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§3. Additive Relation Algebras.

In this section, we begin the axiomatic study of additive relation
algebras. It is useful to introduce two varieties of additive relation
algebra, with and without constants. The form with constants is similar to
that described in [3A, 3B], and is closely related to the endomorphism
algebras obtained from the additive relation category theories of S. Maclane,
D. Puppe, P. Hilton and H.-B. Brinkmann [3C,3D,3E,3F,3G,3H]. The new form
without constants is even more closely connected to category theory, as will
be showed in later chapters. Some of the computations here are adapted from

this previous work, but we will omit individual references in most cases.

3.1. Definitions. The algebraic types for additive relation algebras

without and with constants are given as follows:

T (+,-,-,#,A,v), arities (2,1,2,1,2,2),

A

{(+,-,0,-,1,#,A,v,0,I), arities (2,1,0,2,0,1,2,2,0,0).

B

The variety UA consists of all 7, -algebras satisfying 3.1a-h, and members
of UA are called additive relation algebras. The variety UB consists of all
Tp-algebras satisfying 3.1a-i, and members of UB are called additive
relation algebras with unit (see 3.12).
3.1a. All modular lattice identities are satisfied by A and v. (Let =
denote the lattice order, and let f < g denote the equation fAg = f, in the
usual way.)
3.1b. Sum is associative and commutative, and is monotonic in both
arguments (that is, (fAg)+(hAk) s f+h).
3.1c. ﬂultiplication is associative, and is monotonic in both arguments
(that is, (fAg)(hAak) = fh).
3.1d. Converse (written f*) is an involution and generalized inverse for

multiplication, that is:
(£%)* = £, (fg)* = ¢*t* and ££¥f = £,

It preserves meet and join:



(fag)* = £¥ng” and (fvg)* = ¥ vgt.
3.1e. Negation is an involution and generalized negative for sum, that is:
~(-f) =f, ~(f+g) = (-f)+(-g) and £+ (-f)+f = f.
Negation preserves meet and join:
-(frg) = (-f)A(-g) and -(fvg) = (-f) Vv (-g).
It commutes with converses and multiplication:
-(£%) = (-£)* and -(fg) = (-f)g = £(-g).

3.1f. f+(-f) is a null element, that is:

(f+(-£))g(f+(-f)) = £ +(-f).

It also satisfies:

A

(£+(-£))7(£+(-£)) = (£+g)*(£+g), and
(£+(=£))(E+ (~£)* 2 (F+g)(f+g)".
3.1g. fgAh < ff*h and hf*f < gf vh.
3.1h. (f+g)h =2 fh+gh and f(g+h) = fg+fh.
The additional axiom group for the constants in 7, is:

3.1i. 1 is a unit (1f = f1 = f), 0 = 1+(-1), 0 is a zero (f+0 = f),

0=20%, I=00"2and0s<fc<I.

IA

From the above, we see that UA is axiomatized by 32 T,-identities and UB

A

by 40 T ,-identities. As previously observed, 7, is the reduct obtained from
T, by omitting the constants (nullary operations). Note that the first five

operations of 7. are precisely the T, operations used for rings with unit.

B R

However, additive relation algebras are not additive groups for sum in
general (unless B in V; is trivial, f+(-f) = 0 is not satisfied everywhere
in B), and we have only the half-distributivities 3.1h, not full
distributivity as in ring theory. The last four operations of 7, are the
(0,I) lattice operations, and B in UB is indeed a modular lattice with
smallest element O and largest element I.

Most of the axioms are familiar from ring theory or lattice theory. The



properties of relational sums were studied in [3C], [3D] and [3E]. Less
familiar axioms such as 3.1f,g can be understood more readily as the theory
is developed. In particular, axioms 3.1g are modifications (removing the
constants) of the axioms fIAag < ff#g < fOvg of [3A], and are related to
the axioms K2a and K2b of [3C] and [3D].

We have not closely studied the dependence relationships among these
axioms. However, it is clear that only one of the identities involving A
and vV in 3.1d is necessary, and similarly for 3.1e. We will eventually see
that parts of 3.1i could be omitted also.

