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§11. Extensions of Solvability by Coretracts of Free Algebras.

By 8.3, there is no recursive solution for all finitely presented word
problems, for any nontrivial quasivariety £(R), A(R) or B(R). However,
there might still be recursive solutions for useful subsets of the general
problem, extending beyond the methods already given. In this section, we
describe a known standard method using coretracts of free algebras
(sometimes called projective algebras) to extend word problem solvability.
If the divisibility of Z-images is computable for R, these extensions yield
classes of solvable finitely presented word problems for £(R), G(R) and
B(R), based on the solvability of free word problems. Using members of ((R)
called tower algebras, free algebra coretracts also provide solutions of

certain diagram-chasing problems for the additive relation category R-Rel.

11.1. Example. Let R be a nontrivial ring with DivR(m,n) a computable

predicate, and let ¥ be the open conjunctive formula

(xiAx = x /\x3) A (x1/\x

2 1 =X

Axg) A (X VX, = X, VX ) A
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(x1Vx2 = x2Vx3) A (xl/\x2 < x4) A (x4 < x1Vx2).

Note that ¥ is equivalent to asserting that x , x, and x, generate an M,

sublattice spanning [a,b] for a = X, AR, ARy and b = X, VX, VX, (except
in the trival case a = b), and that x, is in [a,b]. Suppose that we wanted
to study the consequences of ¥ for the quasivariety of additive relation
algebras A(R). For T,~polynomials p and q on the set of variables X, =
{xi,xz,xa,x4}, the universal Horn sentences A(p,q) with the fixed set of
hypotheses ¥ has the form

(9x1,x2,x3,x4)(w = (p(xl,xz,xs,x4) = q(x,,%,,%,,%,))).
Now let A be the free ((R)-algebra on the generating set X,, and define a

unique T,-homomorphism A:A—A by

A

a (xiAxa)V(xiAxs)V(szxg),

]

b, = (X1VX2)/\(X1VX3)/\(X2VX3) and

X(xi) = (aOVXi)/\b0 for i = 1,2,3,4.



Using only modular lattice properties, we can verify that ¥ is equivalent
to the conjunction of the formulas X, = X(xi) for i = 4, so that A(p,q) is

equivalent for ((R) to the universal closure ¢(p,q) of the open formula

(x, = Nx.)) & (x, = Mx%,)) & (x; = Mx,)) & (x, = N(x,)) =

1
Now A\ has a convenient special property: A = A\ can be shown by calculations

proving X(X(xi)) = X(xi) for i = 4. Using A\ = A\, we see that &(p,q) is
true in A iff the universal closure of the identity

POM(x, )M (1, M (%) A%, )) = @(M(x, ), h(x,) N (%, ) M, )
is true in A. But an identity in A corresponds to a free word problem for
Q(R), which we know how to solve by §10. Therefore, we can compute whether

or not A(p,q) is satisfied throughout G(R) for any T,-polynomials p and g

on the variables of X4.

The argument above can be put into a general framework using coretracts

of free algebras.

11.2. Definition and Properties. Suppose T is an algebraic type, and recall

that P(Xn’T) denotes the T1-algebra of all T-polynomials on the generating set
X = {xi,xz,...,xn}, n=1. Let W be a quasivariety of T-algebras, W a free

W-algebra on the generating set X, and n:P(Xn,T)——aw the 7-homomorphism

such that n(x;) = x, for 1 = n. An n-tuple {u ..,un) of elements of

1rUp
P(X_,7) is called a free coretract sequence for W if the unique T-homorphism
A:W—W such that X(xi) = n(ui) for i £ n is idempotent: A = A\. We say
that (ul,ue,...,un) determines \.

If ¥ is an open conjunctive formula such that each term of ¥ is an

equation p = q for p and q in P(Xn'T)’ say that ¥ is compatible with N (or
with (ul,ue,...,un) determining N\ as above) if for any assignment of the
variables in Xn to a member of W, ¥ is satisfied if and only if X, = X(xi)

for i = 1,2,...,n.

Recall that X is a coretract of W if there exist T-homomorphisms :X—W



and k:W—X such that 'x = 1,. Note that k¥ must be onto and ¢ must be
one-one.

