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Abstract

We study the notion of sparseness for regular languages over finite trees and infinite words. A
language of trees is called sparse if the relative number of n-node trees in the language tends to zero,
and a language of infinite words is called sparse if it has measure zero in the Bernoulli probability
space. We show that sparseness is decidable for regular tree languages and for regular languages
of infinite words. For trees, we provide characterisations in terms of forbidden subtrees and tree
automata, leading to a linear time decision procedure. For infinite words, we present a characterisation
via infix completeness and give a novel proof of decidability. Moreover, in the non-sparse case, our
algorithm computes a measurable subset of accepted words that can serve as counterexamples in
almost-sure model checking. Our findings have applications to automata based model checking in
formal verifications and XML schemas, among others.

1 Introduction

We call a language of finite objects sparse if the relative number of n-element objects in the language tends

to zero: For a language L C ¥* of words we set P, (L) := ‘ngflﬂ‘ and call L sparse if lim,,_, - P, (L) = 0.

Likewise, if L7 is a language of ¥-labelled trees and BZ is the set of all such trees with n nodes, we set

P, (L) = |L|TBOELT§‘ and call Ly sparse if lim,,—, o, P, (L7) = 0. For a language L, C X% of infinite words
we turn 3¢ into a Bernoulli probability space and call L, sparse if it has measure O.

Regular languages play an important role both in applied and in theoretical computer science. Apart
from appearing in practical applications such as pattern matching, one reason for their importance from
a theoretical perspective is that they allow for several seemingly unrelated characterisations, in particular
by finite monoids, finite automata, and as being definable in monadic second-order logic (MSO) by the
Biichi-Elgot-Trakhtenbrot theorem [Bii60, Elg61, Tra61]. Many problems that are undecidable or at least
computationally hard for general classes of languages are computable for regular languages. In particular
the emptiness problem and, more generally, the subset relation between regular languages is efficiently
decidable.

Naturally, the techniques used in dealing with regular languages have been adapted to other scenarios.
Two of the most important and successful generalisations have been to languages of finite trees and
languages of infinite words, also called w-languages. In both these settings, the correspondence between
regular languages, automata, and definability in MSO still holds (see [Don70, TW68] and [Bi90]), yielding
similar algorithmic properties as for regular languages of finite words.

We provide a characterisation of sparse regular tree languages via forbidden subtrees and tree automata
(Theorem 3.7). As a consequence, we deduce that sparseness of regular tree languages is decidable in
linear time (Corollary 3.9). Furthermore, our results also provide a method for proving non-regularity
of sparse tree languages (Corollary 3.11). Finally, we observe that our characterisation by forbidden
subtrees does not hold for non-uniform models of random binary trees, specifically the random binary
search tree model (Example 3.14).

A major motivation for regular w-languages, on the other hand, is in model checking of reactive
systems [BKLO8]. In this setting, we are given a formal specification of a system (e.g. some piece of
hardware or software) and a specification of properties that the system should have or not have. If both
the system and the property are specified in linear temporal logic (LTL), model checking essentially
reduces to checking whether a certain regular w-language is empty or not. Theorem 4.4 extends this to
almost sure model checking, i.e. the question whether a certain system almost surely satisfies a given



property. If the system fails to do so, it is even possible to compute a counterexample, in this case a set
of w-words of strictly positive measure that almost surely violates the condition to be checked.

Note that because the complement of a regular language is again regular, and L is sparse if and only
if its complement has (asymptotic) probability 1, the same algorithms can be used to check whether a
language of trees or w-words has (asymptotic) probability 1.

Techniques and Related Work

Sparseness of regular languages was investigated by Sin’ya [Sin15]. He showed that a regular language
L C * over a finite alphabet ¥ is sparse if, and only if, L has an excluded factor, i.e. X*2X*NL =0
for some x € ¥*. The proof of this characterisation was simplified by Koga in [Kogl9]. We build on
their insights and generalize them significantly to handle the richer settings of regular tree languages and
w-languages.

The trees we are most interested in are rooted, ordered, unranked trees, i.e. trees with a distinguished
root node in which the number of children of a node is unbounded and for every node there is a linear
order on the set of its children. The terms siblinged or planar are sometimes used for what we call
ordered, e.g. in [FS09,BS09]. We state our results on regular tree languages in terms of binary trees with
distinguished left and right children, cf. Section 2.2. This allows for a simpler definition of tree automata
and comes at no loss of generality because ordered unranked trees are bijectively MSO-interpretable in
binary trees, a folklore technique that is spelled out, for example, in [FG06, Sec. 10.2].

Because regular languages exactly capture the expressive power of monadic second-order logic (MSO),
the (asymptotic) probability of regular languages can be rephrased as the (asymptotic) probability
that a random structure satisfies a certain MSO sentence. This has been well studied: For every first-
order logic (FO) sentence with relational signature, the probability that a random labelled structure
satisfies the sentence converges to either 0 or 1 (this was proved independently in [GKLT69] and [Fag76],
cf. [EF99, Ch. 4]), a result that has been extended by Spencer [Spel3] to Erdds-Rényi graphs with more
general edge probabilities. The fact that every sentence is satisfied asymptotically with probability 0O
or 1 is usually called 0-1 law. For monadic second-order logic (MSO), McColm [McC02] showed a 0-1
law for MSO on labelled trees. Note that McColm (crucially) considers trees without a distinguished
root, while our trees are rooted. More recently, Malyshkin and Zhukovskii [MZ21] showed a 0-1 law for
MSO on finite trees with probability measures other than uniform probabilities, namely uniform and
preferential attachment. Further results on the limit behaviour of MSO sentences on various graph classes
can be found in [DK19] and [AKNS18]. These results are not directly applicable to our setting. In fact,
there can be no 0-1 law for regular languages: Both in trees and in w-words there is some designated
element (such as the first position in a word or the root of a tree), and the set of all structures in which
this element gets a specific label is a regular set with (asymptotic) density strictly between 0 and 1.

