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§6. Category Logic and Horn Sentence Translations.

We now define two first-order logical languages for categories.
By taking conjunctions of the atomic formulas of these languages,
we can implicitly form category diagrams with variables representing
objects and morphisms. Using the first language, commutativity
and exactness relations can be imposed in exact additive categories,
and Z-linear combinations of morphisms in each Hom set can be
constructed indirectly. In the second language, the atomic predicates
express diagram properties for the structures of almost strongly exact
relation categories.

By defining our logical languages for categories, we determine
the set UAC of all basic universal Horn sentences for exact additive
categories and the set URC of all basic universal Horn sentences for
almost strongly exact relation categories. Given a ring R, let
UAC(R) denote the set of just those sentences in U, which are
satisfied for R-Mod. Similarly, let URC(R) denote the subset of URC
of sentences which are satisfied for R-Rel. Essentially, these
formalizations allow certain diagram-chasing properties of R-Mod and
R-Rel to be represented by formulas. Since sentences are finite, we
are restricted to diagrams with finitely many elementary hypotheses.

In §4, universal Horn sentences for the algebraic types T, (lattices)
1, (additive relation algebras) and 7, (additive relation algebras with

unit) were already discussed. Let UL, U, and U, denote the sets of all

A
basic upiversal Horn sentences for each of these algebraic types. Here,

the sentences satisfied for R-modules are determined by the algebraic
quasivarieties. That is, UL(R) denotes the subset of UL consisting

of exactly those basic universal Horn sentences which are satisfied in every
member of £(R), and similarly for UA(R) and A(R), and for UB(R) and B(R).

OQur objective in this section is to construct a closed loop of recursive

Horn sentence translation functions



uA uB uL uAC uRC uA’

which are to be defined independently of the choice of any ring. For each
nontrivial ring R, however, the set of basic universal Horn sentences
satisfied for R will be preserved. That is, I' € UY(R) iff Ti(F) € UZ(R) for
i =0,1,2,3,4, substituting the appropriate labels for Y and Z in each case.

To explicitly construct recursive translation functions, we must
precisely define our logical languages for categories. These languages are
cumbersome, and not very useful for working with category diagrams directly.
By examining the formalizations, however, we can see which diagram-chasing
problems correspond to basic universal Horn sentences.

We begin with the logical language for exact additive categories.

6.1. Definitions. Let 7, denote the structure type having a unary

predicate Object binary predicates equality (=) and Unit,.,

AC’

ternary predicates Morphism, . and Zero a predicate Negative,. of

AC AC’ AC

arity four, predicates Sum,, and Exact,, of arity five, and a

c

predicate Composition,. of arity six. Let L(TAC) denote the

AC
language of a first-order predicate calculus with equality with

atomic predicates of type T, Note that L(TAC) is a purely

c
relational first-order language, without any constants or functions.
The only terms of L(TAC) are variables. Fix a denumerably infinite
set of variables X = {X1’X2’x3""} for L(TAC)' The only atomic formulas
for L(TAC) are constructed by providing an argument list of variables in X
for one of the nine atomic predicates given above.

If 0. is an exact additive category, then each variable of X may
represent either an object or a morphism of (. (To avoid complications,

we will assume that no element is both an object and a morphism of (.

This is easily arranged for module categories.) A function
d:X—0bjects(d) uMorphisms(Q) (disjoint union)

is interpreted as true for an atomic formula according to the specifications

below. Let A, B, C, f, g, h, x and y denote arbitrary elements of X.



X =y d(x) = d(y) (any variables)

Object, (A) d(A) is an object of (

Morphism, . (f,A,B) d(f) is a morphism from d(A) into
d(B) in Q

UnitAC(f,A) d(f) = 1d(A) in d

CompositionAC(f,g,h,A,B,C) d(f)
and d(h):d(B)—d(C) in @

d(g)d(h) for d(g):d(A)—d(B)

SumAC(f,g,h,A,B) d(f) = d(g) +d(h) for d(g) and d(h)
from d(A) into d(B) in (

NegativeAC(f,g,A,B) d(f) = -d(g) for d(g):d(A)—d(B)
in (
ZeroAc(f,A,B) d(f) is the zero morphism from d(A)

into d(B) in (

ExactAC(f,g,A,B,C) (d(f),d(g)) is an exact pair of morphisms for
d(£):d(A)—d(B) and d(g):d(B)—d(C) in @

Any argument labelled A, B or C above is intended to represent an object,
and is called an object argument of the atomic predicate in question. Also,
arguments labelled f, g or h above are intended to represent morphishs, and
are called morphism arguments. Note that atomic predicates having one or more
morphism arguments also have object arguments corresponding to the domain and
codomain of each morphism argument. Specifically, each morphism argument x,
for an atomic formula has a corresponding morphism triple (xi,xj,xk), where
X; and x, represent the domain and codomain objects for x,. For example,

NegativeAC(xa,x7,x1,x4) has the object arguments x, and Xy» morphism

1
argument x, with morphism triple (xa,xi,x4), and morphism argument x, with

morphism triple (x7,x1,x4). If an interpretation d is true for this formula,
then d(xa) and d(x7) must be morphisms with domain d(xl) and codomain d(x4).

