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Chapter II. Computability and Unsolvability for Module Theories.

In the study of a well-defined class of mathematical problems, it is
natural to hope for a general computing procedure which resolves all
questions of the given type. In the next section, it is shown that no such
procedure exists for the full range of module theory questions considered
here. That is, there is no recursive procedure for deciding the truth of
basic universal Horn sentences as in §6, with respect to any fixed
nontrivial ring. This result is proved by constructing a finitely-presented
additive relation algebra with a recursively unsolvable word problem.

For additive relation algebras which are free, the corresponding word
problems are recursively computable for many rings R. Essentially, the free
word problems are computable if we can decide when integers divide other
integers in R, where these "integers” are 0 or additive multiples
1+1+...+1 of the ring unit. Such integer divisibility is always
computable for rings with nonzero characteristic, but there are rings with
characteristic zero for which it is not computable. In the later sections

of this chapter, we demonstrate and apply these free word problem results.
§8. Recursively Unsolvable Word Problems and Decision Procedures.

To prove a problem recursively unsolvable, it suffices to show that a
solution procedure for the problem would also solve a problem already known
to be recursively unsolvable. We use such a reduction here, based upon the
result of Novikoff [ ] and Boone [ ] that the word problem for groups is
recursively unsolvable. That is, there is a finitely-presented group G
with a fecursively unsolvable word problem, and we can suppose that G has
two generators by the theorem of Higman, Neuman and Neuman [ ]. By the
method of [ ], we easily obtain an additive relation algebra presentation

that demonstrates the desired recursive unsolvabilities.

8.1. Definitions. Let T, be the algebraic type for groups, taken as ¢, h 1

with arities (2,1,0). Let b denote the variety of groups, as T.-algebras.



Suppose G = {Y|W} is a group presentation with recursively unsolvable word
problem, with two generators, say Y = {xl,xz}, and a finite set W of relations,
assumed to have form wj(xl,xz) =1 for TG—polynomials wj(xl,xz), j=12,...,t.
Define E:P(Y,TG)——aP(Y,TA) recursively by E(xl) = Xy, E(xa) = X,, £E(1) = xlxi#
E(uv) = E(u)E(v) and E(u'l) = ¢(u)?. We consider additive relation algebra
presentations UO{YIA}, where U, is a quasivariety contained in the variety U,

of all additive relation algebras and A is {el = ezi, with

e, = xixl#/\xl#xiszxz#/\xzxz#AE(wl)As(wz)/\... /\E(wt) and

e, = xixi#vxi#xlanxe#vxzxg#vs(wi)VE(WZ)V VE(wt).
Note that e, = e, is equivalent to equality of all the terms X1X1#’ X1#X1'
0,07, %, x,, E(w), E(w,), ..., E(w,).

Given a sufficiently large quasivariety Uo c UA, the (two generator and
one relation) presentation above will have a recursively unsolvable word

problem for Uo.

8.2. Proposition. Suppose R is a nontrivial ring with unit and M is a free
R-module with infinite free generating set B = {b1’b2'b3""}‘ If UO is a
quasivariety of additive relation algebras (¥, € V,) such that Rel (M) is
in ¥, then UO{YIA} has a recursively unsolvable word problem.

Proof: Assume the hypotheses, and consider the diagram:

P(Y,7,)——P(Y,T,)

nl lno
G A Rel (M)
m v .

Here, G'= B{Y|W}, A = U {Y|A}, n is the canonical T -homomorphism onto G,
and N, is the canonical T,-homomorphism onto A. Defining ¢ as in 8.1,
calculation shows that the image of {n, is a subset of A which is a group
generated by Y under the operations (-,#,xixi#), and that the relations of
W are satisfied in this group. Therefore, there exists a unique group

homomorphism preserving x, and x from G into this image, and this

2
homomorphism can be regarded as a function p:G——A such that nu = §n,.