The T,-algebras obtained from modules by the operations described in §1

B

(that is, endomorphism algebras for R-Rel) are members of V., and their

reducts to type 7, are members of UA:

A

3.2. Definition and Properties. For any ring R and R-module M, let Rel(M)

denote Su(M®M) regarded as a T -algebra, and let Rel (M) denote Su(M®eM) as

B

a 7,-algebra. For R a ring with unit, let
a(r) SmA(R)
B(R) SmB(R)

S{Rel (M): M an R-module},

S{Rel(M): M an R-module}.
We say that a 7 ,-algebra A is representable by an R-module if it is in Q(R);

or equivalently if there exists a T,-monomorphism from A into some Rel (M).

A
The same terminology is used for members of B(R).

3.2a. Rel(M) is an additive relation algebra with unit, and Rel (M) is an
additive relation algebra. (Proof by direct verification of the defining

properties is omitted.)

3.2b. For any ring R with unit, A(R) ¢ UA and B(R) c UB.

We will show in the next section that ((R) and B(R) are quasivarieties of
algebras of types 7, and 7, respectively.

Throughout the remainder of §3, we will assume that A is an arbitrary
additive relation algebra, and that B is an arbitrary additive relation

algebra with unit.



3.3. Proposition. If p(x ,xn) is any 7,-polynomial and f, = g, in A

T P
for i = 1,2,...,n, then p(fi,fz,...,fn) < p(gi,gz,...,gn). Similarly,
TB—polynomials are monotonic in all arguments on B.

The proof is by induction on T,-polynomial or TB-polynomial length,

using 3.1a,b,c,d,e.

3.4. Definitions and Properties. An element f of A (or of B) is called
symmetric if f = f#, is called an idempotent if f = ff, and is called null
if fgf = f for all g.

3.4a. For all f in A, ££* and £*f are symmetric idempotents (3.1d). Also,

e in A is a symmetric idempotent iff e = ce’ iff e = e*e iff f = ee’ iff

3.4b. If z is null, then fz, zg and fzg are null for all f and g in A. If

#, zz* and 2%z is null, then all four are null (3.1d).

any of the four maps z, z
3.4c. If y and z are null, then yfz = yz for all f (yfz = yfzyz = yz). In
particular, a null element is an idempotent (z = zz%z = zz).

3.44. If z is null, then z = -z = z+z. (Clearly -z = —(zz#z) = z(-z
using 3.1e. So, z+z+z =z+(-z)+z = z. Then

z=2z(z+z+2z) <zz+z(z+z) = z+2(zz+22) € z+z(z+2)z = z+2z,
using 3.1h, 3.3 and 3.4¢c, so z S z+z < z+z+2 = 2.)
3.4e. If y and z are null, then yAz, yvz and y+z are null. (We have
yaz < (yaz)y*(yrz) < yy*yazy?z = yAz, so yAz is null using 3.4b.
Similarly, yvz is null. By 3.4d and 3.1b,e,f, y+z = y+(-y)+z+(-2) =
(y+z)+-(y+z) is null.)
yf. If £ = z for z

1

3.4f. If y = f for y symmetric and null, then yf +y
symmetric and null, then fz+z = fz. (For h = yf+y, we have h = yf +yy =
yf +yf = yf since yf is null (3.4b,d). Also,

vf = yf(yf)*yf < yfh*nh < yfh?yf + yfh*y = yf+y = h,
using 3.1d,f,h, since yf = yf + (-yf). The second part is similar.)
3.4g. If £ s g, ff¥ > gg* and £#f > g¥g, then f = g (g = gg¥g = ff¥g <



fg*e < £f*f = £ by 3.1d and 3.3).
3.4h. Suppose e is in Rel(M) for some R-module M. Then e is a symmetric

idempotent iff there exist C = B in Su(M) such that:
e = {{a,b): a,b € B, a—-b € C}.
Furthermore, z in Rel(M) is null iff there exist B and C in Su(M) such that

z = B®C. Also, z is symmetric and null iff z = B®B for some B in Su(M).

(Proof omitted.)

The theory of additive relation algebras has two simple duality

principles, which we describe next.

