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§5. Relation Categories and Functors.

In this section, we introduce an elementary axiomatization of additive
relation category theory. Our approach partly follows the axiomatizations
of MacLane [] and Puppe []. The differences are introduced to obtain
technical advantages in the treatment of full subcategories and in comparing
the categories with additive relation algebras.

Just as the abelian category R-Mod was regarded as a subcategory of R-Rel
in §1, we identify an exact subcategory of proper morphisms which are
formally analogous to R-linear maps, by the method of Puppe [ ,8?]. Also,
the relationships between homomorphisms of additive relation algebras and
structure-preserving functors of relation categories and exact subcategories

are described.

5.1. Definition. Suppose a system € is provided with category structures
(objects, morphisms with domain and codomain, composition, unit morphisms),
a converse operation # which determines a morphism £#.B—A corresponding to
each morphism f:A—B of €, and for all objects A and B, €(A,B) is provided

with binary operations A,,, V,, and +,, and a unary operation -,., and

designated morphisms OAB’ IAB and OAB in C(A,B). If € satisfies conditions

5.1a-i below, it is called a strongly exact relation category. If C
satisfies 5.1a-h, it is called an almost strongly exact relation category.
(As usual, we will omit many subscripts. To avoid ambiguity, O, I and 0 will

abbreviate only equal subscript cases 0,,, I;., 0.., etc., not O,,, I, or

0,5 if A # B is possible.)

5.1a. € is a category.

5.1b. For all A and B in €, C(A,B) is a modular lattice under Arp and Vg

with smallest element O,, and largest element I, . (Let =,, denote the
partial order induced by this lattice.)

5.1¢c. Sum +,p 1s commutative and associative on C(A,B), and OAB = IOAB =
IABO is a zero for addition: f+0,, = f for f:A—B.

5.1d. For f < g and h < k in C(A,B), f+h < g+k. For f < g in C(A,B) and



h < k in €(B,C), fh = gk.

5.1e. The converse operation is an involution that preserves the lattice
operations. That is, for f,g:A—B and h:B—C in €, we have £ = f,
(gh)* = h¥g*, (frg)? = t¥ng* and (Fvg)* = ¥ v,

5.1f. For f:A—B in &, -f = (—1A)f = f(—1B), and -1, is a negative unit:
1A+(—1A) = 0,,-
5.1g. For f,g:A—B in €, fIng < ff¥g and gf*f < Of vg.

5.1th. For f,g:A—B and h,k:B—C, (f +g)h 2 fh+gh and g(h+k) s gh+gk.
5.1i. If e:A—A is in € such that e = ef = ee, then there exists f:B—A

for some B in € such that ff¥ = 1B and f*f = e.

In §1, we described such structures for R-Rel, the category of R-modules

and additive relations between them. We omit the proof of the next result.

5.2. Proposition. For any ring R with unit, R-Rel is a strongly exact
relation category. A full subcategory of R-Rel which admits subobjects and
quotient objects is a strongly exact relation category. Any full
subcategory of an almost strongly exact relation category is an almost
strongly exact relation category. In particular, any full subcategory of

R-Rel is an almost strongly exact relation category.

Obviously, the category definitions are closely related to our axioms for

additive relation algebras (3.1).

5.3. Proposition. If € is an almost strongly exact relation category, then
each endomorphism algebra C(A,A) is an additive relation algebra with unit.
If B is an additive relation algebra with unit, then there is an almost
strongly exact relation category €, with one object X and CB(X,X) = B.
Proof: For f:A—B in €, f = fIAf < £f*f < Of vf = £ using 5.1g. So,
3.1a,b,c,d,g,h can be shown to hold in €(A,A) for A in €. Also,

f = (1A+(—1A)+1A)f 2 f+(-f)+f =2 f(1B+(-1B)+1B) = f,

by 5.1f ,h. Taking f = -1, —(—1A) = 1, follows, and hence -(-f) = f, using

— # _ # #y _ #
5.1f. Then -1, = —1A(_1A) -1, = (—1A) , and so -(f”) = (-f)" by 5.1e,f.