Recently, Niwiniski et al. [NPS23] proved that the exact probability of acceptance for MSO formulae
in infinite random trees is computable. However, this can not be used to decide sparseness for languages
of finite trees or infinite words.

A necessary and sufficient condition for an w-language to have strictly positive measure has already
been proved by Staiger [Sta98]. However, Staiger does not address the question of decidability of this
property, and his proof uses deep results from topology and Kolmogorov complexity, namely a connection
between the subword complexity of an w-word £ and the Hausdorff dimension of the regular w-languages
containing £. Courcoubetis et al. [CY95] treated the sparseness problem for w-languages under the
name probabilistic emptyness and showed it to be decidable with methods similar to ours. By relating
non-sparseness to infix completeness, our (shorter) proof has the additional feature of giving an exact
characterisation of non-sparse w-languages. Furthermore, the algorithm we present in Thm. 4.4 is the
first to provide a concise representation of a set M of w-words that is almost a subset of L, in the sense
that P(M \ L) = 0. This is extremely valuable in the context of LTL model checking, as it amounts to a
non-negligible set of counterexamples.

2 Preliminaries

2.1 Languages and Automata

By ¥ we denote a finite alphabet assuming || > 1 to avoid trivialities. For & > 0 we denote by ¥*, ¥¥,
and Y=F the sets of all strings, those of length k, and of length at most k, respectively. The empty string



is denoted by €. A language is any subset L C ¥*. Concatenation of strings u,v € ¥* is denoted by u - v
or just wv, and for a language L we set L* := {uy ---uy | k > 0,u1,...,ur € L}.

An w-word over the alphabet ¥ is an infinite sequence agajas - -- of letters a; € X. The set of all
w-words is denoted by X¢; and an w-language is any subset L C ¥¢. A (finite) word v € ¥* and an
w-word v € X* may be concatenated to uv € 3¢, and for a language U C ¥* and an w-language V C 3¢
we set

U“ = {ujugus - | uy,us,... € U} and UV ={w|ueUandveV}

A word u € ¥* is a prefiz of v € ¥* U X%, written u < v, if v = uw for some w € ¥* U X¥.

A deterministic finite automaton (DFA) over the alphabet ¥ is a tuple A = (£, @, o, J, A) consisting
of a finite set @ of states, a designated initial state qo € Q, a transition function 6: @ x ¥ — () and
a set A C Q of accepting states. We extend § to a function 5:QxT = Q by setting 5(q, €) = q and
(g, aw) = 6(6( a),w) for a € ¥ and w € ¥*. The automaton A accepts a word w € X* if d(qo, w) € A.
The language accepted by A is the set of words accepted by it. A language is called regular if it is accepted
by some DFA.

For states q, ¢ € Q we say that ¢’ is reachable from g, written q ~ ¢, if S(q, w) = ¢ for some word
w € X*. If ¢’ is reachable from the initial state gg we just call ¢’ reachable. The relation ~ is obviously
reflexive and transitive, so the relation ¢ ~ ¢’ < (¢ ~ ¢’ and ¢’ ~ ¢) is an equivalence relation. Its
equivalence classes are called the reachability classes of A. A reachability class C' is called closed if
d(q,a) e Cforallge C and a € X

There are various generalisations of finite automata to w-words, resulting in a robust concept of
regular w-languages, cf. [Tho97]. We use the following characterisation:

Theorem 2.1 (cf. [Sta97], Thm. 3.2). An w-language L C X is regular if and only if there is a k > 1
and reqular languages U;, V; C X* fori=1,...,k such that L = Ule U;V&».

2.2 Tree Languages

We will mostly be concerned with binary trees in the sense of Knuth [Knu97, 2.3]. These trees have a
distinguished root node, and every node may have a left and/or a right child. We formalise this as a
prefix-closed language T' C D* over the alphabet D = {l,r}. The empty word e denotes the root of the
tree T', a node u € T' may have children ul, ur € T and is the parent of these.

For a finite alphabet 3 and binary tree T we call a function A\: T'— X a X-labelling of T and the pair
(T, \) a X-labelled binary tree. We denote the set of all finite ¥-labelled binary trees by B*. We often
just write 7' € B> and refer to the labelling as A7 when necessary. A set L C B* is called a tree language.
Note that B> contains the empty tree ().

For S,T € B* we say that S is a subtree of T and write S < T if there exists « € D* such that
uD*NT =uS and Ag(v) = Ap(uv) for all nodes v € S. Each node u € T induces a subtree T'(u) of T'
consisting of u and all its descendants. We write T} for the left subtree T(1) and T, for the right subtree
T'(r) of the root of T, respectively.