If T is a sentence (closed formula) of the language L(TAC)’ we write

QFT if T is satisfied in O according to the above interpretations. It



is clear that a first-order theory for exact additive categories could be

axiomatized using sentences of L(TAC).

We now introduce our second logical language, appropriate for almost

strongly exact relation categories.

6.2. Definitions. Let T.. denote the structure type having a unary

c

predicate Object binary predicates equality (=) and Unitp., ternary

RC’

predicates Morphismy., Zeroy,, Smallest., Largestp., Leftproper,, and
Rightproperp, predicates NegativeRC, Conversep, and InclusionRc of arity
four, predicates Sum,., Meet ., Joing, and Exactp. of arity five, and a

predicate Composition,, of arity six. Let L(7..) denote the language of

RC
a first-order predicate calculus with equality with atomic predicates of
type Tre "
Note that each atomic predicate in L(TAC) has a corresponding atomic
predicate in L(7p.) (Object,. corresponding to Objecty,, etc.). Like
L(TAC), L(TRC) is a purely relational structure, with variables of X

the only terms. Each atomic formula for L(r7 is obtained by providing

RC)

variables of X as arguments for one of the seventeen atomic predicates.
If € is an almost strongly exact relation category, then each

variable may represent either an object or a morphism of €, but not both.

Using the set of variables X, a function
d:X—0bjects(€) uMorphisms(€) (disjoint union)

is a true interpretation for each atomic formula of L(7;.) according to the

specifications below. Again, A, B, C, f, g, h, x and y are in X.

X =y d(x) = d(y) (any variables)

ObjectRc(A) d(A) is an object of €

Morphistc(f,A,B) d(f) is a morphism from d(A) into
d(B) in €

Unity, (£,A) d(£) = 1,,,, in €

CompositionRC(f,g,h,A,B,C) d(f) = d(g)d(h) for d(g):d(A)—d(B)



and d(h):d(B)—d(C) in €

ConverseRC(f,g,A,B) d(f) = d(g)# for d(g):d(A)—d(B)
in €
Inclusioch(f,g,A,B) d(f) = d(g) for d(f) and d(g)

from d(A) to d(B) in €
Meet, . (f,g,h,A,B) d(f) = d(g) Ad(h) for d(g) and d(h)
from d(A) into d(B) in €
Joing,(£,g,h,A,B) d(f) = d(g) vd(h) for d(g) and d(h)
from d(A) into d(B) in €

SmallestRC(f,A,B) d(f) = ODE for D = d(A) and E = d(B) in €

IDE for D = d(A) and E = d(B) in €

d(g) +d(h) (relational sum)

LargestRC(f,A,B) d(f)

Such(f,g,h,A,B) d(f)
for d(g),d(h):d(A)—d(B) in €

NegativeRC(f,g,A,B) d(f) = -d(g) (relational negative)
for d(g):d(A)—d(B) in €

ZeroRC(f,A,B) d(f) = Opp for D = d(A) and E = d(B) in €
ExactAC(f,g,A,B,C) d(f):d(A)—d(B) and d(g):d(B)—d(C)
satisfy d(£)*I1d(f) = d(g)0d(g)* in €
Leftproper, . (f,A,B) d(f):d(A)—d(B) and d(£)d(f)* = 1y, in €
Rightproper, . (f,A,B) d(f):d(A)—d(B) and d(f)*d(f) = 1,05, in €

Note that d(f):d(A)——d(B) is a proper map of € iff Leftproper, (f,A,B) and
Rightproper, .(f,A,B) are satisfied for d.

As béfore, arguments labelled A, B or C above are called object arguments,
and arguments labelled f, g or h are called morphism arguments. Again, each
atomic predicate contains domain and codomain object arguments for each of
its morphism arguments, so that each morphism argument has a morphism triple
as in 6.1.