Some computation then shows that C(A,A) satisfies 3.le.
In 8(A,A), we have by 5.1b,d,f,h that

0<0I0 =0(1+(-1)) =01+0(-1) =0+(-1)0 =0+10 =0.
It follows that O is null in C(A,A), and similarly I is null. Also, O and I
are symmetric by applying 5.1b,e. Now Og = Og+0 by the arguments proving
3.4b,c,d,e, so Og < g+h using 5.1d, for g,h:A—A. Similarly, g+h = gI.
Also gI0 = g(1+(-1)) = g+ (-g), and so

gl0g < glog*g < Ogvgl0 < g+ (-g),
using 5.1d,g. Dual arguments show that gIOg = g+ (-g), and it follows that
C(A,A) satisfies 3.1f. Then C(A,A) is an additive relation algebra with
unit by 3.12, proving the first part. We omit the calculations proving the

second part. =

Much of the elementary theory of almost strongly exact relation
categories can be adapted from similar results for additive relation

algebras. Implicitly using 5.3, we can apply results of §3 below.

5.4. Definitions and Properties. For f:A—B in €, f is null if fgf = f for
all g:B—A in €. For d:A—A in €, d is symmetric if d = d*, and d is
idempotent if d = dd. (Compare 3.4.)

5.4a. If f:A—B, then f = ff*f = £+ (-f)+f (see 5.3).

5.4b. If f:A—B, x:B—C and g:C—D such that x is null, then fxg is null.
If y:A—B and z:C—D are null, then yhz = ykz for all h,k:B—C. If

w:A—B is null, then w = -w = w+w. (See 3.4b,c,d, and note that w =
wwfw = w(w?w+w'w) < w+w by 5.1h.)

5.4c. For all A and B, OAB and I,, are null, and are symmetric if A = B.
For all A, B and C, OACOCB = OAB’ IACICB = IAB’ IACOCB = 0AB and OACICB =
0,,*. (Note 0,, =10,, <10,0,, <I,0., <100, =10, etc. Using
5.4b and 3.13a, 0,, = 00,, and I, = IT,, are null, and are symmetric if

A=B.)

5.4d. For f:A—B, Of = 0, _f*f = 0,,]Af and fI = ff#IAB = 0I..Vvf since

AB AB



Of =0

1A

#p _
AR 0,,0,,%f = 0f, etc.)
)= -1

5.4e., For all A in ©, (—1A)(—1A) =1, and (-1A A

0 =(-1,)0 and I(-1,) = I = (-1,)I. (Note (-1)® = -(-1) = 1 as in 5.3. Then

t*r < ofrf*f = of, 0, Inf

Also, O(—lA)

-1 = (—1)(—1)#(—1) = (—1)#. For the rest, use 5.1f and 5.4b,c.)

5.4f. Suppose f:A—B. If d:A—A is a symmetric idempotent, then df
(d0,, VE)Adl,,. If e:B—B is a symmetric idempotent, then fe =
(0,,eVE) AL e. (Note dIAff* < dff¥, so df 2 (A1, £* A ff?)f 2

(dIAB Af)f#f > hh*h = h for h = dIAB Af. Prove df = dOAB v{ similarly, then
use modularity as in 3.10e. Take converses to obtain the second formula.)
5.4g. If f,g:A—B, then O(f+g) = Of vOg and (f +g)I = fIAgl. Since
0,,f+0 = 0,,f by 3.4e, we have Of < 0,,(0,,f+0,,g) <0fVvOg = f+g

using 5.4c. Now Og = f +g similarly, so h = O(f +g) for h = Of vOg

using 5.4d. But O(f+g) < 0f+0g < Oh+0h = Oh < h by 5.4b,c, proving

the first part. The second part is dual.)

5.4h. If f,g:A—B satisfy f < g, Of 2 Og and fI 2 gI, then f = g. (By 5.1g
and the hypotheses, g = fIag < fffg < fg¥g < Ogvf = f.)

5.4i. Suppose A and B are R-modules. Then w:A—B is null in R-Rel iff
there exist submodules A0 of A and B0 of B such that w = AO'BBO. (For

symmetric idempotents and symmetric null elements, see 3.4h.)

We give some further elementary results here, going beyond the analysis

of §3.

5.5. Properties of Almost Strongly Exact Relation Categories.
5.5a. Suppose f,g:A—B with d = 1, Aff* Age* and e = 1, vE#fvgfg. Then

dfel = dI,, = dgel, Odfe = 0, e = Odge and f+g = d(f +g) = df +dg =

AB
(f+g)e = fe+ge = dfe+dge. (Note that dIAB 2 dfel = dfI = dff#IAB 2

ddI,. = dI,_ using 5.4c and 3.13j. So, dfel = dI

AB AB and dgel = dI,, and

AB’ AB

Odfe = 0,.e = Odge similarly. For h = f+g,

1, Ahh* < 1 ARIT, = 1A(fIAGD)I,, < 1Aff I Age?T = 4,

A
=

using 5.4c,g and 3.13i. Then h = (1 Ahh*)hh*h < dh by 3.13i, and he



similarly. So, h s dh < df +dg s dfe+dge < fe+ge < he = h, using 5.1d,h.)
5.5b. For f,g:A—B, (fAg)0 = fO+g0 and I(fvg) = If +Ig. (For h =
fOAgO and k = fO+g0, (fAg)0 = h =h+h < k = fOI0 + g0IO = kIO =

(fOI AgOI)0 < h, using 5.4b,c,d,g and 5.1h. The second part is dual.)