For two trees S,T € B* and a € ¥ we define the ¥-labelled binary tree conc, (S, T") which consists of
the root labelled with a and has S and T as left and right subtrees respectively.

For a tree language L C B> and T € B* we define the tree languages

LT = U {conc,(S,T)|S € L}
a€X
LT ' :={S € B¥| There exists a € ¥ with conc,(S,T) € L}

and TL,T~'L are defined analogously. For trees T1,...,T; € B> we inductively set

LT =LT7 vty L
LTy, ....,T1] " = (L[Th—1, ..., T0) TP UT (L Thes -, T ),

so L[T}, ..., T1]~! is the language of all trees that can be concatenated successively with Ty, ..., T} to
obtain a tree from L.

A tree automaton is a tuple A = (X, Q, A, A) consisting of a finite set Q) of states, a finite alphabet ¥,
a transition relation A C (QU{L}) x (QU{L}) x ¥ x @, and a set A C Q of accepting states. Given a
Y-labelled binary tree T, a run of A on T is a function d: D* — (Q U {L}) such that

- if u ¢ T then d(u) = L, and



- if w € T then (d(ul),d(ur), Ar(u),d(u)) € A.

A run d is called accepting if d(e) € A and we say that an automaton A accepts a tree T if there is an
accepting run of A on T.

For states ¢ € Q and ¢’ € Q U {L}, we say that ¢’ is 1-step reachable from ¢ (written g ~»1 ¢’) if
(¢,4,a,q9") € A or (4,q,a,q") € A for some a € ¥ and ¢ € Q U {L}. The reflexive transitive closure
~:=~>7 is called reachability, and a state ¢ € @ is called reachable if L ~» q. Equivalently, ¢ is reachable
if and only if there exists a tree T € B* and a run d of A on T with d(¢) = q. We call A reduced if every
state is reachable.

2.3 Random Trees and w-words

For n € N we denote by B> and BZ,, the set of X-labelled binary trees of size n and size strictly less than n
respectively. We consider BZ as a finite discrete probability space equipped with the uniform distribution
P,, by setting P,,(T) = @ for T € BX. Note that |B>| = C,, - |£|", where C,, = n%_l(i:‘) ~ nf/ﬁ is the
n-th Catalan number, cf. [Knu97, 2.3.4.4].

The asymptotic density (or asymptotic probability) of a tree language L C B* is defined as

>
Pri(L) = Tim Po(LNBY) = lim (20 Bn]

n— o0 n—oo O, - |E‘n’

given the limit exists. We set Pjiy, (L) := limsup,,_, . P, (L N BZ) and obtain the following lemma,
which is easily verified:

Lemma 2.2. For all Ly, Ly C B>, the following hold:
1. Pim(L) = 0 & Py (L) =0
2. L1 C Ly = Pyn(L1) < Prim(L2)
3. Plim(L1 U La) < Prim(L1) 4 Prim(L2)
4. Py (B¥) = 1.

We use standard terminology from probability theory, cf. [Wil91]. We turn the set X of w-words over
the finite alphabet 3 into a probability space by making each of the projections m;: 3¢ — ¥ wiws ... —
w; measurable. By P we denote the probability measure for which the projections are iid random
variables with P(w; = a) = ||~ for every i > 1 and a € ¥. Note that for any U,V C X*, UV¥ =
Nis>1 Upsk {wlwg v |wroowe € UV*} is measurable, so by Thm. 2.1, every w-regular L C X¢ is
measurable and the probability (or measure) P(L) is well-defined.

We review some basic facts about discrete-time Markov chains with a finite state space, cf. [Nor97]:
Fix a finite set I of states and for every i, j € I a transition probability p;; > 0 such that Zje[pij =1 for
every i € I. A Markov chain with state space I and transition probabilities P = (p;;); jer is a sequence
(X¢)ten of random variables taking values in I such that P(X;11 = j | Xy = i) = p;; for every t > 0
and i,j € I. The probability distribution of Xy is called initial distribution of the chain. The initial
distribution and the transition probabilities P together determine the joint distributions of the X; by

]P(XO =d0,..., Xt = it) = ]P(XO = iO) *Digiy * " Pig_qiy-

If P(Xo = j) = 6;; we say that the chain is started in state ¢ and denote the resulting probability
distribution by P;. With this definition, P(X.1; = j | Xs = i) = P;(X; = j). A state ¢ € I is called
recurrent if P;(X; = ¢ for infinitely many t) = 1. We say that a state ¢ € I leads to a state j € I, written
i — 7, if P;(Xy = j for some ¢t € N) > 0, and that ¢ and j commaunicate (written ¢ <> j) if both ¢ — j and
j — i. Then < is an equivalence relation on I and its equivalence classes are just called classes of states.
A class C C I is called closed if i € C and ¢ — j imply j € C. We need the following theorem:

Theorem 2.3 (cf. [Nor97, Thm. 1.5.6]). If C C I is a closed class, every i € C is recurrent.

Corollary 2.4. If C C I is a closed class and i € C, then P(X; = i infinitely often| X, € C for some t) =
1 for every s € N.