If ' is a sentence for L(T then E ET if ' is satisfied in € for all

RC)?



the interpretations above. Again, a first-order theory for almost
strongly exact relation categories could be formalized using sentences

in the language L(Tp,.).

6.3. Definitions. For 7 a structure type with associated first-order logical
language L(T), we consider basic universal Horn sentences T having the special

form

(¥, %, %) (H),

where W is called the open formula for I' Here, W must either be an atomic

formula PO’ or an implication Q = P0 for Q an (open) conjunctive formula

P AP, A... AP (m =2 1), where P, = Pi(xl,xz,...,xn) is an atomic formula
of L(1) for i = 0,1,...,m. (By convention, take m = 0 when W equals PO')
As before, let each of U ., U ., U, UA and UB denote the set of basic

T T, Or T

universal Horn sentences for L(T), where 7T is Tacr Trer Toe Ta g

respectively.

Given a ring R with unit, we can restate previous definitions as follows:

U, (R) = {T' e U,.: R-Mod F r},

Uy (R) = {T € U, : R-Rel F T},
U (R) = {T e U : £R) F I},
U, (R) = {T e U,: Q(R) F T},
Uy (R) = {T € U,: B(R) F I},

That is, each set above contains the basic universal Horn sentences which are

satisfied for the corresponding external theory of R-modules.
We now state our translation theorem for basic universal Horn sentences.

6.4. Theorem. There exist recursive functions TO:UA——AUB, T1:UB——aUL,

TzzuL——AUAC, TS:UAC——AURC and T4:URC———+UA such that 6.4a,b,c,d,e are

satisfied for all nontrivial rings R with unit.
6.4a. T e U, (R) iff TO(F) € U,(R) for all T in u,.

6.4b. T e U (R) iff T,(I') € U (R) for all T in L



6.4c. T € UL(R) iff TZ(F) € UAC(R) for all T in UL.
6.4d. T e U, (R) iff T,(T) € U (R) for all T in U,,.

6.4e. T € URC(R) iff T4(F) € UA(R) for all T in uRC'

We have already discussed the translation functions T0 (inclusion; see
4.10) and T1 (see 4.8). The translation T2 is based on standard methods for
representing subobjects by monomorphisms and lattice operations by exactness
conditions in an abelian category (see [GH,§3]). For Ta, we use the
identification of R-Mod with P(R-Rel) as in 5.12¢. Finally, T4 is obtained
by adapting 3.16 and the construction of E in 5.8 and 5.9. We describe T,,

T, and T, in the following; additional analysis of the translation functions

is given in Appendix E.

To construct Tz:UL——AU consider short exact sequences in R-Mod as below:

AC’

f2,h fh,l f1,h+1 fh+1,3

A, Ay Ay Apia Ay

where h is an even number, h 2 4, and A, and A, represent zero objects. If A,
represents an R-module M, then f, , represents a monomorphism whose image is

an element of Su(M), and f represents an epimorphism whose kernel is the

1,h+1
same element of Su(M). In order to define TZ(F) for I' in UL, we must make

lattice polynomials occurring in I' correspond to short exact sequencés as above.
These interconnected short exact sequences form a commutative diagram in R-Mod,

in the strong sense that there is a most one diagram morphism 3 j:Ai———+Aj

for each pair (Ai,Aj) of diagram objects, with f . always the unit for A;.

Suppose ' is (Vxl,xz,...,xn)(W), W an open formula. For some m = 0, W equals
(py = q; APy =dy A" AP =) 7 Py = g
for lattice polynomials p, = pi(xi,xz,...,xn) and q; = qi(xi,xe,...,xn),

0<ism (Ifm=0, then ¥ is p, = q,-) We begin the definition of T, (T)
by recursively constructing from ' a list r ,r,,...,r (s 2 n) of lattice

s

polynomials, r, = ri(xi,xe,...,xn), such that

{Po;Pl,---,Pm}U{qqui,---,qm} c {rl’rz""’rs}’



r, is the variable X, for i <n, and for each i, n < i s s, there exist j

and k, 1 s j,k < i, such that r, is rj/\rk or is rj\/rk. We intend to make

each lattice polynomial r, correspond to a short exact sequence with h = 2i +2
in the format above (monomorphism f2i+2,1 and epimorphism f1,2i+3)' Suppose
symbols A, and fj K (i,j,k =2 1) represent systematically chosen distinct

variables in X = {x1’X2""}’ The open formula W2 for TZ(F) has the form:

UlAUZA"’AUmAviAVZA"'AVt =°U0,

with terms U1,U2,...,Um omitted if m = 0. For R-modules in our context, the

equation r, =r 1 < j,k ss, is equivalent to the exactness of

k’

f f
j+2 3
2j+2,1 " 1,2k+3

A2j+2 1 Rk+3°

For 0 = i £ m, therefore, let Ui denote the atomic formula:

Exact, o (f,,,, 10 1 2xen Byivzr Ay Aoyia)

where j is the smallest integer such that ry = p; and k is the smallest integer

such that r, = q,. (Note that U, corresponds to p, = q; by the discussion

above.) The hypotheses V1’V2""’Vt describe the commutative diagram of

interconnected short exact sequences. First, let V,, V,, v, and V, be

UnitAc(fz,z’Az)’ ZeroAc(fz,Z’Az'Az)’ UnitAC(fa's,Aa) and ZeroAC(fs'a,As,As),

respectively. These four conditions force A, and A, to be zero objects. Next,

for i = 1,2,...,s, we require the 3s short exact sequence conditions:
Exact, (£, 55,00 foih2 10 A0 Aoiuzo A,
Exact,o(f5,,5 1 f1 2543 Poieao Ay Byiig)s
Exact, (£, ,i,30 o543 00 A Apiun Ay).

Finally, we must add morphism variables and conditions to the diagram

corresponding to the sequence of lattice polynomials r ,r,,...,r_. For

1<isn,r, is justa variable x,, and nothing further is needed. Suppose

n<iss, sor, is rj/\rk or r,VvVr, for some j and k, 1 = j,k < i. Then

we use the diagrams below, with a = 2i+2, b = 2j+2 and ¢ = 2k +2.



a,b c,1 1,c+1
A———A A, A, A g
fb,1 f1,b+1
Ac £ Al £ Ac+1 A]::+1 £ Aa+1
c,1 1,c¢c+1 b+1,a+1
On the left, assume that r_, r, and r, correspond to the images of f_ ., f,
and f ., respectively, and introduce f_ , which is required to be a kernel of
fb’1f1'0+1 and to satisfy fﬂ’1 = fa'bfb'i. For R-modules, we see that r, will

then correspond to rj/\rk. This can be expressed in the logical language

L(t,,) by the three conditions below:

Composition, (£, ., £, 1, £, .40 Ay, Ay Acy)

CompositionAc(fa'i, fa'b, fb,1’ A, Ab’ A1),

Exact, (£, £ .10 AL Ay Aliqg)
Dually on the right, r, = rjvrk if r, r; and r, correspond to the kernels of
f1'8+1, f1’b+1 and fi’c+1 respectively, fb+1,a+1 is a cokernel of fc,lfl,b+1’
and f1’8+1 = f1,b+1fb+1,a+1‘ This yields join conditions:

Composition,o (£ 4y £ 40 £y puy Aoy Ap ApLy),

Composition, o (£, _,4v £y 1o Fpiq avtr A0 Apuo Aca)

Exact, o (£, o1 foug ann Ao Apur ALy):
The complete list V1’V2""’Vt consists of the 4+ 6s - 3n atomic formulas
given above. So, W, has been defined, and TZ(F) is (Vxl,xz,...,xu)(wz),

with u chosen minimal so that Ta(F) is closed. This completes our
description of T,.

The translation T,:U, .—U;. from exact additive category formulas to
additive relation category formulas is straightforward. Suppose A is

(Vx .xn)(W) in UAC with open formula W equal to

1’X2"'
P,AP,A...AP =P,
for atomic formulas Po'Pl”“’Pm of L(TAC). (If m =0, W is Po.) The open

formula W3 for TS(A) will have the form

U1AU2A"'AUmAV1AV2A"'AV2t = Uo‘



10

(If m =1t =0, then W3 is Uo.) Recall that each atomic predicate for L(TAC)
has a corresponding atomic predicate for L(TRC). Define U, to be the atomic
formula corresponding to Pi, with the same argument list, for i = 0,1,...,m.

(For example, U, is Sum X

0 RC
The terms V1,V2,...,V

(xi,x X,,X

5 %5 ) if P0 is SumAC(xi,x5,x2,x8,x9).)

8’79

correspond to the list f_ ,f,,...,f ~of morphism

2t t

arguments appearing in the list Po’Pi""’Pm of atomic formulas. Suppose
that (f, ,A, ,B,) is the morphism triple corresponding to f,, k = t. Then

\ is Leftpropech(f

k-1 B, ) and V, is RightproperRC(fk,Ak,Bk), for

k’Ak7
k=1,2,...,t. For example, if P0 is ExactAC(x7,xa,x3,x4,x5), there are
four atomic formulas from the two triples (x7,x3,x4) and (xe,x4,x5 . Treating
P, to P similarly, we obtain Vi’VZ""’VZt (t 2 0). This defines the open
formula W,, and T3(A) is then (VX1’X2""’Xn)(w3)' Note that TS(A) is a
"closed sentence, hence is in URC’ since no new variables were introduced.