3.5. Definition and Properties. Let A°°", called the converse dual of A,

denote the T -structure as A, except

-algebra with the same elements and T,

A
that for all u and v, uv in A°°" equals vu in A and u+v in A°°" equals the
#)# geon

converse sum (u* +v in A. For , the TA—operations are the same as

for A®°™  and the constants 1, 0, 0 and I of B°°™ are the elements 1, 0%, 0
and I of B, respectively.
Let A°T9 the order dual of A, denote the T,~algebra with the same

elements as A and 7,-structure obtained from A by exchanging meet and join

A

(lattice duality), replacing sum by converse sum, and keeping multiplication,
converse, and negation as in A. For B°rd, the TA~operations are the same as
for A°T9, and the constants 1, 0, 0 and I of B°"? are respectively equal to
the elements 1, O#, and (exchanging) I and O, in B.

Let A* denote (A°T9)°°"  the order-converse dual of A, which equals

(A°°™)°td  In A*, lattice operations are exchanged, multiplication is
b g b

reversed, and converse, sum and negation are the same as in A. For B® =
(Bordyeon - (geomyord " 4 4nd 0 are the same as in B, and O and I are

exchanged.

8.5a. For C in VU, or ¥, C = (C°°™)°°™ = (c°r9)°rd = (¢*)*.

3.5b. For C in ¥V, (respectively, V;), wi—u* determines reciprocal

B

T,~isomorphisms (respectively, T -isomorphisms) C®°"——C and C—C°°".

A B



3.5¢c. If C is in ¥V, (respectively, ¥;), then ceer  ¢°td and C* are in v,
(respectively, V). (For c°°" use 3.5b. Verify 3.1a-h or 3.la-i for C*
directly, and then use C°T% = (C*)®°™ by 3.5a.)

Symmetric null elements characterize singleton 7,-subalgebras.

A

3.6. Proposition. An element z of A is symmetric and null iff {z} is a

T,~subalgebra of A.

Proof: If {z} is a TA—subalgebra, then z = z* = z+(-2), so z is

symmetric and null (3.1f). Suppose z is symmetric and null. We have z =
z¥ = z2Az =2vz, and z = 2z by 3.4c, and z = -z = z+z by 3.4d.

Therefore, {z} is a 7,-subalgebra of A. ®

3.7. Corollary. Suppose p(xl,xz,...,xn) is a 7,-polynomial, and z is
symmetric and null in A. If fi fz<g, for i = 1,2,...,n, then
p(f . f,, ... f ) =2 <p(g 8, - 8,)

Proof: By 3.3 and 3.6. =

From 3.7, we see that the intervals {f: y < f < z} are 7,-subalgebras of

A
A, for symmetric null y and z in A with y < z. We next give a technical
result, followed by introduction of some convenient notation, to prepare for

the analysis of such intervals.

3.8. Proposition. If y is a symmetric null element of A such that y = fAg,
then y(f+g) = yfvyg. If z is a symmetric null element of A such that z 2
fvg, then (f+g)z = fzAgz.

Proof: Assume that y is symmetric null and y < f Ag, and let h denote

yf vyg.' Using 3.1d,h, 3.4b,c,d, 3.3 and 3.7, we have

yh < hh*h = h.

y(f +g) < yf +yg = yyf +yyg < yh+yh

yf, using 3.7 and 3.4c,e. Since

H

Now y(f +g) = y(ff#f-+g) 2 y(yf +y) = yyf
y(f +g) 2 yg similarly, we have h = yfvyg < y(f +g) < h. The second result

is dual. =

Recall from §1 that f in Rel(M) corresponds to an isomorphism



E:Ci/CO———»Dl/D0 for appropriate C;, < C, and D, <D, in Su(M). We can
define symmetric null elements corresponding to C,, C,, D, and D, in any

additive relation algebra.

3.9. Definitions and Properties. For f in A, define:

P(£) = (£+(-£))(£+(-£)) and q(f) = (£+(-£))(£ + (-£))*.
3.9a. For all f in A, p(f) and q(f) are null symmetric idempotents, by 3.1f
and 3.4a,b,c. Also, q(f)p(f) = f+(-f), so £f+q(f)p(f) = £.
3.9b. p(f) = (F+g)*(f+g) and q(f) 2 (f+g)(f+g)* (3.1f). So, p(f) = £*f
and q(f) 2 ff* taking g = (-f)+f and using 3.le. Therefore, p(f#) < q(f)
and p(f) < q(f*).
3.9c. If f < g, then p(f) < p(g) and q(f) = q(g) (3.3).
3.9d. p(fg) 2 p(g) and q(fg) = q(f). In particular, p(f) = p(£*f) and
q(f) = q(ff#). (For h = g+ (-g), we have ‘

