
The Exponential Time Hypothesis and the
Parameterized Clique Problem

Yijia Chen1, Kord Eickmeyer2?, and Jörg Flum3

1 Department of Computer Science, Shanghai Jiaotong University
yijia.chen@cs.sjtu.edu.cn

2 National Institute of Informatics, Tokyo
eickmeye@nii.ac.jp

3 Mathematisches Institut, Albert-Ludwigs-Universität Freiburg
joerg.flum@math.uni-freiburg.de

Abstract. In parameterized complexity there are three natural defi-
nitions of fixed-parameter tractability called strongly uniform, weakly
uniform and nonuniform fpt. Similarly, there are three notions of subex-
ponential time, yielding three flavours of the exponential time hypoth-
esis (ETH) stating that 3Sat is not solvable in subexponential time.
It is known that ETH implies that p-Clique is not fixed-parameter
tractable if both are taken to be strongly uniform or both are taken
to be uniform, and we extend this to the nonuniform case. We also show
that even the containment of weakly uniform subexponential time in
nonuniform subexponential time is strict. Furthermore, we deduce from
nonuniform ETH that no single exponent d allows for arbitrarily good
fpt-approximations of clique.

1 Introduction

In parameterized complexity, FPT most commonly denotes the class of strong-
ly uniformly fixed-parameter tractable problems, i.e., parameterized problems
solvable in time f(k)·nO(1) for some computable function f . Downey and Fellows
also introduced the classes FPTuni and FPTnu of uniformly and nonuniformly
fixed-parameter tractable problems, where one drops the condition that f be
computable or allows for different algorithms for each k, respectively. (We give
detailed definitions in Section 2.) For example, p-Clique /∈ FPTnu, where p-
Clique denotes the parameterized clique problem, means that for all d ∈ N
and sufficiently large fixed k determining whether a graph G contains a clique of
size k is not in DTIME

(
nd
)
. The obvious inclusions between the classes FPT,

FPTuni, and FPTnu can be shown to be strict [1].
In classical complexity, the subexponential time classes

DTIME
(

2o
eff(n)

)
, DTIME

(
2o(n)

)
, and

⋂
ε>0DTIME (2ε·n) , (1)

? This work was supported by a fellowship of the second author within the FIT-
Programme of the German Academic Exchange Service (DAAD).

have been considered. In particular, there are the corresponding versions of the
exponential time hypothesis, namely the strongly uniform exponential time hy-
pothesis ETH, the uniform exponential time hypothesis ETHuni, and the nonuni-
form exponential time hypothesis ETHnu, which are the statements that 3Sat is
not in these respective classes, where n denotes the number of variables of the
input formula.4 By results due to Impagliazzo et al. [3] we know that these three
statements are equivalent to the ones obtained by replacing 3Sat by the clique
problem Clique; then, n denotes the number of vertices of the corresponding
graph.

Furthermore, it is known [4] that ETH implies p-Clique /∈ FPT, where p-
Clique denotes the parameterized clique problem. As pointed out, for example
in [5], there is a correspondence between subexponential algorithms having a

running time 2o(n) and FPTuni similar to that between running time 2o
eff(n) and

FPT. Therefore, it is not surprising that ETHuni implies p-Clique /∈ FPTuni

(we include a proof in Section 4).
The first main result of this paper shows that ETHnu implies that p-Clique /∈

FPTnu. So, putting the three results together, we see that:

(i) if ETH holds, then p-Clique /∈ FPT;
(ii) if ETHuni holds, then p-Clique /∈ FPTuni;
(iii) if ETHnu holds, then p-Clique /∈ FPTnu.

One of the most important complexity classes of (apparently) intractable param-
eterized problems is the class W[1], the class of problems (strongly uniformly)
fpt-reducible to p-Clique. By replacing (strongly uniformly) fpt-reducible by
uniformly fpt-reducible and nonuniformly fpt-reducible, we get the classes W[1]uni

and W[1]nu, respectively. So, the previous results can be seen as providing some
evidence that FPT 6= W[1], FPTuni 6= W[1]uni, and FPTnu 6= W[1]nu. Note that
the strongest separation, FPTnu 6= W[1]nu, obtained in this paper under ETHnu,
plays a role in [6] (see the comment following Theorem 1.1 of that paper). In
a recent paper [7] on the history of Parameterized Complexity Theory, Downey
remarks that the question FPTnu 6= W[1]nu is a central issue of the theory.