Clearly G is denumerably infinite, say with enumeration G = {gl,ga,gs,...}.
Consider the group monomorphism vo:G——aAut(B) defined by v (g, )(b;) = bj
iff g,g, = g; for i,j,k = 1, which is a Cayley representation of G in the
permutation group of B. Since B freely generates M, vo(gk) determines a
unique R-linear map M—M, and we let v, (g, ) denote its graph in Rel (M),

k 2 1. For the 7,-homomorphism 1, :P(Y,7 )—Rel (M) such that ni(xj) =
vi(xj) for j = 1,2, we can show that q,(e ) = n,(e,), since both equal 1

in Rel(M). Now Rel (M) is in Uo, so there exists a TA—homomorphism v from A
into Rel (M) such that MV = My - Calculation shows that v(u(g)) = vl(g) for
all g in G, and it follows that uv is one-one.

Since uv is one-one, so is p. So, M(p) = n(q) iff no(E(p)) = no(E(q))
for {p,q) in P(Y,TG)Z. But m(p) = m(q) is not a recursively computable
predicate on P(Y’TG)2 since G has recursively unsolvable word problem.

Since ¢ is recursively computable, it follows that the predicate no(u) =
no(v) for (u,v) in P(Y,TA)2 is not recursively computable. Therefore,

UO{YIA} has a recursively undecidable word problem. =

8.3. Corollary. For any nontrivial ring R, there is no recursive decision
procedure for membership in any of UA(R), UB(R), UL(R), UAC(R) and URC(R).
That is, we can not recursively decide whether an arbitrary basic universal
Horn sentence is true for R-modules in any of these five theories.

Proof: By Proposition 8.2, we can’t even recursively compute the predicate
on pairs (u,v) in P(Y,TA)2 which is true iff

(Vx,,x,)((e, = e,) @ (u=v))

is satisfied for all additive relation algebras in ((R). This proves the

result for %,(R), and the remaining cases follow immediately by using the

recursive basic universal Horn sentence translation functions of 6.4. =

The above result is the main point of this section. These unsolvability
results can be sharpened or applied in a number of ways. We conclude with

two such improvements, from [ ] and [ ].



8.4. Proposition. Suppose R is a nontrivial ring with unit and M is a free
R-module with infinitely many free generators. Let io be any quasivariety
of lattices which contains Su(M). Then there is a lattice presentation
with five generators and one relation which has a recursively unsolvable
word problem for io. This presentation is defined independently of the

choice of R and 20.

8.5. Proposition. Given a finite commutative abelian category diagram with
specified exactness relations, there is no general procedure for computing
whether a given pair of diagram maps must be exact (as a consequence of the

specified commutative diagram structure and exactness hypotheses).
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§9. Division of Elements Corresponding to Integers in a Ring.

For each ring R, there is a unique ring homomorphism preserving the unit
from the ring of integers into R. Elements in the image of this
homomorphism are either 0, or sums 1+1+...+1 of the ring unit (one or
more terms), or negatives of such sums. In this section, we investigate
the properties of these elements, especially their division properties.

OQur treatment is adapted from [TISL, §2].

9.1. Definitions and Properties. Let Z denote the ring of integers, and
let (R:Z——aR denote the unique ring homomorphism preserving 1, for any
ring R with unit. Elements of { [Z] are called Z-images in R. For n in Z
and r in R, let n-r denote (R(n)r in R. For integers m and n and a ring R,
Divp(m,n) denotes the predicate

(3Ir)(r e R & m'r = n-1)
on ZxZ. That is, DivR(m,n) holds if {R(m) divides {R(n) (on the left) in R.
Let Z(d) denote the ring of integers modulo d for d = 1, as usual. Note that
we allow the trivial ring Z(1).
9.1a. For each n in Z, (R(n) = n-1 and (R(n) is a central element of R, so
division on the left is equivalent to division on the right for Z-images.
Note also that {R(n)'1 is a central element of R if {;(n) is invertible in R.
9.1b. R is a Z-algebra under the scalar multiplication n'r, with 0-r = 0,
nr=r+r+...+r (n times) if n21, and n'r = =(r+r+...+r) (In| times)
if n < -1. Recall the usual identities: mn‘r = m(n'r), (m+n)'r = mr+n-r,
m-(r+s) =mr+ms, 1'r =r and n'rs = (n'r)s = r(n's), for m and n in Z and
r and s in R.
9.1c. If R has zero characteristic, then {; is one-one and all the
Z-images n-1 are distinct. If R has nonzero characteristic d 2 1, then
n‘'l1=m1in R iff n = m (mod d).
9.1d. For R a ring and integers m and n, DivR(m,n) is true iff DivR(lml,lnI)

is true. If m divides n in Z, then DivR(m,n) is always true. In particular,



DivR(m,O) is always true. If n # 0, then DivR(O,n) is true iff R has nonzero

characteristic d such that d divides n in Z.

