi at time t , and

let A2 := A(r ) \ A1. We claim the following: For j ∈ {1, . . . , |A2 |}, there are at least (r − j) agents

that are located at a vertex which is (r − j) adjacent to vi .

For j = |A2 |, we have r − j = |A1 | > dr/2e. Thus, the claim holds by de�nition ofA1, since there

are r − j agents, namely the set of agentsA1, which are located at vertices which are dr/2e-adjacent

to vi and thus also (r − j)-adjacent to vi because r − j > dr/2e.

Now, assume for the sake of contradiction that the claim holds for j, but not for j − 1. This means

that there is a subset of agents A ′ ⊂ A(r ) with |A ′ | = r − j such that all agents in A ′ are located

at vertices which are (r − j)-adjacent to vi . But for j − 1 the claim does not hold, which implies that

all other agents A ′′ := A(r ) \ A ′ are at vertices which are not (r − j + 1)-adjacent: If there was an

agent A ∈ A ′′ at a vertex which is (r − j + 1)-adjacent, then A ′ ∪ {A} would be a set of (r − j + 1)
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agents which are all at (r − j + 1)-adjacent vertices, which is a contradiction to the choice of j.

But the path between any pair of vertices (a,b), such that a is (r − j)-adjacent to vi and b is

not (r − j + 1)-adjacent to vi , contains at least two (r − j)-barriers, see also Figure 2.10. The reason

is that r − j + 1 > dr/2e ≥ 1 and, by Theorem 2.20, any path from u or v to u ′ or v′ contains at least

three (r − j) barriers. Thus the set of agentsA ′ andA ′′ are separated by at least two (r − j)-barriers

on any path and |A ′ | ≤ r − j as well as |A ′′ | = j < r − j since j ≤ dr/2e − 1. But then a set of at

most r − j agents must have traversed a barrier Br−j or a set of at most r − j − 1 agents must have

traversed the gadget between two macro vertices in Br−j , which both is a contradiction.

We now use the bound on the number of j-adjacent vertices from Lemma 2.21 together with the

claims to bound αr . By the claim above, we can enumerate the agents in A(r ) as A1,A2, . . . ,Ar so

that:

1. For j ∈ {1, . . . , |A1 |}, Aj ∈ A1 and the location of Aj is dr/2e-adjacent to vi .

2. For j ∈ {|A1 | + 1, . . . , r − 1}, Aj ∈ A2 and the location of Aj is j-adjacent to vi .

3. Agent Ar ∈ A2 is at vi or one of the surrounding gadgets by Lemma 2.18.

There are r ! possible permutations of the agents and each agent has s possible states. Using Lemma 2.21,

we can bound the number of possible locations at time t of the agents inA1 by (24(r−dr/2e)n dr/2e)
|A1 |

,

the number of possible locations of the agents {A |A1 |+1, . . . ,Ar−1} by

∏r−1

j= |A1 |+1
2

4(r−j)nj and the

number of possible locations of Ar by 2
4nr−1. Overall, we can thus bound the number of possible

locations of the agents A(r ) at t with respect to vi by

r ! ·

(
2

4(r−dr/2e)n dr/2e

) |A1 | ©«
r−1∏

j= |A1 |+1

2
4(r−j)nj

ª®¬ 2
4nr−1

≤ r ! ·
(
2

4r )r · n |A1 |

dr/2e · nr−1 ·

r−1∏
j= |A1 |+1

nj ≤ 2
5r 2

· n dr/2e
dr/2e · nr−1 ·

r−1∏
j= dr/2e+1

nj ,

where we used r ! ≤ r r ≤ 2
r 2

and nj−1 ≤ nj for all j ∈ {2, . . . , r − 1}.

In order to bound the number of con�gurations of the agentsA(r ) note that there are sr possible

states of the agents and for each agent 3 possible edge labels to the previous vertex. Combining these

bounds with the above bound on the number of locations of the agents, we obtain the following

bound on the number of con�gurations of A(r ) at t with respect to vi :

sr · 3r · 25r 2

· n dr/2e
dr/2e · nr−1 ·

r−1∏
j= dr/2e+1

nj ≤ s7r 2

· n dr/2e
dr/2e · nr−1 ·

r−1∏
j= dr/2e+1

nj .

Here we used s ≥ 2 and r ≥ 2. By the observation at the beginning of the proof, the number of

possible con�gurations of A(r ) at t with respect to vi also bounds αr .

Using the bound on αr from Lemma 2.22, we can bound the number of vertices of the barriers.

Theorem 2.23. For every set of k agents A with s states each and every r ≤ k , there is an r -barrier

with at most O(sk ·2
4·r
) vertices.
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Proof. The existence of an r -barrier follows from Lemma 2.15 and Theorem 2.20 and we further have

the following bound on the number of vertices nr of Br for a su�ciently large constant c ∈ N:

n1 ≤ cks2
and nr ≤ c

(
k

r

)
nr−1α

2

r .

It is without loss of generality to assume s ≥ 2 since otherwise a trap of constant size can trivially

be found. Hence, we can plug in the bound on αr from Lemma 2.22. For the asymptotic bound, we

may assume c ≤ sk and we further have

(k
r

)
≤ 2

k
. We therefore get

nr ≤ sk · 2k · nr−1 ·

(
s7·r 2

)
2

·

(
n dr/2e
dr/2e

)
2

· n2

r−1

r−1∏
j= dr/2e+1

n2

j

≤ s2k+14r 2

· n(r+1)

dr/2e · n
3

r−1

r−1∏
j= dr/2e+1

n2

j . (2.4)

We proceed to show inductively that nr ≤ sk ·2
4·r

holds for all r ∈ {1, . . . ,k}. For r = 1, we have n1 ≤

cks2 ≤ s4k ≤ sk ·2
4

. Let us assume the claim holds for 1, . . . , r − 1. From Inequality (2.4) we obtain

nr ≤ s2k+14r 2

·

(
sk ·2

4·dr /2e
)r+1

·

(
sk ·2

4(r−1)
)

3

·

r−1∏
j= dr/2e

(
sk ·2

4·j
)

2

= s2k+14r 2+k ·(r+1)·24·dr /2e+3·k ·24(r−1)+2k
∑r−1

j=dr /2e+1
2

4·j
.

Thus, it is su�cient to bound the exponent. As r ≥ 2, we have

∑r−1

i=0
2

4·i = (24r −1)/(24−1) ≤ 2·24(r−1)

as well as (r + 1) · 24 dr/2e ≤ 4 · 24(r−1)
and 2k + 14r 2 ≤ 2 · k · 24(r−1)

. Hence, we obtain

2k + 14r 2 + k · (r + 1) · 24· dr/2e + 3 · k · 24(r−1) + 2k
r−1∑

j= dr/2e+1

2
4·j

≤ k ·
(
2 · 24(r−1) + 4 · 24(r−1) + 3 · 24(r−1) + 4 · 24(r−1)

)
≤ k · 24·r .

This shows nr ≤ sk ·2
4r

, as desired.

The bound for the barriers above immediately yields the bound for the trap for k agents.

Theorem 2.24. For any setA of k agents with at most s states each, there is a trap with at most O(s2
5k
)

vertices.

Proof. We can always add additional unreachable states to all agents so that all of them have s states.

Theorem 2.23 yields a k-barrier for a given set of k agents A with O(sk ·2
4·k
) vertices. The claim fol-

lows from the fact that k · 24·k ≤ 2
5·k

and that a k-barrier with n vertices yields a trap with O(n) ver-

tices for A by Lemma 2.13.

Finally, we derive a bound on the number of agents k that are needed for exploring every graph

on at most n vertices.

Theorem 2.25. The number of agents needed to explore every graph on atmostn vertices is at leastΩ(log logn),

if we allow O((logn)1−ε ) bits of memory for an arbitrary constant ε > 0 for every agent.
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Proof. Let A be a set of k agents with O((logn)1−ε ) bits of memory that explores any graph on at

most n vertices. By otherwise adding some unused memory, we may assume that 0 < ε < 1 and that

there is a constant c ∈ N such that all agents inA have s := 2
c ·(logn)1−ε

states. We apply Theorem 2.24

and obtain a trap for A containing O(s2
5·k
) vertices. As the set of agents A explore any graph on

at most n vertices, we have n ≤ O(1)s2
5·k

. By taking logarithms on both sides of this inequality, we

obtain

logn ≤ O(1) + 2
5k

log s = O(1) + 2
5k · c · (logn)1−ε .

Multiplication by (logn)ε−1
on both sides and taking logarithms yields the claim.

As an additional agent is more powerful than a pebble (Lemma 2.2), we obtain the following

result as a direct corollary of Theorem 2.25.

Corollary 2.26. An agent with O((logn)1−ε ) bits of memory for an arbitrary constant ε > 0 needs

Ω(log logn) pebbles to explore every graph with at most n vertices.
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Chapter 3

Energy E�cient Tree Exploration

In this chapter, we study the exploration of trees under the natural constraint that agents have lim-

ited energy resources and movement consumes energy. We model this constraint by bounding the

number of edges that an agent can traverse by an integer B, which we call the energy budget of the

agent. A similar restriction was considered in the piecemeal exploration problem [BRS95; Awe+99;

DKK06], where also the number of edge traversals of the agent is bounded and it can refuel by going

back to its starting location. A di�erent approach is to consider multiple agents instead of allow-

ing refueling and minimize the energy budget per agent [DKS06; DŁS07] or the number of agents

needed for a �xed budget [DDK15]. In our model, we drop the requirement that the tree needs to be

completely explored by the agents and focus on exploring the maximum number of vertices with a

�xed given number k of initially colocated agents with �xed energy budgets B.

We start by giving a formal introduction of the model and introducing some speci�c notation

in Section 3.1. In Section 3.2, we present a collaborative exploration algorithm for the problem that

utilizes global communication between the agents. The challenge is to balance between sending

agents in a depth-�rst manner to avoid visiting the same set of vertices too often and exploring the

tree in a breadth-�rst manner to make sure that there is no large set of vertices close to the root that

was missed by the online algorithm. We achieve this by maintaining a set of edge-disjoint subtrees

of the part of the tree that is already explored and by iteratively sending an agent from the root

to the subtree with the highest root. We show that our algorithm is 3-competitive, i.e., an optimal

o�ine algorithm that knows the tree in advance can explore at most three times as many vertices

as our algorithm. We also show that our analysis is tight by giving a sequence of instances showing

that the algorithm is not better than 3-competitive. In Section 3.3, we complement this result by

showing that no online algorithm can be better than 2.17-competitive. The proof of this general

lower bound is based on an adaptive adversary that forces the online algorithm to spend a lot of

energy if it completely wants to explore certain subtrees while preventing it from discovering some

vertices close to the root.
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3.1 Terminology and Model

We consider a set A of k distinct agents initially located at the root v0 of an undirected, initially

unknown, locally edge-labeled tree T . We assume, without loss of generality, that the local port

number of the edge leading back to the root r is 0 for any vertex v , v0 inT . Otherwise, every agent

internally swaps the labels of the edge leading back to the root and the label 0 for every vertex v , r .

Note that in our setting, it does not make a di�erence if we assume that the vertices are labeled or

not because we can uniquely identify every vertex with the sequence of port numbers leading to it

from the root v0. For any vertex v in T , we let d(v) be the depth of v in T . The induced subtree with

root v containing v and all vertices below v in T is further denoted by T (v). For a subtree S of T , we

write rS to denote the root of S , i.e., the unique vertex contained in S having the smallest depth inT .

Moreover, |S | denotes the number of vertices in S .

The tree is initially unknown to the agents, but they learn the map of the tree as they traverse

new edges. Each time an agent arrives at a new vertex, it learns the local port number of the edge

through which it arrived, as well as the degree of the vertex. We assume that agents can communicate

at arbitrary distances, so the updated map of the tree, including all agent positions, is instantaneously

available to all agents (global communication). Each agent has limited energy B and it consumes one

unit of energy for every edge that it traverses.

The goal is to design an algorithm Alg that maximizes the total number of distinct vertices

visited by the agents. For a given instance I = 〈T ,v0,k ,B〉, whereT is a tree, v0 is the starting vertex

of the agents, k is the number of agents, and B is the energy budget of each agent, let Alg(I ) denote

the total number of distinct vertices visited by the agents using algorithm Alg on the instance I .

Similarly, Opt(I ) denotes the maximum number of distinct vertices of T that can be explored by the

agents using an optimal o�ine algorithm Opt, i.e., an algorithm with full initial knowledge of the

instance I . We measure the performance of an algorithm for this problem by the standard tool of

competitive analysis, i.e., we compare a given online algorithm to an optimal o�ine algorithm which

has a complete map of the tree in advance.

3.2 An Algorithm for Maximal Tree Exploration

This section is divided into three parts. First, we present the idea and intution behind our algorithm

in Section 3.2.1. Afterwards, we analyze the algorithm and show that it is 3-competitive in Sec-

tion 3.2.2. Finally, we construct an instance showing that the analysis of the algorithm is tight

in Section 3.2.3.
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3.2 An Algorithm for Maximal Tree Exploration

Algorithm 3.1: L-DFS traversal of a tree T starting in a vertex u.

Input: tree T , starting vertex u in T

1 function L-DFS(T ,u)

2 move on a shortest path to u

3 while agent A has energy left and T is not completely explored do

4 if the subtree below the current node is completely explored then

5 traverse the edge with label 0

6 else

7 traverse the unexplored edge with the smallest label l > 0

Algorithm 3.2: R-DFS traversal of a tree T starting in a vertex u.