We get the implication (iii) by using a family of algorithms witnessing p-Cli-
que ∈ FPTnu to obtain an algorithm showing p-Clique is in “FPTuni for posi-
tive instances.” Once we have this single algorithm for p-Clique, we adapt the
techniques we used in [8] to show (i), to get that the clique problem Clique is
in
⋂
ε>0 DTIME (2ε·n), that is, the failure of ETHnu.

The basic idea of parameterized approximability is explained in [9] as fol-
lows: “Suppose we have a problem that is hard to approximate. Can we at least
approximate it efficiently for instances for which the optimum is small? The clas-
sical theory of inapproximability does not seem to help answering this question,
because usually the hardness proofs require fairly large solutions.” In [9] and [10]
the framework of parameterized approximability was introduced. In particular,
the concept of an fpt approximation algorithm with a given approximation ratio
was coined and some (in)approximability results were proven.

4 We should mention that in [2] a different statement is called nonuniform ETH.

2

Our second main result is a nonapproximability result for p-Clique: under
the assumption ETHnu, we show that for every d ∈ N there is a ρ > 1 such that
p-Clique has no parameterized approximation algorithm with approximation
ratio ρ and running time f(k) · nd for some function f : N→ N.

The content of the different sections is the following. We recall concepts and
fix notation in Section 2. In Section 3, we derive a result on the clique problem
used to obtain both main results (in Section 4 and Section 5). Then, in Section 6,
we show that the results relating the complexity of p-Clique and the different
variants of ETH are of a more general nature. Finally, in Section 7, we show
that the second and third time class in (1) are distinct.

2 Some Preliminaries

Let N denote the positive natural numbers. If a function f : N → N is nonde-
creasing and unbounded, then f−1 denotes the function f−1 : N→ N with

f−1(n) :=

{
max{i ∈ N | f(i) ≤ n}, if n ≥ f(1)

1, otherwise.

Then, f(f−1(n)) ≤ n for all n ≥ f(1) and the function f−1 is nondecreasing and
unbounded.

Let f, g : N → N be functions. Then f ∈ oeff(g) (often written as f(n) ∈
oeff(g(n))) if there is a computable function h : N → N such that for all ` ≥ 1
and n ≥ h(`), we have f(n) ≤ g(n)/`.

We denote the alphabet {0, 1} by Σ. The length of a string x ∈ Σ∗ is denoted
by |x|. We identify problems with subsets Q of Σ∗. If x ∈ Q we say that x is a
positive instance of the problem Q. Clearly, as done mostly, we present concrete
problems in a verbal, hence uncodified form. For example, we introduce the
problem Clique in the form:

Clique
Instance: A graph G and k ∈ N.
Problem: Does G have a clique of size k?

A graph G is given by its vertex set V (G) and its edge set E(G). By |G| we
denote the length of a string naturally encoding G. The cardinality or size of a
set S is also denoted by |S|.

If A is an algorithm and A halts on input x, then we denote by tA(x) the
number of steps of A on input x; if A does not halt on x, then tA(x) :=∞.

We view parameterized problems as pairs (Q, κ) consisting of a classical prob-
lem Q ⊆ Σ∗ and a parameterization κ : Σ∗ → N, which is required to be poly-
nomial time computable. We will present parameterized problems in the form
we do for p-Clique:

3

p-Clique
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Does G have a clique of size k?

A parameterized problem (Q, κ) is (strongly uniformly) fixed-parameter tractable
or, in FPT, if there is an algorithm A deciding Q, a natural number d, and a
computable function f : N→ N such that tA(x) ≤ f(κ(x)) · |x|d for all x ∈ Σ∗.

