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Abstract. We study the expressive power and succinctness of order-
invariant sentences of first-order (FO) and monadic second-order (MSO)
logic on graphs of bounded tree-depth. Order-invariance is undecidable
in general and, therefore, in finite model theory, one strives for logics
with a decidable syntax that have the same expressive power as order-
invariant sentences. We show that on graphs of bounded tree-depth,
order-invariant FO has the same expressive power as FO, and order-
invariant MSO has the same expressive power as the extension of FO
with modulo-counting quantifiers. Our proof techniques allow for a fine-
grained analysis of the succinctness of these translations. We show that
for every order-invariant FO sentence there exists an FO sentence whose
size is elementary in the size of the original sentence, and whose number
of quantifier alternations is linear in the tree-depth. Our techniques can
be adapted to obtain a similar quantitative variant of a known result that
the expressive power of MSO and FO coincides on graphs of bounded
tree-depth.
Keywords: expressivity, succinctness, first-order logic, monadic second-
order logic, order-invariance, tree-depth

1 Introduction

Understanding the expressivity of logics on finite structures—the question of
which properties are definable in a certain logic—plays an important role in
database and complexity theory. In the former, logics are used to formulate
queries; in the latter, they describe computational problems. Moreover, besides
just studying a logic’s expressivity, understanding its succinctness—the question
how complex definitions of properties like queries and problems must be—is a
requirement towards (theoretical) expressivity results of (potential) practical im-
portance. The present work studies the succinctness of first-order logic (FO) as
well as its succinctness compared to extensions allowing for the use of a linear



ϕ ∈ ≤-inv-FO MSO ≤-inv-MSO

ψ ∈ FO FO FO+MOD
‖ψ‖ (2d+ 1)-exp(q) O(d2)-exp(qr(ϕ)) non-elementary

qad(ψ) O(d) O(d) O(d)

Table 1. Summary of our results: A formula ϕ of quantifier rank q is translated into
a formula ψ that is equivalent to ϕ on graphs of tree-depth at most d.

order and set quantifiers. This extends and refines recent studies on the expres-
sivity of these logics [1,6] on restricted classes of structures. The structures we
consider have bounded tree-depth, which is a graph invariant that measures how
far a graph is from being a star in a similar way as tree-width measures how far
a graph is from being a tree. Our results are summarised in Table 1.

In both database and complexity theory, one often assumes that structures
come with a linear order and formulae are allowed to use this order as long as
the properties defined by them do not depend on the concrete interpretation of
the order in a structure. Such formulae are called order-invariant. Since test-
ing order-invariance for given FO-formulae is undecidable in general, one tries
to find logics that have the same expressive power as order-invariant formu-
lae, but a decidable syntax. Several examples prove that order-invariant FO-
formulae (≤-inv-FO) are more expressive than FO-formulae without access to
orders, cf. [11]. A common feature of these separating examples is that their
Gaifman graphs contain large cliques, making them rather complicated from the
point of view of graph structure theory. For tree structures, on the other hand,
Benedikt and Segoufin [1] showed that the expressivity of FO and ≤-inv-FO co-
incide. We extend and refine this result by showing equal expressivity and suc-
cinctness results for FO and ≤-inv-FO on graphs of bounded tree-depth. The
importance of the expressivity result is highlighted by the fact (proved in the
full version of this paper) that order-invariance is undecidable even on graphs of
tree-depth at most 2.

A logic that is commonly studied from the perspectives of algorithm design
and language theory is monadic second-order logic (MSO), which extends FO-
formulae by the ability to quantify over sets of elements instead of just single
elements. While it has a rich expressivity that exceeds that of FO already on
word structures, the expressive powers of FO and MSO coincide on any class
of structures whose tree-depth is bounded [6]. We refine this by presenting a
translation into succinct FO-formulae.

In [4], Courcelle raised the (still open) question whether ≤-inv-MSO has the
same expressive power on graphs of bounded tree-width as the extension of MSO
by first-order modulo-counting quantifiers (CMSO). We prove a stronger state-
ment for graphs of bounded tree-depth: ≤-inv-MSO has the same expressive power
as FO+MOD, i.e. the extension of FO by arbitrary first-order modulo-counting
quantifiers.

