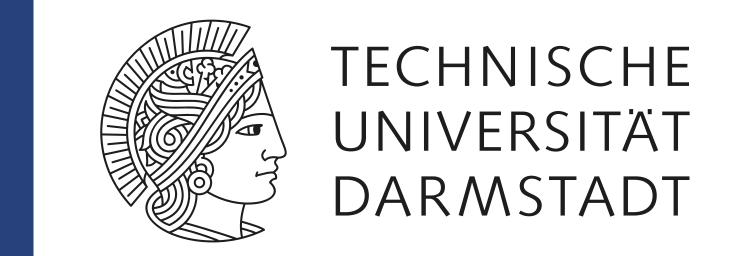


Hiberts Hotel -



Belegt und doch unendlich viel Platz Lange Nacht der Mathematik 2025

Hilberts Hotel

In Hilberts Hotel gibt es *abzählbar* unendliche viele Zimmer mit Nummern 1,2,3,4,....

Alle Zimmer sind belegt, aber neue Gäste kommen.

In Zimmer i wohnt Gast i.

Zimmer

Gäste

1. Ein neuer Gast

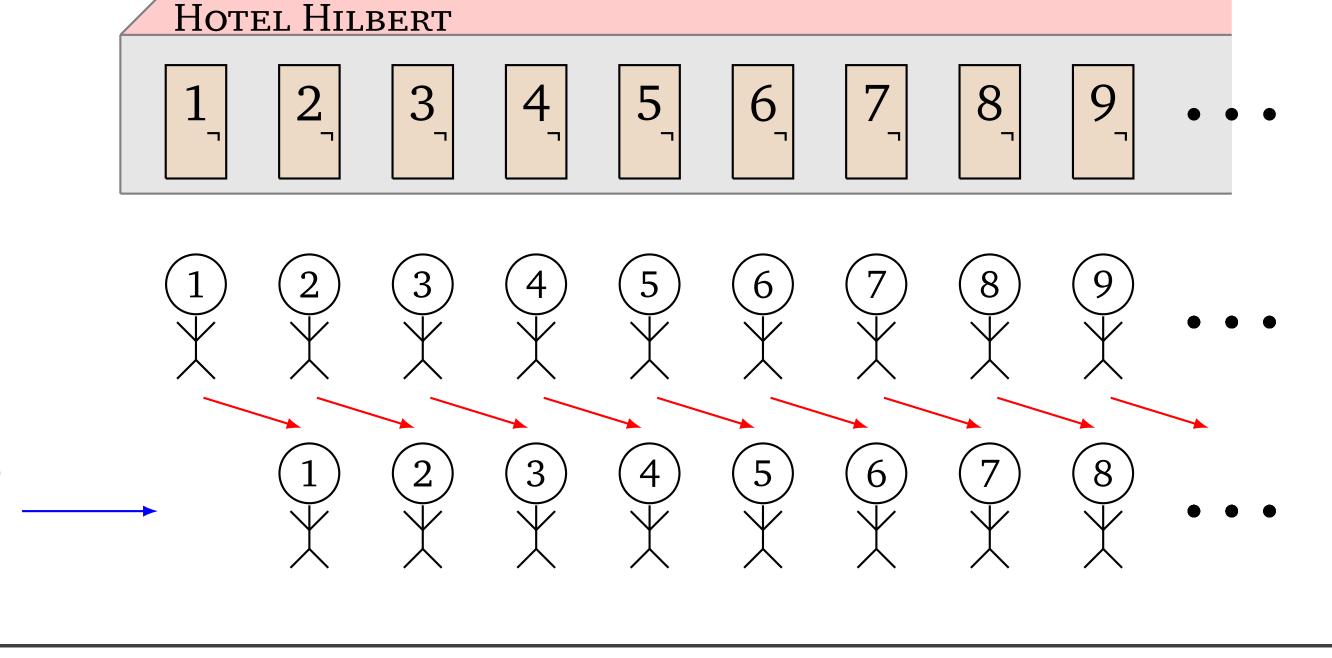
Ein neuer Gast 0 kommt an. Die vorhandenen Gäste wechseln das Zimmer. Gast i wechselt in das Zimmer i+1. Zimmer 1 ist jetzt frei und Gast 0 zieht dort ein.

Es gibt genauso viele natürliche Zahlen wie positive natürliche Zahlen.

Die Gäste $\mathbb{N} = \{0, 1, 2, 3...\}$ können in den Zimmern $\mathbb{N}^+ = \{1, 2, 3, 4, ...\}$ untergebracht werden.

- 1. Jeder Gast wechselt ein Zimmer weiter.
- 2. Der neue Gast geht in das freie Zimmer 1.

Neuer Gast



2. Ein Bus voller unendlich vieler neuer Gäste

Ein Bus mit abzählbar unendlich vielen neuen Gästen -1, -2, -3, -4, ... kommt an. Die bisherigen Gäste ziehen um: Gast i wechselt in das Zimmer 2i. In die freien Zimmer 1, 3, 5, 7, ... ziehen die neuen Gäste ein. Gast -j geht in Zimmer 2j-1.

Es gibt genauso viele natürliche Zahlen wie ganze Zahlen.

Die Gäste $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ können in den Zimmern untergebracht werden. (Die 0 wird wie in Fall 1 noch hinzugefügt.)

1. Jeder Gast *i* wechselt in das Zimmer 2*i*.

2. Die neuen Gäste gehen in die freien Zimmer 1, 3, 5, ...

HOTEL HILBERT 1 2 3 4 5 6 7 8 9 . . . 1 2 3 4 5 6 7 8 9 . . . 1 2 3 4 5 6 7 8 9 . . .

3. Unendlich viele Busse voller unendlich vieler neuer Gäste

Es kommen abzählbar unendliche viele Busse $b_2, b_3, b_4, b_5, \ldots$ mit jeweils abzählbar unendlich vielen Gästen an. Im Bus b_i sitzen die Gäste $\frac{1}{i}, \frac{2}{i}, \frac{3}{i}, \frac{4}{i}, \ldots$

Die bestehenden Gäste werden in einen weiteren Bus b_1 mit den Gästen $\frac{1}{1}, \frac{2}{1}, \frac{3}{1}, \frac{4}{1}, \dots$ ausquartiert. Die neuen Zimmer werden nach dem Muster rechts zugewiesen. Jeder Gast bekommt ein Zimmer.

Es gibt genauso viele natürliche Zahlen wie rationale Zahlen.

Nun können auch alle negativen Brüche wie in Fall 2 untergebracht werden. Also haben wir jeden Bruch $\frac{p}{q}$ untergebracht. Insbesondere kann auch \mathbb{Q} untergebracht werden.

