
Algebra Universalis, 34 (1995) 35-60 0002-5240/95/010035 26501.50 + 0.20/0 
�9 1995 Birkh/iuser Verlag, Basel 

Alan Day's  work on modular and Arguesian lattices 

C .  H E R R M A N N  

Dedicated to the memory  o f  Alan Day 

The present state of art in the theory of modular lattices is to a great extent due 
to Alan Day's contributions. The purpose of the present paper is to outline the 
most important ones and their impact on further developments. This is accompa- 
nied by problems of various degress of relevance and difficulty. For  the better ones, 
full credit should be given to Alan. For  a more detailed account of some of the 
subjects the reader may consult Alan's excellent surveys [7, 11, 16]. 

1. Modular lattices with four generators 

The first th ing I learned f rom Alan  abou t  m o d u l a r  lattices was the fol lowing 

d i ag ram drawn on the g round  in the fall o f  1971 - see F igure  1. The lat t ice is called 

A m . 

T H E O R E M  1. A~. is the modular lattice f ree ly  generated by a, b, c, d subject to 

the relations 

ab = a c  = ad = bc = bd = cd = 0 

a + c = a + d = b + c = b + d = l .  

As it turned out, this diagram is basic for the understanding of 4-generated modular 
lattices. In the joint paper [ 17] with R. Wille the subdirectly irreducible factor R.r~ 
of A~ was characterized as the free modular lattice generated by a, b, c, d satisfying 
the additional relation a + b = 1. Also, the interval sublattices S(n, 4) = [en, 1] were 
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it 

iii. 

A~o 

Figure  1 

discovered as further subdirectly irreducibles with four generators (the doubly 
irreducible elements) - see Figure 2. 

Freese [30] continued this investigation showing that R:o and its dual, the 
S(n, 4), and the 6-element length two lattice M4 are the only subdirectly irreducible 
breadth two modular lattices with four generators. In [43] and [44] the same list 
appeared for subdirectly irreducible modular lattices generated by two pairs of 
complements and for subdirectly irreducible modular 2-distributive lattices with 
four generators�9 Here, following A. Huhn [53], a modular lattice L is 2-distributive 
if it satisfies 

w(x + y + z) = w(x + y) + w(x + z) + w(y + z). 

Equivalent conditions are that L contains no proper 3-frame (cf. section 4) resp. no 
projective plane in its va r ie ty -  so this covers that part of modular lattice theory 
where drawing of order diagrams makes sense. 
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M4 

Knowledge about 4-generated modular lattices has proven helpful with various 
algebraic problems. For  example, a lattice theoretic version of the Baer Refinement 
Theorem for direct decompositions and so an alternative proof  of the Krul l -  
Remak-Schmidt  Theorem [40] in congruence modular varieties has been based on 
the list of lattices generated by two pairs of complements -  and started also the 
investigation of permutability properties of the commutator. 

Another example is the (linear) representation theory of posets resp. the free 
modular lattice they generate. Here a representation of a lattice L is a homomor- 
phism into a vector space lattice and indecornposable if it does not arise as the direct 
product of two such. For the free modular lattice FM(4) on four generators a 
complete list of finite dimensional indecomposable representations has been pro- 
vided by Gelfand and Ponomarev [36]. The image FM(4) under such a representa- 
tion turned out to be D2, M3, M4, one of the S(n, 4), or the full lattice of subspaces 
of a vector space over a prime field having dimension 3 < d < m. And so one had 
a complete list of 4-generated subdirectly irreducibles in the variety generated by 
complemented Arguesian lattices (cf. [45]). The lattice A s occurred when consider- 
ing ultraproducts of finite dimensional representations of FM(4) and this has been 
used for determining the peJfect elements (i.e. elements providing direct decomposi- 
tions) cf Gelfand and Ponomarev [37], Dlab and Ringel [29], and [45]. This 
structural analysis of FM(4) can even be carried over to lattices generated by posets 
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of tame representation type (for which, roughly speaking, classifying the finite 
dimensional representations does not involve classifying matrix pairs) see Cylke [2]. 