When R has a nonzero characteristic d = 1, then the Z-image divisibility

predicate DivR(m,n) is computable from d.

9.2. Proposition. Suppose R is a ring with characteristic d=21. Form
and n in Z, m-1 divides n-1 in R iff the g.c.d. of d and m divides n in Z.
Proof: Assume the hypotheses, so d-1 = 0. Let ¢ be the g.c.d. of d and m,
so there are x, y, z and w in Z such that ¢x = d, cy = mand ¢ = dz + mw.
Suppose m-1 divides n-1, say m'r = n-1 for some r in R. If c doesn't
divide n, then n = sc+t for some s in Z and t with 0 <t < c. Therefore,
0 <tx < cx =d and tx*1 = (n-s¢)x*1 = nx*1-sd1 =nx'1l=zxmr = xecy'r =
dy-r = 0. But if tx-1 = 0, then d is not the characteristic of R. This
contradiction proves that ¢ divides n.
Now suppose ¢ divides n, say n = c¢v in Z. Then (m*1)(wv-1) = mwv-1 =

(c-dz)v:l = ¢v-1 = n-1, so m1 divides n-1 inR. =

9.3. Corollary. Suppose R is a ring with characteristic d 2 1, and S = Z(d).

Then DivR(m,n) is equivalent to Divs(m,n) for all integers m and n.

For rings R with characteristic zero, divisibility of Z-images can be
determined for all integers if it is known when pk+1-1 divides pk-i, for
all primes p and k 2 0. For each prime p, we need only determine the
k+1,pk)

smallest nonnegative integer k such that Div (p is true, if there is

such a k.

9.4, Definitions and Properties. Let N[0,»] denote the chain (totally
ordered set) consisting of the nonnegative integers {n: n 2 0}, ordered
as usual, together with a maximum element denoted by «. Note that N[0,=] is
a complete lattice, with sup Y = « for Y € N[0,=] iff « € Y or Y is an
infinite set.

If p is a prime and R is a ring, let the p-degree of R, denoted by dgrR(p)
or dgr(p,R), be the smallest integer k in N[0,~] such that DivR(pk+1,pk) is



true, with dgrp(p) = = if there is no such k.

If p is prime and n # 0 in Z, the p-exponent of n, denoted by expt (p),
is the largest integer k such that p* divides n in Z. Note that expt__(p) =
exptn(p).
9.4a. Suppose R is a ring and p is prime. For i,j 2 0 in Z, DivR(pi,pj) is

true iff i = j or dgrp(p) = j. (Since DivR(pi,pj) is true for i < j by 9.1d,

assume i > j. If pi-s = pj-l for some s in R, then pj+1°t = pj'l for t

pi'j'l-s, so dgrR(p) < j. If dgrp(p) < j, say pk*l-r = pk-l in R for k

dgrR(P), then pi°u = p-]-l for u = ri—‘]')

i

9.4b. Suppose R is a ring, p is prime, and dgrR(p) k < ». Then the
maximum p-height possible for an R-module element is k. (Note that 1 in
RR/ka has p-height k, since pk‘l'i in ka implies dgrR(p) <k. If j>k
and (pi-1)v = 0 for v in gM, then (p¥-1)v = 0 because pl-1 divides p*-1
in R.) If dgrg(p) = =, then R-modules may have elements with arbitrarily
large p-heights j (such as 1 in RR/ij)'

9.4c. If R has characteristic d = 1, then dgrp(p) = expt, (p) for all
primes p (apply 9.2). In this case, dgr (p) is 0 except for at most
finitely many primes p, and dgrR(p) is never =,

9.4d. For p prime, dgrR(p) = 0 iff p-1 is an invertible element of R.

For rings R with characteristic zero, DivR(m,n) is true if n = 0 and

false if m= 0 and n # 0. The other cases are shown in the next result.

9.5. Proposition. Suppose R is a ring with characteristic zero, and m and
n are nonzero integers. Then the following conditions are equivalent:
9.5a. DivR(m,n) is true, that is, m+-1 divides n-1 in R.