p(fg) = (fg+ (-fg))*(fg+ (-fg)) = (fh)*th = h¥f¥fh = h*h = p(g),
using 3.1d,e,f,h and 3.4c. The second part is dual, and the remaining
parts follow from f = ff*f.)
3.9e. If z is null, p(z) = z*z and q(z) = zz¥ (3.4d). In particular,
p(p(f)) = q(p(f)) = p(f) and p(q(f)) = q(q(f)) = q(f) for all f (3.9a).
3.9f. Let e be a symmetric idempotent of A. Then p(e) = e = q(e), p(e) =
ep(e) = p(e)e and q(e) = eq(e) = q(e)e. (We have p(e) = e = q(e) by 3.9b,
and p(e) = p(e)(e+(-e)) = p(e)e+p(e)(-e) = p(e)e using 3.4c,d, 3.9b, 3.8
and 3.1e. Then p(e) = ep(e) by taking converses, and the other parts are
dual.)

3.9g. Suppose f € Rel (M) for some R-module M. Then
q(f) = C, ®C, for C, = {v e M: (3w) (v,w) € f},

{v e M: (v,0) e £},

p(£¥)
q(£*)

p(f) = D0f9D0 for D0 = {veM: (0,v) e f}.

C0 ®C0 for C0

D, ®D, for D, = {v e M: (3u) (u,v) € f}, and

(Proof omitted.)



3.10. Definition and Properties. Suppose y and z are symmetric null
elements of A with y < z. Then [y,z] denotes {f: y < f < z}, which is
called an interval subalgebra of A.

3.10a. [y,z] is a TA—subalgebra of A (3.7).

3.10b. If f < g in [y,z] such that yf 2 yg and fz = gz, then f = g. (We
have g = fzrg < ff*g < fg¥g < ygvf = £, using 3.7, 3.1g, etc.)

3.10c. If f € [y,z], then yf = yp(f) and fz = q(f)z. (We have yp(f) =
y(f +(-f))
similar.)

3.10d. If f € [y,z], then f+ (-f) = q(f)p(f) = fzyf (3.4c, 3.10c). So, f =

yf + (-y)f = yf by 3.4c,d, 3.1e and 3.8, and the second part is

f+fzy = f+2zyf = f+fzyf. (We have f = f +fzyf by 3.1e, then

f+2zy
apply 3.10b to f + fzy < f + zyf using 3.8, and finally note that f +fzy <
f+zy < f+2zyf and f+fzy < £ +fzyf < f +2zyf.)

3.10e. If e is a symmetric idempotent of A and f € [y,z], then ef
eyV(fAez) and fe = yev(fAze). (By lattice modularity,

ef = (eyvf)nez = eyVv(fArez) < ef,
using 3.1g. The second part is obtained by taking converses.)
3.10f. Let e be a symmetric idempotent. Then f = ef = fe for all f in
[y,z] iff p(e) sy <z < q(e). (If y = eye, then p(e) = p(e)yp(e) < eye =y,

and similarly z < q(e). If f =z = q(e), then f = eq(e)Af < ee’f = eof by
3.1g and 3.9f, and similarly ef = f if f 2 p(e).)

3.10g. If £,,f,,...,f are in A, then there exist symmetric null elements y
and z of A such that . « [y,z] for i = 1,2,...,n. (Let y = p(h/\h#) for h =
£ Af,A...Af . Forisn,y=yhy=hh*hh*h =hsf . Let z=qkvk¥
for k = f vf,v...vf , sof =z forisn similarly.)

3.10h. If d and e are symmetric idempotents such that ed = d, then d =
(dre)d = d(dAae) = (dve)d = d(dve). (Choose [y,z] containing d and e
by 3.10g, so (dAe)d = ydv(dAaeanzd) = (ydve)ad = d by 3.10e and

modularity, since ydve 2 ed*d = d by 3.1g. The remaining equations are

obtained dually.)



3.10i. If d and e are symmetric idempotents, then de = d iff ed = d iff
p(e) < d = q(e) iff p(e) s p(d) = q(d) = q(e). (Note de = d iff ed =d

by converses, then use 3.9d,f and 3.10f.)