A.~. is also behind the construction of a finitely generated modular ortholattice 
with an infinite set of perspective orthogonal elements by G. Bruns and M. Roddy 

Ill. 
Checking through the list of subdirectly irreducibles was the first step in the 

classification of pairs consisting of a finite dimensional Hermitean space E of 
characteristic 2 and a subspace F, see H. Gross, R. Moresi et al. [39]. Here, the 
lattice generators are F, F • E*, E *l where E* is the subspace of trace valued 
vectors. Lattice relations on these generators allowed to single out the possible 
indecomposable quadruples of such subspaces and lead finally to the 13 subdirectly 
irreducible polarity lattices serving as the primary isometry invariants for orthogo- 
nally indecomposable pairs (E, F). 

Combining examples from the list (generalized from vector spaces to abelian 
groups) and twisting their gluing structure resulted in the proof of the unsolvability 
of the word problem for FM(4). 

Problems. Is every 4-generated Arguesian lattice embeddable into the subgroup 
lattice of an abelian group? 

Is the word problem for free 4-generated Arguesian lattices solvable'? 
Is the 4-generator word problem solvable within the congruence variety of 

abelian groups of exponent p 2? 

2. Splitting modular lattices 

Following McKenzie [61] a finite subdirectly irreducible lattice L is splitting 
(within a given variety) if there is a greatest variety not containing L. For a 
subdirectly irreducible lattice L a sufficient condition for being splitting is to be a 
bounded homomorphic image: for every finitely generated (free) lattice M and 
homomorphism ~ of M onto L each preimage class ~ -l(x) has a least and greatest 
element. In the variety of all lattices, the splitting lattices are exactly the subdirectly 
irreducible bounded images [61]. An intrinsic characterization has been given by B. 
J6nsson and J. B. Nation [57]. 

Alan's results on nonmodular splitting lattices are well known. Yet, also most of 
what is known about splitting modular lattices can be traced back to his paper [4], 
cf. E. T. Schmidt [68, 69, 70]. 

THEOREM 2. Let ~ be any modular lattice variety containing all 2-distributives 

and L a finite planar modular lattice. Then the following are equivalent: 
(1) L is a subdirect product of  splitting lattices in ~U 
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(2) L is acyclic 
(3) L is finitely projected in ~/. 

Any acyclic lattice in ~/# is a bounded homomorphic image whence a subdirect product 
o f  splitting lattices in ~ .  

Here, a finite 2-distributive modular lattice is called acyclic if it contains neither 
a sublattice M4 nor a cycle of M3's. The lattices in Figures 3a and 4 are acyclic, that 
in Figure 3b is not. Alan showed that acyclic planar lattices are finitely projected: 
for each rc as above there is a finite sublattice L' of M with rc(L')= L or, 

(a) 

/ \  

/ \ 

/ X 

X / 

Figure 3 

( b ) @  

(c) (d) 

Figure 4 
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equivalently, L has a finite projective cover (the subdirectly irreducibles are then 
splitting, too). In his proof he considered a planar modular lattice L as a planar 
distributive lattice D with some new irreducibles inserted in "boxes". D is finitely 
projected, obviously, with a planar distributive preimage D'. For a single M3 in L 
one gets a preimage using the fact that Figure 4a presents the free modular lattice 
with generators a, b, c such that ab < c <_ a + b. The preimages already obtained 
can be adjusted since putting a chain on an edge of an M3 yields a subdirect power 
as in Figure 4b. Having no cycle, this adjustment comes to an end (Figure 
4c,d) - otherwise, one would spiral for ever. Finally, M 4 is not a splitting modular 
lattice since it is a homomorphic image of R~ which is in the variety generated by 
the S,, and similarly, for every planar lattice containing an interval M~ with n > 4. 

