BKNOTES  4-13-1997 6:08pm
BKNOTES - 4/97

The 11 sections and one appendix drafts enclosed were intended for a book
to be titled "Lattices and Categories of Modules".

Although some informal checking was done as the drafts were written, these
were not regarded as finished drafts. So, full checking of all statements
from beginning to end was not done. Accordingly, the reader is warned
that there may be errors in the text.

E:\BK
BKNOTES
LCM1-1CM11
LCMD
BIBLIO.V2
MYREFS



LCM1V11 - 10/31/88

Chapter I. Mathematical Theories Associated with Rings and Modules.

§1. Introduction.

This book is about rings and modules, but it is not primarily concerned
with the elements, operations, and structure of particular rings or modules.
Most of the results are expressed in terms of the following theories:

modular lattices,

abelian categories,

additive relation categories,

endomorphism algebras of additive relation categories, without constants,

endomorphism algebras of additive relation categories, with constants.
These five diverse theories have a common overlap, which will be displayed
and developed here as a unified theory.

We will be concerned with associative rings with unit 1, and all modules
will satisfy 1x = x. Given a (left) module M over a fixed ring R, consider
the lattices Su(M) of submodules of M and Con(M) of congruences of M. For
any M, Su(M) and Con(M) are isomorphic complete and algebraic lattices which
satisfy the modularity law. Special cases of lattices of the form Su(M)
motivated the original development of modular lattice theory. For example,
Su(M) is a projective geometry (in lattice form) for R a division ring and M
a vector space.

Current module theory makes heavy use of abelian category methods, since
R-Mod is an abelian category if R is a ring. Note particularly the
importance of the well known embedding theorem for small abelian categories;
any such category has an exact embedding into the ca£egory of Z-modules
(abelian groups) and homomorphisms. So, a small abelian category can be
regarded as an abstraction of a subcategory of the category of abelian
groups and homomorphisms, such that the subcategory admits kernels and
cokernels of homomorphisms and direct sums of pairs of objects.

Like abelian category theory, the theory of additive relation categories

introduced by S. MacLane [1C] and D. Puppe [1B] is partly motivated by the



study of modules over a fixed ring R with unit. For R-modules M and N, a
relation u ¢ MXN is called R-linear if u is a submodule of the direct sum

M®N. Elements u of Su(M®N) are in one-one correspondence with R-linear

u 1[0] c uY[N] = M, in Su(M)

isomorphisms ﬁ:Mi/MO——aNl/N0 such that M0

and Ny = u[0] ¢ u[M] = N,, where u(a+M;) = b+Ny iff (a,b) € u. Graphs of

1
R-linear homomorphisms M——N correspond exactly to those isomorphisms with
M, =M and N0 = 0 (everywhere-defined and single-valued relations). One can
define the category R-Rel of R-modules and R-linear relations, where the
morphisms M——N in R-Rel are the elements of Su(M®N), and the composite of

u:M—N and v:N—P in R-Rel is the usual composition of relations:
uv = {{a,c) e M®P: (3b)(b € N, (a,b) € u and (b,c) € v)}.
(We shall follow this forward notation uv for u followed by v, both for

composition of relations and for composition of functions and functors in
general.) Each morphism u:M——N in R-Rel has a converse u#:N——*M, given by:
o = {{b,a): (a,b) € u}.
The diagonal relation is a unit for multiplication:
1y = {{a,a): a € M}.
The Hom sets Su(M®N) are (0,I) modular lattices when ordered by inclusion,
so that meet uAv is intersection, join uVvv is (set) sum of submodules,
I.. = M®N and OMN = {0} = {(0,0)}. Following P. Hilton [1A, §5], a weak

MN

additive structure on Su(M®N) is given, using:
u+v = {{a,b+c): ae M, b,c e N, (a,b) € u, {a,c) € v}
to define relational sum. Now, M®0 is an additive 0, but not every element

of Su(M®N) has a negative for relational sum. - However, there is a
(generalized) negative operation satisfying u+ (-u)+u = u, given by:

-u = {(a,-b): {(a,b) € u}.
The categories of form R-Rel, provided with the structures described above,

are the prototypes from which additive relation category theory was developed.

The abelian category R-Mod is isomorphic to a subcategory of R-Rel.