If in this definition we do not require the computability of f , then (Q, κ) is
uniformly fixed-parameter tractable or, in FPTuni. Finally, (Q, κ) is nonuniformly
fixed-parameter tractable or, in FPTnu, if there is a natural number d and a
function f : N→ N such that for every k ∈ N there is an algorithm Ak deciding
the set {x ∈ Q | κ(x) = k} with tAk

(x) ≤ f(κ(x)) · |x|d for all x ∈ Σ∗.
In Section 6 we assume that the reader is familiar with the notion of (strongly

uniform) fpt-reduction, with the classes of the W-hierarchy, and for t, d ∈ N
with the weighted satisfiability problem p-WSat(Γt,d) (e.g., see [11]). We write
(Q, κ) ≤fpt (Q′, κ′) if there is an fpt-reduction from (Q, κ) to (Q′, κ′).

3 Going from Nonuniform to Uniform on Positive
Instances

In this section we show how to get a single algorithm detecting cliques of size k

in time f(k) · |G|o(k)
on positive instances from the existence of such algorithms

of running time O(|G|e`+k/`
) for each pair of natural numbers k, `. We now state

this assumption formally; and we will later show it to be unlikely because it
implies that ETHnu is not true.

Definition 1. We say that Clique satisfies (∗) if

for every ` ∈ N there is an e` ∈ N such that for every k ∈ N there is a
constant a`,k ∈ N and an algorithm A`,k which on every graph G which
contains a clique of size k outputs such a clique in time

a`,k · |G|e`+k/`.

The behaviour of A`,k on graphs without a clique of size k or on inputs
not encoding graphs may be arbitrary.

By a standard self-reduction argument we have:

Lemma 2. If p-Clique ∈ FPTnu, then Clique satisfies (∗).

We now use the algorithms in (∗) to obtain a single algorithm with a guar-
anteed running time on positive instances.

4

Lemma 3. If Clique satisfies (∗), then there is an algorithm A deciding Clique
and there is a function f : N→ N such that

tA(G, k) ≤ f(k) · |G|o(k)

for every positive instance (G, k) of Clique.

Proof. We let C be any algorithm which on input (G, k) decides in time |G|O(k)

whether G contains a clique of size k, e.g., by brute force. Let {M1,M2, . . .} be
any recursive enumeration of all Turing machines. By standard arguments we
may assume that, given inputs t, i, and x, we can simulate t steps of machine
Mi on input x in time polynomial in i, t and |x|.

We define the algorithm A as follows:

A // G = (V (G), E(G)) a graph and k ∈ N

1. do the following in parallel:
2. simulate C on (G, k) and
3. simulate Mi on G for i = 1, . . . , |G|.
4. if the simulation of C accepts then accept
5. if the simulation of C rejects then never halt
6. if one of the machines Mi finds a clique of size k then accept.

Obviously, this algorithm will accept an input (G, k) if and only if G contains
a clique of size k. We now turn to the claimed running time. Let ` ≥ 1, and let
e` be the corresponding constant from assumption (∗). For k > `(` + 1)e`, the
running time of A`,k is bounded by

a`,k · |G|
k

`−1 ,

and for all but finitely many instances G, the algorithm A`,k will be among the
ones simulated by A. For such instances G, the running time of A is bounded by

((# machines to be simulated in parallel) · (# of steps) · |G|)O(1)
,

≤
(
|G| · a`,k · |G|

k
`−1 · |G|

)O(1)

≤ck · |G|
d·(k+1)

`−1

for suitable constants ck and d, the latter one not depending on `, k or G.

4 ETHnu and the Complexity of p-Clique

In this section we show our first main result, namely:

Theorem 4. If ETHnu holds, then p-Clique /∈ FPTnu.

5

To obtain this result we prove the following chain of implications

(a)⇒ (b)pos ⇒ (c)pos ⇒ (d),

where

(a) p-Clique ∈ FPTnu;
(b)pos There is an algorithm A deciding Clique such that for all positive in-

stances (G, k) of Clique and some function f : N→ N we have

tA(G, k) ≤ f(k) ·
∣∣G∣∣o(k)

.

