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§10. Free Word Problems for Additive Relation Algebras of Modules.

We are now ready to develop the algorithm for free word problems with
respect to £(R), G(R) and B(R). From any 7 -polynomials d and e, we will
recursively compute integers m 2 0 and n =2 1 such that d s e is satisfied
in every additive relation algebra of B(R) if and only if m-1 divides n-1
in R. Using the analysis of Z-image divisibility conditions in §9, it
then follows that B(R) has solvable free word problems iff the predicate
dgrR(p) < k is recursively decidable for all primes p and k 2 0. This is
always true if R has nonzero characteristic. Essentially the same analysis
holds for £(R) and (U(R). The varieties of additive relation algebras (or
lattices) generated by the quasivarieties above are uniquely determined by
the Z-image divisibility pattern (zcharp, dgrp) of R in J, as in 9.10.

This free word problem analysis was originally given for lattices in [TISL],

and for additive relation algebras in [FWPARAM].

10.1. Definitions and Properties. The variables X = {X1'X2’X3""} will
represent additive relation algebra elements. As in 3.1, P(X,TB) denotes
the TB—algebra of all TB—polynomials on X. Suppose d = d(xl,xz,...,xn) is
in P(X,71,). Let "d" denote the number of symbols in d (count X, as one
symbol, supply any omitted product symbols (-), and exclude parentheses).

Sets B = {b1’b2'b3"“} and C = {c ..} contain variables that
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will represent module elements. Let ZB denote the free Z-module of
Z-linear combinations of elements of B, and similarly for Z, and C.

A recursive decomposition of d is given next, using finite sequences of
elements of W, = Z, XxZ, xP(X,7.). The m-tuple wB,k(d) = (ui,uz,...,um)
of triples u, in W, is defined by induction on k = 0, where m is a function
of k and d. For each d, wB’O(d) = (ui) for u, = <b1'b2'd)' Assume wB,k(d) =
(ul,uz,...,um) has been defined. If m < k, then wB'j(d) = wB,k(d) for all
j 2 k and we also write wy(d) = wy k(d). Otherwise, we suppose that u,  , =

d, .) and define w

(pk+1, I S B k+1(d) by adding zero, one or two triples

to the end of L k(d), as described below. We also need to know the first



unused variable bj, that is, the smallest value of j, j 2 3, such that bj

has zero coefficient in the first and second coordinates of all of the

triples u,,u,,...,u . Define wy k+1(d) by cases as follows:
If d4,,, is 0, 1, 0, I or a variable x; in X, then wB’k+1(d) = wB,k(d)'
If d,,, is £+g for TB—polynomials f and g, then add the two triples:

Uy = (Pyyqr By £) and w = Apy g, @4, ~ by 8).

Ifd,,, is-f, then add the triple:

1

um+1 = (pk+1’ -qk+1’ f)'

Ifd.,, is fg, then add the two triples:

1

u

nt 1 = (Pk+1’ bJ’ f) and um<|»2 = (bJ’ qk+1’ g)

If d  , is f*, then add the triple:

1

Uer = (G Pyypr )

m

If d,,, is fAg, add the two triples:

1
Wier = (Pryrr Taro £) and w_ ., = P,y Qg g).

If d,,, is fvg, then add the two triples:

1
Yner1 = (bj’bj+1’f) and u ., = (Pk+1'"bj’ qk+1"bj+1' g).
This completes the inductive definition of w, k(d) for k 2 0.

Given e in P(X,TB), we define w. ,(e) and wc(e) similarly, except that

C.k
elements of ZC are used rather than elements of ZB’ That is, the first
triple is <°1’°2'e)’ and we use elements c; rather than bj in the cases
above, so that all triples of wc,k(d) belong to W, = Z, XZ, XP(X,T).

Let Q(d) equal 2 plus the number of occurrences of relational sum (+) and
productv(-) symbols in d plus twice the number of join (V) symbols in d, and
similarly for 2(e) and e.
10.1a. For all d and e in P(X,7,), wy(d) is defined and is a |d||-tuple of
elements of W,, and similarly wc(e) is defined and is an |e|-tuple on w..

Also, wB(d) and 2(d) are recursively computable from d, and similarly wc(e)

and 2(e) are recursively computable from e. A variable bj occurs (with



nonzero coefficient) in the first or second coordinate of a triple in wB(d)

iff j = 2(d), and similarly for c wc(e) and 2(e).