9.5b. For each prime p dividing m, exptm(p) > exptn(p) implies that

dgrp(p) = expt_(p).

9.5¢. For each prime p, if i = expt (p) and j = expt (p), then p°-1

divides pd-1 in R.

Proof: Assume 9.5a, so m'r = n-1 for some r in R. Suppose i = expt_(p) >

exptn(p) = j for p prime, som = pj+1x and n = pjy for x and y in Z, and y is



not divisible by p. Then pa+yb = 1 for some a and b in Z, so bm'r = bn-1 =
piyb-1 = pi(1-pa)-1 = pi-1-pi*ta-1 in R. Therefore, pi*'+t = pl-1 for
t = xb'r+a-1 in R, and j 2 dgrp(p). This proves 9.5a = 9.5b.

Assume 9.5b, and let i = exptm(p) and j = exptn(p) for p prime. If p

doesn’'t divide m, then i = 0 £ j and DivR(pi,pj) is true by 9.4a. If p

divides m, then either i < j, or i > j and so dgrp(p) = j by 9.5b. Hence

DivR(pi,pj) is true in all cases by 9.4a. Therefore, 9.5b = 9.5¢c.
Assuming 9.5c, there exists r such that m'r = n-1 (use 9.1a and the

prime power factorizations of m and n). Therefore, 9.5¢ = 9.5a. =

Based on 9.2 and 9.5, we will develop a unified approach to Z-image

divisibility conditions for all rings.

9.6. Definitions and Properties. Let Pr denote the set of all primes. A
p-degree function is any function f:Pr—N[0,~], and N[O,oo]Pr denotes the
set of all p-degree functions. Order p-degree functions pointwise: f = g
iff f(p) < g(p) for all primes p. A p-degree function g such that g(p) # «
for all primes p and g(p) = 0 for all but finitely many primes p is said to
have finite height. A p-degree function h such that h(p) = = except for at
most finitely many primes p is said to be =-cofinite.

For n + 0, let expt denote the p-degree function pi—expt (p). Define
p-degree functions divm'n for integers m and n as follows: If n = 0, then
div. (p) = » for all primes p. If n# 0 and m = 0, then divm,n = expt .

m,n

For nonzero m and n and p prime:

expt (p) if expt (p) > expt (p),
div_ (p) =

m,n

w if expt (p) = expt (p).

9.6a. Under pointwise order, N[O,co]Pr is a complete distributive lattice

(a denumerable product of chains N[0,»]). Arbitrary meets and joins are

also computed pointwise.

9.6b. The set of all p-degree functions g of finite height is an ideal of
the lattice N[0,=]P". A p-degree function g has finite height iff the subset



{f: £ = g} of N[O,w]Pr is finite iff ZpePr g(p) is finite. For n # 0, expt
is a p-degree function of finite height, hence so is divo,n. The function
nffi—expt is a one-one correspondence between the positive integers and the
set of p-degree functions of finite height. The reciprocal function takes g
to Hpspr pg(p), a form of the prime power factorization of an integer n if g
has finite height. If R has characteristic d 2 1, then dgr, = expt, by 9.2.
For nonzero m and n, m divides n in Z iff exptm s exptn in N[O,w]Pr.

9.6c. The set of all w—cofinite p-degree functions h is a dual ideal of
N[0,»]P". The functions divm'n are »-cofinite, except for the finite height

casem =0 and n # 0 of 9.6b. For every «-cofinite p-degree function h,

there exist integers m,n 2 1 such that div_ = h. (Apply 9.5, using

m = nsz pPP*1 and n = ] h(p) for J = {p € Pr: h(p) < «}.

ped P

If J is empty, let m=n =1.)

It is useful to define a lattice incorporating all the patterns of Z-image

divisibility that are possible for a ring.