5.5c. If f,g:A—B and h,k:A—C, then (f +g)*(h+k) = f*hve*k. If
f,g:B—A and h,k:C—4A, then fh* Agk¥ < (f+g)(h+k)¥. (Given f,g:A—B
and h,k:A—C, let ¢ = 1, Aff¥ Agg” and d = 1, Ahh* Akk*. Then c and d are
symmetric idempotents with cd = dec = ¢Ad by 3.13j, and c(f +g) = f+¢g and

d(h+k) = h+k by 5.5a. Let £, = cdf, 8 = cdg, h0 = ¢dh and k0 = cdk. Now

cdl = cd(1Aff* Aggh)I < cdff#I < £ 1, = £ £ *1 < cd,

: : : — #1 #y _ #1 _ # _
and continuing we obtain cdl = fofo I-= 808 I-= hoh0 I =kjk, I. Let s =
# _ # # — #
(£,+gy) " (hy+ky), t = f,"h vg "k, and e = (f,+8g) (f,+8g,). Note that

s < et because by 5.4b,f and the above,

# #
h0+k0 < fofo h0+g0g0 k0 < (f0+g0)t.

Also et = t by 5.4f, since e0,, = (f0-+g0)#oBC = (ocafo\/OCBgo)# =

f#OBC\/g#O < t using 5.4c,d,g. Then

BC
(fF+g)*(h+k) = [cd(f+g)]fcd(h+k) = s et =t = f*hvg¥k

using 5.1e,h, proving the first part. The second part is dual.)

5.5d. Suppose f:A—B and g,h:B—C. If Of*f < gg¥ or 0f*f < hh*, then

f(gAah) = fgafh and f(gvh) = fgvfh. If k:C—D such that e*e = kk*I or

h*h < kk*I, then (gVvh)k = gkvhk and (g+h)k = gk+hk. (Given f,g,h and

0£#f < hh*, let e = 1, vi*f. Then 0y, = £#£00,. =< hh*0,, < h, by 3.13i

fe. Then

and 5.4c. So, eh

e(gAh) = €0, vV(gAh) = egAh by modularity and 5.4f. For r = fgnfh,

h using 5.4f and e 2 1, and similarly f

ff¥fr = r using 5.4f, so f(gAh) = fe(gnh) = f(egneh) = f(f#fg/\f#fh) S
ff*r = r 2 f(gAh). For s = f(g+h) and t = fg+fh, s =t by 5.1h, and

sI = f(gl AhI) = fgIl Afhl = tI by 5.4g and the above. Finally, Os =

0f (g +h)(1+10)* 2 Of(gAhOI) = Ofg AOfhOI = Ofg by 5.5¢c and the above.
Similarly Os 2 Ofh, so Os =2 OfgvOfh = Ot. By 5.4h, s = t. The remaining



parts are similar or dual.)
5.5e. Suppose f,g:A—B. Then O(fvg) = OI(f +(-g)) and (fAg)l =
(f+(-g))0I. (For h = OI(f+(-g)) and k = f +g, we have h =
1+ (-1N* (£ +(-g)) < 1*£v (-1)*(-g) = k by 5.5¢ and 5.4e, so h < Ok
by 5.4d. Using 5.5d,

Ok = OABg#(ng) = OAB(g#ng#g) < OAB(1Vg#ng#g) = OAB(1Vg#f),
since 1vgfg = 1vgfgd < 1vg?f by 3.13i. For t = g*f + (-1) then,

Ok < 0, (1v(1+10)*(1+t)) = 0,,(1v1¥1vOIt) = 0,,It

by 5.5d since 0(1vt*It) = OIt by 3.13i and 3.4c. Now t = tI = g¥fI <

g#IAB = g#gI by 5.4d,g, so
It =1I,.e%t =TI (g%f+(-g%)) = I,,8%(f+(-g)) s I(£+(~g)),

using 5.4e,f and 5.5d. Then Ok < h follows, and the rest similarly.)