Given additive relation algebra polynomials d and e in P(X,TB), we will
consider free word problems of form d < e. (Obviously, we can solve for all
equations d = e iff we can solve all such inclusions.) Our word problem
procedure begins with the computation of wB(d) and wc(e). To assist the

reader, a sample computation is shown below.

10.2. Example. Let d = (—xl)O/\le in P(X,1,). Then wB(d) = (ui,uz,.‘.,ua)

as shown below:

u, = (b, b,, (-x,)0 A x,I) u, = (ba, b,, 0)

u, = (b, b,, (-x,)0) ug = (b1’ b,, xz)

u, = (bl’ b,, XZI) u, = (b4, b,, 1)

u, = (b1’ b,, —Xi) ug = <b1’ ~b,, X1>
Secondly, let e = (x1-+x1)0\/(1-+x2#) in P(X,715), so w,(e) = <V1’v2""’V10>
as shown below:

v, = (c,, c,, (x1-+x1)0‘v(1-+x2#)) Ve = (e, ¢4y Cq» 1)

v, = (Ca' Cy» (x1-+x1)0) v, = <c1"°3' C, " C4 = Cq» Xz#)

v, = (ci-ca, c, ~ ¢y, 1-+x2#) Vg = (03, cq X1>

v, = <°3’ Cs ) xl-fxl) vy = <03’ cg = Cypp x1)

vy = {cg, ¢4, 0) vip = {ep-c mcgs o mcy, Xp)

These two decompositions show applications of all the rules in 10.1. Note

that 2(d) = 4 and 2(e) = 7.

Obviously, the decompositions of 10.1 are related to the structure of
unary and binary T,-operations for Rel(M), M an R-module. Next, we
recover information from wB(d) relating to the occurrences of constants and

variables in d. Then wc(e) and e are treated similarly.

10.3. Definitions and Properties. Suppose d = d(x ,xn) in P(X,TB)
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and wy(d) = (ui,uz,...,u ) with u; = (pj,qj,dj) in Wy for j = k.
Define Vy(d) = V, uV,uV, € Z, by:



v, = {pj: jskandd, = 0}kJ{qu j <k and dj = 0},
v, = {qj: j €k and dj = 0} and
v, = {pj-qj: j<kandd, = 1}.

Since I contains all pairs of Rel(M), no restriction conditions in VB(d)
are needed for the cases dj = I.

For i =1,2,...,n, define subsets U i(d) of ZBXZB by:

x.}.

UB,i(d) = {(pj,qj): j < k and dj

Assuming that e = e(xi,xz,...,xn) is in P(X,TB) also, similarly define
subsets VC(e) of ZC and Uc'i(e) of ZC><ZC for i = 1,2,...,n, using wc(e).
10.3a. For d as above, VB(d) and U, i(d) for i = 1,2,...,n are finite sets

which are recursively computable from d. Similarly, V (e) and U, ,(e) for

i =1,2,...,n are finite sets which are recursively computable from e.

10.4. Example. Defining d and e as in 10.2, we obtain:

Ve(d) = {b,} Vo(e) = {c,, ¢4, ¢y —cy—cql
Ug,4(d) = {{by, ~byd} Ug 1(e) = {{eg, ep), ey, cg )}
UB,2(d) = {<b1’ b4)} Uc,a(e) = {(c2 -c,=cqs €y ~cs)}

Since only x, and x, occur in d and e, we take n = 2.

Our decomposition procedure was constructed to satisfy the next result.

10.5. Proposition. Suppose d = d(xi,xz,...,xn) is in P(X,TB). Let M be an

R-module, with a, and a, in M and z ) is

2 1125+ 22, in Rel(M). Then (a

182

in d(z ,zn) iff there exists a Z-linear map ¢:Z,—M satisfying
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conditions 10.5a,b,c,d below.

10.5a. 'For all j > 2(d), w(bj) = 0.

10.5b. For i =1 and 2, a, = ¢(b,).

10.5¢. For all x in Vi (d), ¢(x) = 0.