(c)pos There is an algorithm A deciding Clique such that for all positive in-
stances (G, k) of Clique, where G has vertex set V (G), we have

tA(G, k) ≤ 2o(|V (G)|).

(d) ETHnu does not hold.

Note that ¬(d)⇒ ¬(a) is the claim of Theorem 4.

The implication (a) ⇒ (b)pos was shown in the previous section (Lemma 2
and Lemma 3). We turn to the implication (b)pos ⇒ (c)pos. Let (b) and (c)
be the statements obtained from (b)pos and (c)pos, respectively, by deleting the
restriction to positive instances. Note that (c) is equivalent to the failure of
ETHuni. Furthermore, we let (b)eff be the statement (b) with the additional
requirement that the function f is computable and let (c)eff be the statement

obtained from (c) by replacing 2o(|V (G)|) by 2o
eff(|V (G)|). Again note that (c)eff is

equivalent to the failure of ETH.

Lemma 5. (1) (b)eff implies (c)eff;
(2) (b) implies (c);
(3) (b)pos implies (c)pos.

Part (1) was shown as Theorem 27 in [8] (and previously in [4]). We argue
similarly to get parts (2) and (3). In particular, we use the following lemma
stated and proved in [8] as Lemma 28. Its proof uses the fact that a clique in a
graph G can be viewed as an “amalgamation of local cliques” of subgraphs of G.

Lemma 6. There is an algorithm D that assigns to every graph G = (V,E)
and k,m ≤ |V | in time polynomial in |V | · 2m a graph G′ = (V ′, E′) with
|V ′| ≤ |V |2 · 2m such that

G has a clique of size k ⇐⇒ G′ has a clique of size d|V |/me. (2)

Proof (of Lemma 5 (3)). The proof of Lemma 5 (2) is obtained by the obvious
modification and is left to the reader.

Let the algorithm D be as in Lemma 6. Assuming (b)pos there is an algorithm
A deciding Clique such that for all positive instances (G, k) of Clique we have
tA(G, k) ≤ f(k) · |G|o(k) and hence,

tA(G, k) ≤ f(k) ·
∣∣V (G)

∣∣o(k)
(3)

for some f : N→ N. We consider the following algorithm deciding Clique:

6

B // G a graph and k ∈ N

1. Do in parallel for every m ≤ |V (G)| the following
2. simulate D on (G, k,m) and let G′ be its output
3. simulate A on (G′, d|V (G)|/me)
4. if A accepts for some m then accept
5. else reject.

Let (G, k) be a positive instance of Clique and n := |V (G)|. Without loss of
generality, we can assume that f is nondecreasing and unbounded. For

m := max

{⌈
n

f−1(n)

⌉
, dlog ne

}
we have m ≥ log n and m ∈ o(n) and, by (3),

tA(G′, d|V (G)|/me) ≤ f(dn/me) · (n2 · 2m)o(n/m) = 2o(n).

Thus, the running time for Line 2 to Line 5 is bounded by 2o(n). Therefore

tB(G, k) ≤ O(n · 2o(n)) ≤ 2o(n). 2

We already remarked that (c) is equivalent to the failure of ETHuni. Thus,
part (2) of the previous lemma yields:

Corollary 7. If ETHuni, then p-Clique /∈ FPTuni.

Proof of (c)pos ⇒ (d): For every ε > 0 there is an n0 such that for graphs with
|V (G)| > n0 the running time of the algorithm asserted by (c)pos is bounded
by 2ε|V (G)| on positive instances. For graphs with at least n0 vertices we let the
algorithm run for at most this many steps and reject if it does not hold within
this time bound. For smaller graphs we use brute force.

For later purposes we remark:

Corollary 8. If Clique satisfies (∗), then ETHnu does not hold.

Proof. If Clique satisfies (∗), then (b)pos holds by Lemma 3. We have shown
that (b)pos implies (d), thus, ETHnu does not hold.