Acyclic breadth 2 lattices have been studied by A. Mitschke and R. Wille [62]. 
In [52] acyclic lattices have been described in terms of the "geometry" on the set of 
join irreducibles: let a line be a maximal, at least 3-element set of join irreducibles 
such that any pair out of this set yields the same join, the linetop. A finite modular 
lattice is acyclic if and only if each of its lines is 3-element and it admits a choice 
of one line per linetop such that the resulting set of lines does not contain a cycle 
(the irreducibles can be presented by points in the plane and the lines by segments 
such that the resulting figure is a union of trees). With that description, Alan's 
approach to the planar case could be mimicked to prove that acyclic lattices are 
bounded homomorphic images within the variety of modular lattices. Acyclic 
lattices proved important for the representation theory of modular lattices and the 
application to quadratic forms in infinite dimensions by M. Wild [72]. In [52] it has 
been shown that a finite 2-distributive modular lattice is of  finite representation type 
(i.e. there are, up to isomorphisms induced by linear maps, only finitely many 
indecomposable representations over a fixed field) if and only if it is acyclic. And, 
for acyclic lattices the representations (over a given field) are in 1-1 correspondence 
to the subdirectly irreducible factors. 

The "spiral" phenomenon has been elaborated by E. T. Schmidt [67] and R. 
Freese [31], later on, to produce a finitely generated simple modular lattice with no 
prime quotients and to show that the variety of modular lattices of primitive 
breadth 2 is not generated by its finite dimensional members. 

Problems. Are acyclic breadth 2 modular lattices finitely projected? 
How are the following properties of finite lattices related to each other within 

the variety of all modular (Arguesian) lattices: "Subdirect product of splitting 
lattices", "Bounded homomorphic image", "Lower bounded homomorphic image", 
"Finite representation type"? Are they equivalent for modular 2-distributives? 

Is every finite uniquely representable lattice splitting? 
Find a version of acyclicity beyond 2-distributives! 
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3. Desargues' law 

Beyond 2-distributivity, modular lattice theory relies heavily on some kind of (at 
least local) geometric point of view, for positive and negative results as well. In 
order to proceed to a (local) coordinatization, as in Projective Geometry one needs 
sufficiently high dimension or some kind of Desargues' law. Such has been provided 
by B. J6nsson [54, 56]: given "triangles" a = (ao, al, a2) and b = (bo, bl, b2) let 
cs = (aj + ak)(b j + b~) for {i,j, k} = {0, 1, 2} and c = c2(c o + c,). A lattice is Argue- 
sian if it satisfies the identity 

(ao + bo)(al + b,)(a2 + b2) <- ao(a~ + c) + bo(b 1 + c). 

This law holds in any lattice consisting of permuting equivalence relations [54] or 
belonging to a modular congruence variety [34]. In a more geometric version one 
says that a, b are centrally perspective if "the center of perspectivity" p = 

(ao + bo)(a~ + bl ) <_ a2 + b2 and axially perspective if c2 _< Co + cl. Then, an equiva- 
lent definition is that any centrally perspective pair of triangles is also axially 
perspective. 

The hypothesis can be made more specific: a, b form a perspectivity configura- 
tion, shortly PC, if ai + p = bi + p for all i and if the quadruples a, p and b, p are 
in general pos i t i on -  cf. Figure 5. Here, (Xo . . . . .  x3) is in general position if 
x i ( x / +  xk) is the same u for any choice of 3 distinct indices. Equivalently, Xo �9 ' ' x3 

c 

Figure 5 

j P 
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Figure 6 

generate a sublattice which is a subdirect product of a 3-frame generated lattice and 
factors D 2 where xi = 0 for all but one index i - cf. Figure 6. 

In a PC one has a i + b i = a i + p , p = ( a ~ + b i ) ( a j + b j ) ,  and (a~,b~,cj, c~) in 
general position for {i,j, k} = {0, 1, 2}. Moreover, PC's are projective configura- 
tions within the variety of modular lattices [21]. In [9] Alan showed 

T H E O R E M  3. A modular lattice is Al~uesian if and only if eve W PC is axially 
perspective. 2-distributive modular lattices are Arguesian. 