Next, we consider functors preserving additive relation category

structures.

5.6. Definitions and Properties. Suppose € and D are almost strongly exact
relation categories. A relation functor F:6—bD is a functor such that for
f,g in C(A,B), F(f#) = (Ff)#, F(frng) = FEAFg, F(fvg) = FEfVvFg, F(f+g) =
Ff +Fg and F(-f) = -Ff, and for C = F(A) and D = F(B), F(OAB) = OCD’

F(IAB) = I,, and F(OAB) = 0¢p-

5.6a. Composites of relation functors are relation functors, and the
identity functor is a relation functor. Inclusion functors of full
subcategories are relation functors.

5.6b. Suppose F:6——D is a relation functor. Then F induces a

T, ~homomorphism C(A,A)—D(F(A),F(A)) for each A in €. If F is an
embedding functor, then F induces a one-one T,-homomorphism.

5.6c. A T -homorphism f:B—C of additive relation algebras with unit can

be regarded as a relation functor C,—C, (see 5.3).

The following result is adapted from [RARAM, 2.19, p. 73]. It gives a



convenient test for relation functors.

5.7. Proposition. Suppose F:C—D is a functor of almost strongly exact
relation categories such that F preserves converses and order, that is,
F(£*¥) = F(£f)* and f < g implies F(f) < F(g)). Also, suppose that F(f+g) =
F(f)+F(g) or F(f+g) = F(f)+ F(g) if Of = Og and fI = gI, for all f,g:A—B
in €. Then F is a relation functor.

Proof: Assume the hypotheses, and suppose F(A) = C and b = F(OAA). By
5.1b,c,d and the hypotheses, b+b s b or b+b 2 b. Using 3.1e,f, b+b < b
implies b < b+ (~b) < -b, hence b = b+ (-b) is null. Similarly, b is null
if b+b 2 b, sob = bOb < 0 because b = 1.. This proves F(OAA) = 0., in all
cases, and F(IAA) =1 dually. It follows that F(OAB) = OCD’ F(IAB) = ICD

cC

and F(OAB) = 0., for D = F(B), using 5.4b,c and 5.1c.

CD
Suppose f,g:A—B and ¢ = 1 vf#f. By 3.13i and 5.4c,d, Of = 0,p¢- So,

Of vg = 0,,cVg = ge by 5.4f, and
F(Of vg) = F(g)F(c) = 0, F(c) VF(g) = OF(f) vF(g).
Similarly, F(fIAag) = F(£f)IAF(g). By 5.4g and the above,
OF(f +g) = F(Of vOg) = OF(f) vOF(g) = O(F(f) +F(g)).

Similarly, F(f+g)I = (F(f)+F(g))I. If follows by 5.4h that F(f+g) =
F(f)+F(g). By 5.5a, there

v

F(f)+F(g) if F(f+g) s F(f)+F(g) or F(f+g)

exist d = 1A and e = 1B such that dfel = dIAB

f+g = df +dg = dfe+dge. Using the final hypothesis of 5.7, F(dfe +dge) =

dgel, Odfe = 0,,e = Odge and

A
F(dfe) +F(dge). Since e =2 1, F(df +dg) = F(dfe) +F(dge) = F(df) +F(dg), so
F(df +dg) = F(df) +F(dg). Finally, F(f+g) = F(df) +F(dg) = F(f) +F(g), so

F(f+g) = F(f)+F(g).

Now F(—lA) = -1 using 5.1f and the above, and then F(-f) = F(f) follows.

F(A)
Clearly, F(fAg) < F(f)AF(g). Since 0(fag) = (£%0+¢*0)* by 5.5b and

5.1c, we have OF(f Ag) = O(F(f)AF(g)) by the above. Similarly, (fAg)l =

(f +(-g))0I by 5.5e, leading to F(fAg)I = (F(f)AF(g))I. Then F(fAg) =

F(f)AF(g) by 5.4h. Since F(fvg) = F(f)VvF(g) dually, F is a relation



functor. =

We now show that almost strongly exact relation categories can be
characterized as full subcategories of strongly exact relation categories.
Given an almost strongly exact relation category €, we construct a strongly
exact relation category E extending €, where E is minimal up to equivalence
of relation categories. Similar constructions are in [GH]; the first
journal publication of such a construction is by R. Vescan [Ve].

Essentially, we generalize the use of symmetric idempotents and the sets

rel(c,d) of 3.16.