11.2a. If X is any coretract of W via x:W—X and :X—W, then A\ = «t is
an idempotent T-homomorphism W—W, and a T-isomorphism of X to A[W] is
induced by v. If \:W—W is any idempotent, then A\[W] is a coretract of

W via k:W—>A[W] induced by \ and the inclusion map ¢:\[W]—W. For such

a \, any n-tuple (ui,uz,...,un) on P(X ,7) such that v(u,) = Mx,) for

i € n is a free coretract sequence. If (ul,uz,...,un) is any free coretract

sequence for W, then the set {n(ui): i = n} generates a coretract of the

free W-algebra W.

11.2b. An n-tuple (ul,uz,...,un) on P(X ,7) is a free coretract sequence
for W iff

n(ui(xiyxzy"'}xn)) = n(ui(ul(xi'XZ”"’xn)""’un(xl’xz""’xn)))
for i = 1,2,...,n.

11.2c. A coretract of a coretract of W is a coretract of W. If hA:W—W
and w:A[W]—A[W] are idempotent T-homomorphisms and an n-tuple u =
(ui,uz,...,un) on P(Xn’T) satisfies n(ui) = u(k(xi)) for i £ n, then u is a
free coretract sequence for W, with associated coretract p[N[W]] of W.
11.2d. Suppose W and W' are quasivarieties of T-algebras, with W' ¢ W.

If u = (ui,uz,...,un) is a free coretract sequence for W, then it is a free
coretract sequence for W'. If ¥ is an open conjunction of T-equations
which is compatible with u for W, then ¥ is compatible with u for W'.
11.2e. Suppose u = (ui,uz,...,un) is a free coretract sequence for a
quasivariety of T-algebras W, and ¥ is an open conjunctive formula

compatible with u. For any p and q in P(Xn,T), the universal Horn sentence

(in,xz,...,xn)(? = p(xi,xz,...,xn) = q(xl,xz,...,x )

is satisfied in all members of W iff the identity

p(ui(xl,...,xn),...,un(xi,...,xn)) = q(ui(xi,...,x ),...,un(xl,...,x ))

is satisfied in all members of W.



Given ¥ and W as in 11.2e such that all free word problems for W are
solvable, we can seek a free coretract sequence u for W such that ¥ is
compatible with u. If we find such a u, then we can solve all word problems
with hypothesis ¥ and conclusion an arbitrary equation p = q on P(Xn,T).

The results 11.2a,b,c,d may assist in verifying the hypotheses of 11.2e.
11.3. (Techniques and examples for free coretract method.)

In order to extend our methods to diagram-chasing problems for R-Rel,
we make use of the flexibility of TA-subalgebras. Suppose M0 and M, are
distinct R-modules, and M = M, @M, . Identify M, with M, @0 and M, with
0®M, in Su(M), as usual. Obviously, Rel(MO) is TB—isomorphic to the
interval I, . = [o, MO(BMO] of Rel(M), as is Rel(Mi) to [0, M1(BM1].
However, we can also take M, above M in Rel(M) by using the TB—isomorphism
of Rel(Mi) to I, = [M0$Mo, MeM], since M/M0 =~ M, . Then elements of I,
correspond to morphisms MO———»MO in R-Rel, and similarly elements of I ,
correspond to morphisms M,—M, . Furthermore, morphisms MO———»M1 in R-Rel
can be regarded as elements of 101 = [0 GBMO, MOGM], and similarly for
morphisms Mi—-»M0 and 110 = [MO@O, MGBMO]. Therefore, the full subcategory
C of R-Rel for the objects {MO,M1} corresponds to the set union U =

0,1

I uliitJI

00 I The key point: U is a 7,-subalgebra of Rel(M), and the

01 Y ‘10°

operations of U extend those of 60,1‘

It is sometimes convenient to force the intervals Iij to be disjoint.
This can be done using a nonzero module K for spacing: Redefine M =
MOEBM1$K and let N = MOGBOGBK, so M/N = Ml' Then redefine U to be the set
union of [0, MOGBMO], [NeN, M®&M], [O®N, MOG?M] and [N®O, M$M0], which
are pairwise disjoint intervals. Again U is a TA—subalgebra of Rel(M), with
operations extending those of U.