So one obtains the following hierarchy of modular lattice varieties, all selfdual: 

distributive ~ 2-distributive modular ~ Arguesian ~ modular. 

Experience has proven that, in an axiomatic approach, Arguesian lattices or any 
equivalent version, cf. Alan's [25], are the proper concept: it is strong enough to 
allow results, and handy enough if one is going to derive them. This is more so since 
the important semantically defined lattice classes cannot be finitely axiomatized, see 
M. Haiman [42]. Behind this there is a series of higher Arguesian laws of increasing 
number of variables and strength (which can be separated by modified lattices of 
vector subspaces over any given field), each satisfied in lattices permuting equiva- 
lences and modular congruence varieties (this is in [41] and R. Freese [33]). 
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Motivated by the same question, namely whether every Arguesian lattice has a 
permuting equivalence representation, Alan and St. Tschantz [28] studied an 
identity due to Schuetzenberger and showed that it defined a lattice variety between 
permutable equivalence lattices and Arguesian lattices. 

In another direction, Alan found that in the orthomodular lattice of closed 
subspaces of a Hilbert space the Arguesian identity is valid for triangles consisting 
of orthogonal points. From this he derived the orthoarguesian identity which is 
satisfied by Hilbert space lattices but not in general cf. [58]. Also, he realized that 
orthogonal frames in Arguesian ortholattices play a central role for the investiga- 
tion of varieties of modular ortholatt ices-  which then was undertaken by M. 
Roddy [66]. 

Problems.  Is there a list of finite configurations, projective within the variety of 
modular lattices, the exclusion of which (as relative substructures) defines the class 
of Arguesian lattices? Can this list be chosen consisting of enrichments of PC's? 

Is Schuetzenberger's identity equivalent to the Arguesian law? Is it valid in all 
2-distributives? 

Is there a decision procedure for the equational theory of Arguesian lattices? 
Is there a finitely based modular lattice variety which is generated by its finite 

members and contains the subspace lattices of vector spaces over a fixed finite field? 
Which representability classes of lattices form varieties? Consider e.g. vector 

space, (abelian) group, and permuting equivalence representations- cf. [3, 49]? 
Is every orthoarguesian lattice representable by means of an orthomodular 

space? 

4. Frames and coordinate rings 

A lattice theoretic concept of coordinate system has been introduced by 
v.Neumann [64] and in an equivalent, but sometimes more convenient form, by G. 
Bergmann and A. Huhn: A n - f rame  or n-diamond (originally called a n-l-diamond) 
in a modular lattice L is a sequence d = (all . . . .  d,,+~) =(xl  . . . .  xn_~,z, t) of 
elements of L such that 

2je id  j. = v for all i 

d i Z ~ e i j d  k = u for all i Cj. 

Figure 7a and b show the corresponding matroidal (consider only joins and those 
meets which satisfy the rank formula) and geometric diagrams (four points in 
general position and two coordinate axes with unit points and points at infinity). If  
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(a) (b) 
5/ 
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d2=y 

'd0=z 

Figure  8 

W 

:~ dl=x 

u = 0L and v = 1L one speaks of  a spanning frame. In the s t anda rd  example,  L is the 

lat t ice Y ( R R  n) of  all submodules  o f  a free module  with basis eo, �9 �9 �9 en_ l, xi = Rei 
for 1 _< i _< n, z = Reo, and  t = R(2~ <~<~,-ei). Projectively,  these are the direct ions of  

the coord ina te  axes, the zero, and  the unit  po in t  on the d iagonal .  