10.5d. For each i =< n, (x,y) in Uy i(d) implies {(¢(x), ¢(y)) is in z,.
Proof: Assume the hypotheses, suppose wy(d) = (ul,uz,...,uk) with

u; = (pj,qj,dj) for j =k = |d||, and let s = 2(d). If ¢:Z,—M is Z-linear

n

and satisfies 10.5b,c,d, then (¢(pj), w(qj)) is in dj(zi,...,z ) by



induction backwards through wB(d), from u, to u,. (Use 10.5c if dj is a
constant 0, 1, 0 or I, and 10.5d if dj is a variable xi.) But then (ai,ae)
is in d(zl,...,zn) via u, and 10.5b.

Conversely, if (a ) is in d(zi,...,zn), then we use induction forward

1182

through wy(d), from u, to u

1 K o define w(bl),w(bz),...,¢(bs) in M which

uniquely determine a Z-linear map w:ZB——aM satisfying 10.5a,b,c,d and such

that (w(pj), w(qj)) is in dj(zl,...,zn) for j sk. =

Proposition 10.5 remains true if we relabel so that d is replaced by e,
B by C, and b, by ¢, throughout.

We are now ready to make the first direct connection between our analysis
and free additive relation algebra word problems. Our procedure here was
originally motivated by the method of R. Wille for constructing Malcev
conditions characterizing certain universal algebra congruence Horn

formulas ([KG, Satz 6.16, p. 76]; also see [TISL, Thm. 1, p. 276]).

10.6. Definitions. Suppose R is a ring, and recall the Z-image map {R:Z——~R

from 9.1. Let d = d(x .,xn) be in P(X,TB), and s = 2(d). Then define:

S P
¢:Z,—R® to be the Z-linear map such that E(bj) =0 if j > s and
E(m1b1-+m2b2-+...-+msbs) = ((R(mi), {R(mz),...,(R(ms)),
N to be the R-submodule of R® generated by {{(v): v e V (d)}
with N = 0 if V,(d) = &,
1:R®*—R*/N to be the canonical R-linear epimorphism, and

k:Z;—R*/N to be the (Z-linear) composite function, k = §n.

For each i < n, let y, denote the element of Rel(R®/N) which is generated
as a submodule of R®/N & R®/N by the set of pairs:

{Ce(u),k(v)): (u,v) e Uy ((d)},

with y, =0 if Uy (d) = &.

10.7. Proposition. Let R be a ring with unit, and suppose d = d(xl,...,x )

n

and e = e(xi,...,xn) are T,-polynomials. Define s = 2(d), ¢, N, m, « and y,



for i = n fromd as in 10.6. Then the following conditions are equivalent:
10.7a. d < e is satisfied in all additive relation algebras in B(R).
10.7b. (x(bl), n(bz)) is in e(y,,y,,---»¥,)-
10.7¢c. There exists a Z-linear map W:ZC——aR’/N such that W(cj) = 0 for
all j > 2(e), W(cl) = x(bl), W(cz) = n(bz), Y(x) = 0 for all x in Vc(e),
and for each i = n, (x,y) in Uc'i(e) implies {(y(x), ¥(y)) is in y,.

Proof: Assume the hypotheses, and check that « and y,,y,,...,y, satisfy
the conditions 10.5a,¢,d for d, and so (n(bi), K(ba)) is in d(y,,...,y,)
by 10.5. But then 10.7a implies 10.7b. Obviously, 10.7b and 10.7c are
equivalent by the relabelled version of 10.5.

Assuming 10.7b, 10.7a can be proved by showing that for any R-module M,

d(zl,zz,...,zn) < e(zl,zz,...,zn)
for any Zy,2Z5, 052, in Rel(M). (The quasivariety B(R) is generated by
{Rel(M): M in R-Mod}.) Let (81'32) € d(z,,...,z ). By 10.5, there exists

a Z-linear map ¢:Z,—M satisfying 10.5a,b,c,d. Define p:R°—M by

“((rl’rz"“’rs>) = Z ri‘P(bi)-
i=1

Clearly w is R-linear, and ¢ = {p by 10.5a. Then p(&(x)) = ¢(x) = 0 for x
in VB(d) by 10.5¢c. So, N € Ker u, and there exists an R-linear map

v:R®/N—M such that p = qu. We have the homomorphism diagram

£ n v

Z, R® R® /N M,

with k = §n, p = v and ¢ = gnv. By induction on Ty-polynomial length |[f|

using 10.5d, we can show that (x,y) in f(y,,...,y_ ) implies (v(x), v(y)) is

in f(zis...,zn) for any f = f(xl,...,xn) in P(X,TB). By 10.5b and 10.7b,
(81’82> = (w(bi), p(b,)) = (v(x(b,)), v(n(bz))) € e(z,,2,,...,2, ).