5.8. Definitions. Suppose £ is an almost strongly exact relation category.

~

Define € as follows:

The objects of € are the symmetric idempotents c:A—A of C.
The morphisms €(c,d) for symmetric idempotents c:A—A and d:B—B

of € are triples (c,f,d) such that f:A—B and ¢f = f = fd in C.

1t

The category structures and converses are given by:

~

(c,f,d)(d,g,e) = {c,fg,e) from €(c,d) AC(d,e) to C(c,e),

(c,f,d)* = (4,f% ¢c) from E(c,d) to &(d,c), and

1, = (c,c,c) in E(c,c) for each object c.

~

The (0,I) lattice operations are defined in C(c,d) by:
(c,f,d) v{c,g,d) = (c,fvg,d), (c,f,d)A{c,g,d) = {c,fnrg,d),

0cd = (c,c0 d) and ch = {c,cl d).

~

Relational sum structures are defined in €(c,d) by:

ABd’ ABd’

(c,£,d) +{c,g,d) = {c,f+g,d), -(c,f,d) = {c,~f,d) and

0.4 = {c,c0 d).

ABd’

Define H:E——€ by H(A) = 1A and H(f) = <1A’f’1B) for f:A—B in C.

5.9. Proposition. Suppose € is an almost strongly exact relation category.

~

Then € is a strongly exact relation category, and H is an embedding relation

~

functor which induces an isomorphism between € and the full subcategory of C



determined by the class of objects {1,: A in €}. If F:C—D is a embedding
relation functor from € into a strongly exact relation category D, then

~o~

there exists an embedding relation functor F:(——D such that F = H;.

Proof: Clearly, the category structures and converses in E are
well-defined. For (c,f,d) in E(c,d), f = cfd implies cOABd s f < cIABd.
Conversely, ¢0,,d < f = cI,pd implies cf = f = £fd (because cI = £f* implies
cff* = rr# by 3.13h, and so on). So, the (0,I) lattice structures for
E(c,d) are well-defined. For {c,f,d) and {c,g,d) in E(c,d), sum is well
defined because c0,,d = c0,,d+c0,,d = f+g by 5.4b and 5.1d, etc. Negation
is well-defined using 5.1f, and 0_, is well-defined.

Calculations show that 5.1a,b,d,e,g,h are satisfied in E, as are
commutativity and associativity of sum from 5.1c. Now cf = f = fd implies
£ =£+0,, =f+0,,d= (f+0,,)d = fd = £ by 5.1f,h for €, and so f =
f-+OABd 2 f-+cOABd > c(f—+OABd) = f, proving 5.1c for E.

Clearly -{c,f,d) = (—1c)(c,f,d) = (c,f,d)(—id) from 5.1f. Also, 0_, =
IOcd
the verification of 5.1f for E, note that 1c-+(—1c) = Occ because c + (~-¢) =

= chO is easily seen (COABd = cIOABd = cIchOABd, etc.). To complete

cIOc by 3.13b.

Now suppose e = {c,d,c) is a symmetric idempotent of E, so d is a
symmetric idempotent of €. Then f = (d,d,c) in E(d,c) satisfies ff¥ = 1,
and f*f = e, proving §.1i for E. So, E is a strongly exact relation
category.

Verification of the properties of H is routine. Assume F:0—D

satisfies the hypotheses above. For each symmetric idempotent c:A—A of C,

define F(c) in B by using 5.1i to select some hc:F(c)——ﬂF(A) in B such that

hh* = 1p(. and h*h = F(c). If ¢ =1,, choose F(c) = F(A) and h_ =

)

1F(A)' To define F for a morphism (c,f,d) in €(c,d), use F(c,f,d) =
th(f)hd#. Computation using 5.7 shows that F is a well-defined embedding

relation functor having the desired properties. ®

We omit the proof of the following result, which is suggested by the



results of 5.2.

5.10. Proposition. Suppose R is a ring and € is a full subcategory of R-Rel
with inclusion functor F. Then F can be chosen to be a relation functor
equivalence from € into the full subcategory of R-Rel determined by the

class of subquotients of objects of C.

We now turn to consideration of proper morphisms and the subcategories

associated with them.