3.10j. If y and z are symmetric, then yAz and yVvz are symmetric. If y
and z are null, then yAz, yvz and y+z are null. (The first part is

by 3.1d. Suppose y,z are in the interval subalgebra [x,w] by 3.10g. Then
yAz < (yAz)w(yAz) < ywyAzwz = yAz implies yAz is null by 3.4b. Dually,
y+z is null, and y+z = (y+z)w(y+z) < (ywAzw)(y+2z) S ywy+zwz = y+z

by 3.8 and 3.1h, proving that y+z is null.)

By 3.10g, any finitely-generated T,-subalgebra of A is contained in some

A
interval subalgebra [y,z]. Now, a symmetric idempotent in A determines an

interval subalgebra which is an additive relation algebra with unit.

3.11. Proposition. Suppose y and z are symmetric null elements of A with

y < z. Then the following are equivalent:

3.11a. There exist unique elements 1, 0, O and I of [y,z] such that [y,z] is
an additive relation algebra with unit (a member of UB).

3.11b. There exists an element u of [y,z] such that f = uf = fu for all f

in [y,z].

3.11c. There exists a symmetric idempotent d of A such that y = p(d) and

z = q(d).
3.11d. There exists a symmetric idempotent e of A such that y = p(e) and
z < q(e).

Proof: Obviously 3.11a = 3.11b and 3.11c = 3.11d. Assuming 3.11b, we
see that u* = u*u, so u is a symmetric idempotent (3.4a) and p(u) <y <z <
q(u) by 3.10f. But p(u) and q(u) are in [y,z], so we have 3.11b = 3.11c.

Assume 3.11d, and note that f = ef = fe for f in [y,z] by 3.10f. Let d =

yVve, sod = d” and d < dd < ddd = d. Then d is a symmetric idempotent, and

q(d) = q(e) by 3.7 and 3.9c. Also,

y syd = (yple)vyve)ayq(e) = yv(enyq(e)) s yvye =y
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by 3.10e, modularity and 3.1g. So, y = p(y) = p(yd) 2 p(d) = p(y), proving
p(d) =y. Then f = fd = df for f in [y,z] by 3.10f. A similar argument
shows that ¢ = dAz is a symmetric idempotent in [y,z] such that p(c) = y and
q(c) = z. Now define 1 =c, 0 = ¢+ (-¢c) = q(c)p(c), 0 = p(c) and I = q(c).
All the axioms of 3.1i are satisfied for [y,z], by the above and 3.104d,f.

So, [y,z] is an additive relation algebra with unit. The uniqueness follows

from the uniqueness of a multiplicative unit for [y,z] and 3.1i. =

3.12. Corollary. An additive relation algebra A is the reduct to 7, of an
additive relation algebra with unit (a member of ¥,) iff it has a
multiplicative unit u.

Proof: The forward implication follows from 3.1i. A multiplicative unit

u is a symmetric idempotent (v = u#u), so A = [p(u),q(u)] by 3.10f,g. Then

A is in ¥y for uniquely determined 1, 0, O and I by 3.11. =

Given the multiplicative unit, we show next some of the additional

elementary properties that can be obtained for B in UB'

3.13. Properties of Additive Relation Algebras with Unit.
3.13a. In B, 0 and I are symmetric and null (3.10g), and 1 is a symmetric

idempotent (1* = 1%1).

3.13b. For f in B, f+(-f) = fIOf (3.10d), so p(f) = £#0f and q(f) = FIf?
(3.13a).

3.13c. For f in B, Offf = Of = OIAf, ££f%0 = £f0 = I0Af, Ifff = If = IOV ¢
and ff*¥I = fI = OI vf (Of < Of*f < Off*f = Of and OI Af < 00%f =< Offf <

OI A £f¥s

OIAf by 3.1d,g and 3.3, etc.).
3.13d. The elements {0,0I,10,1,I} form a (0,I) sublattice of B with five

elements and length two, unless B is trivial. (We have OIAl1 =01 =0
10 = I0A1 and OI AI0 = 0I0 = 0. Dually, OIvl = I0v1 =0IVvIO =1.)
3.13e. For f,g in B, O(f+g) = 0f vOg and (f+g)I = fIAgl (3.8).