The endomorphism algebras of R-Rel are just the sets Su(M®M) provided
with structures induced by R-Rel. It is convenient to introduce two forms
of endomorphism algebras, with and without constants. The theory of type 7,
has just the composition, converse, meet, join, relational sum and negative
operations, but no constants. The theory of type T, has all of the above
operations plus the constants 1, 0, O and I. Computation with these algebras
is similar to diagram-chasing for additive relation categories. Since
operations are everywhere defined for the algebras, complications associated
with partially defined operations can be avoided by using them.

For each ring R with unit, the associated R-modules yield an abelian
category R-Mod and an additive relation category R-Rel. For the algebraic
theories of modular lattices and of additive relation algebras, R-modules

yield classes of models:
mL(R) = {Su(M): M an R-module},

{Su(M@M) as a T,-algebra: M an R-module}.

M, (R)

mB(R) {Su(M®M) as a T -algebra: M an R-module}.

The primitive elements of these theories (submodules, additive relations,
homomorphisms viewed as function graphs) represent modules as a whole. The
choice of the ring R has no effect on the syntax of terms and formulas in
these external theories. However, such a formula may represent a true
statement for some choices of R and a false statement for others.

For modular lattices and additive relation algebras, we will investigate
finitely-presented word problems. In a typical such problem, a finite list
of polynomial equations are assumed to be satisfied by a list of submodules
of a module, and it is required to determine whether another given
polynomial equation is necessarily satisfied by these submodules. Lattice
polynomials are obtained by combining variables using binary meet and join

symbols, as usual. For additive relation algebras, the polynomials combine

variables (and possibly constants 0, 1, O and I) using unary converse and



negative, and binary meet, join, composition and sum symbols. For additive
relation algebras, the submodules must belong to some Su(M®M), which is used
to compute the polynomials. Each such word problem can be represented by a

basic universal Horn formula I', of form:
(Vxy,%p, .. 0%, )((By = APy =Gy A v AP, =q,) 2 (g = qp))

where p, = p,(x

; (r---a% ) and q; = qi(xl,...,xm) are all lattice polynomials

(or are all additive relation polynomials of type 7, or of type TB). When

n = 0, we have a free word problem

(Vxl,xz,...,xm)(po(xl,...,xm) = qo(xy, . 0%)),
which is an algebraic identity if true. Here, I' is true for R-modules if it
is satisfied for all members of mL(R), mA(R) or mB(R), respectively.

For abelian category theory, the corresponding concerns are usually called
diagram-chasing problems (Noether isomorphisms, connecting homomorphism, five
lemma, etc.). Typically, a diagram of modules and linear maps is given, and
certain commutativity, exactness, additivity and other relationships are
assumed. Then specified diagram relationships are showed to be necessary
consequences of the hypotheses. Another kind of diagram-chasing, using
relation category structures, is available for additive relation category
theory. The informal use of diagrams is an effective means for presenting
and organizing multiple hypotheses and their consequences in category-based
theories. Our analysis will be restricted to diagram problems involving
finitely many elementary hypotheses, in the appropriate sense.

Word problems and diagram-chasing problems can be expressed as true/false
determihations for certain propositions in the external theories of modules
described above. To make this precise, we consider formulations of the
first-order predicate calculus with equality for these five theories. For
the algebraic cases (lattices and additive relation algebras with our without
constants), standard methods are used. For abelian category logic and
additive relation category logic, we use purely relational logics. These

logics have no constants or primitive functions; the only terms are variables.



The atomic predicates represent various partially-defined operations and
relationships appropriate for these categories. The universal sentences
(that is, closed prenex formulas with only universal quantifiers) in all
five logics will be showed to represent the same body of knowledge about
modules over a fixed ring. In Chapter I, we develop the results needed to
precisely state and prove this assertion. Translation functions are
constructed which map universal basic Horn sentences in one theory to those
of another. Given a ring R with unit, the translated sentence must be true
for R-modules if and only if the original sentence was true.