3 Characterising Sparseness of Regular Tree Languages

In this section we exactly characterise regular tree languages with asymptotic density 0 by excluded factors,
namely forbidden subtrees. This generalises Sin’ya’s result for regular languages. The well-known infinite
monkey theorem states that a language of finite words L C ¥* has asymptotic density 1 if X*xX%* C L for
some z € ¥*. This has been generalised to tree languages by Asada et al. [AKST19, Thm. 2.13], who
prove that contexts of up to logarithmic size appear asymptotically almost surely in certain regular tree
languages. We only need a weaker version stated in Theorem 3.1, and give a comparatively short proof of
it using methods from analytic combinatorics [FS09]. In Theorem 3.7 we then show that, for a regular
tree language, the existence of a forbidden subtree is a necessary condition for sparseness.

Theorem 3.1. Py, ({T € B¥ | S <X T}) =1 for every nonempty S € B=.
Proof. First, note that
Pim({T € B¥| S < T}) = limsup(l —P{T € B* | S £ T})

b
=1 —liminf {7 € B, |Snf T}l
n—00 Cn|2|

We fix a nonempty tree S € B> and examine the asymptotic behaviour of the sequence
an = {T € BE|S AT}

following the approach of [FS09, Example II1.41]. To analyse the generating function of the sequence
(@n)n, we denote by f, i, the number of X-labelled binary trees of size n that contain S as a subtree at k
different positions, and let

flu,z) = Z Fnpz"u®

n,k>0

be its bivariate generating function. In particular a, = f,0 and f(0,2) = > anz™ is the generating
function of the sequence (an)n>0-
By w(T) we denote the number of distinct occurrences of S in a tree T € B¥. Then w()) = 0 and since
S can occur in the left or right subtree, or be the whole tree T', we get w(T) = w(T}) + w(T;) + [T = 5],
where [T = S]is 1 if T = S and 0 otherwise, for T' # (). For the function u — u*(™) this can be rewritten
as
uw(T) _ uw(Tl)uw(T,,)u[T:S] _ uw(Tl)uw(T,.) + [T _ S] (’LL 7 1)7 (1)

and justifying algebraic manipulations of formal power series as in [FS09, A.5.], we get:

oo o0 .
f,2) = S ub e =Y 3w
n=0 k=0 n=0  TeBY
= PIEEDD <[T =S|(u—1)+ uw(Tz)uw(T,.))
n=0 TEBE
= Z 2" [T = S](u — ]_) + Z ik Z 'L[/w(Tl)uw(TT)
n=0 TeBY n=0  TepE

=z"(u—-1)+1+ Z z" Z (T gy (1)
n=1 TeBE



for m == |S|. We set fn(u) =3 pepe u?™ =307 Jub f,, 1 and get

f(U,Z) — zm(u — 1) —-1= Z Z" uW(Tl)uUJ(Tr)
n=1  TeBZ

I

M8
S

M
I

(Z“wm))( Z uw(m)

n=1 7=0 Tlij.: T,~EB§717].
00 n—1
=P w3 e )
n=1 j=0 TeB® T.eBy |

A1) D A fi(u) - 2" gy (w) = 28 f (u, 2)%.

n=0 j=0

Solving this quadratic equation for f(u,z) gives two candidate solutions

_ 1E /1 — 4235 — 482+ (u — 1)

f(u,2) 2|5 :

and since f(1, ﬁ) is the generating function of the Catalan numbers, subtracting the square root gives
the right solution. The generating function f(0, z) of the sequence (ay)n>0 is now given by

1 — /1 —4z[3] + 4|3z H!
2z|%] '

f(0,2) =

The function f(0,z) is analytic at 0 by extending it to f(0,0) = 1. The radius around 0, where f(0, z) is
analytic is exactly the radius R, for which the polynomial p(z) =1 — 4|%|z + 4|Z|z™T! is non-zero (cf.
analyticity of v/1 — z). Considering the reciprocal polynomial of p yields R > ﬁ.

Finally, by [FS09, Theorem IV.7 (Exponential Growth Formula)| there exist a subexponential factor
(Nn)n such that a, = R~™n,. Also, by Stirling’s formula there exists a subexponential factor (,,),, such
that C,, = 47"0,,. In total, this yields

{TeB}|SATY  an R " 7( 1 )"@
1B CGalE[" 402" \4R[E]/ 6,
Since the factors 7, and 6,, are subexponential the sequence converges to 0 as n tends to infinity. O

In order to show the converse for regular tree languages, we lift the proof from [Kogl9] to the case of
tree languages. First, we derive bounds for the asymptotic density of specific tree languages.

Lemma 3.2. For L C B¥ and T, T4, ..., T, € B> the following hold:
1. Pym(LT) =

= g Piim (L)
2. ?lim(LTil)aﬁlim(TilL) S |E‘|T|4|Tl+lﬁlim(L)

3. Pri(L[Ty, ..., Ta] ") < 28|52 T4 Tk Py (L)

Proof. By
P, (LT N BE) = (0B, )T _ ILOBY | 2] 1B 7y
R B Bl 1B

Cn7|T|71|E|n_|T‘
oSl

1 Chori—1

G

=P, -1 (LN BE—\T|—1)

= Pnf\T\fl(L n BE—\T|—1)



taking the limes superior on both sides together with the identity lim,, Cg"“ = 4% proves the first

part. For the second part note that (LT~1)T C L and hence by Lemma 2.2 together with the first part
we obtain

1
|E|\T\4|T|+1

Pim(L) > Py (LT 1T) = Pim(LT™Y),

and likewise for Py, (T71L). Finally, for the third part we have

Pl (L[Tk, ..., T1]7)
_ Eim((L[Tk_l, DY T (LT ,Tl]‘1)>

< an((L[quy . 7T1]_1)T;;1) + Flim((L[kaly . ,T1]_1)T;;1)
< 2|3 T4 Tl 1Py (LT s, ..., Th] 7Y
by using the second part for the last inequality. Hence, the claim follows by induction. O

Lemma 3.3. Let A= (Q,%, A, A) be a tree automaton. For every reachable state q € Q there exists a
tree T € B> with |T| < 219 — 1 such that a run of A on T ends in q.