In general, the full subcategory of R-Rel determined by an indexed set
{Mj}jeJ of R-modules can be realized as an appropriate TA-subalgebra A of

Rel(M), where M is a direct sum of the modules Mj, j € J, plus spacing

modules as needed. We call A a ‘tower’ algebra, because a total ordering of



{Mj}jtJ must be provided in order to define it. The forced choice of such
an ordering can lead to certain irrelevant complications. On the other
hand, this wholly algebraic approach eliminates the need for model theory
predicates to treat the partial operations of an additive relation category,

like the type 7 . of §6. In particular, certain diagram-chasing properties

C
of R-Rel can be computed by the free algebra coretract method for U(R).

11.4. Definitions and Properties. Let A be an additive relation algebra.
Symmetric idempotents d and e of A are said to be separated if q(d) < p(e)
or q(e) < p(d) (3.9), and to be strictly separated if q(d) < p(e) or g(e) <
p(d). A tower of A is a set T of symmetric idempotents of A such that any
two distinct elements of T are separated; T is a strict tower if any two
elements are strictly separated. An element f of A is called T-admissible
if there exist elements d and e in T such that f = df = fe. (Recall that
rel(d,e) in 3.16 denotes the set of f in A such that f = df = fe, so f is
T-admissible iff f is in rel(d,e) for some d and e in T.) If T is a tower
of A and every element of A is T-admissible, then A is called a tower
algebra, with spanning tower T. If A has a strict spanning tower, then it
is called a strict tower algebra.
11.4a. If T is a tower of A, then T is a chain (totally ordered subset)
of A. (By 3.9f, p(e) < e < q(e) for e a symmetric idempotent.)
11.4b. If f is T-admissible for a strict tower T of A, then there exist
unique elements d and e of T such that f is in rel(d,e). (Suppose cf = f =
df for ¢ and d in T. If ¢ # d, we can suppose q(c) < p(d). Using 3.9a,f:
£e* = offfe < q(o)fffq(c) = q(e¢) < p(d) = p(d)ff¥p(d) = dfefd = ££#,
which is a contradiction. The uniqueness of e is dual.)
11.4c. A strict tower algebra has a unique strict spanning tower. (If T
and T' are strict spanning towers for A and ¢ is in T, then there exists d
in T' such that ¢ = ¢d, and e in T such that d = ed. It follows from 3.10i
that ¢ and e are not strictly separated, hence ¢ = d = e.)

11.4d. A tower algebra has a unit iff it has a singleton strict spanning



tower. (Clearly, u is a unit iff {u} is a strict spanning tower. )

11.5. Proposition. Suppose T is a tower of an additive relation algebra A.
Then the set U of T-admissible elements of A is a TA—subalgebra of A
containing T, and U is a tower algebra with spanning tower T.

Proof: Assume the hypotheses, and suppose f and g are in U. Obviously,
£ is in U by 3.1d, -f is in U by 3.1e, and fg is in U by associativity.
Suppose £ = bf and g = cg for b and ¢ in T, and b = c. Choose symmetric
null y and z such that b, ¢, f and g are in [y,z] by 3.10g. Then by = bf =
f <bzand by <cg =g, soby <fAags<bz. Then b(fArg) = fAg by 3.10e,
and we can find d in T with (fAg)d = f Ag similarly. Therefore, fAg is
T-admissible, and dual arguments show that fvg is T-admissible. Using

3.4d, 3.7 and 3.8,
by = by+by s bf +cg = f+g = (f+g)z = fzAgz = fz = bfz = bz.

But then b(f +g)

1

f+g, and dual arguments show that (f+gle = f+¢g
for a suitable e in T. Then f+g is in U, and U is a 7,-subalgebra of A.

Clearly T € U, so U is a tower algebra with spanning tower T. =

We now construct an almost strongly exact relation category from any
TA—subalgebra A, with symmetric idempotents as objects and morphism sets

isomorphic to rel(d,e). (See 3.16, and compare € in 5.8 and 5.9.)

11.6. Definitions and Properties. Suppose A is an additive relation
algebra and V is a nonempty set of symmetric idempotents of A. Let C,(A)
denote the system with additive relation category structures such that v
is the set of objects of CV(A), morphisms d—e are triples {d,f,e) such
that £ is in rel(d,e), and composition, converse, sum, negative, meet and
join are defined as in 5.8, and 1, = (d,d,d), Ode = {(d, q(d)p(e), e),

0,, = (d, p(d)p(e), e) and 1, = (d, q(d)q(e), e).