This completes our description of T,. As previously noted, its properties
are based on the isomorphism between R-Mod and P(R-Rel).

To define T,:U, . —U,, we first identify certain sentences 4 of Uy. which
are called superficial sentences. Each superficial sentence is either true

for all R-Rel or is false for all R-Rel, R nontrivial, and we can determine

recursively which case holds. For A superficial, define T4(A) in UA by:

1

(Vxl)(x = x1) if A is true for all R-Rel.
T,(8) =
) if A is false for all R-Rel.

(in,xz)(x1 = X,
Superficial sentences are of six types. Any A of form (in,xz,...,xn)(Po) for
P, an atomic formula is called superficial of type 1. Note that such a A is

false for all R-Rel except when P0 is of the form X; = X5, Hereafter, suppose

A is of form (Vx x )(Q = Po), where Q equals P, AP, A ... AP , for atomic

10 %p0 e
formulas PO’P1""’Pm' Then A is superficial of type 2 if there is a

variable X; such that d(xj) must be both an object and a morphism under any
interpretation d satisfying QAFP,. Such a sentence is essentially meaningless

for us, because of the requirement that no element of R-Rel be both an object

and a morphism. Calculation shows that A is then false for all R-Rel or



11

vacuously true for all R-Rel. For example, the following vacuously true

sentence is superficial of type 2 because of x, and Xg:

(Vx ..,xg)((NegativeRc(x1,xa,xa,xg) A Xg = Xs) = UnitRC(x4,x6)).

1%
Excluding types 1 and 2, say that A is superficial of type 3 if P, has the
form Object .(x,), and is superficial of type 4 if P has the form
MorphistC(xi,xj,xk). Some calculation with object arguments and morphism
triples of P1’P2""’Pm’ together with consideration of terms Pj which are
equations, shows that T4(A) can be recursively computed for superficial

sentences of these two types. Excluding types 1 to 4, say that A is

superficial of type 5 if there is an object variable X; for Po such that
(in,xz,...,xn)(Q = ObjectRC(xj)),
which is superficial of type 3, is false for all R-Rel. Finally, excluding

types 1 to 5, A is superficial of type 6 if there is a morphism triple
(xi,xj,x ) for Py such that

(in,xz,...,xn)(Q = Morphistc(xi,xj

%)),
which is superficial of type 4, is false for all R—Rel. Obviously, each
superficial sentence of type 5 or 6 is false in all R-Rel.

We are finally prepared to define T4(A) in the general case, when A is not
superficial. Based on 3.16 and 5.8ff, we will define below an equation of
T,~polynomials corresponding to each atomic formula P for L(TRC), called the
primary equation for P. Also, P may have additional corresponding equations
of 7,-polynomials that are called structural equations. There is one structural
equation A = V4 corresponding to each object argument A for P. (Category
objects;of ; correspond to symmetric idempotents of the additive relation
algebra Y.) There are two structural equations, f = Af and f = fB,
corresponding to each morphism triple (f,A,B) for P. (The Hom set in ;
corresponding to symmetric idempotents A and B in Y consists of triples

(A,f,B) with Af = f = fB.) The primary T,-polynomial equations corresponding

to each P are shown below, together with the number of associated structural



equations. (Recall that p(x) denotes (x+(—x))#(x+(—x)), q(x) denotes

(x+(—x))(x+(—x))#, and both x < y and y 2 x denote x = xAy.)

X =y X = y, no structural equations
Objecty.(A) A = A, 1 structural equation
Morphismg . (f,A,B) f = f, 2 structural equations
UnitRC(f,A) f = A, 3 structural equations

CompositionRC(f,g,h,A,B,C) f = gh, 9 structural equations

ConverseRc(f,g,A,B) f = g#, 6 structural equations
InclusionRC(f,g,A,B) f = g, 6 structural equations
MeetRC(f,g,h,A,B) f = gAh, 8 structural equations
JoinRC(f,g,h,A,B) f = gvh, 8 structural equations
SmallestRC(f,A,B) f = p(A)p(B), 4 structural equations
LargestRC(f,A,B) f = q(A)q(B), 4 structural equations
SumRC(f,g,h,A,B) f = g+h, 8 structural equations
NegativeRC(f,g,A,B) f = -g, 6 structural equations
ZeroRC(f,A,B) f = q(A)p(B), 4 structural equations
ExactRC(f,g,A,B,C) f#q(A)f = gp(B)g#, 7 structural equations
LeftproperRC(f,A,B) £e? 2 A, 4 structural equations