I t  is the d iagonal ,  D, consist ing of  all complements  of  the po in t  at  infinity, 

w = (z + t)Zxi ,  in the interval  [u, z + t] which serves as coordinate domain - see 

Figure  8. In  the example,  D = {R(e 0 + a 2o< ~ e~ I a e R}. Wi th  bo = (y  + z)(x + b) 
and b~ = (y  + t)(x + b), add i t ion  and mul t ip l ica t ion  are defined by 

a | b = (z + t)(x + (y  + a)(w + bo)) 

a |  = (z + t)(x + (y  +a)(z  +bl ) )  

- see Figures  9 and  10. The fol lowing central  result  is due to v . N e u m a n n  [64] and 

R. Freese [32] for the m o d u l a r  par t ,  to Alan  and D. Picket ing  [26, 8] for  the 

Argues ian  part .  
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T H E O R E M  4. For an n-fkame in a modular lattice L, ~ n >_ 4 or i f  n >_ 3 and L 
is Arguesian, then the coordinate domain D is a r#~g with unit under the above 

definitions. 
I f  the coordinate ring has prime characteristic p, then the sublattice generated by 

the frame is an n-l-dimensional projective geometry over the p-element field. 

This and Alan's help were crucial for the determination of  the sublattices 
generated by the frame, in general, [47] and applications to the equational theory of  
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modular lattices - cf. [ 11]. That the coordinate ring is to a high degree independent 
of the particular frame chosen was shown by Alan in [12]. 

Problems. Determine the Arguesian lattices (or just lattices of submodules) 
generated by a frame and a subring of its coordinate ring - at least for some decent 
rings and assuming that the subring is the full coordinate ring! 

For  a recursive ring, does the Arguesian lattice freely generated by a frame and 
a ring admit a solution of the word problem? 

Analyze the relationships between the various rings associated with a skew 
frame and its subquotient frames in an Arguesian lattice cf. [46]! 

Is there a solution to the word problem for the modular lattice freely generated 
by a 3-frame? 

5. Coordinatization 

In their joint paper [26] Alan and D. Picketing proceeded to coordinatize 
hyperplanes. This required some additional hypotheses, of course. They used upper 
complementability which is satisfied in the standard example: for any join g over 
elements from the n-frame and p with p + g = 1 there is a complement s _<p of 
g - see Figure 11. A hyperplane is a join of  n-2 elements from the frame. 

T H E O R E M  5. For any Arguesian lattice L with upper complementable spanning 
n-frame, n >_ 3, and for every hyperplane h of such there is a lattice homomorphism 
of[O, h] into 5~(r)D n J) having all finitely generated submodules in its image. Here, 
D is the coordinate ring of the frame. 

sg=O 

Figure 11 
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Their coordinatization is the natural one in the case of planes - see Figure 12. 
From this they derived that L is isomorphic to the lattice Sf(DD") of finitely 
generated submodules of (D D') with regular resp. completely primary uniserial D in 
case L is complemented resp. primary Arguesian (in a primary lattice join and meet 
irreducibles form trees under order and reverse order, respectively, and any interval 
is either a chain or has at least 3 atoms). These are, basically, the classical 
coordinatization results of v.Neumann [64] and J6nsson-Monk [56]. An alternative 
(short) proof  of v.Neumann's result also came out of their analysis: consider L 
embedded into the subgroup lattice of an abelian group (via Frink's embedding) 
and show that the canonical map from S:.(DD '~) is an isomorphism [48]. 

In another direction, the coordinatization of hyperplanes was extended by M. 
Greferath [38] to Arguesian lattices with an additional geometric structure tailored 
for submodule lattices, see [71]. 

Problems. Is there a common generalization of the coordinatization of comple- 
mented and primary lattices which also has the potential of computing sublattices? 

For  a modular lattice with spanning n-frame, n > 4, and hyperplane h, is the 
interval [0, h] Arguesian or even embeddable into L(D"-1)? 

Has every Arguesian lattice with spanning n-frame, n > 3, a permuting equiva- 
lence representation? 

6. Quasiplanes 

From an equational point of view, projective planes may be seen as modular 
lattices of primitive length _< 3 or as 3-distributive lattices. In the first approach, the 
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e3 

dl ~ d3 

0d 
Figure I3 

model class is close to the intended one but working with the equations becomes 
rather unhandy. The second approach includes too many models much more 
complicated than projective planes. Therefore, Alan [6, 7, 13] suggested to under- 
stand them as quas ip lanes-  modular lattices not containing any 2-dimensional 
gluing of nondegenerate 3-frames of Figure 13. 