Our results also have implications on FO itself. They imply that that the
quantifier alternation hierarchy for FO of Chandra and Harel [3] collapses on
graphs of bounded tree-depth, whereas by their result it is strict on trees of



unbounded height. That means, for graphs of bounded tree-depth, we are able
to turn any FO-formula into a formula whose size is bounded by the quantifier
depth of the original formula and whose quantifier alternation depth is bounded
by a linear function in the tree-depth.

Proof techniques and relation to prior works. Our proofs are based on funda-
mental techniques from finite model theory like interpretation arguments, logical
types, and games. Compared to prior works like [6], we enrich the application of
these techniques by a quantitative analysis, which results in succinct translations
instead of just equal expressivity results.

The proofs of [6] use an involved constructive variant of the Feferman–Vaught
composition theorem, which complicates a straightforward analysis of the for-
mula size in the translation from MSO to FO. We also use composition arguments,
but we get along with an easier non-constructive variant. There is another proof
of the result of [6] in [7], but it relies on involved combinatorial insights that
seem unsuited for both a tight analysis of succinctness as well as an adaptation
to the ordered setting.

While our proofs are based on techniques from finite model theory, the results
of [1] about the expressivity of ≤-inv-FO on trees use automata-theoretic and
algebraic methods, which seem unsuited to obtain succinct translations. Due to
the following reason, even our equal expressivity result for ≤-inv-FO and FO on
graphs of bounded tree-depth is interesting: Benedikt and Segoufin [1] proved
that on graphs of bounded tree-width every ≤-inv-FO sentence is equivalent to
an MSO sentence. With the results of [6] this would imply our expressivity result
(not the succinctness result). However, the result from [1] relies on an earlier
proof of how to define tree decompositions of bounded width in MSO whose
correctness has been doubted by Courcelle and Engelfriet [5]. A proof of our
expressivity result for ≤-inv-FO along this lines is nevertheless possible. A direct
FO-construction of a tree decomposition of bounded width and depth for graphs
of bounded tree-depth will appear in the full version of this paper.

Organisation of this paper. The paper continues with a background section and,
then, the results related to ≤-inv-FO, MSO, and ≤-inv-MSO are proved in Sec-
tions 3, 4, and 5, respectively. Due to space restrictions, some parts of the paper,
such as proofs and definitions, are only sketched or omitted.

2 Background

General notation. The sets of natural numbers with and without 0 are denoted
respectively by N and N+. Let [i, j] := {i, . . . , j} for all i, j ∈ N with i ≤ j, and
let [j] := [1, j]. For any d ∈ N, the class of functions that grow at most d-fold
exponentially, denoted by d-exp(n), is made up by all functions f : N→ N with
f(n) ≤ c+ d-exp(nc) for some c ∈ N; where d-exp: N→ N is recursively defined
via 0-exp(n) := n and (d + 1)-exp(n) := 2d-exp(n) for d ∈ N. If we say that a
relation is an order, we implicitly assume that it is linear.



Logic. For a reference on notation and standard methods in finite model theory,
we refer to the book of Libkin [9]. Besides the standard logics FO and MSO,
we also consider the logic FO+MOD that is obtained from FO by allowing the
use of modulo-counting quantifiers ∃i (mod p) for each i ∈ N, p ∈ N+, where
ψ(ȳ) := ∃i (mod p)xϕ(x, ȳ) means that for a structure A with universe A and a
tuple of its elements ā, A |= ψ(ā) iff |{b ∈ A : A |= ϕ(b, ā)}| ≡ i (mod p).

We write qr(ϕ) for the quantifier rank and ‖ϕ‖ for the size (or length) of
a formula ϕ. The quantifier alternation depth qad(ϕ) of a formula ϕ in nega-
tion normal form (nnf, i.e. all negations of ϕ occur directly in front of atomic
formulae) is the maximum number of alternations between ∃- and ∀-quantifiers
on all directed paths in the syntax tree of ϕ. If ϕ is not in nnf, we first find
an equivalent formula ϕ′ in nnf using a fixed conversion procedure and, then,
define qad(ϕ) := qad(ϕ′).

For any logic L ∈ {FO, FO+MOD,MSO}, we write A ≡L
q B for q ∈ N to

denote that structures A and B over the same signature σ satisfy the same
L[σ]-sentences of quantifier rank at most q. The ≡L

q -equivalence class of A is
its (L, q)-type and denoted by tpL

q (A). For L ∈ {FO,MSO}, each (L, q)-type τ is
definable by an L-sentence ϕτ with qr(ϕτ ) = q, i.e. A |= ϕτ iff tpL

q (A) = τ ; we
identify each τ with one such sentence ϕτ . If the logic L has been fixed (as will
be the case in most parts of this paper) or the concrete logic is not important
for the discussion, we omit it in this and similar notation.