11.6a. €,(A) is an almost strongly exact relation category. If h:A—B
is a TA—homomorphism and W = {h(d): d € V}, then W is a set of symmetric
idempotents of B and h induces a Tp.-functor H:€,(A)—~C,(B) given by



H(b) = h(b) and H(b,f,c) = (h(b),h(f),h(c)).

11.6b. If e is in V, then e is a zero object of C,(A) iff e is null in A.
11.6c. If A has a unit u and V is the set of all symmetric idempotents of
A, then C (A) equals k.

11.7. Proposition. Suppose T is a totally ordered set of R-modules, for R a
nontrivial ring. Then there exists a strict tower algebra A in ((R), with
strict spanning tower V that is order isomorphic to T, such that CV(A) is
Tpc~1isomorphic to the small full subcategory €, of R-Rel determined by the
R-modules in T.

Proof: Assume the hypotheses, and let M be the direct sum of R-modules
N®R, (R, = gR is a spacing module) for all N in T. For each N in T, define
N, in Su(M) to be the join of all K®R, for K < N in T, interpreting K®R,
as a submodule of M as usual. Similarly, define N1 = NO‘VN in Su(M), so
N1/No =~ N, and let ey be the symmetric idempotent of Rel(M) containing pairs
(x,y) such that x and y are in N, and x-y is in Nj (3.4h). Verify that V =
{ey: N € T} is a strict tower of Rel(M) order isomorphic to T by N~—e,, and

CV(A) is isomorphic to CT for A the set of V-admissible elements of Rel(M). =

If two R-modules of T always have a nonzero module of T strictly between
them, then the spacing modules may be omitted above.
We may be unable to determine the structure of A from CV(A), even if V

contains all the symmetric idempotents of A.

11.8. Example. Suppose A contains only null elements, so A = L? where L is
the lattice of symmetric (null) idempotents of A, by 3.15. Then € (A) is an
almost exact additive relation category with [L| zero objects by 11.6b. But
L may be any lattice of £(R) (or even any modular lattice) by 3.14a, so that
the lattice structure of L is not recoverable from the 7, -structure of

RC
C,(4).

If A has a unit u, then A is recoverable from CV(A) if v is in V, since

A = rel(u,u). More generally, suppose A is a tower algebra with spanning



tower T. We show next that the structure of A can be recovered from CT(A)

plus the total order on the chain T, using the recovery formulas below.

11.9. Definitions. Suppose A is a tower algebra with spanning tower T,
with f in rel(b,c) and g in rel(d,e) for b, ¢, d and e in T. Let f equal
(b,£,c) and g = {d,g,e) be the morphisms of C,(A) corresponding to f and g.
In the tables below, each table entry is a morphism of CT(A), which can be
used to determine a T,-operation in A when the elements of T are ordered as
shown above the table entry. The pair below the table entry shows the
domain and codomain of the table entry in CT(A). For example, the first
entry in the sum table represents the equation (b,h,e) = fOce-+Obdg in CT(A)
if h=f+ginAand b <d and ¢ < e in T. Each 7,-operation of A is
called T-standard if it agrees with the given table.

11.9a. Sum is T-standard in A if f+g is specified by the table:

b<d b
c < e Cc

n A

d b d b d b d b>d b
e ¢ e ¢ e ¢ e c<e ¢

it Vv

<d b d b>4d
> e ¢ e c > e

A
n o
v i

£0_ ,+0,.8(f+0,,8 £ |[f0__+g|f+g|f+g0, | € 0,,f+8[0,,f+80,,

ce

(b,e) (b,c) (b,c) (b,e) (b,c) (b,c) {(d,e) {(d,c) {d,c)

11.9b. Negative is T-standard in A if -f is specified by the table:

all cases

-f
(b,c)

11.9¢c. Composition is T-standard in A if fg is specified by the table:

c <d c =d c >d

#
£0_,¢ fg £07 &
(b,e) (b,e) (b,e)

11.9d. Converse is T-standard in A if f* is specified by the table:

all cases

f#

{c,b)




11.9e. Meet is T-standard in A if fAg is specified by the table:
b<d b<d b <d b
c e c=e c>e c

o o

d b=4d b >d b
e ¢c>e c <e c

Vv

> d b>d
< e ¢ > e

Vol

<
<

¥ # P #
£ 1£70,,8/£0, ~0,.e|frg0;, ngIlfOceAg O0pf 780,04, E el &
(b,c) (b,c) (b,e) (b,c) (b,c) (b,e) (d,¢) (d,e) (d,e)

11.9f. Join is T-standard in A if fvg is specified by the table:

b<d b<d b<d b=d b=d b=24d b>d b>d b>4d
c<e ¢c=e¢e c > e c<e c=e ¢ >e c < e c=e ¢c>e
g |0f fvglof fvgo |£0  ve|lfveg|fvel, f0__vot g fvot gl f

(d,e) {d,c) (d,c) (b,e) (b,c) (b,c) (b,e) (b,c) (b,¢)

This completes the T-standard operation tables.

