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§4. Frames in Modular Lattices.

In the introduction, we asserted that universal Horn sentences could be
translated from other external theories of modules into modular lattice
theory. The techniques that are needed involve certain lattice
configurations called frames, which were introduced by von Neumann in his
development of continuous geometry [4A]. The use of lattice frames to
construct rings from which modular lattice representations are obtained, as
in [4A, Theorem 14.1, p. 208], is called coordinatization. Frames and
coordinatization have been extensively used in recent years to obtain many
results of modular lattice theory; for examples see [4B,4C,4D]. In this
section, we describe some basic properties of frames and begin the
contruction of the universal Horn sentence translation functions. First,
consider the lattice Ms, which is the fundamental building block used to
construct a frame.

In the following, L will denote an arbitrary modular lattice.

4.1. Definitions and Properties. A quintuple (a,x,y,z,b) of elements of L
forms an M, sublattice if
a=3xAy=%xAz=yAz and b =xVy=xVz=yVvz,

That is, these elements generate the sublattice of L shown below:

b
x/i\z
\l/
a
We will also say that {x,y,z} generates an M,, which spans the interval
sublattice [a,b] = {w e L: a < w < b} of L, and spans L if L = [a,b].
4.1a. An M3 sublattice is simple; proper homomorphic images of M3 are trivial.
4.1b. If {X,Y,Z} generates an M, spanning Su(M) for an R-module M, then
there are R-linear isomorphisms f:M——X®Z and g:X—Z such that f[Y] is the
graph of g. Note the Noether isomorphisms X to M/Y to Z to M/X to Y to M/Z;

g is the composite of X to M/Y to Z.



4.1c. If {X,Y,Z} generates an M, spanning [U,V] in Su(M), then we can
relativize to isomorphisms f:V/U—X/U®Z/U and g:X/U—Z2/U, with f[Y/U]
the graph of g.

4.1d. If B is an additive relation algebra with unit, then {I0,1,0I}
generates an M, spanning B. (From 3.1g,i, 0IA1 = OI AIO = O, etc.)

If e is an idempotent of an additive relation algebra A, then

{q(e)p(e), e, p(e)q(e)} generates an M, spanning [p(e),q(e)] (see 3.11).

Although x, y and z appear symmetrically in 4.1, it is often useful to
regard an M, sublattice as representing two disjoint isomorphic modules and
an isomorphism graph, or even as elements I0, 1 and OI of an additive
relation algebra with unit. For frames, this view is extended to n
isomorphic modules, n = 2, which satisfy appropriate disjointness and

isomorphism graph conditions.

4.2. Definitions. For n = 2, an n-frame in a modular lattice L is a system
of elements a, bi for i £ n and i for i # j, 1 £1,j € n, that either
satisfies 4.2a,b,c below or is trivial.

4 2a. (b1Vb2V... Vbi)/\bH1 =aforl=1i=<n.

4.2b. §bi,cij,bjf generates an M3 spanning [a, bi‘/bj] and iy T S for

1=i<j=n.

4.2c. ¢, = (cij‘vcjk) A(bi‘/bk) for distinct i,j,k, 1 =1i,j,k < n.
(An n-frame is trivial if a = b, = C; for all j#1i, 1 £1i,j £n.)
We say that an n-frame spans [a,b] for b = b, Vb, V... Vb , since the

sublattice of L generated by the frame elements contains a and b and is

contained in the interval sublattice [a,b] of L. The elements b, ,b,,...,b,

are called independent over a in L if they satisfy 4.2a.

4.3. Properties. A nontrivial 2-frame in L is essentially an M3 sublattice

generated by {b1’c12’b2}’ since a = bll\b2 and ¢,, = ¢ For n 2 3, the
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sublattice of L generated by an n-frame may be infinite.