Input: tree T , starting vertex u in T

1 function L-DFS(T ,u)

2 move on a shortest path to u

3 while agent A has energy left and T is not completely explored do

4 if the subtree below the current node is completely explored then

5 traverse the edge with label 0

6 else

7 traverse the unexplored edge with the largest label l > 0

3.2.1 Algorithm Divide & Explore and Intuition

Let us assume that we do a depth-�rst search of the whole tree T and always choose the smallest

label l > 0 to an unexplored vertex, as describend in Algorithm 3.1. We call this algorithm L-DFS.

We further denote the sequence (v0,v1), (v1,v2) . . . , (vm ,v0) of directed edges obtained by directing

every undirected edge ofT that the agent traversed in the direction in which the agent traversed the

edge in the L-DFS traversal the L-DFS sequence of T . Note that every undirected edge {v,w} of

the tree T appears as (v,w) and (w ,v) in this sequence. Similarly, we call a depth-�rst search of T

that always chooses the largest label l > 0 to an unexplored vertex an R-DFS and the corresponding

sequence of directed edges an R-DFS sequence. An implementation of the algorithm R-DFS is given

in Algorithm 3.2. Note that the R-DFS sequence of the edges in T is obtained by reversing the order

of edges of the L-DFS sequence and changing every edge (v,w) to (w ,v).

We call a consecutive subsequence of an L-DFS or R-DFS sequence a substring. For an induced

subtreeT (v) ofT , the L-DFS sequence ofT (v) is simply a substring of the L-DFS sequence ofT . For a

subtree S we de�ne the leftmost unexplored vertex as the unexplored vertex in S which is incident

to the �rst edge in the L-DFS sequence of S leading to an unexplored vertex and the rightmost

unexplored vertex as the unexplored vertex in S which is incident to the �rst edge in the R-DFS
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v0

rS

vL

vR

S

S (1) S (2)

Figure 3.1: Example in which algorithm Divide & Explore in iteration t divides the considered

subtree S into two subtrees S (1) and S (2). The tree T R
t that connects the roots of the subtrees in Tt is

the subtree containing all thick edges.

sequence of S leading to an unexplored vertex.

We further say that an agentA performing an L-DFS covers at least s edges (v1,v2), . . . , (vs ,vs+1)

of the L-DFS sequence ofT , ifA consecutively visits v1,v2, . . . ,vs ,vs+1 in this order and the sequence

(v1,v2), . . . , (vs ,vs+1) is a substring of the L-DFS sequence of T . Similarly, we say that an agent A

performing an R-DFS covers at least s edges (v1,v2), . . . , (vs ,vs+1) of the L-DFS sequence of T , if A

consecutively visits vs+1,vs , . . . ,v2,v1 in this order and the sequence (v1,v2), . . . , (vs ,vs+1) is a sub-

string of the L-DFS sequence of T . Note that two agents A1 and A2 may traverse the same edge in

the same direction, but still cover two distinct sets of directed edges of the L-DFS sequence, if one

agent performs an L-DFS and the other agent an R-DFS.

With these de�nitions, we are now ready to explain the idea of the algorithm Divide & Explore:

During the run of the algorithm, we maintain a set T of edge-disjoint subtrees of T , initially just

containing T . An example is shown in Figure 3.1, where the triangles show the subtrees that are

currently contained in the set T . In every iteration, we �rst move down the root rS of every subtree S

if rS has no unexplored childen and only one child leading to an unexplored vertex. This �rst step is

later necessary for our analysis. Afterwards, we consider a subtree S which contains an unexplored

vertex and has the highest root, i.e., minimizes d(rS ). As long as the leftmost unexplored vertex vL

in S is not too far away from rS , i.e., d(vL) − d(rS ) is su�ciently small, we send an agent to vL and

let it continue the L-DFS from there. We do the same if vR is not too deep and then let the agent

continue the R-DFS from vR . The intuition is that the energy spent to reach rS is unavoidable, but

also the agents in the o�ine optimum Opt need to spend this energy without exploring new vertices

after the tree has been explored up to depth d(rS ). Thus, the agent only potentially wastes energy

to reach vL (or vR ), but from then on explores many new vertices because an agent doing 2m edge

traversals on a DFS visits at leastm distinct vertices. If both vL and vR are su�ciently deep, we split S

into two edge-disjoint subtrees S (1) and S (2), as shown in Figure 3.1. In this case both S (1) and S (2)

contain a su�ciently long part of the L-DFS sequence, which has not been covered by any agent.
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This is important because we want to avoid that an agent is sent to a new subtree which only needs

little more exploration. A complete description of Divide & Explore is given in Algorithm 3.3.

3.2.2 Proof of 3-Competitiveness

In this subsection, we analyze Algorithm Divide & Explore in order to show that it is 3-competitive.

Note that the �rst agent in Divide & Explore simply performs a depth-�rst search and explores at

least B/2 vertices or completely explores the tree. Consequently, if k = 1 or if n < B, the algorithm

is 2-competitive, and thus we assume in the following that n ≥ B and k ≥ 2.

For the analysis of Divide & Explore, we further need the following notation. For every itera-

tion t of the outer while-loop, we let kt ∈ {1, 2} be the number of agents used by Divide & Explore

in this iteration and k0 = 2 be the number of agents used before the �rst iteration of the outer

while-loop. Further, let Tt be the set of subtrees T at the end of iteration t and let T R
t be the unique

subtree ofT that connects the set of roots {rS | S ∈ Tt } of all subtrees with the minimum number of

edges. Moreover, we denote the subtree S with the highest root considered by Divide & Explore in

iteration t by St and its root by rt . Finally t̄ denotes the total number of iterations of the while-loop.

The crux of our analysis is to show that the amortized amount of energy spent making progress

on the L-DFS or R-DFS is
2

3
· ki · (B − d(ri )) for the agents in iteration i , as stated in the following

lemma.

Lemma 3.1. The algorithm Divide & Explore either completely explores T or all agents used by the

algorithm together cover at least

2

3
(|T R

t | − 1) +
∑

0≤i≤t

2

3
· ki · (B − d(ri ))

distinct edges of the total L-DFS sequence of T .

Proof. Let us assume that Divide & Explore does not completely exploreT and let Ut be the subset

of Tt containing all subtrees with an unexplored vertex. We will show by induction over t that all

agents used by Divide & Explore up to the end of iteration t together cover at least

2

3
(|T R

t | − 1) +
∑
S ∈Ut

2

3
(B − d(rS )) +

∑
0≤i≤t

2

3
· ki · (B − d(ri )) (3.1)

distinct edges of the total L-DFS sequence of T . It may happen that in the last iteration t of Divide

& Explore the third case occurs, but only one agent is left at the root. We will treat this special

case separately at the end of the proof. First, we show the lower bound above for all t , for which

iteration t is completed, i.e., there are enough agents for Divide & Explore to �nish iteration t .

For t = 0, we haveU0 = {T } as Divide & Explore does not completely exploreT by assumption,

k0 = 2, r0 = rT , andT R
t only contains rT . Thus the lower bound (3.1) on the number of edges covered

by the �rst two agents evaluates to 2B. The �rst agent used by Divide & Explore performs an L-

DFS and covers exactly B edges of the total L-DFS sequence of T . The second agent performs an
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R-DFS starting at the root ofT and also covers exactly B edges of the total L-DFS sequence ofT . The

edges covered by the second agent are distinct from the edges covered by the �rst because T is not

completely explored by the algorithm by assumption. Hence, the lower bound (3.1) holds for t = 0.

Now, assume that the lower bound (3.1) holds for t − 1. We will show it for iteration t . LetU ′t−1

be the set of subtreesUt−1 after the for-all loop in iteration t terminated and possibly some roots of

the trees inUt−1 were moved down. We claim that

2

3
(|T R

t−1
| − 1) +

∑
S ∈Ut−1

2

3
(B − d(rS )) =

2

3
(|T R

t | − 1) +
∑

S ∈U′t−1

2

3
(B − d(rS )). (3.2)

For any subtree S ∈ Ut−1, let S ′ ∈ U ′t−1
be the corresponding subtree after the root of S was possibly

moved down. The tree T R
t contains all vertices of the tree T R

t−1
plus the path from rS to rS ′ , i.e.,

d(rS ) − d(rS ′) additional vertices, for all S ∈ Ut−1. This already implies (3.2).

Applying (3.2) on the lower bound (3.1) for t−1 yields that the number of edges of the total L-DFS

sequence of T covered by the agents up to iteration t − 1 is at least

2

3
(|T R

t | − 1) +
∑

S ∈U′t−1

2

3
(B − d(rS )) +

∑
0≤i≤t−1

2

3
· ki · (B − d(ri )). (3.3)

Let now St be the subtree with root rt considered by the algorithm in iteration t as de�ned above

and vL , vR be de�ned as in the algorithm.

First, assume that we have d(vL) − d(rt ) ≤ max{1, 1/3 · (B − d(rt ))} and let A0 be the only agent

used by the algorithm in iteration t . Note that if 1/3 · (B − d(rt )) < 1, then once it has reached rt ,

agentA0 has either one or two energy left. In the �rst case,A0 only explores vL and makes a progress

of 1 on the total L-DFS sequence. In the second case, A0 makes a progress of 2 on the total L-DFS

sequence: it goes to vL and then either it visits a child of vL , or it goes back to rt . Consequently, if

1/3 · (B − d(rt )) < 1 = d(vL) − d(rt ), A0 makes a progress of at least (B − d(rt )) ≥ 2/3 · (B − d(rt )) on

the total L-DFS sequence.

Suppose now that 1 ≤ d(vL) − d(rt ) ≤ 1/3 · (B − d(rt )). Agent A0 moves to vL using at most

1/3 · (B − d(rt )) energy and then performs an L-DFS. If A0 does not completely explore St , then the

set of edges traversed by A0 starting in vL and directed in the direction the edge is traversed by A0

has not been covered by any other agent. Therefore A0 makes a progress of at least 2/3 · (B − d(rt ))

edges on the total L-DFS sequence. Adding this progress of agent A0 to the lower bound in (3.3) on

the number of edges covered by the agents in the �rst t − 1 iterations and using Ut = U
′
t−1

yields

the lower bound (3.1) for iteration t .

Next assume that A0 completely explores the subtree St . We then have Ut = U
′
t−1
\ {St } and

the lower bound (3.1) for iteration t follows directly from the lower bound (3.3) even if A0 explores

only vL and only covers two new directed edges of the total L-DFS sequence.

The proof when d(vR ) − d(rt ) ≤ 1/3 ·max{1, 1/3 · (B − d(rt ))} is completely analogous.

Finally, assume that the last case occurs in iteration t and St is split into two subtrees S (1) and S (2)

as de�ned in the algorithm. Further, let A1 and A2 be the agents used in iteration t for performing

an R-DFS in S (1) and an L-DFS in S (2), respectively.
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We �rst show that vL and vR are below di�erent children of rt . Note that we have d(vL) −d(rt ) >

max{1, 1/3 · (B − d(rt ))} ≥ 1 as well as d(vR ) − d(rt ) > max{1, 1/3 · (B − d(rt ))} ≥ 1. Therefore

neither vL nor vR are children of rt . Suppose, for the sake of contradiction, there is a child v of rt

such that both vL and vR are contained in T (v). By the de�nition of vL and vR , the subtrees below

all other children of rt must be completely explored. This means rt only has one child leading to

an unexplored vertex. We cannot have vL = vR = v as vL and vR are not children of rt . But then

the root rt would be moved down to v and possible further at the beginning of iteration t . This is a

contradiction. Therefore, S (1) and S (2) are edge-disjoint, non-empty trees and vL is contained in S (1)

and vR in S (2).

Agent A1, which moves according to the call R-DFS(S (1), rt ), moves to rt using d(rt ) energy and

starts an R-DFS making a progress of at least d(vL) − d(rt ) > 1/3 · (B − d(rt )) on the overall L-DFS

sequence, as the part of the L-DFS sequence from vL to rt has not been covered by any other agent

and has length at least d(vL) − d(rt ). If A1 does not completely explore S (1), then it makes even a

progress of B − d(rt ) on the overall L-DFS sequence.

The second agent used in iteration t , the agent A2, �rst moves to rt using d(rt ) energy and then

performs an L-DFS according to the call L-DFS(S (2), rt ). We have d(vR ) −d(rt ) > 1/3 · (B −d(rt )) and

henceA2 makes a progress of at least 1/3 · (B−d(rt )) edges on the overall L-DFS sequence, as the part

of the sequence from rt to vR has not been covered by any other agent. If A2 does not completely

explore S (2), then it also makes a progress of B − d(rt ) on the overall L-DFS sequence.

Let s ∈ {0, 1, 2} be the number of subtrees among {S (1), S (2)} that A1 and A2 do not explore

completely. By the above argument, we showed that overall A1 and A2 together make a progress of

at least 2/3 · (B − d(rt )) + s · 2/3 · (B − d(rt )) edges on the overall L-DFS sequence of T . Adding this

progress to the lower bound (3.3) and using St ∈ U
′
t−1
\ Ut again yields the lower bound (3.1) for

iteration t .

In order to show the claim, let us consider the last iteration t . If Divide & Explore can complete

this iteration, then the claim follows directly from the lower bound (3.1) because
2

3
(B − d(rS )) ≥ 0

for all S ∈ Ut as no agent can explore a vertex below depth B in T . Now assume that iteration t is

not completed. But then we have that the number of edges of the total L-DFS sequence ofT covered

by the agents up to iteration t − 1 is at least

2

3
(|T R

t | − 1) +
∑

S ∈U′
t−1

2

3
(B − d(rS )) +

∑
0≤i≤t−1

2

3
· ki · (B − d(ri ))

by the lower bound (3.3). The above lower bound already implies the claim, as we have kt = 1 and∑
S ∈U′

t−1

2

3
(B − d(rS )) ≥

2

3
· kt · (B − drt ).