9.7. Definitions and Properties. Suppose R is a ring with unit. Let {0,I}
denote the two element lattice with 0 < I, let zcharR = 0 if R has nonzero

characteristic, and let zcharR = I if R has zero characteristic. Define

J = {{x,f): x € {0,I}, £f:Pr—N[0,»], x = 0 = f has finite height}.
(Using 9.7 through 9.10, we will see that J is exactly the set of pairs of
form (zchary, dgrp), and that such a pair completely determines the Z-image
divisibility pattern of R.)
9.7a. J is a sublattice, in fact a lattice ideal, of the distributive
product lattice {O,I}><N[O,w]Pr, and J is complete. Joins of infinite
subsets of J are not necessarily the same in J as in {O,I}><N[O,°°]Pr
(consider {(0,f): f has finite height}). Infinite meets are the same.
9.7b. If R is a ring with unit, then (zcharR, dgrR) is in J (9.4¢c). For

all integers m and n, DivR(m,n) is true iff:

dgr

g < div and (if m = 0 and n # 0, then zchar, = 0).
m,n R



(Use 9.1d, 9.2, 9.4c and 9.5.)
9.7c. Suppose R and S are rings with unit. Then Divs(m,n) implies

Divp(m,n) for all integers m and n iff

(zcharp, dgrp) < (zcharg, dgrg) in J.
(As in 7.1, smaller rings satisfy more formulas.)
9.7d. R has nonzero characteristic d =2 1 iff (zcharR, dgrR) = (0, exptd).
If zcharp = 0 and dgrp, = {, then the characteristic of R is ﬂpepr pf(p),
which is an integer by 9.8b because f has finite height.
9.7e. Suppose R is a ring with unit, M is an R-module, and dgrR(p) =k <
for a prime p. Then Im pj-lM = Im pk-lM and Ker pj-lM = Ker pk~1M for all

j 2 k. If Ris commutative and S is the ring of endomorphisms of M, then

(zcharg, dgrg) = (zcharp, dgrp). (If p¥*l.r = p¥-1 in R, then p¥*'-s = p*-1
in S, where s{(v) = rv for all v in M. 1If zcharR = 0, then the characteristic

of S divides the characteristic of R, and we can use 9.6b and 9.7d.)

In Corollary 9.3, we showed that the particular rings Z(d) displayed all
the patterns of divisibility of Z-images possible for arbitrary rings with
nonzero characteristic. We can also construct particular rings of zero
characteristic with all the possible patterns of Z-image divisibility for

arbitrary rings with zero characteristic.

9.8. Definitions and Properties. Let Q denote the field of rational numbers,
and let Qp denote the subring of Q consisting of fractions m/n in lowest terms
such that p doesn't divide n. Recall also the rings Z(d) = Z/dZ for d = 1.
9.8a. For all primes p and q, dgr(p,Z(q*)) is k if q = p and is 0 if q # p
(use 9.40).

9.8b. For all primes p and q, dgr(p,Qp) is » if q = p and is 0 if q # p.

Note that dgr(p,Z) = = and dgr(p,Q) = 0 for all primes p.

9.8c. Suppose {Rj: j € J} is a (possibly infinite) set of rings with unit,

and R is the product ring "j:J Rj. Then

dgr(p,R) = sup {dgr(p,Rj): j € J} in N[0,]



for all primes p.

9.9. Definitions and Properties. For a p-degree function f and p prime,

define the rings

Z(pf(P)) if £(p) < =,
S.(p) =
Qp if f(p) = .

For each pair (x,f) in J, define the product ring
anPr Sf(p) if x =0,

Q x HpaPr S;(p) if x = IL.

S(x,f) =

For x = 0, f has finite height, so all but finitely many factors Sf(p) are
trivial rings Z(1).
9.9a. Suppose (x,f) is in J and S = S(x,f). Then S is a commutative ring,

with nonzero characteristic Hp f(p) if x = 0 and zero characteristic if

P
¢ePr

x = I (the factor Q forces zero characteristic for S(I,f) when f has finite
height). For all primes p, f(p) = dgr(p,S(x,f)) (use 9.8a,b,c). Therefore,

(zchars, dgrs) = (x,f).

By 9.7b and 9.9a, there is a one-one correspondence between members of J
and Z-image divisibility patterns for rings. The significance of the order
in J is shown by 9.7c. Note that S(0,f) is isomorphic to Z(d) if f = expt,,

so that the case x = 0 below is essentially a restatement of 9.3 using 9.7d.

9.10. Corollary. For each ring R, (zcharp, dgrp) is the unique member (x,f)
of J such that for S = S(x,f), DivR(m,n) is equivalent to Divs(m,n) for all

integers m and n.