4.3a. If M is an R-module and submodules A = O, Bi and Cij of M form an



n-frame which spans Su(M), then there are R-linear isomorphisms

f:M——B, ®B_® ... ®B
1 2 n

-1

. and
J

and gij:Bi———eBj for all j # i, 1 = 1i,j € n, such that €;; = &;
88k = Bix for all distinct i, j and k, 1 < 1i,j,k = n, and
f[Cij] is the negative graph of g;; regarded as a submodule of the
n-fold direct sum; that is, (vi,vz,...,vn) is in f[Cij] iff v, = 0
for all k < n except k =i and k = j, v, € B, and vy = —gij(vi) in Bj.
4.3b. For M an R-module and n =2 3, let ni:M——aM(") denote the i-th
insertion map for i < n. Then there is a canonical n-frame spanning
Su(M™)) given by A =0, B, = Ki[M] for i <n, and Cij = Cji =
(Ki-—nj)[M] for 1=i< j<n. IfM=Rand {vl,vz,...,vn} is a
free generating set for R‘™) then B, = Rv, for i =n, and Cij =
Cji = R(vi-vj) for 1 1< j<n.
4.3¢c. For M an R-module and an n-frame A, Bi for i s n and Cij = Cji for
1 =1i< j<snin Su(M) spanning [A,B] for B = B1®B29...9Bn, there are
R-linear isomorphisms

f:B/A-——-»Bi/AﬂiBz/AGB...@Bn/A

! and

and g..:B./A—B /A for all j # i, 1 £i,j <n, such that g.. = g..~
1503 3 J J €;i €
gix = 838k for all distinct i, j, k between 1 and n. Here, f[Cij/A] is

the negative graph of g;; for j#1i, 1 £1,j € n.

The use of negative graphs is not necessary, but it simplifies certain
formulas. Consider C,, = (012 chs) /\(B1 VB3), which corresponds to the

composition formula g,, = say for the canonical 4-frame of 4.3b. If

E12823>
negativé graphs are used, then C12 vC,, contains quadruples (u,-u+v,-v,0)
for u,v € M, and quadruples of the above form in B1VB3 are just the

negative graph quadruples (u,0,-u,0) of C,y- If positive graphs are used

for C,, and C then C,, vC,, contains the quadruples (u,u+v,v,0), again

23’
leading to the negative graph quadruples {u,0,-u,0) in B, vB,. The minus

signs can be avoided by using Con(M(4)) instead of Su(M(4)), but this would



require consideration of octuples of elements of M. We could also work with
positive graphs at the top of the frame, using D ,, and D,, consisting of
quadruples {(u,u,w,y) and {(z,v,v,x) in M%) so that D,,AD,, consists of
elements (u,u,u,y) in M(4), and the join with Bz\/B4 contains quadruples
(u,t,u,y) corresponding to D,,. This may be interpreted as a dual

composition formula for D,, given by (D,, AD,,) vV (E, AE,), where E, =

— _ : : (4)
BZVB3VB4, E, = B1VB3VB4 and E3 = B1VB2VB4, and Dij is in [Ei/\Ej, M ]

2
for 1 i< j =< 3. There is an obvious adaptation of this procedure to
n-frames for other values of n 2 3. Although these alternative

formulations would also work, we will employ the usual negative graph
representations hereafter.

There is another approach to n-frames using a configuration of n+1
symmetrical elements, called an n-diamond. (A set D = {d1’d2""’dn+1} which
spans [a,b] in L is an n-diamond if any n-element subset of D is independent
over a and has join b.) This terminology was introduced by Huhn [4G]; the
simplified version above is discussed in Day [4H]. For our purposes, the
formulation of 4.2 is more suitable.

The universal Horn sentence translation from additive relation algebras

with unit to modular lattices is constructed by expressing T -operations by

lattice polynomials in n-frames, n 2 3.

4.4. Definitions and Properties. Let a, b, and C; for j#1i, 1 =1,j £ n,

form a system H of elements of a 7 -algebra K, n 2 3. Relative to H, define

L

T,-operations on K as below, for x and y in K:
X 4y v = ([(xVe ) A(b, Vb )TV I(yVby) Alb, Ve 3)]) Al Vby),
4% = (2 vby) A(b, Ve,g)lIvb,) A(b Vb, )] Ve,,) A(b Vb,),
x .y = ([(xVeyy) (b, Vb )IVI(y Ve, ) A(b, vby)1) A(b, Vb,),
< H - ([([(x Ve, ) A(b,vb )T Ve, ) A(b, Vb )] Ve,,) A(b, vb,),

X Vy ¥y = XVy, X ALy =xAy,

OH = b1' 1, = ¢40 0H = a and IH = bi‘Vbz.