With the lower bound above, we can now prove the main result of this section.

Theorem 3.2. The algorithm Divide & Explore is 3-competitive.

Proof. Assume that the algorithm Divide & Explore terminates after iteration t̄ . If it completely

explores T , then it is clearly optimal. So let us assume that it runs out of agents in iteration t̄ .
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Let A1,A2, . . . ,Ak be the sequence of agents used by Divide & Explore in this order and let

agent Ai be used in iteration ti . We let di := d(rti ) be the depth of the root of the subtree visited

by Ai in iteration ti . As the algorithm in every iteration chooses the subtree S with an unexplored

vertex which minimizes d(rS ), we have d1 ≤ d2 ≤ . . . ≤ dk .

Note that every undirected edge {v,w} of the tree appears exactly twice as a directed edge in the

total L-DFS sequence of T , as (v,w) and as (w ,v). Thus dividing the bound given by Lemma 3.1 by

two yields a lower bound on the number of distinct undirected edges traversed by the agents. As T

is a tree, this number plus 1 is a lower bound on the number of vertices visited by the agents. Thus,

using the notation T R
instead of T R

t̄ , we obtain for the given instance I that

Alg(I ) ≥ 1

3
|T R | +

∑
1≤i≤k

1

3
· (B − di ). (3.4)

Let now A∗
1
, . . . ,A∗k be the k agents used by an optimal o�ine algorithm Opt and let d∗i be the

maximum depth of a vertex inT R
that is visited by the agent A∗i . This is well-de�ned as every agent

at least visits the root r ofT R
. We assume without loss of generality that d∗

1
≤ d∗

2
≤ . . . ≤ d∗k . As the

agent A∗i must use at least d∗i energy to reach a vertex at depth d∗i in T R
, we have

Opt(I ) ≤ |T R | +
∑

1≤i≤k

(B − d∗i ). (3.5)

Consider the maximal index j ∈ {1, . . . ,k} such that dj > d∗j . If no such j exists, di ≤ d∗i holds

for all 1 ≤ i ≤ k . This implies

∑k
i=1
(B − d∗i ) ≤

∑k
i=1
(B − di ) and thus also Opt(I )/Alg(I ) ≤ 3

by (3.4) and (3.5).

Otherwise, we haved∗
1
≤ d∗

2
≤ . . . ≤ d∗j < dj . LetT j

Alg
be the subtree explored by the �rst j agents

used byDivide& Explore. We claim that all vertices explored by the agentsA∗
1
, . . . ,A∗j are contained

in T j
Alg

. Assume, for the sake of contradiction, that there is 1 ≤ i ≤ j such that agent A∗i explores

a vertex u which is not contained in T j
Alg

. At the moment when the agent Aj is used by Divide &

Explore, the root rS of every subtree S ∈ Ttj is contained inT R
tj and it has depth at leastdj . Let S ′ ∈ Ttj

be the subtree containing u. This means that the agent A∗i must also visit rS ′ to reach u. But T R
tj is a

subtree of T R
and thus A∗i visits a vertex in T R

of depth d(rS ′) ≥ dj . This implies d∗i ≥ d(rS ′) ≥ dj

contradicting the initial assumption that d∗i < dj . Consequently, the agents A∗
1
, . . . ,A∗j in Opt only

visit vertices in T j
Alg

. But then the �rst j agents in Opt visit a strict subset of the vertices visited

by the �rst j agents in Divide & Explore. In this case, we can just replace the agents A∗
1
, . . . ,A∗j

and their paths by the agents A1, . . . ,Aj and their paths in Divide & Explore and Opt(I ) does not

decrease. By construction and by maximality of j, we then have di ≤ d∗i for all 1 ≤ i ≤ k , which

again implies the claim.

3.2.3 Lower Bound for Divide & Explore

In this subsection, we construct a sequence of instances to show that the analysis of Divide & Ex-

plore is tight. Let k , d ∈ N, d ≥ 2 and B = 3(d−1). Our instance Ik ,d is a treeT consisting of a root v0

connected to 2k paths, of which k have length d and k have length B, as illustrated in Figure 3.2. We

68



3.2 An Algorithm for Maximal Tree Exploration

v0

v1 v2 vi vk vk+1 vk+2 v2k

depth d

depth B

Ai

Figure 3.2: Instance showing that the analysis of Divide & Explore is tight.

assume that the edge labels of the edges incident to the root are increasing from left to right, i.e., for

all 1 ≤ i ≤ 2k − 1, the edge label of {v0,vi } is smaller than the label of {v0,vi+1}. We further denote

the path v0,vi , . . . up to the leaf of the tree by Pi .

At the beginning of Divide & Explore, one agent A1 performs an L-DFS and completely ex-

plores P1 and explores P2 up to depth d − 3, overall exploring 2d − 3 vertices. The second agent A2

performs an R-DFS and completely explores the rightmost path P2k of length B, i.e., B = 3(d − 1)

vertices. From now on, in every iteration of the while loop, we have T = {T }, rS = v0, d(vL) = d − 2

and thus

d(vL) − d(rS ) = d − 2 ≤ d − 1 = 1/3 · (B − d(rS )).

This means that, for i ≥ 3, the agent Ai used in the iteration i − 2 of the outer while-loop, �rst moves

to the unexplored vertex at depth d − 2 on the path Pi−1, then �nishes exploring this path, and runs

out of energy at depthd−3 in Pi . Thus,Ai explores exactlyd vertices. Overall, the number of vertices

explored by the algorithm is therefore

2d − 3 + 3(d − 1) + (k − 2)d = 5d − 6 + (k − 2)d .

The optimal o�ine algorithm sends one agent down each of the paths Pk+1, . . . , P2k exploring 3k(d−

1) vertices. Hence, we obtain the following lower bound on the competitive ratio:

Opt(Ik ,d )

Alg(Ik ,d )
=

3k(d − 1)

5d − 6 + (k − 2)d

d→∞,k→∞
−−−−−−−−−→ 3.
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Algorithm 3.3: Divide & Explore

Input: tree T with root v0, set of agents A, energy bound B

1 T ← {T }

2 L-DFS(T ,v0)

3 R-DFS(T ,v0)

4 while T contains unexplored vertex and ∃ agent at v0 do

// Step 1: move down the roots of the subtrees in T if possible

5 forall S ∈ T containing an unexplored vertex do

6 r0 ← rS

7 while r0 only has one child v leading to an unexplored vertex

8 and r0 has no unexplored child do

9 r0 ← v

10 T ← (T \ {S}) ∪ {T (r0)}

// Step 2: explore or split the subtree with the highest root

11 S ← subtree in T that contains an unexplored vertex and minimizes drS

12 vL ← leftmost unexplored vertex in S

13 vR ← rightmost unexplored vertex in S

14 if d(vL) − d(rS ) ≤ max{1, 1/3 · (B − d(rS ))} then

15 L-DFS(S ,vL)

16 else if d(vR ) − d(rS ) ≤ max{1, 1/3 · (B − d(rS ))} then

17 R-DFS(S ,vR )

18 else

19 v ← child of rS leading to vR

20 S (1) ← induced subtree of S containing all vertices not in T (v)

21 S (2) ← induced subtree of S containing all vertices in T (v) and rS

22 T ← (T \ {S}) ∪ {S (1), S (2)}

23 R-DFS(S (1), rS )

24 L-DFS(S (2), rS )
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3.3 A General Lower Bound on the Competitive Ratio

In this section, we construct a sequence of instances for a given online algorithm that show a lower

bound of (5 + 3

√
17)/8 ≈ 2.17 on the competitive ratio of any online algorithm. The section is

organized as follows: In Section 3.3.3, we �rst present a simple lower bound of 2 on the competitive

ratio and then present our construction for the lower bound of 2.17. As the full proof of the lower

bound is quite involved, we �rst give some intuition and a simpli�ed proof for some special cases

in Section 3.3.1. The general proof of the lower bound is then given in Section 3.3.2.

3.3.1 Lower Bound Construction

In order to get some intuition, we �rst consider a simple example showing a lower bound of 2 on the

competitive ratio of any online algorithm.

Proposition 3.3. There exists no c-competitive online exploration algorithm with c < 2.

Proof. Let k and B be positive integers, B be even and T be a tree with root v0 connected to k paths

of length B and k · B/2 paths of length 1. A team of k agents starts at v0 with energy B each. For

every algorithm Alg, the adversary can ensure that no agent that starts at v0 ever enters one of the

long paths by permuting the port numbers of the edges at v0 accordingly. For every edge that an

agent explores, it then needs to go back to v0 in order to explore other edges. Thus, every agent can

explore at most B/2 edges and all k agents together at most k · B/2 edges since B is even. On the

other hand, the o�ine optimum Opt sends all agents in the long paths exploring k · B edges.

Note that the simple lower bound of 2 only requires that B is even and otherwise works for any

choice of parameter k and B. For the lower bound of (5 + 3

√
17)/8 ≈ 2.17 on the competitive ratio,

we present a sequence of instances where k and B become arbitrarily large. We initially construct an

instance with general parameters and at the end choose the parameters to maximize the competitive

ratio that the online algorithm can achieve. The lower bound instances that we construct are trees

that contain very long paths and high degree vertices at certain depth in the tree. The length of the

paths is determined by the online exploration algorithm.

For a given online algorithmAlg, we consider a set ofk := 2l−1 agentsA for l ∈ N with energy B

each and we let ∆ :=
⌈√

2 · l · B
⌉
+ 2l . We now construct a tree T , which is shown in Figure 3.3,

depending on the behavior of the algorithm. The tree T has a root v0 with l distinct paths, each

going from v0 to a vertex v
(1)

i at depth d1 for i = 1, . . . , l . Each vertex v
(1)

i has degree ∆ + 1 and is the

root of a subtreeTi . There are ∆ paths connected to everyv
(1)

i whose length will be determined by the

algorithm. Furthermore, depending on the algorithm, there may exist a vertex v
(2)

i at depth d2 that

has degree ∆+ 1 and also ∆ paths connected to it whose length will be determined by the algorithm.

We call the subtrees with root v
(1)

i and v
(2)

i adaptive subtrees as they depend on the behavior of the

online exploration algorithm. We further assume that B, d1, d2 are even and

d1 + ∆ < d2 ≤
5

3
· d1 and 3 · d1 < B ≤ d1 + 2 · d2. (3.6)

71



Chapter 3. Energy E�icient Tree Exploration

v0

v
(1)

1
v
(1)

2
v
(1)

3
v
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Figure 3.3: Tree for the lower bound of 2.17 on the competitive ratio.

Each of the adaptive trees can be active, i.e., as soon as an agent visits an unexplored vertex

on a path another unexplored neighbor is presented, or passive, i.e., all unexplored vertices in the

adaptive tree are leaves. Moreover, every subtree Ti has a budget Ni , which limits the total number

of non-leaf vertices that are presented to the algorithm, i.e., if Ni vertices that are not leaves have

been explored inTi both adaptive trees inTi become passive and from now on all unexplored vertices

in Ti are leaves. The budget Ni is initially 2 and is increased as described below when agents enter

the subtree Ti . Initially every subtree Ti has an active adaptive subtree below v
(1)

i . We now present

new vertices to the algorithm in every subtree Ti for i ∈ 1, . . . , l according to the following rules:

I. When the �rst agent A1 that has not visited any other tree Tj , Ti before enters Ti for the �rst

time:

The budget Ni of Ti is increased by (B + d2)/2 − d1 + 2∆, the adaptive tree below v
(1)

i is active

and v
(2)

i has not been discovered. The �rst vertex at depth d2 discovered by A1 is v
(2)

i , i.e., it

has degree ∆ + 1 and is the root of another adaptive tree which is active. Additionally, if A1

explores a new vertex v at depth d > d2 in Ti (below v
(2)

i or on any branch below v
(1)

i ) and the

remaining energy of A1 is ≤ d − d2, then we stop presenting new vertices on the current path

of A1, i.e., v is a vertex without further unexplored neighbors.

II. When the second agent A2 that has not visited any other tree Tj , Ti before enters Ti for the �rst

time:

(a) If A1 has explored at most (d1 + d2)/2 vertices in Ti :

The adaptive trees both at v
(1)

i and at v
(2)

i become passive. In all following cases below,

we assume that A1 explored more than (d1 + d2)/2 vertices in Ti .

(b) IfA1 has explored the vertex v
(2)

i or still has enough energy left to reach a vertex v at depth d2

via an unexplored vertex:

If v
(2)

i has been discovered, the adaptive tree at v
(1)

i becomes passive, but the adaptive

tree at v
(2)

i remains active. If A1 has not visited a vertex at depth d2, then the adaptive

tree at v
(1)

i becomes passive except for the path via an unexplored vertex to v
(2)

i := v at
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depth d2, which A1 can reach with its remaining energy. From now on, if any agent A is

at depth d > d2, then we stop presenting new vertices on the current path of A as soon

as the remaining energy is ≤ d − d2.

(c) If A1 has not visited a vertex at depth d2 and has not enough energy to reach a vertex at

depth d2 via an unexplored vertex:

From now on if any agent A is at depth d > d1, we stop presenting new vertices on the

current path of A if the remaining energy of A is ≤ d − d1.