5.11. Definition and Properties. A morphism f:A—B in € is called proper
if £ff% 21, and £'f < 1.
Suppose f:A—B in €, and y:A—A and z:B——B are symmetric null
morphisms of €. Then f#yf is called the image of y under f, and fzf? is
called the preimage of z under f.
For f:A—B and g:B—C in €, {f,g) is called exact if f¥If = gOg” (that
is, the image of I under f equals the preimage of O under g).
5.11a. For f:A—B, f is proper iff Of = 0,, and fI = I, . (Note ff¥ 21,

implies fI 2 ff#IAB = | and fI = I, implies ££*1 = I, hence 1, = 4 by

AB’ AB
5.1g, etc.)
5.11b. If f,g:A—B are proper and f < g, then f = g (5.4h).
5.11c. For any A and B, 1,, -1, and 0,, are proper. For proper f,g:A—B,
-f and f +g are proper. If h:B—C is also proper, then gh is proper. If
z:A—B is null and proper, then z = 0,,. (Use 5.4b,c,e,g and 5.11a.)
5.11d. Images and preimages are symmetric and null. If f:A—B and g:B—C,
the image of y:A—A under fg is the image of the image since g#(f#yf)g =
(fg)#yfé, and similarly for preimages of z:C——C under fg.
5.11e. If (f,g) is exact, then fg is null (fg = ff*Ifg = fg0g’g =< fg).
5.11f. In R-Rel, f:A—B is proper iff it is the graph of an R-linear
homomorphism. A pair (f,g) of proper maps is exact in R-Rel iff the

corresponding R-linear homomorphisms are exact in R-Mod. If h:A—B in

R-Rel and y:A—A is symmetric and null, so that y = AOGBAO for some



11

submodule A, of A, then the image fyf# equals BO‘SBO for
B, = {b € B: there exists a in A, such that (a,b) € f},

and similarly for preimages.

5.12. Definition and Properties. If € is a strongly exact relation category,
let P(€) denote the system of all objects and all proper morphisms of €. If
F:6——B is a relation functor for some strongly exact relation category B,
let P(F)(A) denote F(A) for A in €, and P(F)(f) denote F(f) if f:A—B is
proper in C.

5.12a. P(C) is a subcategory of C.

5.12b. P(F)(A) and P(F)(f) determine a functor P(F):P(C)—P(D) (also

see 5.14).

5.12c. For R a ring, R-Mod is isomorphic to P(R-Rel), by the usual

identification of R-linear homomorphisms with their graphs (5.11f).

5.13. Definitions and Properties. A category is exact if it has null
morphisms, kernels, cokernels, normal monomorphisms and conormal
epimorphisms, and every morphism factors as an epimorphism followed by a
monomorphism. An additive structure on a category G is given by (additively
written) abelian group structures on ((A,B) for all A and B in (0, such that
composition distributes over sum on the left and right whenever the
appropriate composites are defined. (This has been called a preadditive
structure by some authors.) An exact additive category is an exact category
with an additive structure. If O and B are exact additive categories, then
a functor F:0—B is exact if it preserves exact sequences and is additive

if it preserves sums.

Of course, an abelian category has a unique additive structure for which
it is an exact additive category, and an exact functor of abelian categories

is additive (see C?).

5.14. Proposition. If € is a strongly exact relation category, then P(C) is

an exact additive category. If F:C—D is a relation functor of strongly



exact relation categories, then P(F):P(C)—P(B) is an exact and additive
functor. If F is an embedding relation functor, then P(F) is also an
embedding functor.

Proof: Assuming € is nonempty, choose C in € and z:X——C such that zz? =
1, and 22 =0 by 5.1i. Since 0 is null and 1, = 20z%, 1, is null. By
5.11c, X is a zero object of P(€) with respect to morphisms 0AX and OXB’ and
Ops = OaxOxs-

Given f:A—B in P(€), use 5.1i to select k:K——A such that kk* = 1, and
kK*k = 1, A£f0£*, and to select h:C—B such that hh* = 1. and h*h = 1, vi¥If.
Then k is a proper monomorphism and h* is a proper epimorphism. Some
calculation shows that k is a kernel of f and h* is a cokernel of f in P(E).
We can verify that (f,g) is exact in P(C) iff £f1f = gOg# in €. Routine
computation then shows that monomorphisms are normal and epimorphisms are
conormal in P(€). Again, choose m:D—B such that mm* = 1D and m*m = £7f by
5.1i. Then m is a proper monomorphism and e = fm* is a proper epimorphism
such that f = em in P(€), proving that P(C) is an exact category.

Since the sum of proper morphisms is proper by 5.11c, P(C)(A,B) is a
commutative semigroup with zero 0,, under +,. by 5.1c. Also, composition
distributes over addition on the left and right in P(C) by 5.1h and 5.11b.
Finally, £+ (-f) is null and proper, so -f is a negative for f in P(C)(A,B)
by 5.11c. Therefore, P(C) is an additive category.