3.13f. For f in B, (-1)f = £(-1). Also, 0 = 0(-1) = (-1)0, I = I(-1)
(-1I, (-1)(-1) = 1 and (—1)# = -1. (The first part is by 3.1e,f,i. Also,



0 = 0I0 = O(1+(-1))
by 3.1e,f, and (-1)¥

01 +0(-1), so 0(-1) = 0, etc. Finally, (-1)(-1) =1

-1 by 3.1e.)
3.13g. If f < g, Of

v

Og and fI 2 gI in B, then f = g (3.10b).
3.13h. For e,f in B with e a symmetric idempotent, ef = (eOVf)Ael and
fe = (Devf)ale (3.10e).

e(enl) = (enl)e =

3.13i. If e is a symmetric idempotent, then e
e(evl) = (evil)e (3.10h). Also, 1Ae = 1Ael = 1AJe and 1ve = 1vel =
1vO0e (eIA1l < e by 3.1g, etc.). Finally, O(1ve) = Oe and (1Ae)l = el

(Oe = 0(1ve) < 0e(l1ve) = 0e and dually).

3.13j. Suppose c¢,d,f are in B with ¢ =1 = d. Then ¢ and d are symmetric
idempotents, cf = cIAf, fc = IcAf, df = dOVS and fd = OdVv{E. If b,c s 1,
then bec = ¢b = bAc. If d,e =2 1, then de = ed = dve. (Note that ¢

cefc = ce®1 2 c1*1 = ¢, s0 ¢ = cc#, and dually. Since c0 = 0, etc., 3.13h

leads to the next four equations. Finally, bac = (bAac)(bAc) s bc = bAac,
and dually.)

3.13k. The set S of symmetric null elements of B is a sublattice of B which
is lattice isomorphic to each of the interval sublattices [0,0I], [0,IO0],
[0,1], [OI,I], [IO,I] and [1,I] of B. (By 3.1d and 3.4e, S is a sublattice
of B, and by 3.13c, y#—0y is a lattice isomorphism from S into [0,0I] with
reciprocal z8——z*z. The six intervals above are projective intervals of B
as a modular lattice by 3.13d, and so are lattice isomorphic by composites

of transpose isomorphisms such as z#——1Vvz from [0,0I] into [1,I] and its

reciprocal e——0I Ane = Oe.)

We now return to consideration of additive relation algebras without unit.
It is possible to make such an algebra, consisting only of null elements,

from any modular lattice.

3.14. Definition and Properties. Suppose L is a modular lattice, and L2

denotes the 7,-algebra on LxL defined by:

(y,z) +{w,x) = {yAw, zVx),

11
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-(y,z) = {y,z),
(y,z){w,x) = (y,x),

{y,2)* = (z,y),

{(y,z) Adw,x) = (yAw, zAx), and

(yvw, zVvx).

(y,2) v {w,x)
3.14a. L? is an additive relation algebra such that every element of L? is
null. An element (y,z) of L? is symmetric iff y = z. (Proof by direct

calculation.)

3.15. Proposition. The subset N = {z: z is null} of A is a T,-subalgebra
of A. The subset S = {y: y is symmetric and null} of A is a (modular)
sublattice of A, and k:S5°——N such that k(y,z) = yz is a T,~isomorphism.

Proof: Suppose y and z are null. By 3.4b,d,e, -y, y#, yz, yAz, yVz and
yVvz are null. Therefore, N is a 7,-subalgebra of A.

For y and z symmetric and null, yAz and yVvz are symmetric by 3.1d and
are null by the above. So, S is a sublattice of A.

Defining \:N—S% by \(z) = (zz*,2%z), it is easily checked that k and \
are reciprocal bijections which preserve order. Therefore, x and N are
lattice isomorphisms. We observe that «k preserves negation by 3.4d,
preserves products by 3.4c, and preserves converses by 3.1d.

To prove k preserves sums, it suffices to show that wx+yz = (wAay)(zVx)
for symmetric null w, x, y and z. By 3.10g, choose an interval subalgebra
[s,t] containing w, x, y and z. For u = (wAy)(x+2z) and v = (w+y)(xVz),
we have

uswx+yz <vand u< (wAay)(xvz) £ v,
using 3.1h, 3.3 and 3.4d. Now su = sxVsz < s(xVz) = sv and ut = (wAy)t s
wt Ayt = vt by 3.8 and 3.4c. Applying 3.4c,g, we obtain su = sv and ut = vt,

hence u = v by 3.10b. This proves that x is a T,-isomorphism. =

A

By 3.15, we see that for symmetric null elements y < z in A, there may

not exist a symmetric idempotent e such that y = p(e) and z = q(e)



(compare 3.11c). If A is in V,, however, such an e always exists by 3.11.
We now indicate the method by which category structures can be recovered
from an additive relation algebra A. The objects of the category are the
symmetric idempotents of A. Two kinds of morphisms are considered, one
corresponding to additive relation categories and the other to abelian
categories. This method is closely related to category constructions given

in [3I] and by R. Vescan in [3J].