For every signature σ, we define the signature σ≤ := σ ∪ {≤}, where ≤ is a
binary relation symbol. A sentence ϕ ∈ FO[σ≤] is order-invariant exactly if the
following holds for all finite σ-structures G and all linear orders �,�′ on the
universe of G:

(G,�) |= ϕ iff (G,�′) |= ϕ.

The set of all order-invariant ϕ ∈ FO[σ≤] is denoted by ≤-inv-FO[σ], and for such
a ϕ and a σ-structure G we write G |=≤ ϕ if (G,�) |= ϕ for some (equivalently,
for every) linear order � on G; ≤-inv-MSO is defined in the same way by using
MSO instead of FO-formulae.

If ψ is a formula with a free variable z and ϕ is an arbitrary formula, then
ϕ|ψ is the formula ϕ relativised to ψ. We construct ϕ|ψ by replacing subformulae
∃z ϕ and ∀z ϕ by ∃z (ψ ∧ ϕ|ψ) and ∀z (¬ψ ∨ ϕ|ψ), respectively.

Coloured and ordered graphs. The letter C will be used to denote a finite set
of colours, and we define the signature σC := {E} ∪ {Pc | c ∈ C}, where E
is binary and every Pc is unary. A C-coloured graph is a σC-structure G with
universe V (G), symmetric and irreflexive edge relation E(G), and such that the
Pc(G) form a partition of V (G). We will simply speak of graphs when referring
to C-coloured graphs, and write FO for FO[σC ] etc. An order on a graph is an
order on its vertex set. An ordered graph is a σC≤-structure (G,≤G) where G is
a graph and ≤G is an order on G.

The restriction of a binary relation R on a set M to a subset N ⊆M is the
relation R|N := {(x, y) ∈ R : x, y ∈ N}. For ease of notation we will sometimes



drop the relativisation for orders on subgraphs and write (H,�) for (H,�|H).
For two linear orders � and �′ on disjoint sets M1 and M2, respectively, we
define a linear order � · �′ on M1 ∪M2, the concatenation of � and �′, as
� ∪ �′ ∪ (M1 ×M2).

Our formulae often speak about the distance between two vertices of a graph.
To this end, we define existential FO-formulae ϕdist≤`(x, y) by ϕdist≤0(x, y) :=
x = y and ϕdist≤`(x, y) := ∃z (ϕdist≤`−1(x, z) ∧ (Ezy ∨ z = y)) for each ` ≥ N+.

Tree-depth. The following inductive definition is one of several equivalent ways
to define the tree-depth td(G) of a graph (see [10] for a reference on tree-depth):

td(G) :=


1 if |V (G)| = 1

1 + min r∈V (G) td(G \ r) if G is connected and |V (G)| > 1

max i∈[n] td(Ki) if G has components K1, . . . ,Kn.

As an immediate consequence of this definition, each connected graph with
td(G) > 1 contains a vertex r with td(G\r) = td(G)−1. We denote the set of all
such vertices by roots(G). Elements of roots(G) are called tree-depth roots of G.
Furthermore, graphs of tree-depth 1 contain only isolated vertices. Another fact
about tree-depth that we need is that there are only paths of length at most 2d in
graphs G with td(G) ≤ d. In particular, the diameter of such graphs is bounded
by 2d and hence the formula reachd(x, y) := ϕdist≤2d(x, y) defines the relation
containing all pairs (u, v) ∈ V (G)× V (G) such that u and v belong to the same
(connected) component. Using this observation and the inductive definition of
tree-depth, one can write down an FO-sentence ϕtd≤d with ‖ϕtd≤d‖ ∈ O(d) that
defines the class of graphs of tree-depth at most d on the class of all graphs, and
an FO-formula ϕd-roots(x) with ‖ϕd-roots‖ ∈ O(d) that defines the set roots(G)
in a connected graph G with 1 < td(G) ≤ d.

3 Order-invariant first-order logic

We prove the following theorem in the present section.