For R with nonzero characteristic, we know that DivR(m,n) is recursively
computable as a predicate on ZxZ by 9.2. For characteristic zero, the

analysis is given next.

9.11. Proposition. Suppose R has characteristic zero. Then DivR(m,n) is
a recursively computable predicate on ZxZ iff dgr (p) < k is a recursively

computable predicate for primes p and integers k = 0. In particular,



DivR(m,n) is recursively computable if dgrp is a recursive p-degree function.

k+1,pk), the forward

Proof: Since dgrR(p) < k is equivalent to DivR(p
implication of the first part follows. The reverse implication of the first

part follows from 9.5, and the second part is clear. =

The criteria of 9.11 are distinct, since dgrp may not be a recursive

function even if dgrR(p) < k is a recursive predicate.

9.12. Example. Define a recursive function f on the nonnegative integers
such that the set of primes in Im B is not recursive. Let f(p) = k for p
prime if k is the smallest integer such that B(k) = p, with f(p) = = if
there is no such k, and let R = S(I,f). Then dgrR(p) < k is decidable,
since it is true iff one or more of B(1),B(2),...,B(k) is equal to p.
However, dgrp is not a recursive function because the inverse image of {=}
contains p iff it is in the complement of the image of B, and this set of

primes is not recursively enumerable by hypothesis.
There are two special classes of rings of some interest.

9.13. Corollary. Suppose R is a von Neumann regular ring of characteristic
zero. Then DivR(m,n) is a recursively computable predicate iff the set
of primes p such that p-1 is invertible in R is recursive.

Proof: For each prime p, there exists t in R such that (p-1)t(p-1) = p'1,
by hypothesis. So, dgrp(p) € {0,1} for all primes p by 9.1a,b, and the
result then follows from 9.4d and 9.11. ®

9.14. Corollary. Suppose R is a torsion-free ring. Then DivR(m,n) is a
recursively computable predicate iff the set of primes p such that p-1 is
invertible in R is recursive.

Proof: If k = dgrp(p) and 0 < k < o, then DivR(pk+1,pk) implies that
p¥-(pt-1) = 0 for some t in R, and p-t-1 # 0 because DivR(pi,pO) is
false. So, dgrR(p) € {0,=} if R is torsion-free, and the result again
follows from 9.4d and 9.11. =



Observe that S(x,f) is a (possibly trivial) regular ring iff f(p) € {0,1}
for all primes p. Similarly, S(x,f) is a (nontrivial) torsion-free ring iff
x = I and f(p) € {0,=} for all primes p.

From previous analysis, we can show that a conjunction of finitely many
Z-image divisibility conditions is always equivalent to a single Z-image
divisibility condition. This reduction is recursively computable, and does

not depend upon the choice of the ring.

9.15. Proposition. Suppose m m and n,,n,,...,n_ are integers.

1’m2""’k 1272 k
Then there exist m 2 0 and n 2 1, recursively computable from my,my, ..., My
and n,,n,,...,n, such that for all rings R,
DivR(m,n) is true iff DivR(mj,nj) is true for j = 1,2,...,k.
Proof: Let h, = div for j =1,2,...,k, and let h = h, Ah,A... Ah
j mj,nj 1 2 k

in N[0,=]F". Suppose m, =0 and n; + 0 for some i s k. By 9.6b, h, has
finite height, so h has finite height since h <= h,, so h = expt for some
n=1. If R has characteristic d, it follows from 9.7b that DivR(O,n) is
true iff (dgrp = h and d # 0) iff (dgrp < hj for j s k and d # 0) iff
DivR(mj,nj) is true for j < k.

Suppose there is no such i < k. By 9.6c, h, is »-cofinite for all i = k,
so h is »-cofinite, and so h = divm n for some m,n =2 1. By 9.7b again,
DivR(m,n) holds iff dgrR < h iff dgrR < hj for j = k iff DivR(mj,nj) is true
for j < k.