In Chapter I, we also begin the study of inclusions and equivalences
of our theories for different rings. We show that SM (R) is a quasivariety
(or universal Horn class) of lattices for any ring R. (As usual, SC denotes
the class of isomorphic images of subalgebras of algebras in €, where C is
any class of algebras of a given type.) So, SM (R) is precisely the class
of lattices satisfying all the universal sentences that are satisfied in
Su(M) for all R-modules M. This result leads to a proof that SM,(R) is the
quasivariety of additive relation algebras generated by M,(R), and similarly
for SmB(R) and mB(R). For rings R and S, we write R X S if R has fewer
models than S, so that more universal sentences are true for R-modules than
for S-modules. Using the translation functions, we can characterize relations
R X S5 in all five of our theories. For example, SmA(R) c SmA(S) is one such
characterization. The most useful characterization is by abelian categories:
R X S iff there exists an exact embedding functor R-Mod——S5-Mod. We call the
relation R X S diagram inclusion, and there is a corresponding diagram
equivalénce relation R ~ S, when R X S and S X R.

In Chapter II, the computability and unsolvability of decision predicates
is analyzed, with respect to the universal sentences described above. A finite
presentation (two generators and one defining equation) of type Ty is given
and proved to be generally unsolvable. (That is, this presentation has a

recursively unsolvable word problem with respect to all quasivarieties SM (R),



where R is a nontrivial ring.) Using the universal basic Horn sentence
translation functions, similar R-unsolvability results follow for universal
sentences of the other four logics. However, the free word problems for
lattices and additive relation algebras (algebraic identities) are recursively
decidable for many rings R. The analysis reveals the distinct varieties of
additive relation algebras generated by classes M (R), R a ring. Essentially
the same analysis holds for mA(R), and for the varieties of modular lattices
generated by the classes mL(R) (see Hutchinson and Czeéedli [1D]).

In Chapter III, we show that the study of general diagram equivalence
can be reduced to the study of diagram equivalence of rings R and S having
the same prime power characteristic pk. We develop a system of criteria for
this special case, based on certain identifiable ring ideals. Most of the
results depend upon the many known methods for constructing exact functors
between module categories (change of rings, projective, injective and flat
modules, ring idempotents, etc.).

Axiomatization and representation problems are considered in Chapter IV.
For any ring R, a constructive process is given in Chapter I which generates
an infinite axiomatization of SmL(R) by universal basic Horn sentences for
lattices. For many rings R, it is known that no finite such axiomatization
of SmL(R), SmA(R) or SmB(R) is possible. For other nontrivial rings, the
finite basis problem for these quasivarieties remains open. A four-way system
of dualities is also studied, based on order duality for lattices (exchange
~meet and join) and category duality (reverse the arrows).

Some of our representation theorems have the form:

Each additive relation algebra satisfying property = is
in SM,(R), and every X in SM,(R) is a subalgebra of an additive

A
-
D
ht

relation algebra satisfying

Here, such Z will always be expressible as a closed prenex sentence of our
first-order additive relation algebra logic, having both existential and

universal quantifiers. Other representation theorems have the above form



adapted for modular lattices. The proofs are based on abelian category
embedding methods.

A substantial simplification of the results for rings and modules occurs
if only division rings and vector spaces are considered. In Chapter V, we
give the analysis that applies in this special case. There are also special
results that involve lattice complementation, since Su(M) and Su(M®M) are
complemented modular lattices if M is a vector space.

Readers unfamiliar with universal algebra and modular lattice theory will
find some basic facts and terminology described in Appendix A. Elementary
information about rings and modules has been collected in Appendix B. Basic
information about categories, including abelian categories and additive
relation categories, is in Appendix C. There are other appendices with

additional analysis of material in the main text.



LCM2V10 - 11/4/88

§2. Modular Lattices that are Representable by Modules.

In this section, we verify that the classes of lattices SmL(R) are
quasivarieties, using a specialized logical technique. It also follows
that only countable rings need be considered for analysis of these lattice

classes.

2.1. Definitions and Properties. Let 7, denote the algebraic type for

L
lattices (binary meet and join): T, = {(A,V), arities (2,2).

Suppose R is a ring. A lattice L is representable by an R-module if
there is a lattice embedding (that is, one-one TL—homomorphism) L—Su(M)

for some R-module M. Let £(R) denote the class of all lattice that are
representable by R-modules. That is:

2(R) = SM (R) = S{Su(M): M in R-Mod} = S{Con(M): M in R-Mod}.
2.1a. For any R, £(R) admits isomorphic images, sublattices, and arbitrary
products of lattices including the trivial lattice. (If Lj——eSu(Mj) is a
lattice embedding, Mj an R-module, for all j in an index set J, then there is

an obvious lattice embedding of njeJ Lj into Su(ﬂjEJ Mj).)