Theorem 3.1. For every d ∈ N+ and ≤-inv-FO-sentence ϕ with qr(ϕ) = q,
there is an FO-sentence ψ with ‖ψ‖ ∈ (2d + 1)-exp(q) and qad(ψ) ∈ O(d) that
is equivalent to ϕ on (coloured) graphs of tree-depth at most d.

Several definitions and lemmas of this section are given in greater generality
than needed here, because we will reuse them in later sections. In this section,
whenever notation refer to a logic L and we omit it, assume that L = FO. The
main ingredient for the proof of Theorem 3.1 is the following lemma which
states that q-types of q-ordered graphs of tree-depth at most d, i.e. ordered
graphs where the order is a q-order, which we define below, can be defined by
FO-formulae without referring to a linear order. Let TC,q,d denote the set of all
q-types τ over the signature σC≤ such that there exists a q-ordered graph (G,�)
with td(G) ≤ d and tpq(G,�) = τ .



Lemma 3.2. For all q, d ∈ N+ and τ ∈ TC,q,d, there is an FO-sentence ϕτ,d
with ‖ϕτ,d‖ ∈ (2d)-exp(q) and qad(ϕτ,d) ∈ O(d) that defines τ on graphs of
tree-depth at most d.

Here an FO-sentence ϕτ defines τ on graphs of tree-depth at most d if for each
graph G with td(G) ≤ d, we have G |= ϕτ iff there exists a q-order � such that
tpq(G,�) = τ .

Before we discuss how to prove Lemma 3.2, let us first sketch how The-
orem 3.1 can be proved with its help: For a given ≤-inv-FO-sentence ϕ with
qr(ϕ) = q, we let ψ be the disjunction over all FO-sentences ϕτ,d for τ ∈ TC,q,d
that are types of q-ordered graphs of tree-depth at most d satisfying ϕ. We
have ‖ψ‖ ∈ (2d+ 1)-exp(q) and qad(ψ) ∈ O(d); since ϕ is order-invariant, ψ is
equivalent to ϕ.

Encoding vertex information in extended colourings. During our proofs, we re-
move single vertices from a graph and encode information about them into
colours of the remaining vertices. This allows us to recover the original graph
using an FO-interpretation. Let C ′ := C ×{0, 1}. For a C-coloured graph G and
r ∈ V (G), define a C ′-colouring of G\ r by assigning to each vertex v ∈ V (G\ r)
of colour c in G the colour (c, 1) if {r, v} ∈ E(G), and (c, 0), otherwise. The
C ′-coloured graph thus obtained is denoted by G[r]. The following lemma is easy
to prove following this definition.

Lemma 3.3. Let L ∈ {FO, FO+MOD}. For every L[σC′ ]-sentence ϕ there is an
L[σC ]-formula I(ϕ)(x) of the same quantifier rank and quantifier alternation
depth such that

G |= I(ϕ)(r) iff G[r] |= ϕ.

for all C-coloured graphs G and r ∈ V (G).

Definition of q-orders. We fix orders �L,q, for any logic L, and �C on, respec-
tively, the set of (L, q)-types and any colour set C.

Definition 3.4 ((L, q)-order). An order � of a graph G is an (L, q)-order if
the following conditions are satisfied:
1. If G is a connected graph, then it contains either only one vertex, or it

contains more than one vertex and the �-least element r is an element of
roots(G) whose colour is �C-minimal among the elements of roots(G), and
tpL
q (G[r],�) �(L,q) tpL

q (G[r′],�) for all r′ ∈ roots(G) of the same colour.
Furthermore, �|V (G\r) is an (L, q)-order of G \ r.

2. Otherwise, if G has components H1, . . . ,H`, then, after suitably permuting
the components, � = �|H1

· · · · · �|H`
, where each �|Hi

is an (L, q)-order of
Hi, and tpL

q (Hi,�) �L,q tpL
q (Hj ,�) for i ≤ j.

The least element of a q-order � is denoted by r�.



For each q-ordered C-coloured connected graph (G,�) with td(G) > 1, we define
an ordered C ′-coloured graph

G̃� := (G[r�],�).

Observe that td(G[r�]) < td(G) and that G̃� is q-ordered. The following lemma,
which states that G̃� together with the colour of r� determine the q-type of
(G,�), can be proved using standard ef-game-based arguments.

Lemma 3.5. Let L ∈ {FO,MSO} and q ∈ N+. Let (G,�G) and (H,�H) be
(L, q)-ordered connected graphs such that td(G), td(H) > 1 and r�G

, r�H
have

the same colour. Then G̃�G
≡L
q H̃�H

implies (G,�G) ≡L
q (H,�H).