Let K, denote the T -algebra on K provided with the above operations. Of
course, K, is not an additive relation algebra with unit.

If h:K—L is a TL—homomorphism of TL—algebras, let h(H) denote the
system of elements h(a), h(bi) and h(cij) for j#1i, 1 £1i,j <n.
4.4a. If K is a lattice, then the interval sublattice [OH,IH] is a
TB—subalgebra of K,.
4.4b. Suppose h:K—L is a TL—homomorphism of 7 -algebras. Then h:KH-_th(H)
is a TB—homomorphism. If K and L are lattices and H is an n-frame, then h(H)

is an n~frame and h induces a TB—homomorphism k:[OH,IH]——a[Oh(H),Ih(H)] by

restriction of the domain and codomain.

For M an R-module and the canonical n-frame Z on Su(M(n)) for n 2 3 as

in 4.3b, the interval T, -subalgebra [O ] = [A, B1\/B2] of 4.4a is

B Z’IZ

essentially just Rel(M). Using negative graphs, let:
w(f) = {ni(a)-ne(b): (a,b) € f},

which determines a T_ -monomorphism ﬁ:Rel(M)——~Su(M(")) with image [OZ,IZ].

B

For example, if f and g are in Rel(M) we have:
D, = (R(E)VC,y) A (B, VEy) =
= {{u+w,-v,-w,0,...,0): {u,v) € f, u+w = 0}
= {(0,-v,u,0,...,0): {u,v) € f}, and
D, = (fi(g) VB,) A(B,VC,,) =
= {{w,-x,-w,0,...,0): {w,x) € g}, so
A(£) +, H(g) = (D, vD,) A (B, VB,)

{{w,~v—x,u—w,0,...,0): (u,v) € £, (w,x) € g, u—w = 0}

{{u,-(v+x),0,...,0): {u,v) € £, {u,x) € g} = a(f+g).
Similar arguments show that [ preserves all the other Ty-operations, and it
is clear that [ is one-one and has image (0,,1,1.

Using 4.3c, calculations of the above sort can be adapted to an
arbitrary n-frame in Su(M), n =2 3. We will omit the routine proof of the

following general result below.



IA

4.5. Proposition. Suppose A, B, for i =n and C.. = Cji for 1 =1<j=n

1)
form an n-frame H in Su(M) for M an R-module, n 2 3. Let y.:Rel(Bl/A)———»Su(M)H

be given by the negative graph insertion:
p(f) = {u-—gle(v): {(u+A, v+4A) e f}.

Then p is a one-one T -homomorphism with image [OH'IH]' In particular,

(0 ] is in B(R).

H’IH
Von Neumann defined the auxiliary ring associated with an n-frame, n 2z 4,
to be the set of complements of b2 relative to the interval [a, bl‘Vbz];
this set for 4.3b corresponds to the ring of endomorphisms of M, which can
be regarded as the T -subalgebra hom(1,1) of Rel(M). Our formulas for the
0

ring operations + and 1, are essentially the same, but we apply

K TH® YH' W

these formulas to the entire interval [a, bi‘Vba] and add the other

Tp—operations, corresponding to the entire additive relation algebra Rel(M).
To translate universal Horn sentences, adapt the considerations above in

terms of polynomials of types 71, and 7, .

4.6. Definitions. To set up a 3-frame, the first ten variables of X =

{xi,xz,xs,...} are relabelled, to obtain Y = <X1’X2""’X10> =

(a'bi'bz’bs'°12'°21'°13’°31’°23’°32)'

Also, denote x.

iv10 Py v, for all i 2 1.

Recall that P(X,T) denotes the T-algebra of all T-polynomials on X, for
any algebraic type 7. Define P(X’TL)Y to be a TB—algebra given by the
formulas of 4.4, and let K:P(X,TB)———»P(X,TL)Y be the unique T -homomorphism
such that n(xi) =y, for all i 2 1. It is clear that x is a recursive

function, if polynomials of type 7, and T, are regarded as words on a

B
suitable alphabet.