Suppose F:6——D is a relation functor of strongly exact relation
categories, and G = P(F). Clearly G is an additive functor, and G preserves

exactness by the characterization £*1f = gOg# above. Finally, G is an

embedding if F is an embedding. =

Brinkmann and Puppe [BP] showed that a type of relation category K(Q)
could be constructed from any exact category (. Their analysis shows that
P(K(Q)) and @ are isomorphic categories, and K(P(C)) and C are isomorphic as
relation categories, if € is such a relation category. Also, they construct

a functor K(G):K(0)—K(B) preserving appropriate relation category

12
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structures from any exact functor G:A—B of exact categories.

In Chapter IV, the abstract P and K constructions will be studied for
strongly exact relation categories. In this section, we construct only the
relation functor K(G):R-Rel—S-Rel from an exact functor G:R-Mod—S-Mod.
The basis of the K construction is the observation that an additive relation
f:A—B in R-Rel can be uniquely identified with an R-linear homomorphism

h:Ao———eB/B0 for suitable submodules A0 of A and B0 of B.

5.15. Definitions and Properties. For R a ring, identify R-Mod with P(R-Rel)
as in 5.12¢. For an additive relation f:A—B in R-Rel, there exist A0 in
Su(A) and B, in Su(B) such that fIf¥ = A ®A  and £%0f = B @B (5.11f).

Let K:Ao——ﬂA be the inclusion map and T]:B———-»B/B0 be the canonical quotient
map. Define h:Ao—————>B/B0 in R-Rel by h = kfn. Some calculation shows that h
is proper, with h(a) = b+B, iff (a,b) € f, and f = x#hn#. The triple

(x,h,n), corresponding to the diagram

A B
|
A,———B/B,

in R-Mod, is called the standard representation of f in R-Mod.

Let G:R-Mod——S-Mod be an exact functor for rings R and S. For R-modules
A, let K(G)(A) = G(A) in S-Rel. For f:A—B in R-Rel, define
K(G)(f):K(G)(A)—K(G)(B) in S-Rel by

K(6)(£) = G(x)*G(h)G(n)”,

where (&,h,n) is the standard representation for f in R-Mod.
5.15a. If f:A—B in R-Rel, then f is proper iff (1,,f,1,) is the standard
representation of f. (We identify n:B—B/0 with 1;.)
5.15b. Suppose f:A—B in R-Rel has standard representation {x,h,n). If f =
gm# for g proper and m a monomorphism of R-Mod, then n = 1,. If f = e#g for

g proper and e an epimorphism of R-Mod, then x =1,.

To verify that K(G) is a relation functor, we first give some preparatory
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material. The material on exact squares below is adapted partly from
standard abelian category theory (see [Fr, pp. 37-38]), and partly from
analysis of additive relation categories (see [Hi, §3] and [BP, §5]). All

these results are easily proved by elementary calculations for R-Rel.

5.16. Definition and Properties. Suppose fg = hk for the diagram below
in R-Mod.

f

A—B

|

C——D

k

Then (f,g,h,k) is called an exact square if £#h = gk# in R-Rel. (Of course,

(h,k,f,g) is then also an exact square by 5.le.)

5.16a. If (f,g,h,k) is an exact square, then Ay = A VA, in Su(A) for Aj

Ker fg = Ker hk, A, = Ker f and A, = Ker h.

5.16b. If (f,g,h,k) is an exact square, then D, =D, AD, in Su(D) for D,
Im fg = Im hk, D, = Im g and D, = Im k.

5.16c. If fg = hk for monomorphisms f and k, then (f,g,h,k) is an exact
square iff f is a kernel for the composite g(coker k).

5.16d. If fg = hk for epimorphisms f and k, then (f,g,h,k) is an exact

square iff k is a cokernel for (ker f)h.

5.17. Proposition. Suppose G:R-Mod—S-Mod is an exact (additive) functor
for rings R and S. Then K(G):R-Rel—S-Rel is a relation functor, and
P(K(G)) = G. If G is an exact embedding functor, then K(G) is also an
embedding functor.

Proof: Assume the hypotheses, and let F denote K(G). By 5.15a, F(f) =
G(f) if F is proper, and so F(lA) = 1F(A) for A an R-module.