So, d(zl,...,zn) < 9(21""’Zn)’ proving that 10.7b implies 10.7a. =

Our next objective is to recursively construct a nonhomogeneous system of
linear equations with Z-image coefficients which is satisfied in R iff the

criterion 10.7c is true. We can then apply 9.14 and 10.7 to connect the



free word problem for B(R) with the Z-image divisibility analysis of §9.

First, we examine our special case.

10.8. Example. For d and e as in 10.2 and 10.4, V (d) = {bz}’ so
N = R(0,1,0,0) ¢ R*

Since UB,i(d) = {(b,, -by)}, y, is generated by one element:

({(1,0,0,0) +N, ¢0,0,-1,0) +N).

Using UB,Z(d) = {{b,, b,)} similarly, y, is generated by one element:
((1707010) +N) (07070;1) +N)'

Furthermore, 10.7c is satisfied in this case if and only if there exist

elements W(cl),W(cz),...,W(c7) of R*/N such that:

¥(c,) = €1,0,0,0) +N, y(c,) = (0,1,0,0) +N and
Y(c,) = ¥lcg) = ¥(e,) - ¥ley) ~¥(cg) = 0 in RY/N,
(¥(cy), ¥(c,)) and {y(c,), ¥(c;)-¥(c,)) are iny,, and
(¥(c,) —¥(c,) —¥(cg), ¥(c,) -¥(ey)) is in y,.

Of course, 0, 1 and -1 represent Z-images in R above.

Assume 10.7c for the example d and e, and let 3 for i £ 7 and j £ 4 be

variables representing elements of R such that:

A

W(ci) = (aii, a,,, 8,4 ai4)-+N in RY/N, for i < 7.

We can take (aii,aiz,ai3,ai4) to be (1,0,0,0) for i = 1 and (0,1,0,0)

for i = 2. So, the first part of the system equivalent to 10.7c consists of
linear equations a;; = 6ij (Kronecker delta) for i = 1,2 and j =< 4.

Now N is generated by (0,1,0,0), so (wl,wz,ws,w4) is in N iff there

exists r, in R such that

(w,,w,,wy,w,) =1 {0,1,0,0) in R,

Then for the source equations W(c4) = W(cs) = 0, we have linear equations

ay; = 8g; = 0 for j = 1,3,4, plus a,, = e, and ag, = e, for auxiliary
variables e, and e,. Similarly, ¥(c,) - ¥(cy) - ¥(cg) = 0 in RY/N is
equivalent to equations of forma,6 -a,. -a,. =0 for j = 1,3,4, plus one

1j 3j 6j



= e,. These equations are linear with Z-image

equation a,, -a,, - a4, 2

coefficients, and form the second part of the system equivalent to 10.7c.
The process is similar for conditions of the form {(Yy(x), ¥(y)) € v,
This condition is equivalent to two source equations, one for each

coordinate of the pair. Since y, is generated by
(E(bl)-+N, —E(ba)-+N) = ((1,0,0,0) +N, (0,0,-1,0) +N),
membership of (W(cs), W(c5)-W(c7)) iny, is equivalent to existence of f1
in R such that y(c,) = f,&(b,) +N and ¥(c,) - y(c,) = £, (-§(by)) +N. Again
we introduce auxiliary variables, say g, and h , for the generating element
of N, and we also consider f, to be another kind of auxiliary variable. Then

the first source equation is equivalent to the linear equations a,, = f

31 1’
a,, = g, and 8y = 0 for j = 3,4. The second source equation is equivalent
to a;,-a,, =h,, a,,-a,, = -f, and 85; "8y = 0 for j = 1,4. Conditions

(W(cs), W(cs)) in y, and (W(cg)-—W(c4)-W(cs), W(cl)-W(cs)) in y, can be
treated similarly using further auxiliary variables. This will complete

the system of linear equations equivalent to 10.7c.