Using this, we can show that while there might be several q-orders of a given
graph, up to ≡L

q they are all equivalent.

Lemma 3.6. Let L ∈ {FO,MSO}, q ∈ N+. For all (L, q)-orders �,�′ of a graph
G, we have (G,�) ≡L

q (G,�′).

Threshold counting of components. We define an equivalence relation ≈q,t on
ordered graphs that counts the number of components of different q-types up
to a threshold value t. We show that there is a t depending on q, such that
each ≡FO

q -equivalence class of q-ordered graphs is a union of ≈q,t-equivalence
classes. Then we show, basically, that these equivalence classes are definable
for graphs of bounded tree-depth. For every logic L and L-sentence ϕ, we let
nϕ(G) denote the number of components K of G such that K |= ϕ and we let
nϕ,t(G) := min{nϕ(G), t}, for each t ∈ N.

Definition 3.7 (≈Φ,t, ≈L,q,t). Let Φ be a set of L-sentences and t ∈ N. We say
that two graphs G and H are (Φ, t)-similar (written G ≈Φ,t H) if

nϕ,t(G) = nϕ,t(H)

for each ϕ ∈ Φ. In the special case that Φ is a set of L-sentences containing one
sentence that defines τ for each (L, q)-type τ , we write ≈L,q,t instead of ≈Φ,t;
whenever L is fixed, we write ≈q,t.

All these definitions are extended to ordered graphs by stipulating that a com-
ponent of an ordered graph (G,�) is an ordered graph (K,�) where K is a
component of G.

We show that in q-ordered graphs FO inherits its component counting ca-
pabilities from its capability to distinguish linear orders of different length. A
proof of the lemma (based on different notation) is contained in the proof of [1,
Thm. 5.5]; it requires only the fact that the components of a q-ordered graph
are ordered according to their q-type.

Lemma 3.8. Let q ∈ N+ and let t := 2q + 1. If (G,�G) and (H,�H) are
q-ordered graphs with (G,�G) ≈q,t (H,�H), then (G,�G) ≡FO

q (H,�H).



The following lemma shows that ≈Φ,t-equivalence classes are definable for graphs
of bounded tree-depth. It will be needed for the formula construction in the proof
of Lemma 3.2 and in later sections.

Lemma 3.9. Let L ∈ {FO, FO+MOD}. For every d, t ∈ N+, set of L-sentences
Φ := {ϕ1, . . . , ϕ`}, and n̄ := (n1, . . . , n`) ∈ [0, t]`, there is an L-sentence ψΦn̄,t
such that for each graph G with td(G) ≤ d, we have G |= ψΦn̄,t iff nϕi,t(G) = ni
for each i ∈ [`]. Moreover, the sentence has size ‖ψΦn̄,t‖ ∈ ` ·O(dmaxi∈[`] n

2
i ‖ϕi‖)

and qad(ψΦn̄,t) ≤ maxi∈[`] qad(ϕi) + 1,

Finally, we can proof our main lemma.
Proof of Lemma 3.2. The proof proceeds by induction on the tree-depth d. Let
T conn
C,q,d be defined analogously to TC,q,d for q-ordered connected graphs.

Case 1: Connected graphs. As a first step, we prove the special case of the claim
for connected graphs with a stronger upper bound on the formula size, i.e. we
show that, on connected graphs of tree-depth at most d, each τ ∈ T conn

C,q,d is
defined by an FO-sentence ϕconn

τ,d such that ‖ϕconn
τ,d ‖ ∈ (2(d− 1) + 1)-exp(q) and

qad(ϕconn
τ,d ) ∈ O(d). If d = 1, then any graph G of type τ consists of a single

vertex of some colour c ∈ C; the FO-sentence ϕconn
τ,1 := ∃xPc(x) ∧ ∀y (x = y)

defines τ since there is only one linear order on each such graph. Hence ‖ϕconn
τ,1 ‖

and qad(ϕconn
τ,1 ) are constant.