Proof. Let ¢ € Q be reachable by A, so there exists T € B such that a run of A on T ends in ¢. If
IT| < 2/9l — 1 we are done, so assume |T'| > 2|9l — 1. Then there exists w € T with |w| > |Q|. Let
d: D* - QU{L} bearunof Aon T, so for all u € T it holds (d(ul), d(ur), \(u),d(u)) € A. We obtain a

\wlo of states, which A passes from w to pl*! (w)

sequence [d(p™(w))] = e. Since |w| > |Q|, by the pigeonhole
principle, there must be a state in @ which occurs twice in [d(p"™(w ))]lw‘ Let 4,5 € {0,...,|w|} with
i # j and d(p'(w)) = d(p’(w)), then either T(p*(w)) < T(p?(w)) or T(p? (w)) = T(p*(w)). We assume
T(p’(w)) = T(p'(w)), so j > i (the other case is analogous). We obtain a new tree T by replacing
T(p'(w)) by T(p? (w)) in T and set w' := wp ... wj—1w; ... wj,|41, which is the new node at the position
of w. Then |w!| = |w| — |i — j| < |w|. Since A ends in the same state after running on 7'(p’ (w)) and
T(p'(w)), it still ends in g after running on Ty. If |w!| > |@Q| the same argument applies for the sequence
[d(w),d(p(w)),...,d(p" (w)),d(p"*tt(w)),...,d(c)] and we iteratively obtain |w’| < |Q| after at most ¢
iterations. The same argument can be applied to every node v € Ty with |v| > |@Q| until for all nodes v in

the resulting tree it holds |v| < |@|. A binary tree with this property has depth at most |Q] — 1, so its
size is bounded by Y19t ok — 21Ql — 1, -

Next, we show that if a binary tree S occurs as a subtree in a regular language L, then there is a tree
T € L with § < T that is 'not much larger’ than S:

Lemma 3.4. For every regular tree language L C B> there exists n € N such that for all S € B* and
T e L with S XT there exist Ty, ..., T} € BEQTL with k < n such that S € L[Ty,...,Ty]™!

Proof. Let A = (2,Q,A, A) be a tree automaton recognising the language L. For T € L and S € B>
with S < T there exists w = wy ---wy € T with S = T'(w). Let d: D* - QU{L} be arun of Aon T and
d; = d(w; -~ w;) € Q be state of A at node wy - - - w; in this run, for ¢ = 0,...,¢. Then dy € A (because

A accepts T') and d; ~»1 dj—q for i = 1,...,¢. If d; = d; for some ¢ < j we remove that subsequence
d;,...,d;—1 and repeat this process until we get a sequence dj, ..., d,, with m <|Q)|.

Note that dg : D* — QU { L} with dg(v) := d(wv) is a run of A on S with dg(e) = d(w) = dy = d.,,
and our reduced sequence d’ still satisfies d} ~»1 d;_; for i = 1,...,m. The result, with n = |Q|, now
follows from Lemma 3.3 and the definition of ~v. O

We use the previous lemma to show that if a regular tree language L is sparse, then it must already
admit a forbidden subtree. That is, a fixed tree S which does not occur as subtree of any tree in L.

Theorem 3.5. Let L C B> be a regular tree language with Py (L) = 0. Then there exists S € B¥ such
that {T € BZ| S <T}NL={.

Proof. We argue by contraposition and assume that for all S € B> we have {T'€ B¥ | S < T} N L # 0.
That is, for every S € B> there exists T € L with S < T. By Lemma 3.4, we infer that for every S € B>
there exist k <n and T1,...,T € BEQ,L such that S € L[T},...,Ti]~!. This in turn is equivalent to

B C Lnj U L[T,..., Ty "

k=1T,.. T €BZ,,



Using Lemma 2.2 and k successive applications of Lemma 3.2 we obtain:

1 :?hm(lgz) Sﬁlim(u U L[Tk,...,Tl]il)

k=1 Tla"wTkeBEQn

< Z Z ?]im(L[Tkw..,Tl]il)

k=1 T1’~~~,TkEB§2n

n k
<> > FTLmIAmIR,(L)

k=1Ty,.. TheBE,, =1

Thus, we conclude that Py, (L) > 0. O

This converse of the infinite monkey theorem for regular tree languages provides a characterisation of
sparseness in terms of forbidden subtrees. In order to also obtain such a characterisation in terms of tree
automata akin to [Sin15], we give the following definition.

Definition 3.6. Let A = (3,Q, A, A) be a tree automaton. A set of states V C @ is called a sink if
for all ¢ € V and all q;, ¢, € QU {L},a € X it holds that §(q, ¢,a),d(q,g-,a) C V. That is, V is a sink
exactly if every run of A remains in V' once it entered a state in V.