RightproperRC(f,A,B) £#f < B, 4 structural equations

For example, Zero ) has the primary equation x, = q(x;)p(x,) and

re (X3, %51 %g
_ # _ # _
= XgXe', Xg T XgXe', Xg = X

3 5% and X, = X,X,.

the structural equations x 3 3 4%g

5

Note that the primary equations correspond to the morphism graph formulas

in Y for Y an additive relation algebra.

For A not superficial, the open formula W, for T4(A) has the form

Uy Al n oAU AV AV AL AV = U
Here, U, is the primary equation corresponding to P, for i =0,1,...,m.

The list V,,V,,...,V, (t 2 0) is obtained by aggregating all the structural

12



13

formulas corresponding to the atomic formulas P1'P2"“’Pm' Finally, T4(A)
is (in,xz,...,xn)(w4), which is a closed sentence, hence is in in UA,

because no new variables were introduced.

~

The atomic formula P of A for Y corresponds to a conjunction of its
primary equation and its structural equations. If A is not superficial, the

structural equations for P, are consequences of Q, because types 5 and 6 are

excluded. In that case, Po is true iff its primary equation is true. To

see why this approach is necessary, suppose A is
(Vx1,xz,xa)(Leftpropech(xl,xz,xs) = LeftproperRC(xl,xz,xz)).

This sentence is superficial of type 6, hence false for all R-Rel. If we

computed by the procedure for non-superficial sentences, T4(A) would be a

trivially true sentence, with both U, and U, equal to x1x1# 2 x,.

This completes the description of T,, closing the loop of recursive

translation functions.
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§7. Equivalence and Inclusion of Rings for Module Theories.

In the introduction, we asserted that our five external theories for modules
determined a unified theory for universal sentences. We have showed that basic
universal Horn sentences can be translated between these theories, with truth
preserved relative to any ring. We can compare two rings R and S according to
the unified theory: we say that R is smaller than S if it has fewer models,
say B(R) c B(S), or more true universal basic Horn sentences, say UB(R) 2 UB(S).
(It seems natural to make trivial rings minimal, and the ring Z of integers
maximal; Z corresponds to the most general module theory, that of abelian
groups.) In the following, we will show that these ring comparisons can be
characterized by the existence of exact embedding functors. This makes many

abelian category techniques available for analysis of such comparisons.

7.1. Definitions and Properties. For rings R and S with unit, say that R is
diagram-smaller than S, written R 3 S, if there exists an exact embedding
functor R-Mod—S-Mod. If R X S and S X R, say that R is diagram-equivalent
to S, and write R ~ S. The relation < is called diagram inclusion, and the
relation ~ is called diagram equivalence.

7.1a. Diagram inclusion is a symmetric and transitive relation (quasiorder)
on the class of all rings. Diagram equivalence is an equivalence relation on

the class of all rings.

It is convenient to state the unification results at this point, although

part of the proof must be deferred.

7.2. Theorem. Suppose R and S are rings with unit. Then the following are
all equivalent:

7.2a. R XS, that is, there exists an exact embedding functor R-Mod—-S5-Mod.
7.2b. There exists an embedding relation functor R-Rel—S-Rel.

7.2¢c. 2(R) c £(S). (Every lattice which is representable by an R-module is
representable by an S-module. )

7.2d. Q(R) ¢ A(S). (Every additive relation algebra which is representable



by an R-module is representable by an S-module.)

7.2e. B(R) c B(S). (Every additive relation algebra with unit which is
representable by an R-module is representable by an S-module.)

7.2f. UAC(R) 2 UAC(S). (Every basic universal Horn sentence of type 7, which
is satisfied for S-Mod is satisfied for R-Mod.)

7.2g. U (R) 2 U (S). (Every basic universal Horn sentence of type 7 . which
is satisfied for S-Rel is satisfied for R-Rel.)

7.2h. UL(R) 2 UL(S). (Every basic universal Horn sentence of type T which

is satisfied in every Su(M), M an R-module, is satisfied in every Su(N), N an
S-module. )

7.21. UA(R) 2 UA(S). (Every basic universal Horn sentence of type Ty which

is satisfied in every Su(M®M), M an R-module, is satisfied in every Su(NeN),
N an S-module.)