4.7. Definitions and Properties. Suppose A is a basic universal Horn

sentence for additive relation algebras with unit, say

(Vx,,%,,...,x )((p, =q, &p,=q, & ... & p =q, ) = p,=4,)

m



where P, = pi(xl,xa,...,xm) and q; = qi(xl,xz,...,xm) in P(X’TB) for 0 £isn

and X, X ,X in X. Define Ti(A), a basic universal Horn sentence for

20 Xy

lattices, as:

(V% %y, .0 o )((Ey & Ep & .0 & By, ) = t(p,) =t(q,)),

with the equations Ei’Ez""’Ed+2m+n given as follows:

4.7a. Ej for j = d are equations as in 4.2 specifying that a, b, and €
form a 3-frame (possibly trivial). More precisely, a T -homomorphism
h:P(X,TL)——aL is a frame assignment iff h satisfies these equations.

(In 4.2, 29 such equations are given, but many are redundant.)

4.7b. Ed+j is the equation a s Y5 and Ed+m+j is Y5 < bl‘ng, for 1 = j € m.

4.7c. Ed+2m+j is the equation n(pj) z n(qj) for 1 £ j = n.

We are now prepared for our first translation result.

4.8. Proposition. Suppose R is a ring with unit and A is a basic universal

Horn sentence for additive relation algebras with unit (type TB). Then A holds

in Rel(M) for all R-modules M iff T1(A) holds in Su(M) for all R-modules M.
Proof: Assume the hypotheses, and suppose Su(N)F=T1(A) for all N in

R-Mod. Let g:P(X,7;)—Rel(M) be a T -homomorphism such that glp,) = glq;)

for i = n. Using 4.5, p is a one-one T,~homomorphism from Rel(M) into

Su(M'®))_ for Z the canonical 3-frame of 4.3b. Let h:P(X, 7, )——Su(M'®))

be the TL—homomorphism such that h(a) = 0, h(bi) = mi[M], h(cij) =

h(cji) = (ni——nj)[M] for 1 1< j <3, and h(yi) = p(g(xi)) for i =z 1.

Since h is a frame assignment with h(Y) = Z, h:P(X,TL)Y———»Su(M<3))Z is a

T ~homomorphism by 4.4b. Then by the hypotheses, we have the commutative

diagram’of Tp~homorphisms below:

P(X7T )—n—’P(XfTL )Y
g h

Rel(M)——ﬁ——eSu(M(s))Z

Therefore, g(pi) = g(qi) implies h(n(pi)) = h(n(qi)) for i = 1,2,...,n. Note



that all of the hypotheses of Ti(A) are satisfied for h, and so h(n(po)) =
h(n(qo)). Since p is one-one, we have g(po) = g(qo), and therefore
Rel(M) FA.

Now suppose that Rel(N)F A for all R-modules N. Let h:P(X,TL)——aSu(M)
be a lattice homomorphism satisfying all the hypotheses of T,(A). Then
h:P(X,T )Y———»Su(M)v is a T;-homomorphism by 4.4b, where V = h(Y). By 4.7a,
V is a 3-frame in Su(M). So, [OV,IV] is in B(R) by 4.5, and note that h(yi)
is in [OV’IV] for 1 £1i<mby 4.7b. Let g:P(X,TB)——e[OV,Iv] be any
Tz~homomorphism such that g(xi) = h(yi) for 1 < i =m. By construction,
p(g(p)) = h(x(p)) if p = p(x,,%,,...,%x ) in P(X,7,). Since p is one-one,
g(p;,) = g(q;) for 1 =i <n by 4.7c. Then g(py) = g(q,) using A, so h(x(p,)) =
h(n(qo)). This proves that Su(M)F=T1(A) for all R-modules M. =

Recall the classes ((R) and B(R) of additive relation algebras (without or
with unit) which are representable by R-modules (3.2). Using frames, we can

show that these classes are quasivarieties.

4.9. Proposition. If R is a ring with unit, then G(R) is a quasivariety of
T,~algebras, and B(R) is a quasivariety of 7 -algebras.
Proof: Suppose B is a T -algebra not in B(R). Let C be a disjoint union

YuB, where Y contains ten 3-frame variables as in 4.6. We construct a

commutative diagram of T -homomorphisms as shown below.