Now suppose that d > 1 and τ ∈ T conn
C,q,d. For each colour ĉ we define a set

Rĉ ⊆ TC′,q,d−1 that contains a q-type θ iff tpq(H,�) = τ for a q-ordered C ′-
coloured connected graph (H,�) with 1 < td(H) ≤ d such that tpq(H̃�) = θ
and r� has colour ĉ. We obtain an FO[σC′ ]-sentence ϕθ,d−1 by induction that
defines θ on q-ordered C ′-coloured graphs of tree-depth at most d− 1, and that
has size ‖ϕθ,d−1‖ ∈ (2(d−1))-exp(q) and alternation-depth qad(ϕθ,d−1) ∈ O(d).
Let ϕτ,1 be an FO-sentence with ‖ϕτ,1‖ ∈ 2-exp(q) and qad(ϕτ,1) ∈ O(d), also
given by induction, that defines τ on graphs of tree-depth 1. Now consider the
following FO-sentence

ϕconn
τ,d := (ϕtd≤1 ∧ ϕτ,1) ∨

∨
ĉ∈C, θ∈Rĉ

∃x ϕd-roots(x) ∧ Pĉ(x) ∧ I(ϕθ,d−1)(x),

where I is the operator defined in Lemma 3.3. Note that the size of ϕconn
τ,d is

‖ϕconn
τ,d ‖ ∈ (2(d− 1) + 1)-exp(q) (this is dominated by the maximal size of |Rĉ|)

and that qad(ϕconn
τ,d ) ∈ O(d). Using Lemma 3.3 and Lemma 3.5, it is not too

hard to verify that ϕconn
τ,d defines τ .

Case 2: Disconnected Graphs. Let T conn
C,q,d := {τ1, . . . , τ`}. Let Φ be a set that

contains the formulae ϕi := ϕconn
τi,d

for each i ∈ [`]. For each graph G with
td(G) ≤ d and each component K of G, we have K |= ϕi iff there is a q-order �
of G such that tpq(K,�) = τi; due to Lemma 3.6, this holds iff tpq(K,�) = τi
for each q-order � of G. Thus nϕi

(G) = nτi(G,�) for each q-order � of G.
Let t := 2q + 1 as in Lemma 3.8. For any ordered graph (G,�), let n̄(G,�) :=
(nτ1,t(G,�), . . . , nτ`,t(G,�)), i.e. n̄(G,�) ∈ [0, t]`.



Now consider a τ ∈ TC,q,d. Let R ⊆ [0, t]` such that for each n̄ ∈ [0, t]`, n̄ ∈ R
iff there exists a q-ordered graph (G,�) with td(G) ≤ d and tpq(G,�) = τ such
that n̄ = n̄(G,�). For each n̄ ∈ R, let ψΦn̄,t(x̄) be the formula of Lemma 3.9.
Observe that ‖ψΦn̄,t(x̄)‖ ∈ ` · O(dt2 maxi∈[`] ‖ϕi‖). We hence have ‖ψΦn̄,t(x̄)‖ ∈
((2d− 1) + 1)-exp(q) and qad(ψΦn̄,t(x̄)) ∈ O(d).

Define the FO-sentence ϕτ,d :=
∨
n̄∈R ψ

Φ
n̄,t. Since |R| ∈ (2d)-exp(q), also

‖ϕτ,d‖ ≤ |R| ·maxn̄∈R ‖ψΦn̄,t‖ ∈ (2d)-exp(q) and qad(ϕτ,d) ∈ O(d).
We prove that ϕτ,d defines τ on graphs of tree-depth at most d. Let G be

such a graph. Suppose first that there is a q-order � such that (G,�) has type
τ . By the definition of Rτ there is a tuple n̄ ∈ Rτ such that n̄ = n̄(G,�), so
G |= ψΦn̄,t by Lemma 3.9.

Suppose now that G |= ϕτ,d, i.e. say G |= ψΦn̄,t for some tuple n̄ ∈ Rτ . By
the definition of R, an ordered graph (H,�H) with (H,�H) |= τ , td(H) ≤ d
and n̄(H,�H) = n̄ exists. By Lemma 3.9, we have G ≈Φ,t H. It follows from
our choice of Φ that there is a q-order �G on G such that (H,�H) ≈q,t (G,�G).
Now (H,�H) ≡FO

q (G,�G) by Lemma 3.8. ut

4 Monadic second-order logic

The approach towards the results of the previous section can be adapted to
obtain a quantitative variant of the result of [6] that MSO and FO have the same
expressive power on the class of graphs of tree-depth at most d. Let s(d) :=
d(d+1)

2 + 2d for each d ∈ N.