III. Whenever an agent A which before has visited a tree Tj , Ti enters Ti for the �rst time with

remaining energy BA:

The budget Ni ofTi is increased by BA/2+2. IfA discovers a vertex v below v
(2)

i at depth d > d2

and the remaining energy of A is ≤ d − d2, then we stop presenting new vertices on this

path. Similarly, if A discovers a vertex v below v
(1)

i at depth d > d1 (but not on a branch

containing v
(2)

i ) and the remaining energy of A is ≤ d − d1, then we also stop presenting new

vertices on that path.

Note that in every treeTi , if Case II (b) does not occur inTi ,v
(2)

i and the adaptive subtree belowv
(2)

i

exist if and only if A1 discovers a vertex v at depth d2.

3.3.2 Intuition and Proof of the Lower Bound in Special Cases

In this subsection, we want to give some intuition about our construction by looking at two special

cases and making some simplifying assumptions, which do not hold in general. The adaptive trees

are constructed in a way that a path ends exactly when the agent currently exploring that path has

just enough energy to return to v
(1)

i or v
(2)

i respectively. So let us make the simplifying assumption

that the �nal position of every agent is either at v
(1)

i or v
(2)

i for some i ∈ {1, . . . , l}. The online

algorithm has to balance between sending each agent to only one subtree Ti to completely explore

it or to move to a second subtree Tj later to explore more vertices which are close to the root v0. We

will consider instances with increasing values of B and l in such a way that l = o(B). Note that this

implies that ∆ = o(B).

Let us consider the special case that the algorithm �rst sends one agent to each of the sub-

treesT1, . . . ,Tl and then a second agent to every subtree exceptT1 (there are 2l − 1 agents and l sub-

trees). For the sake of simpli�cation, assume thatA1 visitsv
(2)

i and Case II (b) occurs in each subtreeTi

when the second agentA2 entersTi . Note that in this case,A1 cannot visit another subtree as it visits

v
(2)

i at depth d2 and 2d2 + d1 ≥ B by (3.6). We further assume that for each subtree Ti , 2 ≤ i ≤ l ,

either the second agent A2 entering Ti helps A1 to explore Ti completely, or it goes to T1 to explore

new vertices.

The �rst agentA1 in each subtreeTi can explore at most (B+d2)/2 vertices inT if its �nal position

is atv
(2)

i (it traverses at most d2 edges once and all other edges are traversed an even number of times)

and less vertices if its �nal position is at v
(1)

i . Note that d1 − 2 of the vertices explored by A1 are on

the path from v0 to v
(1)

i and thus A1 can only explore at most (B +d2)/2−d1 + 2 vertices inTi . But by
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construction the budget Ni is increased by (B + d2)/2 − d1 + 2∆ when A1 enters Ti so that A1 alone

cannot deplete the whole budget and completely explore Ti .

As the subtree below v
(1)

i becomes passive when A2 enters Ti , A2 can only explore at most ∆

vertices that are not below v
(2)

i . Therefore ifA1 andA2 completely exploreTi ,A2 has to go to depth d2

and then it cannot visit any other subtree as 2d2 + d1 ≥ B by (3.6). In this case, agents A1 and A2

together then explore at most Ni vertices in Ti plus at most 2∆ leaves and the path of length d1

leading to Ti , i.e., they explore at most (B + d2)/2 + 4∆ + 2 = (B + d2)/2 + o(B) vertices.

Suppose now that A1 and A2 do not completely explore the subtree Ti and that A2 goes to T1 to

explore new vertices after having visited Ti . Assume that A2 has BA2
energy left when it enters T1,

and note that BA2
≤ (B − 3d1)/2 since A2 went �rst toTi before enteringT1. Agent A2 can explore at

most BA2
/2 new vertices in T1 if its �nal position is in v

(1)

i (every edge it traverses in T1 is traversed

an even number of times) and less vertices if its �nal position is in v
(2)

i (since the vertices on the

branch from v
(1)

i to v
(2)

i have already been explored). Note that when A2 enters T1, the budget N1

of T1 is increased by BA2
/2 + 2 and thus the budget of T1 is never depleted. As A2 has BA2

energy

left when it enters T1 and spends 3d1 energy to �rst reach Ti and then T1, it can have explored at

most (B − 3d1 − BA2
)/2 vertices inTi because A2 traverses every edge inTi an even number of times.

Overall, A2 thus explores at most (B − 3d1)/2 new vertices and A1 at most (B + d2)/2 vertices in this

case.

Recall that for sake of simpli�cation, we consider only two strategies for the online algorithm

Alg: either in every treeTi , 2 ≤ i ≤ l , A1 andA2 completely exploreTi , or for every treeTi , 2 ≤ i ≤ l ,

the second agent A2 entering Ti also visits T1 (and Ti is not completely explored by the algorithm).

In the �rst case, the algorithm explores at most l · (B + d2)/2 + o(lB) vertices. In the second case, the

algorithm explores at most l · ((B + d2)/2 + (B − 3d1)/2) + o(lB) vertices.

Let us now consider an optimal o�ine algorithm Opt. Whatever the strategy of Alg is, one

can show that there is always an unexplored vertex u1 at depth at most d1 + ∆ in T1 (this is proved

in Lemma 3.4 (f)). We can assume that u1 has degree 2l and there are 2l − 1 distinct paths of length B

connected to it.

If Alg completely explores every tree Ti , 2 ≤ i ≤ l , then Opt can send all agents to u1 and then

each agent explores one of the paths below u1. In this case, Opt explores at least B + (2l − 2) · (B −

d1 − ∆) = 2l · (B − d1) − o(lB) vertices.

If Alg does not completely explore any Ti , 2 ≤ i ≤ l , then there exists an unexplored vertex ui

in each tree Ti , 2 ≤ i ≤ l , and we can assume that there is a path of length B connected to it. In this

case, Opt can send an agent to each ui , 2 ≤ i ≤ l that can then explore the path below ui . Then, Opt

can send the remaining l agents to u1 as in the previous case, and each of these agent explores one

of the paths below u1. In this case, Opt explores at least lB+ (l − 1) · (B−d1 −∆) = l · (2B−d1)−o(lB)

vertices.

As the algorithm can choose the best strategy among the two, we get for our constructed in-
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stance I that

Opt(I )

Alg(I )
≥ min

{
4l · (B − d1) − o(lB)

l · (B + d2) + o(lB)
,

2l · (2B − d1) − o(lB)

l · (2B + d2 − 3d1) + o(lB)

}
.

In order to maximize the competitive ratio, we want to choose d2 as small as possible. Because of

the initial assumptions on the parameter in (3.6), we must have 2d2 + d1 ≥ B and thus we choose

d2 = (B − d1)/2. Additionally, dividing by l and omitting the terms that vanish as B tends to in�nity,

we obtain

Opt(I )

Alg(I )
≥ lim

B→∞
min

{
8B − 8d1

3B − d1

,
8B − 4d1

5B − 7d1

}
.

By standard calculus, the competitive ratio is maximized when the two terms on the right-hand side

are equal and this is true when d1 = (19− 3

√
17)B/26. These choices of d1 and d2 satisfy (3.6) and the

above lower bound evaluates to (5 + 3

√
17)/8 ≈ 2.17.

We made several simplifying assumptions to get to this bound, but one can show that no other

strategy can beat the lower bound we established. The challenge in the analysis is that the online

algorithm does not necessarily use one agent after the other, but the agents may wait in between.

This creates many di�erent cases which need to be grouped and analyzed.

3.3.3 Proof of the Lower Bound for the General Case

In this subsection, we give a complete proof of the lower bound on the competitive ratio of an arbi-

trary online algorithm Alg using the construction introduced in Section 3.3.1.

For every vertex v in T , we say that v is explored by an agent A, if A is the �rst agent visiting v.

If v
(2)

i is de�ned, then we say that every vertex on the path from v
(1)

i to v
(2)

i is explored by the �rst

agent A1, which enters Ti and has not visited any other tree Tj , Ti before. It may be even the case

that A1 never visits these vertices, but to simplify the analysis, we will still attribute them to A1.

For i ∈ {1, . . . , l}, we let A1,i be the set of agents for which Ti is the �rst tree they visit and

let A2,i be the set of agents for which Ti is the second tree they visit, i.e., every agent A ∈ A2,i has

visited a subtree distinct from Ti before. Note that an agent can visit at most two subtrees as

5 · d1 ≥ d1 + 4 · 3

5
d2 > d1 + 2 · d2 ≥ B (3.7)

by our assumptions on the parameters in (3.6). Therefore an agent A ∈ A can be contained in one

set A1,i and possible in some other set A2, j for j ∈ {1, . . . , l} \ {i}. For every agent A ∈ A we

let BA denote the remaining energy when A enters a second subtree. If A only enters at most one of

the subtrees T1, . . . ,Tl , we set BA = 0. We now establish the following important properties for the

number of vertices that the agents explore.

Lemma 3.4. Let Ti be a subtree of T as de�ned above.

(a) BA ≤ B − 3d1 for all A ∈ A.

(b) If Case II (b) or Case II (c) occurs, then the �rst agent A1 in A1,i entering Ti does not visit any

other subtree, i.e., BA1
= 0.
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(c) Every agent A ∈ A2,i explores at most BA/2 + 2 vertices in Ti .

(d) The �rst agent A1 in A1,i entering Ti explores at most (B + d2)/2 − d1 + 2∆ vertices.

(e) If |A1,i | ≤ 1, then the agents in A1,i ∪ A2,i visit strictly less than Ni vertices in Ti .

(f) If the adaptive tree belowv
(1)

i is active and the budgetNi is not depleted, then there is an unexplored

vertex in Ti at depth at most d1 + ∆.

Proof. (a) Note that we have B − 3d1 > 0 by our initial assumptions on the parameters in (3.6) and

thus the claim trivially holds if A visits at most one of the subtrees T1, . . . ,Tl , i.e., if BA = 0.

Now, consider an agent A ∈ A visiting two subtrees and assume without loss of generality,

that A �rst visitsT1 and afterwards entersT2 with remaining energy BA. To reachT1 the agent

needs to traverse d1 edges. In order to afterwards reach T2, the agent A needs to traverse

another 2d1 edges. Thus, we must have BA ≤ B − 3d1.

(b) In both cases, agent A1 has explored more than (d1 + d2)/2 vertices in Ti . If A1 visits another

subtree it traverses every edge inTi an even number of times and therefore needs at least d1 +

d2 energy to explore more than (d1 + d2)/2 vertices. Moreover, 3d1 energy is needed to �rst

reach Ti and then another subtree. As 3d1 + (d1 + d2) > 5d1 ≥ B by (3.6) and (3.7), A1 cannot

visit another subtree.

(c) By de�nition, the remaining energy of the agent A when enteringTi is BA. If the �nal position

of A is not inTi , then it traverses every edge inTi an even number of times and in particular A

traverses at most BA/2 edges in Ti . These can be incident to at most BA/2 + 1 vertices, which

yields the claim.

Now, consider the case that the �nal position of A is below v
(1)

i and not below v
(2)

i and not

on the path between v
(1)

i and v
(2)

i . This means that at some point A must have visited a vertex v

at depth d with remaining energy exactly d−d1. Recall that B and d1 are even, hence BA is even

and this must happen at some point. ThenA has exactly enough energy left to move tov
(1)

i and,

in particular, A cannot reach any other path below v
(1)

i . If v is explored by A, then v has no new

unexplored neighbor and we can simply assume that A returns to v
(1)

i as this does not change

the number of neighbors it explores. In this case A has traversed every edge in Ti an even

number of times and therefore can have explored at most BA/2+1 vertices. If v is not explored

by A, then A can only explore at most one more vertex after visiting v with energy d − d1,

because the current path ends immediately when A explores a new vertex. Compared to the

case that v is explored by A, agent A only explores at most one additional vertex in this case

so that we can bound the total number of vertices explored by A by BA/2 + 2.

Next consider the case that the �nal position of A is on the path between v
(1)

i and v
(2)

i . In

particular, this implies that v
(2)

i is de�ned and all vertices on the path between v
(1)

i and v
(2)

i are

attributed to A1. Note that then all edges that are not on that path, must be traversed an even

number of times byA and we therefore again obtain thatA can explore at mostBA/2+1 vertices,

which yields the claim.
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Finally, the case the �nal position ofA is below v
(2)

i is completely analogous to the case that

the �nal position is below v
(1)

i as all vertices on the path from v
(1)

i to v
(2)

i are attributed to A1.

(d) Let A1 be the �rst agent entering Ti . If A1 visits another subtree Tj , Ti afterwards, then A1

traverses every edge in Ti an even number of times and needs 3d1 energy to �rst reach Ti

and afterwards Tj . Overall, A1 can therefore explore at most (B − 3d1)/2 vertices in Ti and as

(B + d2)/2 − d1 + 2∆ ≥ (B − 3d1)/2 this yields the claim.

From now on, we can therefore assume thatA1 only visits the subtreeTi . The energy thatA1

spends in Ti is at most B − d1, as B − d1 is the maximum energy possible when entering Ti . If

the �nal position of the agent A1 is at depth d2 or above, then it traverses at most d2 −d1 edges

inTi once using d2 −d1 energy and exploring at most d2 −d1 + 1 vertices. All other edges inTi

traversed by A1 must be traversed at least twice which means there is at most one explored

vertex for every two energy used. Overall, the number of explored vertices is thus bounded by

(d2 − d1 + 1) +
B − d1 − (d2 − d1)

2

=
B + d2

2

− d1 + 1,

if the �nal position ofA1 is at depth d2 or above. If the �nal position ofA1 is below d2, there has

to be a vertex v at depth d visited by A1 such that the remaining energy of A1 when visiting v

is exactly d − d2 (recall that d2 and B are even by assumption). If v is explored by A1, then v

is the last vertex that A1 explores because v then is a vertex without further neighbors and A1

cannot reach another path below v
(1)

i or v
(2)

i . If v has been already explored by another agent,

then A1 can only explore one more additional vertex as the path also ends immediately if A1

explores a vertex. If A1 after visiting v with remaining energy d − d2, would directly move

up towards v
(1)

i , its �nal position would be at depth d2 and by the argument above A1 could

explore at most (B+d2)/2−d1+ 1 vertices. As A1 can explore only at most one more vertex, as

we just showed, the total number of vertices explored by A1 is bounded by (B + d2)/2 − d1 + 2

in this case.