Suppose f,:A—B and f,:B—C in R-Rel. Assume that f, has standard
representation (xi,hi,ni), for i = 1,2. Factor k,M, as an epimorphism

followed by monomorphism, say x,m, = e m,. By 5.15b, we can obtain standard

p
representations (x,,h,,1) for . m # and {(1,h,,n.) for e #n.. This leads to
3> 3 1™y 43 3 M2
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the diagram of proper maps below.

A B«——EE———B c
S
I I
h, . 1 h, A
Now k,*h, = hym*, and k;h 2 k;hm*m, = cx *hym; = hym, implies x;h, =

by 5.4?, so {k,,h ,h,,m,) is an exact square. Similarly, {eg,h,,h,,n,)

hym 3219035 R RELY)

3
is an exact square. We can suppose that 7,7, is a canonical map C————»C/C0 by
using a Noether isomorphism, so that (nsni, h3h4, nzns) is the standard
G(my)*G(e,)* by

G(h,)G(n,)* by

representation for f f,. Since G is exact, G(ni)#G(nz)#

5.1e, G(h, )G(m)* = G(x,)*G(h,) by 5.16c and G(e,)*G(h,)

5.16d, so:
F(£,£,) = G(k,)*G(k,)*G(h,)G(h,)G(ny)*G(n,)*
= 6(x,)*G6(h )6(n,)*G(x,)*G(h,)G(n,)* = F(£ )F(f,),
by the diagram above. Therefore, F is a functor and P(F) = G.

Suppose f:A——B in R-Rel has standard representation (x,g,n), and let g =
em for an epimorphism e and a monomorphism m in R-Mod. Applying 5.15b,
there are standard representations (1,h,n0) for e’k and (Ko,k,l) for hm'.
Since xo#khno# = m*ek = (¢*em®)* = £#, (no,kh,no) is the standard
representation for £ By 5.1e and 5.16¢c,d again, we have:

F(£%) = G(x,)*G(hk)G(n )* = G(n)G(m)*G(e)*G(x) =
= (G(x)*c(em)a(n)*)* = F(£)*,
proving that F preserves converses.
Suppose that Of = Og and fI = gI for f,g:A—B in R-Rel. Then there are
K, M, k and h such that {(k,h,n) and (x,k,n) are the standard representations
for f and g, respectively, and {k, h+k, m) is the standard representation
for f+g. Now G(x)*(G(h) +G(k)) = G(x)*G(h) + G(x)*CG(k) because G(x) is a

monomorphism, so



F(£+g) = 6(x)*(G(h) + &(k))G(m)* = (6(x)*G(h) + G(x)*G(k))G(n)*
2 G(k)*G(h)G(n)* + 6(x)*G(k)G(n)* = F(f) +F(g).
Suppose f, < f, for f,,f,:A—B in R-Rel. Let (c;,h;,n,) be the standard
representation for fi, with hi:Ai——aB/Bi, for i = 1,2. Clearly A1 < A2 and
B1 < B2, so there exist n12:A1——AA2 and n12:B/B1———'B/B2 such that Ky = K oKy,

k,,h, =hm, and 0, = 1,. Since G(x,,) is a monomorphism and G(k,) =

G(niz)G(nz), we have G(ni)#G(nla) < G(xg)#, and similarly G(nl)# <

G(n,,)G(n,)*. Then

A

# # _ # #
F(£,) = G(k,)¥G(h, )G(n,,)G(n,)* = G(x,)*G(x,,)G(h, )G(n,)* = F(£,).
Therefore, F preserves order. Then F is a relation functor by 5.7.
Suppose G is an embedding functor and F(g,) = F(g,) for g,,g,:A—B in
R-Rel. Let f, =g, Ag, and f, = g, Vg,, so F(f,) = F(f,) also. Using the
construction of the above paragraph, we see that G(niz) and G(nlz) must be

isomorphisms. Since G is an exact embedding, «,, and 7m, , must be

12

isomorphisms, and so f, = f,, hence g, = g,. Therefore, F is an embedding

2’
functor. =
The results above lead to the next corollary, which is another step in

our unification of external theories for modules.

5.18. Corollary. For rings R and S, the following are equivalent:

5.18a. There exists an embedding relation functor F:R-Rel—S-Rel.

5.18b. There exists an exact embedding functor G:R-Mod——S-Mod.
Proof: Use 5.14 with G = P(F) and 5.17 with F = K(G). =

By 5.8b, we see that 5.18a implies B(R) c B(S). We will prove in 87 that
B(R) c B(S) implies 5.18b. So, these three conditions are equivalent to
each other, to £(R) ¢ £(S), and to G(R) c A(S), by 4.11.
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