7.2j. Uy(R) 2 U,(S). (Every basic universal Horn sentence of type 7, which

is satisfied in every Su(M®M), M an R-module, is satisfied in every Su(N@N),

N an S-module.)

We have already proved many parts of this theorem. We know that 7.2a,b
are equivalent by 5.18, and that 7.2c,d,e are equivalent by 4.11. From the
loop of translation functions (Theorem 6.4), it follows that 7.2f,g,h,i,]
are all equivalent. Clearly 7.2c,h are equivalent by 2.9. Also, 7.2b = 7.2e
by 5.6b. We will show 7.2e¢ = 7.2a later in this section, to complete the proof.

We give several immediate consequences of Theorem 7.2 next.

7.3. Corollary. If R and S are rings with unit, then R ~ S iff there exist
embedding relation functors R-Rel—S-Rel and S-Rel—R-Rel iff Z(R) = £(3)
iff Q(R) = A(S) iff B(R) = B(S) iff UAC(R) = UAC(S) iff URC(R) = U (5) iff
UL(R) = UL(S) iff UA(R) = UA(S) iff UB(R) = UB(S).

7.4. Corollary. Each ring is diagram-equivalent to some countable ring (2.10).

7.5. Corollary. Suppose R and S are rings with unit, and I is a (closed,

prenex) universal sentence in one of the languages L(TAC)’ L(TRC), L(TL),



L(TA) or L(TB). If T is satisfied for R-modules (that is, throughout R-Mod,
R-Rel, £(R), A(R) or B(R), respectively), then there exist basic universal

Horn sentences I' ,T,,...,T satisfied for R-modules, in the same language as
', such that I' is a logical consequence of I', AT, A ... AT . If R 23S and r

is satisfied for S-modules, then it is satisfied for R-modules.

Since £(R), A(R) and B(R) are quasivarieties by 2.9 and 4.9, 7.5 follows
immediately for I' in £(7 ), £(7,) or £(7,). See Appendix E for I in 2(T,.)
or ﬁ(TRC).

We will prove Theorem 7.2 using the methods of Fuller and Hutchinson [xx],
which exploit the special properties of endomorphism rings End(RR(B)), where
B is a sufficiently large infinite cardinal number. An abbreviated treatment

is given below; consult [xx] for the motivating ideas from the theory of left

coherent rings.

7.6. Definitions and Properties. Let R be a ring, let B be a cardinal
number with B 2 N0-+|R|, and let T denote the endomorphism ring End(RR(B)).
Let B be a set of free generators for RR(B), with |B| = B.

7.6a. If M is a submodule of RR(B), there is an endomorphism t in T such
that Im t = M (since IRR(B)I = B because f 2 N0-+|R|, and RR(B) is free on B
generators).

7.6b. Fortandu in T, u is in Tt iff Imu = Im t.

7.6¢c. The principal left ideals {Tt: t € T} of T form a sublattice of the
lattice Su(TT) of left ideals of T, and this sublattice is isomorphic to
Su(RR(B)) via the map Tt#—Im t (7.6a,b). Similarly, Su(TT) is isomorphic
to the lattice of lattice ideals of Su(RR(B)).

7.6d. If P = RR(B), then for eachn 2 1, P = P‘®) in R-Mod. (Partition

B into subsets B1,B2,...,Bn, each of cardinality B, and let Pi denote the
submodule of P generated by B.. Then P, ®P,®...8PF 1is an internal direct

sum for P such that P = P. for each i = n.)

7.7. Proposition. If R is a ring with unit and § 2 1, then R ~ End(RR(B)).



Proof: Suppose B is a free generating set for RR(B) and T = End(RR(B)).
Note that RR;B) is a bimodule and RR(ﬁ) is a projective generator. So, G =
HomR(RR;ﬂ),—) is an exact embedding functor R-Mod—T-Mod, and R X T. Also,
¢:R—T given by ¢(r)(b) = rb for r in R and b in B is a ring homomorphism
preserving 1. So, ¢ induces an exact embedding functor szT—Mod——ﬂR—Mod by

change of rings (rv = ¢(r)v for v in ;M and r in R). This proves R~T. =
Some special definitions are given next.

7.8. Definitions and Properties. For M in R-Mod and N in S-Mod, a ring
homomorphism W:End(RM)——aEnd(sN) is said to preserve exactness if for f and

g in End( M) such that (f,g) is exact in R-Mod, (Yy(f),¥(g)) is exact in S-Mod.
We say that ¥ reflects epimorphisms if whenever Y(f) is an epimorphism (onto),

then f must be an epimorphism.