5 ETHnu and the Parameterized Approximability of
p-Clique.

Let ρ > 1 be a real number. As in [9], we say that an algorithm A is an fptuni
parameterized approximation algorithm for p-Clique with approximation ratio
ρ if

(i) tA(G, k) ≤ f(k) · |V (G)|O(1) for all instances (G, k) of p-Clique and some
function f : N→ N;

7

(ii) for all positive instances (G, k) of p-Clique the algorithm A outputs a clique
of size at least k/ρ; otherwise, the output of A can be arbitrary.

If d ∈ N and we get tA(G, k) ≤ f(k) · |V (G)|d in (i), then we say that A is an
fptuni parameterized approximation algorithm for p-Clique with approximation
ratio ρ and exponent d.

Now we can state the main result of this section:

Theorem 9. If ETHnu holds, then for every d ∈ N there is a ρ > 1 such that
p-Clique has no fptuni parameterized approximation algorithm with approxima-
tion ratio ρ and exponent d.

The key observation which, together with Corollary 8, will yield this theorem is
contained in the following lemma.

Lemma 10. Assume that p-Clique has an fptuni parameterized approximation
algorithm with approximation ratio ρ > 1 and exponent d ≥ 2. Then, for every
rational number r with 0 < r ≤ 1

log ρ , there is an algorithm B deciding Clique

such that for some function g : N→ N and every instance (G, k) of Clique

tB(G, k) ≤ g(k) · |V (G)|r+2+d·dk/re.

Proof. The main idea is as follows: we assume the existence of an fptuni param-
eterized approximation algorithm A for p-Clique. Given an instance (G, k) of
Clique we stretch it by passing to an equivalent “product instance” (G′, k′).
By applying A to (G′, k′) we can decide whether (G, k) ∈ Clique.

For a graph G = (V,E) we let ω(G) be the size of a maximum clique in
G. Furthermore, for every m ∈ N with m ≥ 1 we denote by Gm the graph
(V (Gm), E(Gm)), where

V (Gm) := V m =
{

(v1, . . . , vm)
∣∣ v1, . . . , vm ∈ V

}
E(Gm) :=

{{
(u1, . . . , um), (v1, . . . , vm)

} ∣∣∣ {u1, . . . , um, v1, . . . , vm}

is a clique in G and (u1, . . . , um) 6= (v1, . . . , vm)
}
.

One easily verifies that
ω(Gm) = ω(G)m. (4)

Now we let A be an fptuni parameterized approximation algorithm for p-Clique
with approximation ratio ρ > 1 and exponent d ≥ 2, say, with running time
bounded by f(k) · |V (G)|d. Let r be a rational number with 0 < r ≤ 1

log ρ . Then,

ρ ≤ r
√

2 and for every k ∈ N with k ≥ 2 we get(
k

k − 1

)dk/re
> ρ. (5)

We let B be the following algorithm:

8

B // G a graph and k ∈ N

1. if k = 1 or k < r then decide whether G has a clique of size k by
brute force

2. else simulate A on (Gdk/re, kdk/re)
3. if A outputs a clique of Gdk/re of size kdk/re/ρ
4. then accept else reject.

The algorithm B decides Clique: Clearly, the answer is correct if k = 1 or
k < r. So assume that k ≥ 2 and k ≥ r. If G has no clique of size k, that is,
ω(G) ≤ k − 1, then, by (4), ω(Gdk/re) ≤ (k − 1)dk/re. By (5),

kdk/re

ρ
> (k − 1)dk/re;

thus, compare Line 3 and Line 4, the algorithm B rejects (G, k). If ω(G) ≥ k
and hence, ω(Gdk/re) ≥ kdk/re, then the approximation algorithm A outputs a
clique of Gdk/re of size kdk/re/ρ; thus B accepts (G, k).

Moreover, on every instance (G, k) with G = (V,E) the running time of B is
bounded by

|V |r+2 + |V |2·dk/re+2 + f
(
kdk/re

)
·
∣∣∣V (Gdk/re)∣∣∣d ≤ g(k) · |V |r+2+d·dk/re,

for a suitable g : N→ N.