Here, two n-frames d and e in a modular lattice from a n-l-dimensional gluing, 
if Zd/d n +~ transposes up to Xi< n di/Fie matching the canonically induced n-l-frames 
(see [13, 11] for the generalization to k-dimensional gluings of an n and an 
m-frame). Gluings of non-degenerate frames can be understood as configurations 
projective within modular lattices, so their exclusion defines a variety. This variety 
can be also defined via a handy distributivity condition relatively to nondegenerate 
frames. 

L modular 2-distributive ~ L quasiplane ~ L modular 3-distributive. 

Relatively complemented modular 3-distributive lattices are quasiplanes. Alan's 
central result [8, 6] shows how to characterize projective planes. 

T H E O R E M  6. For a modular lattice L the following are equivalent: 

(1) L is an irreducible projective plane 
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(2) L is a subdirectly irreducible quasiplane generated by a 3-frame and its 
coordinate domain 

(3) L has a spanning 3-frame with respect to which all nonzeros are invertible. 

Here, the coordinate domain of a 3-frame in a modular lattice is endowed with 
a ternary operator from which an additive loop and a multiplication with unit can 
be derived [26]. In the case of projective planes this yields a ternary ring, indeed. 

Problems. Is a subdirectly irreducible quasiplane generated by a 3-frame and a 
subset of its coordinate domain necessarily a projective plane? 

Is the word problem for (free) quasiplanes (or modular 2-distributives) in more 
than 4 generators decidable? 

Characterize quasiplanes in the geometric language for spatial modular lattices 
[51]! 

Do all Arguesian quasiplanes admit a permutable equivalence representation? 
Is every quasiplane (modular 2-distributive) variety of finite height generated by 

a finite lattice? 
Let L a finitely generated modular lattice of finite length such that every of its 

complemented intervals is locally finite. Is L finite (at least if it is a quasiplane)? 
The answer is 'yes' for 2-distributives. 

7. Properties of rings 

The example of embedding the lattice of a 3-dimensional space over the 
quaternions in that of a 6-dimensional space over the complex numbers shows that 
commutativity of the coordinatizing ring cannot be equationally expressed without 
a dimension restriction. In [6] Alan studied some possible approaches, each based 
on a projective configuration. A strong line pair consists of a0, a~, b0, b~ subject to 
relations which, in a modular lattice, grant that the sublattice generated is a 
subdirect product of a factor where these form a 3-frame and a factor where ao = a~ 
a n d b  o = b  1 cf. Figure 14. 

A modular lattice is (SLP-) Pappian if for each strong line pair and 

a2 _< ao + al, b2 < bo + b~ one has 

(ao + bl )(al + bo)(ao + a1 + b2)(b0 + bl + a2) 

<- (ao + b2)(a2 + bo) + (al + b2)(a2 + bl). 

See Figure 15 where 2 denotes the left hand side. This, of course, reflects Pappus' 
Law from Projective Geometry. The dimension restriction implied by this identity 
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a0 bl 

ai.bj 

Figure 14 

at 

b2 bl 

Figure 15 

is 3-distributivity. Requir ing a f rame,  even, one gets still 5-distributivity (which 
cannot  be improved  in view of  the above example).  

T H E O R E M  7. R is strongly regular i f  and only i f  ~('(t?R 3) is a quasiplane. 
I f  5~ 3) is Pappian then R is commutative. For regular R the converse is also 

true. 

Here,  a ring is s trongly regular if for  every a there is x with a2x =a or, 
equivalently,  it is regular and a 2 = 0 only for  a = 0. These rings are o f  interest since 

they allow a decent sheaf  representat ion.  
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Problem, s. Are there, besides the above and divisibility conditions for integers, 
any other properties of  rings which can be expressed via identities for the lattice 
~(RR3)? How about commutativity and regularity? 