In Appendix F, we give an algorithm for computing such an m and n from
m ,m,,...,m

and n,,n NS L based on 9.6b,c and 9.7b. =

k 20

Now éonsider nonhomogeneous systems of linear equations with Z-image
coefficients in a ring R. That is, given integers a;; and v, for i =
1,2,...,s and j = 1,2,...,t, we ask whether there exist elements (not
in R satisfying the equations:

necessarily Z-images) r , T

N ITRRRTS N
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a,,'r, +a,'r,+ +a,'r, =V, 1,
8,,"T, + 8,,'T, + + a?t-rt = v2-1,
a,'r, +a,r,+ +a_, r =V, 1,

(Recall that a,;°T; = (R(aij)rj and v -1 = (R(vi).) Now, the solvability of
a1l by 1 system is just a Z-image divisibility condition DivR(ali,vl). If
A= [aij] is an sxt diagonal matrix and k = min{s,t}, then the solvability
of the system is a conjunction of terms DivR(aii,vi) for i < k and DivR(O,vi)
for k < i =s. Using standard techniques of integer matrix diagonalization
and 9.15, we can reduce any nonhomogeneous system of linear equations of the
form displayed above to an equivalent single Z-image divisibility condition
DivR(m,n). We will see that m and n can be recursively computed from the

integers a;; and v,, independently of the choice of the ring R.

9.16. Definitions and Properties. For R a ring with unit and positive
integers s and t, ms t(R) denotes the set of sXxt matrices with coefficients

in R. The set of sXs matrices on R is denoted by ms(R) also.

If A = [aij] is an sXt integer matrix (in ms’t(Z)), let Ag [{R(a..)]

1

inM_ ,(R), an sxt matrix of Z-images in R.

9.16a. For any ring R with unit, ms(R) is a ring with unit Is [bij]

(Kronecker delta) under the usual matrix sum and product. Also, M (R)

s,t
is a left—ms(R), right—mt(R) bimodule under matrix sum and product.
9.16b. If A and B are in ms't(Z) and C is in mt'u(Z), then (A+B)R = Ap +B;
and (BC)R = BRCR‘ Also, (Is)R is the ring unit of ms(R), so that AEF—*AR
determines a ring homomorphism ms(Z)——ems(R) preserving the ring unit. If

B is an, invertible element of ms(Z), then By is invertible in ms(R) with

(By)™' = (B7h),.

The following matrix diagonalization result was given at least as early

as 1879 by Frobenius, and perhaps even earlier in a form like the one below.

9.17. Proposition. Given an sXt integer matrix A, there exist an sXs

integer matrix B and a t Xt integer matrix C such that B™! exists in ms(Z),
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C™! exists in mt(Z), and D = [dij] = BAC is an s xt diagonal matrix (that is,
d.. =0 if i # j). Furthermore, such B, C and D are recursively computable

1)

from A.

The reduction of each nonhomogeneous system of linear equations to a

single Z-image divisibility condition can now be verified.

9.18. Proposition. Suppose A = [aij] in ms (Z) and V = [vi] in ms 1(Z), for

t
s,t 2 1. Then there exist integers m =2 0 and n =2 1, which are recursively
computable from A and V, such that for all rings R, 9.18a is equivalent to
DivR(m,n).

9.18a. There exists Y in mtyi(R) such that ARY = VR'

Proof: By 9.17, there exist B invertible in ms(Z) and C invertible in

mt(Z) such that BAC =D = [dij] is a diagonal matrix in ms’t(Z). Also,

B and C are computable from A. Let U = [u,] = BV in ms'l(Z). For any ring

R, consider the condition:

(x) There exists Y, in m R) such that DY, = U, = B v

t,1( R R'R’

Since D is diagonal, (x) is true iff DivR(dii,ui) holds for i = 1,2,...,s,
defining d,, to be 0 if t < i =s. By 9.15, there exist m =2 0 and n 2 1
such that (%) is true iff DivR(m,n) holds. Since d;. and u, for i = s are

recursively computable from A and V, so are m and n.

Assuming (x), let Y = C Y . Then A Y = B;BRARCRY0 = B;leRY0 =

B;BRVR = Vg, proving 9.18a. Conversely, assume 9.18a and let Y = CélY.

Then DRY0 = BRARCRCéiY = BpApY = BVp, proving (*). Therefore, (*)’

9.18a and Divp(m,n) are all equivalent. ®

In Appendix F, computer programs are described for the recursively
computable operations discussed here. There is a reasonably efficient
polynomial-time computation of m and n from A and V as in 9.18, which is

feasible if the dimensions s and t are not too large.