In general, the left side of each source equation is a Z-linear
combination of 2(d)-tuples representing elements W(cj). The right side of
each equation is an R-linear combination of ¢2(d)-tuples with Z-image
coordinates. All source equation right sides have 2(d)-tuples representing
generators of N, and some also have 2(d)-tuples representing first or
second coordinates of pairs generating one of the additive relations v,
Since Z-images are central elements of R by 9.1a, each source equation is
equivalent to a system of 2(d) linear equations with Z-image coefficients.

The general case may be better understood by formulating matrix equations

equivalent to the criterion 10.7c.

10.9. Definitions and Properties. Let R be a ring with unit. For k 2 2,
let Y, = [yij] denote the 2 xk matrix on R with Yij = 6ij (Kronecker delta).
Let s = 2(d) and t = 2(e). Define €p = E:ZB———»R5 as in 10.6, and define



EC:ZC———»Rt similarly, that is, §, is Z-linear, Ec(cj) =0 for j > #2(e), and
Ec(ije, vige, +.. +ic) = ((R(ii), (p(iy), e (R(it)).
Let p denote IVB(d)|+, where p = 1 if V (d) = # and p is equal to the
|+

cardinality of V;(d) otherwise. Similarly, let q denote |Vc(e) For

each i = n, let m = |UB,i(d)|+ and n, = |Uc’i(e)|+.

Number the elements of V (d) systematically, and let V, denote the pxs
matrix on R such that if x is the j-th element of VB(d)' then the j-th row of
V, is the s-vector EB(X). If Vy(d) is empty, let Vy, be a 1Xxs matrix of
zeros. Similarly, number V.(e) and let V, be the qXt matrix which has
j-th row ¢ (y) if y is the j-th element of V.(e). Again, V, is a 1xt
zero matrix if Vc(e) =g.

Now number U, i(d) and U, .(e) systematically for each i £ n. For each

such i, define m, X s matrices UBL,i and UBR,i on R by:

UL has j-th row £ (u,) if (uo,vo) is the j-th pair of UB,i(d)’

Ugg ; has j-th row Ep(vy) if (uy,v,) is the j-th pair of Ug (d),

and n, Xt matrices UCL,i and UCR,i on R by:

UCL,i has j-th row Ec(ul) if (ul,vi) is the j-th pair of Uc,i(d),

Ugg ; has j-th row § (v, ) if (u,,v,) is the j-th pair of Uc,i(d),

Let UBL,i and UBR,i be 1Xs zero matrices if UB,i(d) = @¢. Similarly, UBL,i
and UCR,i are 1Xxt zero matrices if Uc’i(e) = #.

10.9a. The matrices Ys, Yt’ VB’ VC and UBL,i' UBR,i’ UCL,i and UCR,i for

i € n are recursively computable from d and e, as are their dimension

parameters s, t, p, g and m; and n, for i = n.

)

and e = e(x1,...,xn) are TB—polynomials. Define s, t, Ys, Yt’ P, 49, VB’ VC,

10.10. Proposition. Let R be a ring with unit, and suppose d = d(xl,...,x

n

and for each i <n, m, n,, UBL,i’ UBR,i’ UCL,i and UCR,i as in 10.9. Then
d < e is satisfied in every additive relation algebra of B(R) iff there exist
matrices on R, consisting of a txs matrix A, a pxq matrix E, and an m Xn,

matrix F, and m, X q matrices G, and H, for each i < n, satisfying matrix



equations 10.10a,b,c,d below.

10.10a. YA = Y., dimensions (2xt)(txs) = 2Xs.
10.10b. V.A = EV,, dimensions (gxt)(txs) = (gxp)(pxs).
10.10c. UCL,iA = FiUBL,i + GiVB for i £ n, dimensions:

(nixtxtxs)=(nixmixmixs)+(niXPﬂstL

10.10d. UCR A=F1U +HV. for i <n, same dimensions as 10.10c.
, 1 i BR, i i B

We omit the routine calculations verifying 10.10, which follow the
methods previously described. The matrix A = [aij] has been discussed,
and the matrix entries of E, G, and H, correspond to the auxiliary variables
for generators of N above. The entries of Fi correspond to the auxiliary
variables of the second kind, like f, above. Condition 10.10a corresponds
to the conditions W(ci) = K(bl) and W(cz) = n(bz), and 10.10b corresponds
to the conditions ¥y(x) = 0 for x in Vc(e). Conditions {(¥(x), ¥(y)) in Y,
for (x,y) in Uc'i(e) correspond to 10.10c and 10.10d, treating first

and second coordinates of the pairs in separate matrix equations.