Finally, we conclude the following characterisation of sparse regular tree languages.

Theorem 3.7. Let L be a regular tree language and A = (X,Q, A, A) be a reduced tree automaton
recognising L. Then the following assertions are equivalent:

1. Pyy(L) =0
2. There exists a tree S € B¥ such that {T € B¥|S < T} CB*\ L
3. Ahas asinkVCQwithVNA=0

Proof. Theorems 3.1 and 3.5 together imply 1 < 2.

2 = 3: Let S € B® such that {T' € B¥|S < T} C B¥\ L. Let gy € Q be a state in which A ends after
reading S. Then gg € @ \ A since A has to reject S because all trees which contain S as subtree have to
be rejected. Therefore, all q;,q- € QU {L} and a € ¥ satisfy §(q;, q0,a) C Q \ A and 6(qo,¢r,a) CQ\ A
because otherwise one could construct a tree (since every state is reachable) which contains S as subtree
and is accepted by A. Hence, there exists a sink .S C @ \ A which contains go.

3= 2: Let VC Q\ A be asink of A. There exists a tree S on which A ends in a state of V. If A
runs on any tree containing S as a subtree, A cannot leave the sink and thus cannot leave @ \ A. This
yields {T € B¥|S =T} C L. O

Remark 3.8. By duality, Theorem 3.7 also provides a characterisation of regular tree languages L with
asymptotic density 1: It holds Py, (L) = 1 if and only if there exists a tree S such that S < T implies
T € L, and this is the case if and only if an automaton recognising L has a sink consisting of accepting
states.

As a consequence of this characterisation, we obtain a simple linear time algorithm for deciding
sparseness (or denseness) of regular tree languages akin to the algorithm in [Sin15]. Note that in contrast
to the characterisation given there, here we do not need to require that a sink is a strongly connected
component. If there is a sink V C Q with V C Q \ A, there cannot be a sink V/ C A.

Corollary 3.9. Let L C B> be a reqular tree language. There is an algorithm deciding whether L has
asymptotic density 0 or 1 in time O(n), where n is the number of states of a given deterministic tree
automaton A recognising L.

Proof. We define the state graph of a deterministic tree automaton A = (Q,X,d, A) as G4 = (Q, {(¢,¢") |
ds € Q,a € X.(s,q,a) = ¢ or 6(¢q,s,a) = ¢'}). For aset V C Q we define Né‘A(V) ={d eQ\V:
g e V.(q,q) € E(Ga)}. A strongly connected component of A is a strongly connected component of the
directed graph G 4. The linear time algorithm now is as follows:

1. Compute the set of strongly connected components of G 4.



2. For each strongly connected component V' C @, check whether

2.1. NgA(V) =) and
22. VCAorVCQ\A

For the correctness, we observe that 4 has a sink if and only if there exists a strongly connected component
V C @ with NgA(V) = (. Then the asymptotic density of L is determined by checking V' C A or
V C Q\ A by Theorem 3.7. For the running time, the first step can be implemented to run in time
O(n +n|X|) = O(n) by [Tar72]. Afterwards, for each of the at most n strongly connected components
only constant-time accesses to the adjacency of G 4 and accepting states of A are necessary. O

Unranked Trees. There is a well-known correspondence between binary trees in our sense (with left
and right children) and forests of unranked trees, see, for example, Section 2.3.2 of [Knu97]. Every
unranked tree 7' can be uniquely encoded by a binary tree 77, and the binary trees T” obtained in this
way are exactly those in which the root does not have a right child (i.e. 7 = )). Again there are various
approaches to defining regular languages of unranked trees (such as definability in monadic second-order
logic), all of which are equivalent to saying that a set L of unranked trees is regular if the language

L’ ={T"|TelL}

of binary trees is regular in our sense. Theorem 3.7 therefore gives an exact and decidable characterisation
of regular languages of unranked trees. However, this gives a necessary and sufficient condition on L? for
when a regular language L is sparse. We now show that in fact:

Theorem 3.10. A regular language L of unranked trees is sparse if, and only if, some unranked tree S
does not appear as a subtree of any tree T € L.

Proof. Let S be an unranked tree with root label a := Ag(e) € 3. Then S is a subtree of an unranked
tree T if, and only if, 7° has a node labelled a whose left subtree is exactly S’lb, the left subtree of the
root of S”. (Note that S”, being the encoding of an unranked tree, has S = .) Let us say that S? is an
a-left subtree of T” in this situation.
Now if conca(Slb, ()) < T then in particular Slb is an a-left subtree of T', and with Theorem 3.1 we get
that
Piim ({T° € B| S} is an a-left subtreee of T°}) = 1

for every S}’ € B. Similarly, it is easy to adapt the statements and proofs of Lemma 3.4 and Theorem 3.5
to the case that Slb is an a-left subtree of T”. O

Proving Non-Regularity. In another direction, Theorem 3.7 shows a sufficient condition for the
non-regularity of tree languages:

Corollary 3.11. Let L C B* be a tree language with Py (L) = 0. If L does not have a forbidden subtree,
then L is not regqular.