Setting r := 1/log ρ in the previous lemma, we get:

Corollary 11. If there is an fptuni parameterized approximation algorithm for
p-Clique with approximation ratio ρ ≥ 1 and exponent d ≥ 2, then there exists
e ∈ N and an algorithm B deciding Clique with tB(G, k) ≤ g(k)·|V (G)|e+d·k·log ρ

Proof of Theorem 9: By contradiction, assume that for some d ≥ 2 and all ρ > 1
the problem p-Clique has an fptuni parameterized approximation algorithm
with approximation ratio ρ and exponent d.

If ` ∈ N, then d · ` ≤ 1
log ρ for suitable ρ > 1. Thus, by Lemma 10, there is

an algorithm A` deciding Clique such that for some e` ∈ N and some function
g : N→ N and every instance (G, k)

tA`
(G, k) ≤ g(k) · |V (G)|e`+k/`.

Fix k ∈ N. Then, again using the self-reducibility of Clique, there is an algo-
rithm A`,k which on every graph G outputs a clique of size k, if one exists, in
time

O
(
|G|e`+1+k/`

)
.

Thus, Clique satisfies (∗) (the property introduced in Definition 1). Therefore,
ETHnu does not hold by Corollary 8.

9

6 Some Extensions and Generalisations

Some results of Section 3 and of Section 4 can be stated more succinctly and in
a more general form in the framework of parameterized complexity theory. We
do this in this section, at the same time getting some open questions.

The class FPTnu is closed under fpt-reductions, that is,

if (Q, κ) ≤fpt (Q′, κ′) and (Q′, κ′) ∈ FPTnu, then (Q, κ) ∈ FPTnu. (6)

Thus, for every W[1]-complete problem (Q, κ) (complete under fpt-reductions),
we have

(Q, κ) ∈ FPTnu ⇐⇒ W[1] ⊆ FPTnu. (7)

Denote by FPT+
uni the class of problems (Q, κ) such that there is an algorithm

deciding Q and with running time h(κ(x)) · |x|O(1) for x ∈ Q, that is, for positive
instances x of Q. The class FPT+

uni is closed under fpt-reductions, too. So, again
we have for every W[1]-complete problem (Q, κ),

(Q, κ) ∈ FPT+
uni ⇐⇒ W[1] ⊆ FPT+

uni. (8)

Corollary 12. For every W[1]-complete problem (Q, κ),

(Q, κ) ∈ FPTnu implies (Q, κ) ∈ FPT+
uni.

Proof. By Lemma 2 and Lemma 3, we know that the implication holds for the
W[1]-complete problem p-Clique. Now, the claim follows by (7) and (8).

It is not clear whether the previous implication holds for all problems (Q, κ) ∈
W[1] (and not only for the complete ones). Of course, it does if FPT = W[1].
The proof of Lemma 3 makes essential use of a self-reducibility property of p-
Clique. For t, d ∈ N the weighted satisfiability problem p-WSat(Γt,d) has this
self-reducibility property, too. So, along the lines of Lemma 3, one gets (we leave
the details to the reader):

Lemma 13. Let t, d ∈ N. Then

p-WSat(Γt,d) ∈ FPTnu implies p-WSat(Γt,d) ∈ FPT+
uni.

And thus, we get the extension of Corollary 12 to all levels of the W-hierarchy:

Proposition 14. Let t ∈ N. For every W[t]-complete problem (Q, κ),

(Q, κ) ∈ FPTnu implies (Q, κ) ∈ FPT+
uni.

After Theorem 4, we have considered two further properties of the clique
problem there denoted by (b)pos and (c)pos. One could also define these prop-
erties for arbitrary parameterized problems (even though, there are some subtle
points as the terms 2o(|V (G)|) and 2o(|G|) may be distinct). More importantly,
these properties are not closed under fpt-reductions. So somehow one has to
check whether other implications of Section 4 survive problem by problem. We
do that here for the most prominent W[2]-complete problem, the parameterized
dominating set problem p-DS:

10

p-DS
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Does G have a dominating set of

size k?