10.11. Example. Again, consider d and e as in 10.2, 10.4 and 10.8. Note

that s =4, t =7, p=1, gq=3, m = 1, n = 2 and m, =n, = 1. Matrix

equation 10.10a is shown below:

811 842 243 244 |1 0 0 O
8,y 855 853 824 0 1 0 0

Give names to the auxiliary variables as follows:

e
0 f g h
0 0 0
E=le|, F, = , G, = and H, = ,

together with F2 = [fz]’ G2 = [gz] and H2 = [hz]. Now, observe that:

- O O

1 0 0
0 1 0| and V, = [o 1 0 o],
0 0-1 0

so that 10.10b is the matrix equation
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a4 842 843 844 0 e 0 0
854 852 853 854 =10 e 00
8,78, 78gy 81,783,785, 8,3783378g3 8,,783,47854 0 e, 00
From the definitions, we have
foo 10000 )
Uers*lo 01 0 0 o of =™ Uiz [t 0 0 0],
Uy ,=[0 1 0-1 0-1 0] and Uy ,=[1 0 0 0].

Therefore, the two matrix equations of 10.10c are:

831 832 233 234 (fo & 0 O 1
"t g 0 0f

[321'341_361 82278427852 8237843783 a24_344'364] = [fz g, O O]'

Finally, we have

000 0 0 0 1
Up 1 = 0 0 0 0 1 04 and Up , = [o 0 -1 o],
Uep 2 = [1 0-1 0 0 O o] and Up, , = [o 0 0 1]

Then 10.10d may be given by the two matrix equations:

0 hy -f, 0
0 h, -f, 0}’

1
[0 h, © £,]

The above system of equations is satisfied in R iff Div,(0,2) iff R

871 872 873 874
8517871 527872 8537873 8547874

833 a14_334]

[311'831 8127832 443

has characteristic 1 or 2. To prove this, suppose we have a solution.

Then a,, = 0 by 10.10a and a,, = 0 by 10.10c, so f, = 0 by 10.10d.

= 814 7834

8,y ~8g, = f, =0 Dby 10.10c. But a,, = 0 by 10.10a and

= 0 by 10.10b, so a,, =

14
Therefore, a,, -
0 by 10.10b, so ag, = 0. Now a,, ~ a5, ~ag,

1 by 10.10a. But then f, = f, = a

a4

a = 1 using 10.10c. Finally,

11 31

= -f and a = -f, by 10.10d, so 1+1 = f0-+f1 = -a,, = 0 by the

873 0 53
above and 10.10b.

a

73 53

Conversely, suppose R has characteristic 1 or 2. Then there is a

solution of the above system of linear equations with the following



variables set to 1:
a1, 8550 8390 8455 849, &, foy £y, 8y, &) 8 and hy.
All other variables are set to 0, including:

er €, fz' hO’ h1 and the variables a,. not listed above.
1]

This completes the analysis of the example.

As previously described, we now obtain the general reduction of free

word problems for B(R) to Z-image divisibility conditions.

10.12. Theorem. Let R be a ring with unit and suppose d = d(x,,%x,,...,x )

n

and e = e(x ,xn) are T -polynomials. Then there exist integers m =z 0

L PYRR
and n 2 1, recursively computable from d and e, such that d s e is satisfied
in every additive relation algebra representable by an R-module if and only
if m'1 divides n-1 in R.

Proof: We have B(R) ¥ d < e iff the matrix equations 10.10a,b,c,d have a
solution in R. Systematically arrange all the matrix entries of A, E,
and Fi, Gi and Hi for each i < n, into a single vector Z = (zi,zz,...,zk)
of variables. Then recursively compute a matrix M, in mm'k(Z) say, and
a vector V in mm,l(Z) such that the equations 10.10a,b,c,d are solvable
for R iff there exists Z in mk'l(R) such that M;Z = V. Applying 9.14,

recursively compute integers m 2 0 and n = 1 so that MRZ = VR for some such

Z iff DivR(m,n) is true. Then B(R) F d < e iff DivR(m,n). "

Computer programs for the free word problem algorithm are in Appendix F.
There are also many theoretical consequences of Theorem 10.12. Using 4.10

with 10.12 extends the result to the quasivarieties ((R) and Z(R).