Example 3.12. We call a binary tree T € B> symmetric if the left and right subtree obtained from
the root are isomorphic. Let Ly, be the set of all symmetric binary trees, then for every a € ¥ and
S € B* we have conc, (S, S) € Leym and thus Lgym, does not have a forbidden subtree. However, for the
asymptotic density of Lgym we get |Lsym N B3| = 0 and

- |Lygm NBS 4| M) . c,
hmz—: 1m72n+17 lmin:(),
noree 1B g1 n=00 Copp1|X] n—o00 Copq1|X]

which yield Piim (Lsym) = 0. By Corollary 3.11 we infer that Ly, is not a regular tree language.

Random Binary Search Trees. Another prominent model for random binary trees are random binary
search trees. These trees appear in the analysis of algorithms such as Quicksort and Find, cf. [Dev86]. A
random binary search tree on n nodes is obtained by taking a root and appending to it a left subtree
of size k and a right subtree of size n — 1 — k independently, where k is chosen uniformly at random
from {0,...,n — 1}. Formally, we let P : BY — [0,1], T + & and for n > 1 and T € B set

2]
Pbst(T) = ﬁﬂ”ﬂ%ﬁ (TZ)IP’F;:l(Tr). For the asymptotic probability of a language L C B> we again set
PESY(L) = lim,, 00 PP (L), given the limit exists.



The characterisation from Theorem 3.7 however does not immediately hold for non-uniform probability
measures. In the following, we consider random binary search trees and show that there are tree languages
with asymptotic probability 0 which do not admit our characterisation.

Lemma 3.13. Let L C B* and T € B*. Then P}t (LT) = 0.

lim

Proof. We use the independence condition in the definition of the binary search tree distribution to obtain
the following:

PYYLTNBY) = > P(S)
SeLTNB:
= Z Z PP5t (conc, (S, T))
SeLnBY | |, a€Z
1 bst bst
= > X A (Ps[(S)
SeLmeflilT‘ a€Y
1 S S’
= Z ﬁ]PFTT(T)IPI\)Slt(S)
SGLﬁBf,l,m
1 S’ S’
=P Y RS
SeLNBY | |p
1., 1
= EPFTT(T)PELSEHT\(L NBy_ 1 7)) < o
Taking the limit yields the desired result. O

Example 3.14. Consider the tree language R that consists of all X-labelled binary trees T with T; = {¢},
i.e., empty left subtree. The language R is regular because the automaton A = ({qo,q1, 42}, {a}, A, {q2})
with

A= {(L, L,a,90)} U{(l,r,a,q1) |7 # qo, (I,7) # (L, L)} U{(l,q0,a,q2) |l € QU {L}}

recognises R.

By Lemma 3.13 we have PPS(R) = 0, but on the other hand, for all S € B¥ it holds that {T' €
B |S < T} ¢ B\ L since every tree might occur as a subtree in a right subtree from R. Also, the
automaton A does not have a sink.

4 Infinite Words

We first review Sin’ya’s result and Koga’s simplified proof [Kogl9] of it and then see how it can be
extended to infinite words.

Definition 4.1. For a language L C ¥*, the infiz language infix(L) is defined as

infix(L) == {w € &* | zwy € L for some z,y € ¥*}. (2)

The language is said to be infix complete if infix(L) = X*.

In [Sinl5], Sin’ya proved that a regular language L has asymptotic density strictly larger than 0 if
and only if it is infix complete. Koga’s simplified proof in [Kogl9] hinges on the fact that for regular
languages, the length of the prefix z and the suffix y in (2) may be bounded uniformly in L, independent
of w. We need a slight strengthening of this in that the prefix £ may actually be assumed to depend only
on L, not on v. We prove this by giving an equivalent condition on DFAs accepting the language L:

Lemma 4.2. Let A = (%, Q, qo, 9, A) be a deterministic finite automaton in which every state is reachable.
Then L(A) is infiz complete if, and only if, some closed reachability class contains an accepting state. In
this case there is a word x € X* and a k > 0 such that for every v € ©* there is a y € X=F with zvy € L.
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Proof. Let us first assume that some closed reachability class C contains an accepting state g € C' N A.
Since all states are assumed to be reachable, there is a string x € ¥* with g(qo, x) = q. Now for every
v E X, q = S(q,v) € C, and because q is reachable from every state in C' there is a y, € ¥* with
S(qq,7 y») = q and therefore

8(qo, 2vyy) = 8(q, vys) = 0(qu, y0) = q € A,

so zvy € L(A). Since C is finite and the string y depends only on ¢, € C' we may assume |y,| < k for
some k depending only on A.

For the converse direction, we adversarially construct a string v such that for every g € @, 3(q, v) is
an element of some closed reachability class. Then for all z,y € ¥*, S(q, zvy) is an element of a closed
reachability class, and if no such class contains an accepting state we get zvy € L(A), so L(A) is not
infix complete.

To construct v we first pick, for every state ¢ € @, a string v, € ¥* such that ) (q,vq) is an element
of some closed reachability class (such a v, must exist because @ is finite). We enumerate the states as

Q ={q0,---,q-} and set
vo =€ and w41 = Vi3 (g, 1) fori=0,...,r.

Then v,41 has the desired property: If the automaton starts in some state g;, then v; takes it to some
state ¢ = d(q;, v;), and from there Us(gi o) = Va takes it to some closed reachability class C. Since this

can not be left, also 8(gi, vy41) € C. O O
Corollary 4.3. Given a DFA A, it is decidable whether L(A) is infix complete.