Is every Pappian lattice Arguesian? 
Is every finite Arguesian quasiplane Pappian? 

8. Critical configurations for the Arguesian identity 

In a series of  joint papers with B. J6nsson [20, 21, 22, 23] Alan took up a theme 
from his earlier note [9]: How to understand the failure of  the Arguesian taw in 
terms of  well described forbidden configurations, if not sublattices? The sublattice 
approach turned out inviable since D. Pickering [65] found later on an infinite list 
of finite minimal non-Arguesian modular lattices and even a modular non-Argue- 
sian variety whose finite members all are Arguesian. 

So, what they did, is to study non-Arguesian (i.e. ca ~; cf~ + cl) PC's and to gain 
as much information as possible about them. Here, the p, c~, a~b i are also included 
into the concept of a PC. They undertook an intricate analysis of  how to construct 
new non-Arguesian PC's from given ones aiming at primes where a~b~(c2 + c~)~, 

a~h~. More conceptually, such a PC has a specific lower cover in the pointwise 
ordered set of  PC's, 

T H E O R E M  8. Every" modular non-A~kguesian lattice contains a prime PC at least 

in its ideal lattice. 

For a prime PC in a modular lattice L there are order preserving maps or, 

(d~:/med in terms o f  the PC) ~/" 25 into L such that f,. = [crx, ~x] is a projective 

geomett:v qf  dimension at most 3 ./'or x = O, 1, an irreducible projective plane, 

otherwise. The union o f  these intervals contains the PC and the p, G, a~b/. 

lJ the PC is stable and Boolean then o and ~z factor through some 2", r <_ 3, and 

U,  I, is- a suhl~tttiee. 

Here, the PC is Boolean if o and 7r are lattice homomorphisms. Of  course~ some 
of  the intervals [, may coincide. If that happens for all transposed t , ,  I,. with 
0 -<x  < y  then the PC is called stable. 

From each prime non-stable PC one obtains a stable and Boolean one by 
passing down in the order of PC's. Examples for any r < 3 can be found in the next 
section. 

On the other hand, for a stable non-Boolean prime PC all of  the twenty planes 
I,,  x of rank 2 or 3, are distinct. An example where this occurs has been constructed 
in [19], see Figure 16, 
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Figure 16 

Problems. Are there stable prime PC's with 23 or more intervals, none con- 

tained in any other? 
Can the Arguesian law be decently expressed in the geometric language for 

spatial modular lattices [51]? 
Is there a configuration of  join irreducibles (points) and meet irreducibles 

(hyperplanes), or finitely many such, the exclusion of which characterizes Arguesian 
lattices among finite length modular lattices? 

9. Arguesian lattices and gluing 

The above suggests to consider how the gluing structure and the Arguesian law 
interact. Alan, of course, had his own, categorical, view of gluing which finally in 
[18] resulted in a more general and more accessible presentation. Analytically~ the 
most convenient way is to think an external "~skeleton" tattice S and join resp. meet 
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preserving 1-1 maps a, ~z of S into L with crx -< ~x such that L is covered by the 
blocks L,. = [ax, ~x]. If necessary, one resorts to "imaginary" bounds in a lattice 
containing both, all ideals and filters of L. The tolerance 7 on S indicates whether, 
for x < y, the blocks overlap: xTy iff cry _< 7rx. One speaks of a gluing if the 
equivalence relation generated by 7 is total. 

Synthetically, given S, 7, the blocks Lx, and a pair of adjunctions between each 
L,-, Ly, x _< y one can form the disjoint union with the order defined by that on the 
blocks and the adjunctions (a variant of Plonka's sum). Then, provided appropriate 
axioms are satisfied, one obtains the glued sum (with overlaps as encoded in 7) as 
homomorphic image. The gluing of modular lattices is always modular. 

For Arguesian lattices, the situation is much more complicated. Still, Alan's 
papers [18, 23] provide some sufficient conditions (for the generalization one just 
has to notice that each complemented interval is contained in some block). Call a 
non-Arguesian PC minimal if it is so in the pointwise order of PC's. 