10.13. Corollary. Let R be a ring with unit. For any TA—polynomials d and
e, there exist m 2 0 and n = 1, recursively computable from d and e, such
that Q(R) E d s e iff DivR(m,n). Similar results hold for £(R) if d and

e are lattice polynomials.

Recall that for any quasivariety of algebras U, the class HV of
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homomorphic images of algebras in ¥ is the smallest variety containing V.
Since a variety is determined by algebraic equations, it follows from

9.7b, 10.12 and 10.13 that HB(R), HA(R) and HE(R) are completely determined
by the Z-image divisibility pattern for R, that is by (zchar, dgrg) in J,
for each ring R. We show next that the class of such varieties HB(R) forms
a lattice isormorphic to J, and similarly for the varieties HAQ(R) and HL(R).
In particular, HZ(R) # H£(S) for rings R and S such that (zcharR, dgrR) and
(zchars, dgrs) are different. (By 4.10, H£(R) # H£(S) implies HO(R) * HA(S)
and HB(R) # HB(S).) Given any m 2 0 and n = 1, we contruct a lattice
equation satisfied throughout HE(R) iff DivR(m,n) is true. C. Herrmann and
A. Huhn [ ] gave such lattice identities discriminating ring characteristic
and invertible primes (as in 9.4d). This method was extended in two ways
in [TISL] to obtain all the needed equations; we simplify one of these ways

to obtain the version below.

10.14. Definitions. Specify lattice polynomials on x ,x,,X%,,x, as follows:

d = (X VXZ)/\(XSVX4),

1

and by recursion on k, f, for k 2 0 given by
£, = %5,
fk+1 = (((kad)/\(X1VX3))VX4)/\(X2VX3).

For m=2 0 and n 2 1, define the lattice equation

AL(m,n): d

A

xiv((fmvd)A(xiva))vfn.
(The inclusion d < e represents the equation d = dAe here.)

In some cases, free word problems d < e are most efficiently solved by

direct computation of 10.7b. We use this method below.

10.15. Proposition. Suppose R is a ring with unit, m 2 0 and n 2 1. Then

AL(m,n) is satisfied throughout HL(R) iff DivR(m,n) is true.

Proof: Assuming the hypotheses, compute w,(d) for d = (%, VX)) A(xyVR,).

Let a, = k(b,) for i < 2(d) = 6. Since N =0, RS/N is a free R-module on

13
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{81’32'83’84’a5’36}' Furthermore, we have:

y, = R{a,,a,), y, = R{a,,ag),

I

Y, R(al-as, az-a4), Yy = R(ai-a5, az-—as).

For each element of d(yl,yz,ya,y4), there exist L ,ry,Ta,T, in R such that

r.a

133+ rz(a1-a3) =r.,a, + r4(a1-a5),

375

a, and a, are free

=0 and r 3 5

hence r, = r,, r,-r

5 " 5 -r, = 0, since a

3 1’

generators of R®/N. Therefore,
d(y,,7,,¥5:5,4) = R(a,,a,).
By induction on k 2 0, similar arguments show that:
£ (V1Y) Y3:7,) = R(a, - a, -ka,, a, ~a, ~ka;) and
(£L(¥1, Y, ¥5:¥4) VA(Y,,¥,5,¥5, 7)) ALy, Vyy) = R(ag +kay, a, +kag).
By 4.10 and 10.7, HZ(R)| d < e iff (ai,az) €ee=y V(£ vd)aly, Vy,)) Ve .
But (a ,a,> € e(y,,y,,¥,.¥,) implies that

a, € Ra, + R(aa-fmas) + R(ai-a

1 5 -nas).