In fact, for a regular language L the language infix(L) is again regular, and one can easily compute a
DFA for infix(L) given a DFA for L.

An w-word ¢ € X¥ is called rich if for every v € X* there are z € ¥* and y € X“ such that
& = zvy [Sta98]. Our main result on the density of regular w-languages now reads:

Theorem 4.4. Let L C X% be a regular w-language. Then P(L) > 0 if and only if L contains a rich
w-word. Moreover, given a suitable description of L it is decidable whether P(L) > 0 or not.

Proof. Let L =, U;V{* with regular U;,V; C ¥*. Obviously L contains a rich w-word if, and only if,
one of the languages U;V;* does, which is the case if, and only if, V;*” contains such a word. On the other
hand, P(L) < Zle P(U;V#), so P(L) > 0 if and only if P(U;V;*) > 0 for some i. Therefore without loss
of generality we may assume that L = UV for regular U,V C X*.

V¢ contains a rich w-word if and only if V* is infix complete: Since ¥* is countable, if V* is infix
complete we may take a word w, = xvy € V for each v € ¥* and concatenate these words to get a rich
w-word in V¢. On the other hand, if £ € V' is rich, then every w € ¥* is contained in some finite prefix
of &, which in turn is a prefix of some word in V*.

We now show the following: If U,V C ¥* are regular languages and V* is infix complete there is a
word z € ¥* such that

P(eL|z=() =1 or, equivalently, P{¢ex¥|z=¢\L)=0

Since (V*)¥ = V¥ we may actually assume that V itself is infix complete. Pick a DFA A = (Q, qo, 0, A)
with L(A) = V. By Lemma 4.2 there is a closed reachability class C' C @ that contains an accepting
state § € C N A. Let w =ay ---ay € X* be any word such that 3(q0, w) € C. We define a new automaton
A =(2,Q,¢,0,A) by @ =QU{q],...,q,} and

§'(q,a) = 6(q,a) if ¢ € {4, q1, -, qr},

5((13 a’) ifa # ai
(g, a) = {

2+1 ifazai+1andi<€
(g,a1---a;a) ifa+# a1
8 (g}, a) = 8(5(

S IQ

q(]uw)aa)
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Then CU{¢},...,q,} is a closed reachability class in A" and if ( = zp2; --- € £¢ is an w-word such that
w = ¢ and 5’(qo, 20 2) = qp for infinitely many k > 0 (i.e. when reading the w-word ¢, the automaton
A’ passes through the state ¢, infinitely often), then ¢ € V¥. In fact, let k1 < ko < --- be chosen such
that &' (qo, 20 - - 2,) = q; for every i > 1. Then each of the subwords

20 Zky—y  Bki—b41° " Bko—ty  Rko—f41" " Zky—£,

is in V, because it starts with the prefix w and then takes the automaton A to the (accepting) state §.

Now, if ¢ = (1{2(3--- is a random w-word, the random variables (X;);>o with X; = (§’(q07 G Gp)
are a Markov chain with state space @', started in gy and with transition probabilities py o = |§]\_1 if
d(g,a) = ¢ for some a € X, and p, , = 0 otherwise. In particular, the reachability relation — on the
state space of this Markov chain is the same as the reachability relation ~ of the automaton A’, and the
closed classes of the Markov chain are exactly the closed reachability classes of A’. Thus g, is recurrent
by Thm. 2.3, and with Cor. 2.4 we get

P(X; = ¢, infinitely often |w < () =P(X; € C for some t > 0w < () =1,

because if w < ¢ then X, = §(qo,w) = ¢ € C. Finally, if u € U is any word in U then P(¢ € L|uw =
) =1. 0

5 Conclusion

We gave decidable characterisations for sparseness of regular tree languages and of regular w-languages,
both in terms of excluded subtrees and in terms of automata accepting these languages.

By [NPS23], sparseness is decidable also for regular languages of infinite trees, allowing for probabilistic
model checking not just for linear temporal logic, but also for computation tree logic (CTL), opening
the route to many further applications in model checking (cf. [BKLO08, Ch. 6]). However, Niwinski et
al. solve the more general problem of exactly computing the measure of a regular infinite tree language,
at prohibitively high computational cost. Focussing on sparseness is likely to allow for more efficient
algorithms, as exemplified by the linear time algorithm from Corollary 3.9.

Several known graph properties, such as being series-parallel or, more generally, having bounded
tree-width, imply that graphs with these properties can be encoded in labelled trees in such a way that
the original graph can be MSO interpreted in the tree (cf. [FG06, Ch. 11.4]). Our results on sparseness of
regular tree languages can therefore be translated into sparseness conditions for MSO-definable properties
of graphs in these graph classes. However, since a given graph may in general be interpretable in many
different trees, this yields sparseness with respect to some non-uniform notion of density, prompting for a
closer investigation.

Another interesting direction for future work would be more general probabilistic models. While our
methods (as well as those in [CY95] and [NPS23]) easily generalise from independent letters to Markov
chains, it is not immediately clear if this can be done also for strings or trees generated by hidden Markov
models (HMMs, cf. [BJ09]) because in this case, reachability classes of the automaton are no longer the
same as communicating classes of the resulting Markov chain.
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