In view of 2.1a and A?, it is sufficient to show that £(R) admits
ultraproducts to conclude that £(R) is a quasivariety of lattices. This
can be done by methods of model theory, as showed by B. Schein [2A] and by
M. Makkai and G. McNulty [2B]. Makkai and McNulty prove a number of
properties of the quasivarieties £(R), including several properties
discussed below.

Our approach yields these results of [2B], and we also obtain a
completeness theorem for our specialized logic. In [2C], a related method
was used to generate an infinite axiomatization of L(R) by universal basic
Horn sentences when R is commutative. There is also a close connection with
the logical methods of [2D]. An alternative method has been considered by
G. Czedli [RE].

Given a ring R and lattice L which is not representable by an R-module,



we first show that there exists a finite sequence of certain elementary
steps by which this fact can be proved. These sequences resemble formal
proofs, in that they are generated by axioms (which can begin a sequence or
be added at the end of any already constructed sequence) and rules of
inference (by which sequences containing certain specified premisses can be
extended by adding consequences of these rules). However, the sequence
elements are not formulas, but are instead pairs belonging to a Cartesian

product R‘®) x L, where R'®) is an appropriate free R-module.

2.2. Definitions. Let R be a ring and L a lattice. Let R(B) denote the
free R-module generated by a set of variables B, where B consists of
pairwise distinct variables of two sorts: a variable bX for each x in L, and
a variable b, for each i 2 1. An (L,R)-sequence is a finite sequence of
elements of R{B) xL which is constructed according to the axiom scheme 2.2a
and rules of inference 2.2b through 2.2e below. Letting u,v denote

arbitrary elements of R‘B) and X,y arbitrary elements of L:

2.2a. (bx,x) is an axiom.

2.2b. Premisses (u,x) and {u,y) yield the consequence {(u,xAy).
2.2c. A premiss (u,x) and r € R yield the consequence (ru,x).
2.2d. Premisses (u,x) and (v,y) yield the consequence (u+v,xVy).

2.2e. From a premiss (u,xVvy), an (L,R)-sequence of n terms can

be extended to n+2 terms by adding (b_,x) and (u-b_,y).

Adapting the usual statement, the set W(L,R) (or just W) of all

(L,R)-sequences is defined as the smallest set of finite sequences on

)

R{B) x L such that (1) (wl) is in W if w, is an axiom 2.2a, () (wl,...,w

n+1

is in W if (wl,...,wn) is in W and w ., is either an axiom 2.2a or a

consequence of a rule 2.2b,c,d whose premisses belong to {wi,...,wn}, and

(3) (wi,...,wn+2) is in W if (wi,wz,...,wn) is in W and w are

n+1’wn+2

consequences of an instance of 2.2e with premiss in {wl,...,wn}. A pair

(bx,y) is (L,R)-derivable if it is the last term of some (L,R)-sequence.



Roughly speaking, the pair {u,x) represents an assertion that a certain
R-module element corresponding to u belongs to a certain submodule
corresponding to x. The generator b _ is intended to represent an element in
general position in the x-submodule, so that 2.2a is the only assumption
made about bx. The rules of inference 2.2b,c,d are straightforward. Rule
2.2e is more complicated: it is intended to express the fact that any
element u in xVy is the sum of some element b in x and (necessarily)

u—b iny. Hence b implicitly has an existential quantifier. To avoid a
conflict of variables b, in construction of an (L,R)-sequence involving
several uses of 2.2e, we impose the restriction that b be used in applying
2.2e to an (L,R)-sequence of n terms.

The following derived rule of inference is convenient for construction of

(L,R)-sequences.

2.3. Proposition. Suppose R is a ring, L is a lattice,

w = (wi,wz,...,wn) is an (L,R)-sequence,
(uj,xj) € {wi,wz,...,wn} for j =1,2,...,m,
Y Z X VX, V... VX in L, and r,,r,,...,r are in R.
Then w can be extended to an (L,R)-sequence (wl,wz,...,wn+2m+2) such that
Wooo T (r1u1-+r2u2-+...-+rmum, y).