However, in Case II (b), it can happen that v
(2)

i is de�ned as it can be reached by A1 with

its remaining energy when A2 enters Ti , but A1 does not visit v
(2)

i . Recall that we always

attribute the vertices on the path between v
(1)

i and v
(2)

i to A1, even if A1 never visits them. If A1

visits v
(2)

i , then it visits all vertices on the path between v
(1)

i and v
(2)

i and by the argument above

the number of vertices visited by A1 is bounded by (B + d2)/2 − d1 + 2. As the adaptive tree

at v
(1)

i becomes passive when A2 entersTi , A1 can from then on only explore ∆ vertices which

are not on the path between v
(1)

i and v
(2)

i or below v
(2)

i . This means compared to the case thatA1

visits v
(2)

i , A1 can only visit additional ∆ vertices and therefore the overall number of vertices

explored by A1 is bounded by (B + d2)/2 − d1 + 2∆ in this case as 2 + ∆ ≤ 2∆. This yields the

claim.

(e) By Lemma 3.4 (c), every agent A ∈ A2,i enteringTi explores at most BA/2+ 2 vertices and the

budget Ni is also increased by this value when A enters Ti . Thus, if A1,i = ∅, the number of

vertices explored in Ti will always be less than the budget, as Ni is initially 2. Now assume,

there is one agent A1 ∈ A1,i enteringTi . By Case I in the construction of the lower bound, the
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budget Ni is increased by (B + d2)/2 − d1 + 2∆ and by Lemma 3.4 (d), A1 also explores at most

(B + d2)/2 − d1 + 2∆ vertices in Ti . Thus the budget Ni , which is initially 2, is also larger than

the number of explored vertices in Ti in this case.

(f) Suppose, for the sake of contradiction, that the budget Ni is not depleted and the adaptive tree

below v
(1)

i is active, but there is no unexplored vertex at depth at most d1 + ∆ inTi . Recall that

there are ∆ path belowv
(1)

i and ∆ =
⌈√

2 · l · B
⌉
+2l . We have 2l−1 agents and each agent can be

responsible for at most one path to be fully explored and end because the agent has remaining

energy ≤ d − d1 at depth d . If all other

⌈√
2 · l · B

⌉
+ 1 paths are fully explored up to depth ∆,

then these path contain at least ∆ ·
⌈√

2 · l · B
⌉
≥ 2 · l · B vertices. But all agents together only

have (2 · l − 1) · B energy and hence cannot visit all these vertices. This is a contradiction.

We will say that Case II (a) occurs in Ti if |A1,i | ≥ 2 and Case II (a) occurs when the second

agent A2 ∈ A1,i enters Ti . Analogously for Case II (b) and Case II (c). We partition the subtrees into

the following three sets:

M0 := {i | BA > 0 for all A ∈ A1,i or Case II (a) occurs in Ti },

M1 := {i | Ti is not completely explored, ∃A ∈ A1,i with BA = 0 and Case II (a) does not occur},

M2 := {i | Ti is completely explored and Case II (b) or Case II (c) occurs in Ti }.

Lemma 3.5. Let Ti be a subtree of T , |Ti | be the number of vertices explored in Ti by Alg and M0, M1

andM2 as de�ned above.

(a) We haveM0 ∪M1 ∪M2 = {1, . . . , l} andMi ∩Mj = ∅ for all i , j ∈ {0, 1, 2} with i , j.

(b) For every i = 1, . . . , l , we have

|Ti | ≤
B + d2

2

− d1 + 6∆ +
∑

A∈A2,i

BA
2

. (3.8)

(c) If i ∈ M0, then

|Ti | ≤
B + d2

2

− d1 + 4∆ + (|A1,i | − 2) ·
B − 3d1

2

+
∑

A∈A2,i

BA
2

−
∑

A∈A1,i

BA
2

(3.9)

(d) If i ∈ M1, then ∑
A∈A1,i

BA ≤ (|A1,i | − 1) · (B − 3d1). (3.10)

(e) If i ∈ M2, then ∑
A∈A1,i

BA ≤ (|A1,i | − 2) · (B − 3d1). (3.11)
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Proof. (a) For the �rst part of the statement, let i ∈ {1, . . . , l} \ (M0 ∪ M1}, and note that there

exists A ∈ A1,i with BA = 0, Case II (a) does not occur in Ti , and Ti is completely explored.

By Lemma 3.4 (e) and Lemma 3.4 (f), we have |A1,i | ≥ 2. Consequently, since Case II (a) does

not occur in Ti , necessarily Case II (b) or Case II (c) occurs in Ti and i ∈ M2.

We obviously have M0 ∩M1 = ∅ and M1 ∩M2 = ∅. By Lemma 3.4 (b), BA1
= 0 if Case II (b)

or Case II (c) occurs and thus also M0 ∩M2 = ∅.

(b) The budget Ni of the tree Ti , which is initially 2, satis�es

Ni ≤ 2 +
B + d2

2

− d1 + 2∆ +
∑

A∈A2,i

(
BA
2

+ 2

)
≤

B + d2

2

− d1 + 4∆ +
∑

A∈A2,i

BA
2

,

where we used 2 + 2|A2,i | ≤ 4l + 2 ≤ 2∆. Since Ti has at most 2∆ − 1 leaves, and since the

number of vertices explored inTi , which are not leaves, is at most Ni , we have |Ti | ≤ Ni + 2∆.

This yields the claim.

(c) First we show the claim for the case that BA > 0 for all A ∈ A1,i . This means that every

agent A ∈ A1,i also visits a second subtree. As 3d1 energy is spent to reach Ti and afterwards

the second subtree and A has still BA energy left when entering the second subtree, at most

B − 3d1 − BA energy is spent in Ti . As every edge in Ti is traversed an even number of times,

at most (B − 3d1 − BA)/2 vertices are explored by A in Ti for all A ∈ A1,i . Moreover, every

agent A ∈ A2,i explores at most BA/2 + 2 vertices in Ti by Lemma 3.4. Additionally using

2|A2,i | ≤ 2∆, we thus have

|Ti | ≤
∑

A∈A1,i

B − 3d1 − BA
2

+
∑

A∈A2,i

(
BA
2

+ 2

)
= |A1,i | ·

B − 3d1

2

+
∑

A∈A2,i

BA
2

−
∑

A∈A1,i

BA
2

+ 2∆.

We obtain the claim using (B + d2)/2 − d1 ≥ 2 · (B − 3d1)/2 as d2 > d1 and 5d1 > B by (3.6)

and (3.7).

Now assume Case II (a) occurs and letA1 ∈ A1,i be the �rst agent enteringTi andA2 ∈ A1,i

the second agent entering Ti . As Case II (a) occurs, A1 explores at most (d1 + d2)/2 vertices

in Ti . If BA1
> 0, i.e., A1 also enters a second tree, we can even bound the number of vertices

explored by A1 in Ti by (B − 3d1 − BA1
)/2. We have (d1 + d2)/2 > (B − 3d1)/2 as d2 > d1

and 5d1 > B by (3.6) and (3.7). Therefore, we can both for BA1
= 0 and for BA1

> 0 bound

the number of vertices explored by A1 until A2 enters Ti by (d1 + d2 − BA1
)/2. As soon as A2

enters Ti all agents together can only explore the unexplored leaves, i.e., at most 2∆ vertices.

Moreover, every agentA ∈ A2,i explores at most BA/2+2 vertices inTi by Lemma 3.4. Overall,

we hence have

|Ti | ≤
d1 + d2 − BA1

2

+ 2∆ +
∑

A∈A2,i

(
BA
2

+ 2

)
≤

d1 + d2 − BA1

2

+ 4∆ +
∑

A∈A2,i

BA
2

,

where we again used 2|A2,i | ≤ 2∆. We also have 0 ≤ B−3d1−BA for allA ∈ A1,i by Lemma 3.4
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and obtain

|Ti | ≤
d1 + d2 − BA1

2

+ 4∆ +
∑

A∈A1,i \{A1 }

B − 3d1 − BA
2

+
∑

A∈A2,i

BA
2

=
d1 + d2

2

+ 4∆ + (|A1,i | − 1) ·
B − 3d1

2

−
∑

A∈A1,i

BA
2

+
∑

A∈A2,i

BA
2

=
B + d2

2

− d1 + 4∆ + (|A1,i | − 2) ·
B − 3d1

2

−
∑

A∈A1,i

BA
2

+
∑

A∈A2,i

BA
2

.

(d) The bound follows directly from the fact that BA = 0 for some A ∈ A1,i and BA ≤ B − 3d1 for

all A ∈ A1,i by Lemma 3.4.

(e) In order to show the bound (3.11), we proceed along the following key claims:

(i) The bound (3.11) follows, if the set of agents A1,i \ {A1} together visit at least (B −

3d1)/2 distinct vertices in Ti or if there is an agent in A1,i \ {A1} that does not visit

another subtree.

(ii) The bound (3.11) holds if Case II (b) occurs.

(iii) For Case II (c), the agents in

(
Ai ,1 \ {A1}

)
∪ Ai ,2 need to visit at least (B − 3d1) +∑

A∈Ai ,2
(BA/2 + 2) vertices in Ti for Ti to be completely explored. Some of these ver-

tices may have already been explored by agent A1.

(iv) LetV1 be the set of vertices visited byA1. Further let e2 be the number of vertices explored

by the agents in Ai ,2 that are not contained in V1 and n2 be the total number of vertices

visited by the agents in Ai ,2 that are contained in V1. Then it holds that e2 + n2/2 ≤∑
A∈Ai ,2

(BA/2 + 2).

(v) The claims (iii) and (iv) yield the bound (3.11) if Case II (c) occurs.

We now show each of the above claims.

(i) By Lemma 3.4 (b), we know thatA1 cannot visit another subtree, i.e., BA1
= 0, as Case II (b)

or Case II (c) occurs when A2 enters Ti . If there exists another agent A′ ∈ A1,i such

that BA′ = 0, then the claim follows directly from the fact that BA ≤ B − 3d1 for all

A ∈ A1,i \ {A1,A
′} by Lemma 3.4. So assume that for every A ∈ A1,i \ {A1}, BA > 0

holds, i.e., every agent in A1,i \ {A1} visits two subtrees and the agents in A1,i \ {A1}

together visit at least (B − 3d1)/2 distinct vertices in Ti . As every agent A in A1,i \ {A1}

visits a distinct subtree after Ti , A traverses every edge in Ti an even number of times.

Thus at least B − 3d1 energy is needed to visit (B − 3d1)/2 distinct vertices. But then we

already have ∑
A∈A1,i \{A1 }

BA ≤ (|A1,i | − 1) · (B − 3d1),

as every agents spends an additional 3d1 energy to �rst reach Ti and then the second

subtree. This implies (3.11).
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(ii) The budget of Ti is increased by (B + d2)/2 − d1 + 2∆ when A1 enters Ti , but this is also

the maximum number of vertices that A1 can explore by Lemma 3.4. Similarly, for every

agentA ∈ A2,i the budget is increased by BA/2+2 and the agent can also explore at most

BA/2 + 2 vertices by Lemma 3.4. Note that when A2 enters Ti , the adaptive tree rooted

atv
(1)

i becomes passive, and thus agents not enteringv
(2)

i can collectively explore at most∆

vertices afterA2 enteredTi . We claim that if no agent fromA1,i \ {A1} enters v
(2)

i , thenTi

cannot be explored. Indeed, there are ∆ paths starting from v
(1)

i and ∆ paths starting

from v
(2)

i . When the budget Ni is depleted, the agents must have explored Ni vertices that

are not leaves, and consequently, |Ti | ≥ Ni + 2∆. Since the agents from A2,i ∪ {A1} can

explore at most Ni −2 vertices, the agents fromA1,i \ {A1} have to explore at least 2∆+2

vertices in Ti . Consequently, at least one agent A′ from A1,i \ {A1} has to visit v
(2)

i and

thus BA′ = 0 as d1 + 2d2 ≥ B by (3.6). By (i), this yields (3.11).

(iii) As Case II (c) occurs whenA2 entersTi , agentA1 has not enough energy to reach a vertex

at depth d2 via an unexplored vertex. We �rst show that then A1 never visits a vertex at

depthd2+1 (it is clear by assumption thatA1 never explores a vertex at depthd2 or below,

but A1 could still visit a vertex at depth d2 + 1 on a path that was explored by another

agent). If any agent A from Ai ,2 explores a vertex v at depth d2 in Ti , then it must have

spend at least 2d1 energy to reach the tree it visited before Ti and then come back to the

root and another d2 energy to reach v. We have B − 2d1 − d2 ≤ d2 − d1 as d1 + 2d2 ≥ B

by (3.6). Thus A has at most d2 − d1 energy left when it visits v at depth d2 and the path

of A ends by Case III in the construction of the lower bound. Therefore, A1 cannot reach

any vertex at depth d2 + 1 on a path that was explored by an agent from Ai ,2 as this

path ends at depth d2 at the latest. Agent A1 also cannot visit a vertex at depth d2 + 1

that was explored by an agent in

(
Ai ,1 \ {A1}

)
as this vertex would be unexplored at the

time A2 entersTi and we assume that at this point A1 cannot reach an unexplored vertex

at depth d2.