Theorem 4.1. For each d ∈ N+ and MSO-sentence ϕ there is an FO-sentence
ψ with ‖ψ‖ ∈ (s(d) + 1)-exp(qr(ϕ)) and qad(ψ) ∈ O(d) that is equivalent to ϕ
on graphs of tree-depth at most d.

Much of the proof of Theorem 4.1 follows the proof of Theorem 3.1, but we
are spared of the complications that arose in connection with the ordering of
graphs. On the other hand, the proof of an analogue to Lemma 3.8 becomes
more complicated. In Lemma 3.8, we did not use the fact that we consider only
graphs of bounded tree-depth. Here naively ignoring the bounded tree-depth
would lead to a non-elementary dependence of the counting threshold on q. We
use the following lemma to avoid this.

Lemma 4.2. For every d, q ∈ N+, there is a t ∈ d-exp(q) such that, if G and
H are graphs with td(G), td(H) ≤ d and G ≈q,t H, then G ≡MSO

q H.

5 Order-invariant monadic second-order logic

It is well-known that for each sentence in modulo-counting MSO (CMSO) there
is an equivalent ≤-inv-MSO-sentence, and a conjecture of Courcelle implies that,
on graphs of bounded tree-width, the converse of this statement is also true. In
the special case where instead of bounded tree-width the graphs have bounded
tree-depth, we show the following stronger result.



Theorem 5.1. For every d ∈ N+ and ≤-inv-MSO-sentence ϕ there exists an
FO+MOD-sentence ψ with qad(ψ) ∈ O(d) that is equivalent to ϕ on graphs of
tree-depth at most d.

Of course the analogue of this statement for more general classes of graphs is not
true, e.g. graph connectivity is MSO-, but not FO+MOD-definable. In contrast to
the previous sections, we do not analyse the formula size, because it is known
from [8] that (plain) MSO can define the length of orders non-elementarily more
succinct than FO. Again we need to understand ≤-inv-MSO’s capabilities to count
the components of a given q-type in q-ordered graphs. We say that ordered
graphs (G,�G) and (G,�H) are (q, p)-similar, written (G,�G) uq,p (H,�H), if
nτ (G) ≡ nτ (H) (mod p), and nτ (G) ≥ p iff nτ (H) ≥ p, for each q-type τ . The
following lemma shows that MSO inherits its component counting capabilities on
q-ordered graphs from its semilinear spectrum on linear orders.

Lemma 5.2. For each q ∈ N+ a p ∈ N+ exists such that for all q-ordered graphs
(G,�G) and (H,�H), if (G,�G) uq,p (H,�H) then (G,�G) ≡MSO

q (H,�H).

The next lemma is a modulo-counting analogue of Lemma 3.9, and the two
lemmas together can be used to define the uq,p-equivalence class of a graph G
from given sentences that define the q-types of the components.

Lemma 5.3. For each d, p ∈ N+, each set Φ := {ϕ1, . . . , ϕ`} of FO+MOD-
sentences and each tuple of numbers n̄ := (n1, . . . , n`) ∈ [0, p − 1]` there is an
FO+MOD-sentence χΦn̄,p such that for each graph G with td(G) ≤ d, we have
G |= χΦn̄,p iff, for each i ∈ [`], nϕi

(G) ≡ ni (mod p). If qad(ϕi) = O(d) for each
i ∈ [`], then qad(χΦn̄,p) ∈ O(d).

To prove the lemma, at first, it is not clear at all how modulo-counting quantifiers
can be used to count the number of components satisfying a given FO+MOD-
sentence. But it is shown in [2, Lem. 7] that the number of tree-depth roots
of each component of a graph is bounded in terms of its tree-depth. For each
component, we can use its roots as FO-definable representatives that allow us
to perform the necessary counting. Using the previous lemmas, we can prove an
analogue to Lemma 3.2, i.e. that each (MSO, q)-type of (MSO, q)-ordered graphs
is FO+MOD-definable on bounded tree-depth graphs, in a very similar way to
Lemma 3.2. This makes it possible to prove Theorem 5.1.

6 Final remarks

We phrased our results for undirected (coloured) graphs to simplify notation,
but their proofs generalise to structures with higher-arity relations (where the
tree-depth of a structure is defined to be the tree-depth of its Gaifman graph).
Furthermore, all our formula constructions imply algorithms to compute the
formulas. It would be interesting to obtain corresponding lower bounds for our
succinctness upper bounds.
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