Proof: Assuming the hypotheses, extend w by (by,y) using 2.2a, (0,y) using
2.2¢c, (rlul,xi) using 2.2c, (O-+r1u1, y\/xl) = (riui,y) using 2.2d, and then

use 2.2¢ and 2.2d alternately. =

The next result is the appropriate completeness theorem for the

specialized logic of (L,R)-derivability.

2.4. Theorem. Let R be a ring and L a lattice. For x,y in L, the following
are equivalent:

2.4a, (bx,y) is (L,R)-derivable.

2.4b. If h:L—Su(M) is a lattice homomorphism for some R-module M, then



h(x) € h(y).

Proof: Assume the hypotheses, and suppose h:L—Su(M) is a homomorphism
for some M in R-Mod. Assuming 2.4a, there exists an (L,R)-sequence w =
(wi,...,wn) such that w_ = (bx,y). Let w, = (ui,xi) for i £ n, and assume
that v € h(x). By induction, we define R-linear maps gi:R(B)——aM for i =
1,2,...,n such that gi(bx) = v, gi(bz) =0 for z # x in L, gi(bj) = 0 for
all j 21, and gi(uj) € h(xj) for all j = i. Clearly, g, has already been
defined and has the required properties. Assume the induction hypothesis:
g, has the required properties, and that (wl,...,wi) is an (L,R)-sequence,

for some i < n. If u,, * bi’ then LI is either an axiom 2.2a or is

1 1

obtained by one of the rules 2.2b,c,d. Then define g,,, = g,, and note that
g;,, has the required properties. For u, , =b,, (w,,...,w;) has been

extended by rule 2.2e, so there exists k = i such that:

), w. = (b.,x ).

i+1 i i+1)’ w = (uk-—b.,x

= \
w (uk’xi+1 X i+2 i i+2

k i+2
By hypothesis gi(uk) € h(xi+1)\/h(xi+2), so there exists v, in h(xi+1) such

that gi(uk)-—vi is in h(x.

i+2)- Now define g, , by g;,,(b;) = v, and

gi+1(bj) = gi(bj) for j + i, and g,,, = g;,,- Since the variable b; has

coefficient 0 in all terms uy, jsi, g and g;,, have the required

i+1

properties. This completes the induction, and we immediately obtain:
v=g(b)=g(u)eh(x) =h(y).

Therefore, h(x) € h(y), which proves 2.4a = 2.4b.

We have shown the correctness of our proofs: the derivability of (bx,y)
implies the property 2.4b for homomorphisms of L into R-submodule lattices.
The combleteness of this method, that (bx,y) is (L,R)-derivable when x and y
in L satisfy 2.4b, is proved by a lengthy and complex argument. It has been

separated from the main text (see Appendix D). ®

2.5. Corollary. Let R be a ring and L a lattice. Then the following are

equivalent:

2.5a. L is representable by an R-module, that is, L € £(R).



2.5b. For all x,y in L, (bx,y) is (L,R)-derivable = x < y.

Proof: Suppose L € £(R), with A:L—Su(N) a lattice embedding for an
R-module N. If (bx,y) is (L,R)-derivable, then A(x) € N(y) by 2.4, so

< y since N\ is a lattice embedding. Therefore, 2.5a = 2.5b.

Let 8 = [} {¢ € Con(L): L/g¢ € £(R)}, so L/8 is in £(R) by 2.1a and A?.
If 2.5a fails, then there are x,y in L with x $ y but (x,y) € 6. Now 2.4b
is satisfied for x and y, since h(x) = h(y) for any such h. So, (bx,y) is
(L,R)-derivable by 2.4, and 2.5b fails. Therefore, 2.5b = 2.5a. ®

The following brief example shows that the standard argument that each
Su(M) satisfies lattice modularity can be expressed using (L,R)-sequences.

A longer example of (L,R)-sequence calculation is given in Appendix D.

2.6. Example. Suppose L € £(R) for an arbitrary ring R. To prove L is
modular, we show that for y, ,y,,y, inL, y, SV, implies:
(y,Vy,) Ay, =P <q =y, V(y,Ay,).

An (L,R)-sequence is constructed as follows:

1. (bp,p) by 2.2a.

5. (bp, yi‘vyz) by 2.3 using 1 (terms 2,3,4 omitted).

6. (by, y,) by 2.2e using 5.

7. (bp 51 Yp) by 2.2e continued.