This means thatA1 never visits any vertex at depth d2+1 and can therefore only com-

pletely explore one path belowv
(1)

i containing at mostd2−d1+1 vertices. All other vertices

visited by A1 that are not on that path have to be visited by other agents since otherwise

there is an unexplored vertex at the end of that path. ForTi to be completely explored, the

budget Ni must be completely depleted as otherwise the adaptive tree below v
(1)

i remains

active and there is an unexplored vertex in Ti by Lemma 3.4 (f). Thus all Ni vertices,

except for at most d2 − d1 + 1, need to be visited by the agents in

(
Ai ,1 \ {A1}

)
∪ Ai ,2

for Ti to be completely explored. We have

Ni − (d2 − d1 + 1) ≥
B − d2

2

+
∑

A∈Ai ,2

(
BA
2

+ 2

)
. (3.12)

Using, d1 + 2d2 ≥ B and d2 ≤ 5/3 · d1 by (3.6), we obtain

2B − 6d1 ≤ (d1 + 2d2) + B − 6d1 = 3d2 − 5d1 + (B − d2) ≤ B − d2.
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This implies B − 3d1 ≤ (B − d2)/2 and together with (3.12) this yields the claim.

(iv) For an agent A ∈ Ai ,2, let eA be the number of vertices in Ti that are explored by A

and not visited by A1. Moreover, let nA be the number of moves performed by agent A

in Ti increasing the distance from A to v
(1)

i while visiting a new distinct vertex in V1. We

show that eA + nA/2 ≤ BA/2 + 2. The claim then follows by using n2 =
∑

A∈Ai ,2
nA and

e2 =
∑

A∈Ai ,2
eA.

Consider the last time an agent A ∈ Ai ,2 visits a vertex v at depth d and exactly has

enough energy to move to v
(1)

i (as B and d1 are even, this will happen at some point). Note

that A cannot reach any other path below v
(1)

i and that it can explore at most one vertex

as any unexplored vertex that A visits will have no further neighbor.

First, assume v is explored by A. By Case III in the construction of the lower bound,

the current path ends and v is a vertex without further neighbors. We can now assume

that A returns to v
(1)

i , as this does not change eA or nA. Then A has traversed every edge

in Ti an even number of times and we have eA + nA ≤ BA/2 + 1 and thus in particular,

eA + nA/2 ≤ BA/2 + 1 as nA ≥ 0.

Next, assume that v is not explored by A and also not visited by A1. If A would return

to v
(1)

i , then we can again argue that A traverses every edge an even number of times

and obtain eA + nA ≤ BA/2 because now we even know that the edge traversal to v was

neither an exploration move nor is v contained in V1. On the other hand, if A does not

return to v
(1)

i from v then it cannot visit any new vertex in V1 as A1 never visits v and

therefore also no vertex below v. Moreover, A can explore at most one additional vertex

because then the current path will end immediately. Overall, we therefore again obtain

eA + nA ≤ BA/2 + 1, which yields eA + nA/2 ≤ BA/2 + 1.

Finally, assume that v is not explored by A but visited by A1. Let e ′A be the number of

vertices not visited byA1 and explored byA until the visit of v with remaining energy d−

d1 and analogously let n′A be the number of moves performed by agent A up to that time

increasing the distance from A to v
(1)

i while visiting a new distinct vertex in V1. If A

would return to v
(1)

i with its remaining energy, it would have traversed every edge an

even number of times and we obtain e ′A + n
′
A ≤ BA/2 + 1. After visiting v agent A can

explore only at most one more vertex as then the path ends immediately. Thus, we have

eA ≤ e ′A+1. Asv is visited byA1, all vertices between v and v
(1)

i must also be visited byA1.

Hence, it holds that n′A ≥ d −d1. Moreover, after visiting v agentA only has d −d1 energy

left for visiting vertices in V1 implying nA − n
′
A ≤ d − d1. Overall, this yields

eA +
nA
2

≤ e ′A + 1 +
(d − d1) + n

′
A

2

≤ e ′A + 1 +
2n′A

2

≤
BA
2

+ 2.

(v) Let n1 be the total number of vertices in Ti visited by the agents in Ai ,1 \ {A1}. We

assume n1 < (B − 3d1)/2 as otherwise the claim follows by (i). First of all, we must have

n1 + e2 ≥
∑

A∈Ai ,2
(BA/2 + 2) as Ti contains at least Ni + ∆ vertices if it is completely

explored of which

∑
A∈Ai ,2

(BA/2 + 2) are not visited by A1 by Lemma 3.4 (d). Using (iv),
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this implies

(B − 3d1)/2 > n1 ≥
∑

A∈Ai ,2

(BA/2 + 2) − e2 ≥ n2/2. (3.13)

By (iii), we must further have

n1 + n2 + e2 ≥ B − 3d1 +
∑

A∈Ai ,2

(BA/2 + 2) (3.14)

for the budgetNi to be depleted andTi completely explored. As we have

∑
A∈Ai ,2

(BA/2 + 2) ≥

n2/2+e2 by (iv), we obtainn1+n2/2 ≥ B−3d1 from (3.14). But this impliesn1 ≥ (B−3d1)/2

as n2/2 < (B − 3d1)/2 by (3.13), which is a contradiction.

Theorem 3.6. There exists no c-competitive online exploration algorithmwith c < (5+3

√
17)/8 ≈ 2.17.

Proof. Let Alg be an online exploration algorithm and let I be the instance de�ned above, i.e., the

tree T depending on Alg and the parameters l ,d1,d2 and B. Assume t of the l subtrees T1,T2 . . . ,Tl

are completely explored and for j ∈ {1, 2, 3} let kj := |
⋃

i ∈Mj
A1,i |.

We have Alg(I ) ≤ l ·d1 +
∑l

i=1
|Ti |, as there are l paths with d1 edges each connecting the root v0

to every subtree. We now apply (3.8) from Lemma 3.5 for all subtrees Ti with i ∈ M1 ∪ M2 and

Inequality (3.9) for all subtreesTi with i ∈ M0 and additionally use that

⋃l
i=1
A1,i ⊇

⋃l
i=1
A2,i . This

yields

Alg(I ) ≤ l · d1 +

l∑
i=1

|Ti |

≤ l · d1 +
∑

i ∈M1∪M2

©«B + d2

2

− d1 + 6∆ +
∑

A∈A2,i

BA
2

ª®¬
+

∑
i ∈M0

©«B + d2

2

− d1 + 4∆ + (|A1,i | − 2) ·
B − 3d1

2

+
∑

A∈A2,i

BA
2

−
∑

A∈A1,i

BA
2

ª®¬
≤ l ·

(
B + d2

2

+ 6∆

)
+

l∑
i=1

∑
A∈A2,i

BA
2

−
∑
i ∈M0

∑
A∈A1,i

BA
2

+
∑
i ∈M0

(|A1,i | − 2) ·
B − 3d1

2

≤ l ·

(
B + d2

2

+ 6∆

)
+ (k0 − 2|M0 |) ·

B − 3d1

2

+
1

2

∑
i ∈M1∪M2

∑
A∈A1,i

BA.

Now we can apply the Inequalities (3.10) and (3.11). We further use k0 + k1 + k2 ≤ k = 2l − 1,
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|M0 | + |M1 | + |M2 | = l , t ≤ |M0 | + |M2 | and obtain

Alg(I ) ≤ l

(
B + d2

2

+ 6∆

)
+ (k0 − 2|M0 |) ·

B − 3d1

2

+
1

2

∑
i ∈M1

∑
A∈A1,i

(|A1,i | − 1) · (B − 3d1)

+
1

2

∑
i ∈M2

∑
A∈A1,i

(|A1,i | − 2) · (B − 3d1)

≤ l

(
B + d2

2

+ 6∆

)
+ (k0 + k1 + k2 − 2|M0 | − |M1 | − 2|M2 |)

B − 3d1

2

≤ l

(
B + d2

2

+ 6∆

)
+ (l − 1 − t)

B − 3d1

2

.

Next, we will give a lower bound on the number of vertices explored by an optimal o�ine algo-

rithm Opt. As there are 2l − 1 agents and l subtrees, there has to be a subtree Ti with |A1,i | ≤ 1.

Without loss of generality let this subtree beT1. By Lemma 3.4 the subtreeT1 then has an unexplored

vertex u1 at depth at most d1 + ∆ and, in particular, is not completely explored, implying t < l .

For every subtree Ti that is not completely explored, let ui be an unexplored vertex in this tree.

We can just assume that every ui has degree 2l and 2l − 1 distinct paths of length B connected to it.

The optimal o�ine algorithm Opt can then send l − t agents each to one of the unexplored leaves ui

and then down one of the 2l − 1 distinct paths. These agents in total explore (l − t) · B vertices. All

other l − 1+ t agents are send to the unexplored vertex u1 inT1 and then each down one path which

is not taken by any other agent. These agents in total explore at least (l − 1+ t) · (B −d1 −∆) vertices.

Overall, this yields

Opt((I ) ≥ (l − t) · B + (l − 1 + t) · (B − d1 − ∆) = (2l − 1) · B + (l − 1 + t) · (−d1 − ∆).

For the competitive ratio, we hence obtain

Opt(I )

Alg(I )
≥ min

t ∈{0, ...,l−1}

(4l − 2) · B + (2l − 2 + 2t) · (−d1 − ∆)

l · (B + d2 + 12∆) + (l − 1 − t)(B − 3d1)
.

In order to maximize the term on the right-hand side, we want to choose d2 as small as possible.

Because of the initial assumptions on the parameters in (3.6), we must satisfy 2d2 + d1 ≥ B. We can

therefore choose d2 = (B − d1)/2 and get

Opt(I )

Alg(I )
≥ min

t ∈{0, ...,l−1}

(8l − 4) · B + (4l − 4 + 4t) · (−d1 − ∆)

l · (3B − d1 + 24∆) + (2l − 2 − 2t)(B − 3d1)
.

Note that since we assumed d2 ≤ 5d1/3, we need to have that B ≤ 13d1/3, i.e, d1 ≥ 3B/13. We also

need to satisfy 3d1 < B by (3.6) or equivalently d1 < B/3.

We now consider an in�nite sequence of instances with the following parameters: For every i ∈

N, let the energy B of the agents be B(i) := 2
2i

, the parameter l be l (i) := 2
i

and the depth d1

be d (i)
1

:= b1 · B
(i)

for some b1 ∈ (3/13, 1/3). Note that d (i)
1

then satis�es 3d (i)
1
< B(i) < 13d (i)

1
/3 as

required by our initial assumptions on the parameters. Furthermore, we have

∆(i)

B(i)
=

⌈√
2l (i) · B(i)

⌉
+ 2l (i)

B(i)
i→∞
−−−−→ 0.
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By dividing all terms in the numerator and denominator by l (i) · B(i) and using the property above,

we can compute

Opt(I )

Alg(I )
≥ min

t ∈{0, ...,l (i )−1}

(8l (i) − 4) · B(i) + (4l (i) − 4 + 4t) · (−d (i)
1
− ∆(i))

l (i) ·
(
3B(i) − d (i)

1
+ 24∆(i)

)
+ (2l (i) − 2 − 2t)(B(i) − 3d (i)

1
)

i→∞
−−−−→ inf

t ∈[0,1)

8 − 4b1 − 4b1 · t

3 − b1 + 2 − 6b1 − 2t + 6t · b1

.

We still have the freedom to choose b1 ∈ (3/13, 1/3) to maximize the term on the right-hand side, so

we even have

Opt(I )

Alg(I )
≥ sup

b1∈(3/13,1/3)

inf

t ∈[0,1)

8 − 4b1 − 4b1 · t

5 − 7b1 − 2t + 6t · b1

.

By standard calculus, we obtain that b1 =
−3

√
17+19

26
≈ 0.26 maximizes the in�mum and satis�es

3/13 ≤ b1 ≤ 1/3. Finally, we get

Opt(I )

Alg(I )
≥

5 + 3

√
17

8

≈ 2.17.
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Chapter 4

Energy E�cient Delivery

In this chapter, we study the problem of moving a set of distinct messages from their current loca-

tions to speci�c destinations by a team of mobile agents. In an application, a messages could be some

person or object to be transported and a mobile agent some autonomous robot or vehicle. The mes-

sages can be located at di�erent initial locations and every message has a speci�c destination. Each

mobile agent consumes energy proportional to the distance it travels and the proportionality factor,

i.e., the e�ciency of the agent, may be di�erent for di�erent agents. The di�erent e�ciencies of the

agents can be due to di�erent power sources or technologies of the autonomous robot or vehicle, for

instance. The agents may carry several messages at the same time, however, there is a capacity κ

bounding the number of messages any agent can carry simultanously. We model the environment as

a weighted undirected graph, where the initial position and destination of every message is speci�ed

as a source-target pair. Previous work on energy-e�cient delivery of messages studied agents with

di�erent energy budgets, i.e., bounds on the overall energy an agent can spend traversing the envi-

ronment, but with the same energy e�ciency [Cha+13; Cha+14; Bär+16]. In our setting, which we

refer to as WeightedDelivery, the energy of an agent is unlimited, and we study the problem

of delivering all messages to their destinations while minimizing the total energy consumption.

In this chapter, we focus on one aspect of the WeightedDelivery problem, namely, we investi-

gate how much the agents can bene�t by collaborating on delivering messages compared to the case

that every message is only delivered by one agent. We call the best approximation factor achieved by

an algorithm using only one agent for delivering every message the bene�t of collaboration (BoC).