K
P(B, T, )——P(C,7, )y——1L

| li

B———[0,, I, ]———Su(M)
m L

Define g and k by g(f) = f = k(f) for all f in B. Define L by a presentation
Z(R){CIW}, where £(R) is a lattice quasivariety and W = W, uW, uW,6 ¢ P(C’TL)2
as given below. Let W consist of d pairs corresponding to the equations of
4.7a, specifying that elements a, b, and i of Y form a 3-frame in L. Let
W, consist of the set of 2|B| pairs specifying that a = f < b, vb, for all f

2
in B, similar to 4.7b. Finally, let W3 consist of all pairs {(x(p),x(q)) such



that g(p) = g(q), for p and q in P(B,7,) (compare 4.7c). Let m be the
canonical TL—homomorphism, so h(c) = ¢ for all ¢ in C, and note that 1 is a
T, ~homomorphism by 4.4b. There exists a lattice embedding \:L——Su(M), since
L e L(R). From W, , Y is a 3-frame in L, and so V = A(Y) is a 3-frame in
Su(M) and \ is a T -homomorphism by 4.4b. Also, the inclusion t is a
TB—homomorphism by 4.4a. Now n(x(f)) is in [Oy,IY] for all f in B by W,, so
An(x(f))) is in {OV,IV]. Using W,, we can define a unique T -homomorphism
i such that u(f) = X(f) for all f in B, so km\ = gut. Now p is not one-one,
since B is not in B(R) but [OV’IV] is in B(R) by 4.5. So, there are
distinct f, and f, in B such that p(f) = p(f,). Since N is one-one, we
have n(fi) = n(fz) also.

By A?, there exists a finite subset Cm = YLJ{fl,fz,...,fm} of C
(containing f, and f, above) and a finite subset W' € Wr'\P(Cm,TL)2 such
that n'(fi) = n'(fz) if ﬂ’ZP(Cm,TL)—“*L’ is canonical for L' = £(R){CmIW'}.

Suppose W3r1W' consists of pairs (pj,qj) in P(B,T1,), where

P.

i = pj(f1’f2""’fm) and q; = qj(f1’f2""’fm) for j < n.

Let A be the universal Horn sentence of type T, with hypotheses

)

for j £ n, and conclusion X, T X, By the construction and A?, Z(R)F=T1(A),

and so B(R)EA by 4.8. Clearly A is not satisfied in B, and it follows that

pj(xi,xz,...,x ) = qj(xi,xz,...,xm

m

B(R) is a quasivariety. The proof that ((R) is a quasivariety is similar. =

We next observe that inclusion functions can also serve as basic

universal Horn sentence translation functions.

4.10. Proposition. If A is a universal Horn sentence of type 7,, then
G(R)EA iff B(R)FA. If Q is a universal Horn sentence for lattices
(type TL), then Z(R)EQ iff G(R)FQ iff B(R)FQ.

Proof: From 3.2, U(R)F A iff Rel (M)FA for all R-modules M iff
Rel(M) EA for all R-modules M iff B(R)FA. In particular, U(R)FQ
iff B(R)EQ. Since each Su(M) is isomorphic to the sublattice of
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symmetric null elements of Rel(M) by 3.4g and 3.16, L(R)FQ iff Su(M)FQ
for all M iff Rel(M)FQ for all M iff B(R)FQ iff A(R)EQ. ®

At this point, we can already prove the algebraic parts of the

unification theorems of §7.

4.11. Corollary. For rings R and S with unit, £(R) € £(S) iff G(R) < A(S)
iff B(R) € B(S). Therefore, £(R) = £(S) iff A(R) = A(S) iff B(R) = B(S).

That is, R and S have the same lattices representable by modules iff they
have the same additive relation algebras (without or with unit)
representable by modules. By the quasivariety characterizations in 2.9
and 4.9, it is also equivalent to assert that the same universal Horn sentences
are satisfied for £(R) and £(S), or A(R) and A(S), or B(R) and B(S).

To prove the equivalences displayed above, note first that if £(R) € 2(S)
is false, there is a basic universal Horn sentence for lattices I such that
L(S)EQ but not L(R)EQ. Then A(S)EFQ but not G(R)EQ by 4.10, so
(R) € A(S) is false. Similarly, if G(R) € ((S) is false, so is B(R) € B(S).
If B(R) € B(S) is false, then there is a basic universal Horn sentence A of

type 7, such that B(S)EF A but not B(R)FA. But then i(S)F=T1(A) but not

B
I(R)FT,(A) by 4.8, so that £(R) € £(5) is false also.