3
Hence a, = t1a3-+t2(a3-+ma5)-+t3(al-—a3-na5) for some t,,t,,t, in R, from
which it follows that t3 =1, t1+t2-—t3 = 0 and mtz--nt3 = 0. But such
t,, t, and t, exist in R iff Divp(m,n) is true, and then (31’32) equals

ti(aa,a4) + tz(a3-+ma a -+ma6) + ts(ai-a

5 84 - na,, ae-a4-—nas),

3
and so is in e(yl,yz,ys,y4). Therefore, AL(m,n) is satisfied in all members

of HE(R) iff Divp(m,n) is true. =

10.15. Corollary. Suppose R and S are rings with unit. Then HZ(R) € HL(S)
iff HA(R) € HA(S) iff HB(R) ¢ HB(S) iff (zcharR, dgrR) < (zchars, dgrs).
In particular, HZ(R) = HL(S) iff HA(R) = HA(S) iff HB(R) = HB(S) iff
(zcharR, dgrR) = (zchars, dgrs).

Identities simpler than AL(m,n) are available to discriminate Z-image

divisibility conditions for varieties of additive relation algebras.

10.16. Definitions and Properties. For f in any additive relation algebra



(with or without unit), recursively define n-f for integers n by 0-f =
f+(-f), (n+1)-f =n-f+f if n > 0 and n*f = -|n|-f if n < 0.
Suppose m 2 0 and n 2 1. Define equations of TB—polynomials as shown
below. (Again, d < e represents d = dae.)
Ap(m,n): n-l < I(m-1) (contains only constants).

Now let e = xlxl# and z = (e-+(~e))(e-+(—e))#, and define equations of

TA—polynomials as shown below.
AA(m,n): n-e < z(m-e) (contains only Xi)'
10.16a. For integers j and k, (j+k)f = j-f+k-f.
10.16b. AB(m,n) is satisfied throughout HB(R) iff DivR(m,n) is true. (Check
that DivR(m,n) implies that AB(m,n) is satisfied in Rel(M) for M an R-module,
and that AB(m,n) satisfied in Rel(RR) implies DivR(m,n).)
10.16¢c. AA(m,n) is satisfied throughout Q(R) iff DivR(m,n). (Take x, =1
in Rel(M), then apply 3.11 and 10.16b.)

To conclude the analysis, we compare the lattice operations in J with
the corresponding lattice operations in the lattices of all varieties of

algebraic types 7, T, and T,.

10.17. Definitions. Roughly speaking, L(7) denotes the lattice of all
varieties of algebras of a fixed algebraic type 7, ordered by inclusion.

(In order to avoid foundational difficulties, L(7) is formally defined to be
the order dual of the lattice of all fully invariant congruences on P(X,7);

see [ 1.)
Let JL c L(TL), JA c L(TA) and JB c L(TB) be given by:

I, = {HZ(R): R a ring with unit},
JA = {HO(R): R a ring with unit},
Jz = {HB(R): R a ring with unit}.

Note that J,, J, and J, are partially ordered by inclusion.

10.18. Proposition. There is a lattice isomorphism between J, and J given



by Hi(R)ﬁ——a(zcharR, dgrR), and JA and JB are complete distributive lattices
isomorphic to J similarly. In L(7 ), J is a subsemilattice admitting
finite and infinite joins, and similarly for J, in L(7,) and J in L{tg).

However, J. is not a meet subsemilattice of L(TL), and similarly for JA

L
and L(TA)'
Proof: The first part follows from 10.15. Given a family {Rj}jaJ of
rings with unit, let R = “jsJ Rj. From 10.12, we can easily verify that
HB(R) is the join of all the varieties HB(Rj), j € J, since the identities
satisfied throughout HB(R) are just those identities satisfied in HB(Rj)

for all j € J. Therefore, J is a complete join subsemilattice of L(7,).

B
By 10.13, J, is a complete join subsemilattice of L(7,), and similarly for
J, and L(TL).

Clearly (O,expti) = (O,exptz) A(O,expt3) in J. However, S(0,expt,) is
a trivial ring, so HZ(S(0,expt,)) is the variety of trivial lattices.
But Hi(S(O,exptz))r\Hi(S(O,expta)) contains nontrivial lattices, for
example, all distributive lattices. This proves that JL is not a meet
subsemilattice of L(TL). Using D? as in 3.14 and 3.15 for D any nontrivial
distributive lattice, we can show similarly that the meet of HG(S(O,exptz))

and HG(S(O,expts)) in L(TA) is not in JA. "

It is unknown whether or not JB is a meet subsemilattice of L(TB).
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