We start by giving a formal introduction of the model in Section 4.1. Afterwards, in Section 4.2, we

construct an instance showing that no algorithm that delivers every message by only one agent can

achieve an approximation factor better than ln

( (
1 + 1

2r

)r (
1 + 1

2r+1

) )−1

, where r is the minimum of

the agent capacity κ and number of messages µ. For a single message this implies a lower bound

of 1/ln 2 on the bene�t of collaboration, whereas for arbitrary large agent capacity and number of

messages this lower bound converges to 2. In Section 4.3, we show how to transform an arbitrary

solution for the message delivery problem to a solution where every message is only transported by
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one agents while the cost is at most twice the cost of the original solution. This implies a general

tight upper bound of 2 on the bene�t of collaboration for arbitrary capacities and number of mes-

sages. Additionally, for the special case of one message, we give a di�erent transformation showing

a tight upper bound of 1/ln 2 ≈ 1.44.

Other aspects of the delivery problem, that we do not cover in this chapter, were presented in

[Bär+17]. The authors showed that for only one message an optimal solution can be found inO(|V |3)

independent of the number of agents k . However, for more messages it is shown that already the sub-

problem of planning in which order an agent delivers a set of messages is NP-hard on planar graphs,

but it can be 2-approximated in polynomial time if agents have capacity κ = 1 and do not collaborate.

It is further shown that the coordination aspect of WeightedDelivery, i.e., deciding which agent

delivers which subset of messages, is NP-hard, but can be e�ciently solved if the agents have the

same e�ciency. Combining the approximation results and the bound on the bene�t of collaboration

yield a polynomial-time (4 max
αi
α j
)-approximation for message delivery with unit capacities, where

max
αi
α j

is the maximum ratio between the di�erent energy consumption rates of the agents.

Bibliographic Information The results presented in this chapter are joint work with Andreas

Bärtschi, Jérémie Chalopin, Shantanu Das, Yann Disser, Daniel Graf, and Paolo Penna, and have

been published in [Bär+17].

4.1 Terminology and Model

We model the environment as an undirected labeled and edge weighted graph G = (V , E). Every

edge e = {u,v} ∈ E has a length denoted by w(e) ∈ R≥0. The length of a walk is the sum of the

edge lengths along the walk. The distance between a vertex u and a vertex v is the length of a

shortest path from u to v in G and denoted by dist(u,v). There is a setA of k mobile agents denoted

byA1, . . .Ak initially located at arbitrary vertices v
(1)

0
, . . . ,v

(k )
0

ofG. The agents have a complete map

of the graph and can communicate globally. Each agent Ai further has a weight αi > 0, which is the

rate of energy consumption per unit distance traveled by the agent, i.e., every time agentAi traverses

an edge e ∈ E it incurs an energy cost of αi ·w(e). Note that a higher weight αi of an agent, implies

a higher rate of energy consumption and therefore a lower e�ciency so that 1/αi can be interpreted

as the e�ciency of the agent. Moreover, there is a set of µ messages M to be delivered. For every

message j ∈ M there is a pair (sj , tj ) giving the source vertex sj ∈ V and target vertex tj ∈ V of

message j. A message at a vertex v can be picked up by any agent located at v. It can be carried by

an agent to any other vertex of G and dropped there. A message j ∈ M is delivered if it is dropped

by an agent at its target vertex tj . Furthermore, the agents have a capacity κ ∈ N ∪ {∞}, which

is a limit on the number of messages an agent can carry simultaneously. We do not impose any

restriction on how far an agent may travel and let di denote the total distance traveled by agent Ai ,

i.e., the length of the walk performed by Ai in G. We call a feasable solution S to an instance I of

the WeightedDelivery problem a schedule. A schedule is a complete description of the agents
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trajectories including all message pick-up and message drop-o� actions and times. The cost of a

schedule S for an instance I is the total energy consumption of the agents, i.e., c(S , I ) :=
∑k

i=1
αidi .

The goal is to �nd a schedule S minimizing the total energy c(S , I ) needed to deliver all messages of

instance I .

4.2 Lower Bound on the Bene�t of Collaboration

In this section, we construct an instance showing a lower bound on the approximation ratio by an

algorithm using only one agent for delivering every message. For our construction, we make use

of the fact that the agents have di�erent starting locations and they can �nish at any vertex of the

graph. Due to di�erent agent e�ciencies it may therefore be cheaper that an agent close to the

message source �rst transports a message before handing it over to another agent with a better

e�ciency compared to the case that the message is transported the whole time by only the agent

with the better e�ciency. In general, it can even be the case that an agent hands over the message

to a less e�cient agent if there are multiple messages and capacity constraints for the agents.

Theorem 4.1. On instances ofWeightedDeliverywith agent capacityκ and µ messages, an algorithm

using one agent for delivering every message cannot achieve an approximation ratio better than

1

ln

( (
1 + 1

2r

)r (
1 + 1

2r+1

) ) ,
where r := min{κ, µ}.

Proof. The instance I showing the lower bound is constructed as follows: Consider the graph G =

(V , E) given in Figure 4.1, where the length w(e) of every edge e ∈ E is 1/t . This means that G

is a star graph with center vt ,0 and r + 1 paths of total length 1 each. We have r messages and

message j needs to be transported fromv0, j tov2t ,0 for j = 1, . . . , r . There further is an agentAi , j with

weightαi , j =
2r

2r+i/t starting at every vertexvi , j for (i , j) ∈ {0, . . . , t−1}×{1, . . . , r }∪{t , . . . , 2t}×{0}.

We �rst show the following: If any agent transports s messages from their sources to their desti-

nations, then this incurs a cost of at least 2s . Note that this implies that any schedule S for delivering

all messages by the agents such that every message is only carried by one agent satis�es c(I , S) ≥ 2r .

So let an agent Ai , j transport s messages from the sources to the destination v2t ,0. Without loss

of generality let these messages be 1, . . . , s , which are picked up in this order. By construction,

agent Ai , j needs to travel a distance of at least i/t to reach message 1, next a distance of 1 to move

back to vt ,0, then a distance of 2 for picking up message j and going back to vt ,0 for j = 2, . . . , s .

Finally it needs to move a distance of 1 from vt ,0 to v2t ,0. Overall, agent Ai , j therefore travels a

distance of at least 2s + i
t . The overall cost for agent Ai , j to deliver the s messages therefore is at

least (
2s +

i

t

)
· αi , j =

(
2s +

i

t

)
·

2r

2r + i/t
≥

(
2s +

i

t

)
·

2s

2s + i/t
= 2s .
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v0,1

v0,2

v0,r

v1,1

v1,2

v1,r

vn−1,1

vt−1,2

vt−1,r

vt ,0 vt+1,0 v2t ,0

Figure 4.1: Lower bound construction for the bene�t of collaboration.

Now, consider a schedule Scol, where the agents collaborate, i.e., agent Ai , j transports message j

from vi , j to vi+1, j for j = 1, . . . , r , i = 0, . . . , t − 1, where we identify vt , j with vt ,0. Then agent Ai ,0

transports all r messages from vi ,0 to vi+1,0 for i = t , . . . , 2t − 1. This is possible because r ≤ κ by

the de�nition of r . The total cost of this schedule is given by

c(I , Scol) = r ·

∫
1

0

fstep(x) dx +

∫
2

1

fstep(x) dx ,

where fstep(x) is a step-function de�ned on [0, 2] giving the current cost of transporting the message,

i.e., fstep(x) =
2r

2r+i/t on the interval [i/t , (i +1)/t) for i = 0, . . . , 2n−1. The �rst integral corresponds

the �rst part of the schedule, where the r messages are transported separately and therefore the cost

of transporting message j from vi , j to vi+1, j is exactly

∫ (i+1)/t
i/t fstep(x) dx =

1

t ·
2r

2r+i/t . The second part

of the schedule corresponds to the part, where all r messages are transported together by one agent

at a time.

Observe that the function f (x) = 2r · 1

2r−1/t+x satis�es f (x) ≥ fstep(x) on [0, 2]. Hence, we obtain

c(I , Scol) ≤ r

∫
1

0

f (x) dx +

∫
2

1

f (x) dx = 2r ·

(
r ln(2r − 1/t + x)

���1
0

+ ln(2r − 1/t + x)
���2
1

)
= 2r · ln

((
2r − 1/t + 1

2r − 1/t

)r (
2r − 1/t + 2

2r − 1/t + 1

))
t→∞
→ 2r · ln

((
1 +

1

2r

)r (
1 +

1

2r + 1

))
.

The best approximation ratio of an algorithm that transports every message by only one agent com-

pared to an algorithm that uses an arbitrary number of agents for every message is therefore bounded

from below by

BoC ≥
c(I , S)

c(I , Scol)
≥

2r

2r · ln
( (

1 + 1

2r

)r (
1 + 1

2r+1

) ) = 1

ln

( (
1 + 1

2r

)r (
1 + 1

2r+1

) ) .
By observing that limr→∞ ln

( (
1 + 1

2r

)r (
1 + 1

2r+1

) )−1

= ln

(
e1/2

)−1

= 2, we obtain the following

corollary.

Corollary 4.2. An algorithm forWeightedDelivery delivering everymessage by a single agent cannot

achieve an approximation ratio better than 2 in general, and better than 1/ln 2 ≈ 1.44 for a single

message.
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4.3 Upper Bounds on the Bene�t of Collaboration

In this section, we show a general upper bound on the bene�t of collaboration of 2 and an upper

bound of 1/ln 2 for the case of one message. Our proof of the upper bound of 2 transforms an optimal

schedule SOpt for an instance I to a schedule S where every message is transported by only one agent

and c(I , S) ≤ 2 ·c(I , SOpt), see Theorem 4.3. Note that this result does not yield an e�cient algorithm.

In fact, �nding an optimal schedule in which every message is transported by only one agent, is still

NP-hard, as shown in [Bär+17]. But the result is an important part in designing the polynomial-

time (4 max
αi
α j
)-approximation for WeightedDelivery with unit capacities. However, for only one

message the simple greedy strategy of choosing the cheapest agent to deliver the message yields an

e�cient algorithm with an approximation factor of 1/ln 2, see Theorem 4.4. In this special case of

one message, it is also possible to �nd an optimal solution in polynomial time, see [Bär+17].

Theorem 4.3. Let SOpt be an optimal schedule for a given instance I ofWeightedDelivery. Then there

exists a schedule S such that every message is only transported by one agent and c(I , S) ≤ 2 · c(I , SOpt).

Proof. We can assume without loss of generality that in the optimal schedule SOpt for instance I

every message j ∈ M is transported on a path from its starting point sj to its destination tj . This can

be easily achieved by letting agents drop a message at an intermediate vertex if it would otherwise

be transported in a cycle. We now de�ne the directed multigraphGOpt = (V , EOpt Û∪ ĒOpt) as follows:

• V is the set of vertices of the original graph G.

• For every time in the optimal schedule that an agent traverses an edge {u,v} from u to v while

carrying a set of messages M ′ ⊆ M , we add the arc e = (u,v) to EOpt and ē = (v,u) to ĒOpt.

Note that we can have M ′ = ∅ if the agent carries no messsages. We further label both edges

with the set of messages M ′ and write Me := Mē := M ′ to denote these labels. We call the

edges in EOpt original edges and the edges in ĒOpt reverse edges.

We say that a schedule S inGOpt for an agent A satis�es the edge labels, if every original edge e ∈

EOpt is traversed at most once by A and only while carrying exactly the set of messages Me , and

every reverse edge ē ∈ ĒOpt is traversed by A at most once and without carrying any message. We

further identify a schedule S inGOpt with the schedule S ′ inG by replacing the traversal of a directed

edge e = (u,v) in GOpt by the traversal of the corresponding edge {u,v} in G.

The idea of the proof is as follows: The graph GOpt is Eulerian by construction and we show

that in each strongly connected component an agent can follow some Eulerian tour that allows to

deliver all messages, i.e., a Eulerian tour that satis�es the edge labels. In particular, the agent needs

exactly twice as many moves as the total number of moves of all agents in the component in SOpt.

By choosing the cheapest agent (in terms of weight) in each component, we obtain a schedule S with

c(I , S) ≤ 2 · c(I , SOpt).

By only considering a subset of the messages and a subschedule of SOpt, we may from now

on assume that GOpt is strongly connected (by construction, every connected component of GOpt is

strongly connected). We further letM(v) denote the set of messages currently at a vertexv and use the

91



Chapter 4. Energy E�icient Delivery

notation S ⊕ S ′ to denote the concatenation of a schedule S and a schedule S ′, i.e., �rst the schedule S

is executed and then S ′. The desired schedule is computed using the procedure computeTour() given

in Algorithm 4.1, which utilizes the subroutine fetchMessage() given in Algorithm 4.2. We proceed

along the following key claims:

1. The schedules returned by computeTour() and fetchMessage() satisfy the edge labels inGOpt

and correspond to a closed walk.

2. The following invariants hold after every iteration of any of the two while-loops in compute-

Tour():

(i) GOpt is Eulerian.

(ii) For every message j ∈ M currently at a vertex vj holds that there is a simple path from vj

to tj in GOpt with edges in EOpt containing j in their labels, and a path in the reverse

direction with edges in ĒOpt containing j in their labels.

3. For every vertex v0 in GOpt, a call computeTour(GOpt,v0) terminates. The returned schedule

starts and ends at v0 and satis�es the edge labels in every step.