7.9. Definitions and Properties. A right T-module N, is called 1-flat if

,8,,...,8_ in T such that
1’72 n

n
.,v_ in N such that |J._, v.t. = 0, there
n i=1 i7i

for any t,,t,,...,t in T (n 2 1), there exist s

n

Ui=1 s;t; = 0, and for any v, ,v,,..

exists u in N such that us, = v, for i = n. Note that s ,s, depend
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only upon t1’t2""'tn’ and not on any particular choice of VirVaseo oV

7.9a. 1If NT is 1-flat, then it is flat.

We are now prepared to complete the proof of Theorem 7.2, and also

obtain two more technical characterizations of diagram inclusion.

7.10. Theorem. Suppose R and S are rings with unit, and T = End(RR(ﬁ)) for
some cardinal B 2 x0-+|R|. Then R X S iff B(R) c B(S) iff 7.10a iff 7.10b.
7.10a. 'For some S-module N, there exists a (unit-preserving) ring monomorphism
W:T——eEnd(sN) which preserves exactness and reflects epimorphisms.

7.10b. There exists a bimodule SNT such that NT igs 1-flat and Nt # N for each

t in T which is not an epimorphism.
Proof: As previously noted, R X S implies B(R) c B(S) by 5.18 and 5.6b.

Assume B(R) c B(S), so there exists a T -embedding E:Rel(RR(B’)—~4Rel(SN)

B

for some S-module N. By 3.16i, the ring of endomorphisms of any module M is



isomorphic to hom(1,1), the ring of proper maps in Rel(M). Restricting { to
proper morphisms produces an y satisfying 7.10a. This proves that B(R) ¢ B(S)
implies 7.10a.

Assume that w:T——ﬂEnd(sN) satisfies 7.10a. It is convenient to write
certain function evaluations using a binary infix symbol and reverse order:

x x f denotes f(x). A bimodule structure sNT can be defined using vt = v y(t)

for v e Nand t € T. Suppose ti’tZ""’tn are in T, n 2 1. Since RP = RP(")
by 7.6d if P denotes RR(ﬂ), we can select insertions k; and projections m,

in T for i < n such that x,m, = 1 for i < n, 0T = 0 fori# j, 1=<1i,j <€n,
n

n
and |J._, m.x. = 1. Let t =|J. m.t., so that x.t = t. for i =n. By 7.6a,
i=1 i J i i i

=1

there exists s in T such that Im s = Ker t. Define s, = ST, for i £ n. So,
n n n

U;oy st = Ui=1 st k.t = s(Ui=1 ﬂini)t = s1t = 0.

n

n
Now suppose |J,_, v;t; = 0 for v ,v,,...,v in N. Letv=\,_, v,k;,, so

n n

va(t) = (U, v, ¥k ) xw(t) = Up_y vy #¥0e,t) = Uy vit, = 0.

1

Since ¥ preserves exactness, Im y(s) = Ker y(t), and so there exists u in N

such that ux¥(s) = v. But then
n
us; = usm, = (uxy(s)) *W(“i) = v w(ni) = (UJ.=1 v, *w(xj)) *W(wi) = v,
for i = 1,2,...,n. Therefore, NT is 1-flat. If t in T is not onto, then ¥(t)
is not onto by hypothesis, so Nt = Im y(t) # N. Therefore, 7.10a implies 7.10b.

Assume 7.10b, and let F denote the composite functor

G H
R-Mod——T-Mod———5-Mod,

where G is Hom(RR;B),—) and H is N& —. Since G is exact by 7.7 and H is
exact because N, is flat (7.9a), F is exact also.

Let K be a proper left ideal of R. Suppose B is a free generating set for
RE and bo is in B. Let K, = KbovP0 in Su(RP), where P0 is generated by the
set B—{b,}. By 7.6a, there exists t inT such that Im t = K;. Since w e Tt

iff Imw < Im t by 7.6b, there is a T-linear monomorphism \:T/Tt—G(R/K),

given by N(1+Tt) = XO in Hom(RP,RR/K), where Xo(bo) = 1+K and ko(b) = 0 for

all b in B-—{bo}. Since t is not onto, NTt = Nt # N by hypothesis, and so



xR

Ne, (T/Tt) = N/NTt # 0. But then

F(R/K)

H(G(R/K)) = (N&; G(R/K) # O,
via the monomorphism N&, \. Then F is an exact embedding functor, and so

7.10b implies R X S. =