We denote by DS the underlying classical problem. In [8, Theorem 29] we have
shown:

If DS can be decided in time f(k) · |V (G)|oeff(k) for some computable

f : N→ N, then DS can be decided in time 2o
eff(|V (G)|).

The reader should compare this result with the following one in the spirit of this
paper.

Theorem 15. If there is an algorithm A deciding DS such that for all positive
instances (G, k) of DS we have

tA(G, k) ≤ f(k) ·
∣∣G∣∣o(k)

for some function f : N → N, then there is an algorithm B deciding DS such
that for all positive instances (G, k) of DS we have

tB(G, k) ≤ 2o(|V (G)|).

The proof of the corresponding result for Clique, namely the implication (b)pos ⇒
(c)pos, was based on Lemma 6 which used the fact that a clique in a graph can
be viewed as an “amalgamation of local cliques” of subgraphs. As dominating
sets are not necessarily an “amalgamation of local dominating sets,” in [8] we
took a detour via the weighted satisfiability problem for propositional formulas
in CNF. As an inspection of the exposition in [8] shows, it can be adapted to a
proof of Theorem 15.

7 An Example

We believe that the three statements ETH, ETHuni, and ETHnu are true and
hence equivalent. Here we consider the “underlying” complexity classes (see (1)).
Clearly,

DTIME
(

2o
eff(n)

)
⊆ DTIME

(
2o(n)

)
⊆

⋂
ε>0DTIME (2ε·n) (9)

To the best of our knowledge it is open whether the first inclusion is strict. Here
we show the strictness of the second inclusion in (9). We remark that in [8,
Proposition 5] we proved that the first class, that is, the effective version of the
second one, coincides with an effective version of the third class.

For m ∈ N let 1m be the string in Σ∗ consisting of m ones. Recall that
Σ = {0, 1}. For a Turing machine M we denote by enc(M) a string in Σ∗

reasonably encoding the Turing machine M. Furthermore, |M| denotes the length
of enc(M), |M| = |enc(M)|.

11

Theorem 16. The problem

Exp-Halt
Instance: A Turing machine M, x ∈ Σ∗, and 1m with

m ∈ N.

Problem: Does M accept x in time 2bm/(|M|+ |x|)c?

is in
⋂
ε>0 DTIME (2ε·n) \DTIME

(
2o(n)

)
.

Due to space limitations we cannot present a proof in this extended abstract.

References

1. Downey, R., Fellows, M.: Fixed-parameter tractability and completeness iii: some
structural aspects of the w hierarchy. In Ambos-Spies, K., Homer, S., Schöning, U.,
eds.: Complexity theory, New York, NY, USA, Cambridge University Press (1993)
191–225

2. Ganian, R., Hlinený, P., Langer, A., Obdrzálek, J., Rossmanith, P., Sikdar, S.:
Lower bounds on the complexity of MSO1 model-checking. In: Proc. STACS’12.
(2012) 326–337

3. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? Journal of Computer and System Sciences 63 (2001) 512–530

4. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Linear fpt reductions and computational
lower bounds. In: Proc. of STOC’04. (2004) 212–221

5. Flum, J., Grohe, M.: Parametrized complexity and subexponential time (column:
Computational complexity). Bulletin of the EATCS 84 (2004) 71–100

6. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. J. ACM 54(1) (2007)

7. Downey, R.: The birth and early years of parameterized complexity. In: The
Multivariate Algorithmic Revolution and Beyond. (2012) 17–38

8. Chen, Y., Flum, J.: On miniaturized problems in parameterized complexity theory.
Theoretical Computer Science 351(3) (2006) 314–336

9. Chen, Y., Grohe, M., Grüber, M.: On parameterized approximability. In: 2nd
International Workshop on Parameterized and Exact Computation. Number 4169
in LNCS, Springer-Verlag (2006) 109–120

10. Marx, D.: Parameterized complexity and approximation algorithms. The Com-
puter Journal 51 (2008) 60–78

11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag, Berlin
Heidelberg (2006)

12