4. Combining the schedules of multiple calls of computeTour() yield a schedule S of GOpt for

an agent Amin that satis�es the edge labels in every step and corresponds to a Eulerian tour

of GOpt. The schedule S satis�es c(I , S) ≤ 2 · c(I , SOpt).

Note that the last claim shows our desired result. We now show each of the above claims.

1. It is an easy observation that the schedules computed by computeTour() and fetchMessage()

traverse every edge e ∈ EOpt while carrying the set of messages Me and every edge ē ∈ ĒOpt while

carrying no messages. Note that in the second else-case in computeTour(), we have Me = ∅ so

this also holds in this case.

Next we show that both computeTour() and fetchMessage() return a schedule correspond-

ing to a closed walk. We assume that both procedures terminate, which is shown in the proof

of Claim 3. The second while-loop in fetchMessage() only terminates if the current vertex is

again the initial vertex v so fetchMessage() clearly returns a closed walk.

For the procedure computeTour() we show that after every iteration of any of the while-loops

the current schedule S corresponds to a closed walk. Initially, S is the empty schedule and clearly

corresponds to a closed walk. If in the iteration of the while-loop we add the schedule returned

by a call of fetchMessage() to S , then S still corresponds to a closed walk as the added sched-

ule corresponds to a closed walk. Otherwise, �rst the traversal of an edge e , then the schedule

returned by a recursive call of computeTour() and �nally the traversal of the reverse edge ē is

added to the current schedule S . By a simple induction over the recursion depth, we can assume

that the schedule returned by the recursive call of computeTour() corresponds to a closed walk

so that again S corresponds to a closed walk as we travese the reverse edge ē after traversing e .
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Algorithm 4.1: Compute schedule to deliver messages for agent starting at vertex v.

Input: graph GOpt, starting vertex v

Output: schedule S satisfying the edge labels, starting and ending at vertex v

1 function computeTour(GOpt,v)

2 S ← ⊥

3 while ∃ outgoing edge e = (v,w) ∈ EOpt do

4 if M(v) ⊇ Me then

5 S ← S ⊕ traversal of e carrying messages Me

6 delete e , ē from GOpt and update positions of messages Me in GOpt

7 S ← S ⊕ computeTour(GOpt,w)

8 S ← S ⊕ traversal of ē carrying no messages

9 else

10 let j ∈ Me \M(v)

11 S ← S ⊕ fetchMessage(GOpt, j ,v)

12 while ∃ outgoing edge ē = (v,w) ∈ ĒOpt do

13 if ∃ j ∈ Mē then

14 S ← S ⊕ fetchMessage(GOpt, j ,v)

15 else

16 S ← S ⊕ traversal of ē carrying no messages

17 delete e , ē from GOpt

18 S ← S ⊕ computeTour(GOpt,w)

19 S ← S ⊕ traversal of e carrying no messages

20 return S

2. By construction, the graphGOpt is Eulerian at the beginning. As all messages are delivered in the

optimal schedule SOpt and they are transported on a path, also the second property holds at the

beginning.

If we assume that a call to fetchMessage() maintains these two properties, then it is easy to

see that the two properties are preserved in computeTour(): First of all, an original edge e ∈ EOpt

is always deleted together with the corresponding reverse edge ē ∈ ĒOpt and thus GOpt is still

Eulerian. Moreover, an edge e = (u,v) and a reserve edge ē are deleted if and only if the set

of messages Me is transported from u to v preserving the second property. Note that if a mes-

sage is delivered, then the empty path satis�es the second property. What is left to show is that

the properties are also preserved by a call fetchMessage(GOpt, j,v) in computeTour(). Again,

initially both properties hold by assumption. In the procedure fetchMessage(), we �rst move

on the path of reverse edge with j ∈ Mē from the current vertex v to the current location vj of

message j while deleting the reverse edges. Afterwards, we move from vj on the path of original
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Algorithm 4.2: Compute schedule for transporting message j to current vertex v.

Input: graph GOpt, message j, curent vertex v

Output: schedule S transporting message j to vertex v

1 function fetchMessage(GOpt, j,v)

2 S ← ⊥

3 vcur ← v

4 while j < M(u) do

5 if ∃ outgoing edge ē = (vcur,w) ∈ ĒOpt with j ∈ Mē leaving the current vertex then

6 S ← S ⊕ traverse ē carrying no messages

7 delete ē from GOpt

8 vcur ← w

9 else

10 give up

11 while vcur , v do

12 let e = (vcur,w) ∈ EOpt with j ∈ Me

13 if M(vcur) ⊇ Me then

14 S ← S ⊕ traversal of e carrying messages Me

15 delete e from GOpt and update positions of messages Me in GOpt

16 vcur ← w

17 else

18 let j ′ ∈ Me \M(vcur)

19 S ← S ⊕ fetchMessage(GOpt, j
′,vcur)

20 return S

edges with j ∈ Me back to v while deleting the original edges. Ignoring further recursive calls

of fetchMessage(), this means that for every original edge also the reverse edge is deleted. Fur-

thermore, message j is moved to vertex v and thus there again is a path from the current position

of message j to tj inGOpt with edges in EOpt containing j in their labels, and a path in the reverse

direction with edges in ĒOpt containing j in their labels. As this holds for every level of recursive

calls of fetchMessage(), GOpt is Eulerian and also the second porperty holds after all recursive

calls of fetchMessage() are �nished.

3. By Claim 1, computeTour() and fetchMessage() return a schedule corresponding to a closed

walk that satis�es the edge labels. What is left to show that a call of computeTour() terminates.

First observe that a call to fetchMessage() always leads to some progress as the procedure is only

called, if a message j is not at the current vertex so at least one edge is deleted from GOpt in the

�rst while-loop (unless the procedure gives up). Similarly, for every call of computeTour() either

an edge e and the corresponding reserve edge ē are deleled fromGOpt or fetchMessage() is called
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sj w v∗ v tj
e ∈ Es

ē ∈ ĒOpt

(deleted)

Figure 4.2: Path that message j ∈ M is transported in graph GOpt according to SOpt.

and also at least one edge is deleted. Thus, there cannot be an in�nite sequence of recursive calls

as always edges from GOpt are deleted.

We therefore only have to show that the case “give up” in fetchMessage() cannot occur.

Assume, for the sake of contradiction, that this case occurs in a call fetchMessage(GOpt, j ,v).

This means that at a vertex v∗ in the �rst while-loop, there is no edge ē ∈ ĒOpt with a label

containing message j and v∗ also does not contain the message j. By construction of GOpt, the

vertexv∗must be on the path that message j takes from its start sj to its destination tj in the optimal

schedule SOpt and thus initially there must have been an outgoing edge ē = (v∗,w) ∈ ĒOpt at v∗

with j ∈ Mē that was traversed and deleted. If the corresponding original edge e = (w ,v∗) ∈ EOpt

were already traversed and deleted, then message j would have reached v∗ as edge labels are

obeyed. This contradicts that in the current call fetchMessage(GOpt, j,v) the �rst while-loop

has not terminated because we have not encountered message j. Thus, the current setting is

as shown in Figure 4.2. The edge ē cannot have been deleted in a call computeTour(GOpt,v
∗
),

as then e would also be deleted. Thus, ē must have been traversed and deleted during a call

fetchMessage(G(1)
Opt
, j1,v1) with j1 , j before as message j is transported on a path. We claim

that this call is not completed. Indeed, if the call were already completed, the original edge e

would have been traversed and deleted.

As we established that the call fetchMessage(G(1)
Opt
, j1,v1) is not complete, there must be a ver-

tex v2 and a message j2 missing at this vertex to further carry j1 on its paths to the destination, and

a call fetchMessage(G(2)
Opt
, j2,v2), which is also incomplete. By iterating this argument, we obtain

that the current stack of functions is fetchMessage(G(s)
Opt
, js ,vs ), . . ., fetchMessage(G(1)

Opt
, j1,v1)

for some s ∈ N, where js = j and vs = v. In the optimal schedule SOpt the message j2 needs

to be transported to v2 before j1 can be further transported from v2 together with j2. Similarly,

message jr needs to be transported to vr before message jr−1 can be transported further together

with message jr from vr for r = 2, . . . , s . In particular, this implies that message js = j needs

to be transported to v (via v∗) before j1 can be transported further. Hence, also in SOpt j mes-

sage j is transported to v before j1 is transported further. But this contradicts that j, j1 ∈ Me , i.e.,

in SOpt the messages j and j1 are transported together along the edge e . Therefore computeTour()

terminates.

4. LetAmin be an agent with minimum weight among the agents that move in SOpt, letv0 be the start-

ing vertex ofAmin and letT be the schedule resulting from a call computeTour(GOpt,v0). Assume

thatT does not traverse all edges ofGOpt. Letv be the last vertex visited on the tour ofAmin accord-

ing to the scheduleT that is is incident to an edge ofGOpt, which is not traversed. Further, let vj be
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the position of message j after the scheduleT is �nished andG ′
Opt

be the graphGOpt after the call

of computeTour(GOpt,v0), i.e., without the edges deleted in the call computeTour(GOpt,v0) and

message j at position vj instead of sj . We want to show that we can add the schedule T ′ returned

by a call computeTour(G ′
Opt
,v) to the schedule T as follows: First Amin follows T until the last

time it visits v, then it follows T ′, and �nally the remaining part of T .

The graphG ′
Opt

is a feasible input to computeTour() as both properties of Claim 2 are satis�ed.

By Claim 3, computeTour(G ′
Opt
,v) will produce a scheduleT ′ corresponding to a closed walk that

satis�es the edge labels. The only problem that can occur when combining the schedulesT andT ′

therefore is that there is a message j such that Amin visits vj to transport message j further, but

message j has not arrived at vj as the schedule T is not complete. But this would mean that

vertex vj is visited in the schedule T (in order to transport message j to vj ) after the last time v is

visited by the scheduleT . However, by the choice of v, all edges incident to vj must be visited and

deleted by the schedule T when Amin starts the schedule T ′. This contradicts that vj is visited in

the schedule T ′.

By iterative applying the above argument, we obtain a schedule S , which traverses all edges

in GOpt while satisfying the edge labels as well as starts and ends at v0. As Amin is the agent with

minimum weight αmin, we have

2 · c(I , SOpt) ≥
∑

e=(v ,w )∈EOpt Û∪ĒOpt

w({v,w}) · αmin = c(I , S).

For the case of a single message, we can improve the upper bound of 2 on the bene�t of collabo-

ration from Theorem 4.3, to a tight bound of 1/ln 2 ≈ 1.44.

Theorem 4.4. There is a (1/ln 2)-approximation algorithmusing a single agent forWeightedDelivery

with one message.

Proof. By running an algorithm for the all-pairs shortest path problem, such as the Floyd-Warshall

algorithm [CLR89, Chapter 25], we can e�ciently determine the agent that can transport the message

from s to t with lowest cost in an instance I . We need to show that this is at most 1/ln(2) the cost of

an optimum using all agents.

Fix an optimum schedule SOpt for instance I and let the agents A1,A2, . . . ,Ak be labeled in the

order in which they transport the message in this optimum solution (ignoring unused agents). We

�rst show that we can without loss of generality assume that αi > αi+1 holds for all i ∈ {1, . . . ,k−1}.

Assume that we have αi ≤ αi+1 for some i ∈ {1, . . . ,k − 1}. Then the part of the message transport

carried out by agent Ai+1 in SOpt can be taken over by agent Ai . Since we have αi ≤ αi+1, the cost of

the schedule does not increase and thus is still optimal.

By scaling the edge length and agent weights, we can further assume without loss of generality

that αk = 1 and that the total distance traveled by the message is 1. Now, for each point x ∈ [0, 1]

along the message path there is an agent Ai with cost αi carrying the message at this point in the

optimum schedule and we can de�ne a function f with f (x) = αi . The function f is a step function
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Figure 4.3: Choosing the largestb such that
b

x+1
is a lower bound on the step-function f representing

the weight of the agent currently transporting the message.

that is monotonically decreasing as α1 > α2 > . . . > αk . We further have f (0) = α1 and f (1) = αk =

1. We now choose the largest b ∈ [0, 1] such that f (x) ≥ b
x+1

, see Figure 4.3.

Note that b ≥ 1 as f (x) ≥ 1 ≥ b
x+1

for b = 1 and all x ∈ [0, 1]. Further, let gi be the distance

traveled by agent Ai without the message and g :=
∑k

i=1
giαi the total cost for the distances traveled

by all agents without the message. We obtain the following lower bound for an optimum solution

c(I , SOpt) =

∫
1

0

f (x) dx + g ≥

∫
1

0

b

x + 1

dx + g = b ln(2) + g.

By the choice of b, the functions f (x) and
b

x+1
coincide in at least one point in the interval [0, 1]. Let

this point be x∗ and Ai∗ be the agent carrying the message at this point. This means that f (x∗) =
b

x ∗+1
= αi∗ . We will show that it costs at most c(I , SOpt)/ln(2) for agent Ai∗ to transport the message

alone from s to t . The cost for agent Ai∗ to reach s is bounded by gi∗αi∗ + x
∗ · αi∗ and the cost for

transporting the message from s to t is bounded by αi∗ . Thus, the cost of a schedule S using only one

agent can be bounded by

c(I , S) ≤ gi∗αi∗ + x
∗ · αi∗ + αi∗ = gi∗αi∗ + (x

∗ + 1) ·
b

x∗ + 1

= b + gi∗αi∗ .

By using that gi∗αi∗ ≤ g, we �nally obtain

c(I , S)

c(I , SOpt)
≤

b + gi∗αi∗

b ln(2) + g
≤

b

b ln(2)
=

1

ln(2)
.
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