13. (bp 5 ¥,) by 2.3 using 1 and 6 (terms 8-12 omitted).

14. (bp-—bs, y, Ayy) by 2.2b for 7 and 13.

15.3(bp, yi\/(yzl\ys)) by 2.2d for 6 and 14.
Since (bp,q) is (L,R)-derivable if A S it follows by 2.5 that

p £ q, hence L is modular.

By using 2.5, we can confirm that each Z(R) is a quasivariety, and prove
variants 2.8 and 2.10 of some useful results of Makkai and McNulty (see [2B,
Thm. 3, p. 29, and Cor. 3, Cor. 6, p. 30]). Each (L,R)-sequence construction

can be abstracted as a collection of relations between variables representing



ring elements plus a collection of relations between variables representing

lattice elements.

2.7. Definitions. Let 71, denote the algebraic type of rings with unit,

with binary sum and product, unary negation, and constants 0 and 1:

Tp = {(+,-,0,%,1), arities ¢(2,1,0,2,0).

A system of ring equations formula is a sentence of first-order ring theory

of the form below, for some m,n = 1:
(3x1)(3x2)...(3xm)((p1 =0)/\(p2 =0)A ... A(pn=0)),

where each P, = pi(xl,xz,...,xm), i €n, is a TR—polynomial.

If L is not in £(R), then by 2.5 there exist x and y in L such that x £ y
but (bx,y) is (L,R)-derivable. Let w denote an (L,R)-sequence with last
term (bx,y). We can construct a system of ring equations ¥ and a basic
universal Horn sentence I' for lattices corresponding to w. More precisely,
if ¥ is satisfied in a ring S and the hypotheses of T' are satisfied in a
lattice K, then we can define a (K,S)-sequence with step by step construction
following the same pattern as w. The conclusion of T' corresponds to x <y,
so that ' is not satisfied in L. However, I' is satisfied in every lattice
in £(S) if ¥ is satisfied in S. In particular, ¥ is satisfied in R, and so
' is satisfied in every lattice in £(R).

In example 2.6, we gave an (L,R)-sequence (wi,wz,...,wis) involving

and b, of B. We could introduce ring variables r . , r,,

P

elements b , b
P 3

and r . and lattice variables x, such that w, is represented by (u,x,)

5

with u, = r,

b +r..b,+r..b, for i =1,2,...,15. Since w,, was obtained
ip'p i3™73 i575

14

by 2.2b for w, and w

7 131 We would include equations r =r =r

14,p 7.p 13,p’

=r =r and r =

7.3 13,3 14,5 r, 5 =Ty 5 in ¥ to force u = u, = u.,,

Ti4,3 14 7

and equation x,, = X, Ax . as a hypothesis of ' It is straightforward to
develop such equations for all the rules of inference of 2.2; the details

are given in Appendix D. The result stated below is then obtained.

2.8. Proposition. Suppose R is a ring and L is a lattice not in Z(R). Then



there exist a system of ring equations ¥ and a universal basic Horn sentence
[ for lattices such that ¥ is satisfied in R, I is not satisfied in L, and for

any ring S, ¥ satisfied in S implies I' is satisfied in every lattice in £(S).
The known fact that each £(R) is a quasivariety follows now.

2.9. Corollary. For each ring R, £(R) is a quasivariety of lattices,
axiomatizable by a set of universal basic Horn sentences of first-order
lattice theory.

Proof: Suppose L is in the quasivariety generated by £(R). If L is not in
L(R), then there exists a basic universal Horn sentence I' such that £(R) F T
but T is not satisfied in L, by 2.8. This is a contradiction, proving that

2(R) is a quasivariety. =

The next result, from [2B], shows that only countable rings need be

considered when studying the quasivarieties Z(R).

2.10. Corollary. For each ring R, there exists a countable subring S of R
such that £(R) = £(S).

Proof: For any ring T, let £, denote the set of formulas ¥ which are
systems of ring equations satisfied in T. We can assume that such a ¥ is a
sentence on some fixed countable alphabet, so that ET is a countable set.
Given R, each ¥ in £  is satisfied in some finitely generated subring of R.
So, there exists a countable subring S of R such that &, = ER' By 2.8, a
lattice L is not in £(R) iff it is not in £(S). But then £(R) = 2(S5). =