11.10. Proposition. Suppose A is a tower algebra with spanning tower T.
Then all the operations of A are T-standard. Therefore, the 7,-structure
of A is uniquely determined from CT(A) and the ordering of T.

Proof: Assume the hypotheses, and suppose f is in rel(b,c) and g is in
rel(d,e) for b, ¢, d and e in T. Let £ = (b,f,d) and g = {(d,g,e) in C,(A).
Clearly, (b,-f,c) = -f and {c,f¥b) = £* in all cases, proving that negative
and converse are T-standard.

Suppose ¢ < d, so q(c) < p(d) because ¢ and d are separated. Using 3.9a
and 3.16a,

fg = fgg®g = fp(d)g = fq(c)p(d)g = fq(c)g = fi¥fg = fg.
Since 0_, = {(c, ql(c)p(d), d), (b,fg,e) = £0_,g in C,(A). If ¢ >d, then
g*t* = g*q(d)p(c)f* by the same argument, so (b,fg,e) = dec#g by taking
conversés. Since (b,fg,e) = fg if ¢ = d, composition is T-standard.

For sum, meet and join, observe that the cases with b = d and ¢ = e
follow from the definition of CT(A). Furthermore, the cases with b > d
or with b = d and ¢ > e can be obtained from other cases by relabelling,
exchanging f with g, b with d and ¢ with e. We give some sample cases
for the twelve remaining equations. By 3.10g, we choose symmetric null

y and z such that f, g, b, ¢, d and e are in [y,z].
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Suppose b < d and ¢ > e, so q(b) = p(d) and q(e) s p(c). Now fzy =
q(b)q(c)zy = q(b)y = p(d)p(e) by 3.16a and 3.4c, and q(d)q(e) = zyf
similarly, so by 3.10d and 3.16a we have

f =f+fzy = f+p(d)p(e) < f+g = f+q(d)q(e) = f+2zyf = f.
This proves the third equation (b,f +g,c) = (b,f,c) of 11.9a.

Suppose b < d and ¢ = e, so q(b) s p(d). Then f = ff*f =< q(b)z, so
fag=1fArqb)zag = faq(b)g = fAq(b)p(d)g < fAapld)g = fAg,
using 3.9a, 3.10e and 3.16a. Since Obd = (b, q(b)p(d), d), this verifies
(b, fAq(b)p(d)g, ¢} = £A0, g for 11.9%.

the second equation (b,f Ag,c)
Again suppose b < d and ¢ > e. Then f 2 yp(c) and g = p(d)y, so

\Y

fvg=1fvyp(c)vgvp(d)y 2 p(d)f vgp(c) 2 Vg,

using arguments similar to the meet case above. But p(d)f =2 p(d)q(b)f =

p(d)ff#f = p(d)f and similarly gp(c) = gq(e)p(c). Then the third equation

(d,fvg,c) = O:degOec = (d, p(d)q(b)f vgq(e)p(c), c) of 11.9f follows.
Routine calculations proving the remaining nine cases will be omitted;

they complete the verification that sum, meet and join are T-standard.

Clearly, every T,-operation of A is uniquely determined by the total order

on T and the T, .-structure of CT(A). L

We showed above that small full subcategories of R-Rel can be represented
by strict tower algebras in (G(R). More generally, there is a connection
between small full subcategories € of strongly exact relation categories and
strict tower algebras. Suppose we have such a €, which may be any small
almost strongly exact relation category by 5.2 and 5.9, and we choose a
total ordering T of the set of objects of €. In Chapter IV, we will show
that the set of all morphisms of € can be made into a strict tower algebra A
with spanning tower T, identifying each object B of C with its unit 1, and
using the T-standard formulas of 11.9 to define the operations of A. This
construction is essentially reciprocal to the construction of T and CT(A)

from A.



(Use of tower algebras to do diagram-chasing in R-Rel.)
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