3.16. Definitions and Properties. For any symmetric idempotents ¢ and d

of A, let rel(c,d) denote the set
{f € A: of = f = fd},
and let hom(c,d) denote the subset
{f € A: of = £ = £d, £f* = ¢, £*r < d}.

3.16a. f is in rel(c,d) iff p(c)p(d) = f = q(c)q(d) iff:

plc) = p(££*) < q(£ff*) < q(c) and p(d) = p(£¥f) = q(£%f) = q(d).
(Use 3.10i, plus p(c)p(d) = p(c)fp(d) = £f£¥££#f = £ by 3.4c, etc.)
3.16b. f is in hom(c,d) iff: p(c) < p(ff*) = q(£f£f*) = q(c) and p(d) =
p(£*f) < q(£*f) = p(d) (3.16a, 3.9¢c).
3.16¢c. For any symmetric idempotents c,d and e, f € rel(c,d) and g €
rel(d,e) implies fg € rel(c,e), and fg € hom(c,e) when f € hom(c,d) and g €
hom(d,e). Also, d in hom(d,d) is like a category unit for the object d:
fd = f for f in rel(c,d) and dg = g for g in rel(d,e).
3.16d. There are no proper inclusions in hom sets: if f < g in hom(c,d),
then f = g (3.4g).
3.16e. For any symmetric idempotent d, rel(d,d) is an additive relation
algebra with unit, where the constants 1, 0, O and I are d, q(d)p(d), p(d)
and q(d), respectively.
3.16f. For any symmetric idempotent d, hom(d,d) is closed for sum, product

and negation, and under these operations it is a ring with unit d and zero

q(d)p(d).
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3.16g. For any symmetric idempotents c and d of A, rel(c,d) is the interval
sublattice [p(c)p(d), q(c)q(d)] of A, and £* is in rel(d,c) for each f in
rel(c,d). Also, rel(c,d) is closed for sum and negation, and has the zero
q(c)p(d) for sum.

3.16h. For any symmetric idempotents ¢ and d of A, hom(c,d) is an abelian
group with zero q(c)p(d). It is a left-R, right-S bimodule for R = hom(c,c)
and S = hom(d,d). More generally, (f+g)h = fh+gh and g(h+k) = gh+gk for
f,g in hom(c,d) and h,k in hom(d,e).

3.16i. Suppose ¢ and d are symmetric idempotents in Rel(M) for some
R-module M, and ¢ and d correspond to subquotients C = Ci/Co and D = Dl/D0

of M respectively, as in 3.4f. Then

acd(f) = {(a-FCo,b-+DO): (a,b) € f}

defines a bijection a_, from rel(c,d) onto Su(C@®D) such that for f,g in

d

rel(c,d) we have:
£ =g iff o (f) =a_,(g),
a_ (f+g) = a (f)+a_.(g),
acd(—f) = -ch(f);

#
a_,(£)*,

adc(f#)

a (1) =1, and

cc¢c

a_ (gh) = acd(g)ade(h) for h in rel(d,e).

ce

In particular, o , is a (0,I) lattice isomorphism preserving sum and

cd
negation between rel(c,d) and Su(C®D), which induces by restriction of
the domain and codomain an abelian group isomorphism between hom(c,d) and
Hom(C,D) for R-Mod. Furthermore, a,  is a TB—isomorphism between rel(c,c)
and Rel(C), which induces by restriction of the domain and codomain a ring
isomorphism preserving 1 between hom(c,c) and the ring of endomorphisms

Hom(C,C).

From 3.16, we see how to recover from Rel(M) a category equivalent to the

full subcategory of R-Rel (or of R-Mod) determined by the set of subquotients
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of M, and that an abstraction of this process can be used for an arbitrary

additive relation algebra.
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