T H E O R E M  9. Let L be a gluing oJArguesian lattices. I f  S is a chain, or S is of  
length o1" width 2, or S is of width .<9 then ever)' minimal non-Arguesian PC is 

Boolean with at most 2, 4 and 8 intervals, respectively. 

On the other hand, L is Arguesian provided that S = 2 and Lo ~ L1 is distributive 
or, else, S is modular of  finite length and primitive breadth <_2 and U , ~ r L , .  is 
Arguesian for each sublattice T ~ 2", n < 6, of  S. 

Problems. Is there a non-Boolean minimal non-Arguesian PC in a finite length 
modular lattice L with S(L) modular and/or 3-distributive? 

In the second half of the Theorem: are the cases n = 4, 5 to be considered; is it 
sufficient to have S modular and/or 2-distributive? 

Is there a non-2-distributive Arguesian lattice variety closed under gluings with 
S = 2? According to D. Pickering [65] frames in such a variety have characteristic 
2, here, whence the variety cannot be closed under gluings with S the projective 
plane of order 2. 

10. Arguesian lattices of finite length and representability 

If L is modular of finite length, then one has a particular gluing the blocks of 
which are the maximal complemented intervals. S is then also addressed to as the 
prime skeleton S(L). 

Using the gluing of Arguesian blocks, Alan and his coauthors produced in 
[19, 23] typical, and partly also minimal, non-Arguesian lattices illustrating the 
theory of the preceding sections. These examples also give some insight into 
conditions granting representability. 
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\ 

Figure 17 

The basic observation dates back to B, J6nsson [55], in essence: Frames glued 
2-dimensionally in an Arguesian lattice have isomorphic coordinate rings. If  the 
blocks are coordinatized as in the standard example then L is Arguesian (and 
embeddable into a submodute lattice over the coordinate ring) if and only if the 
gluing map is induced by a semilinear map. 

For L of  length _< 5, by the preceding theorem, every minimal non-Arguesian 
PC has at most 4 intervals, Accordingly, assume that S(L) is an M,,, n >_ 2, and that 
for any pair of  neighbours we have Arguesian 2-dimensional gluings of  irreducible 
projective p l anes -  cf. Figure 17. 

Then the gluing maps are induced by division ring isomorphisms. Under these 
hypotheses, L is Arguesian (and representable over a division ring) if and only if the 
composition of the isomorphisms along a gluing path depends on start and goal, 
only - cf. G. Kurinnoi [60]. As a consequence of this and B. J6nsson [54, 55], Alan 
and his coauthors derived (cf. [63])~ 

T H E O R E M  10. A finite length modular lattice L o f  length <_5 or with S(L) a 
chain is Arguesian i f  and only i f  it has a permuting equivalence representation. 

In contrast, an Awaesian lattice of  length 8 or with S(L) distributive is not 
necessarily representable - this is witnessed by examples due to M. Haiman [42]. 

For L of length 6, if L is not Arguesian, then either there is a prime Boolean PC 
or S(L) is an irreducible plane and blocks are pairwise isomorphic planes. The first 
kind of example, with S(L) = 23, appeared in D. Pickering [65] (cf. Fig. 18) and was 
generalized there to produce his infinite list of  minimal non-Arguesian lattices. The 
second can be also chosen as a minimal non-Arguesian lattice which, moreover, is 
primary and so a projective Hjelmstev plane, cf. [27] for more on such. 
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Figure 18 

Problems. Has every Arguesian lattice of  length 6 (7) a permuting equivalence 
representation? 

Can representability be understood in terms of  gluing of coordinatizable parts? 
On this there are some unpublished results of  M. Haiman and J. B. Nation. 

For  finite lattices, is representability a decidable property? 
For  fixed n, is the class of  representable lattices of  length _<n finitely axiomatiz- 

able? Again, consider your favorite representability. 

11. Databases 

Alan was among the first to realize the connection of  lattice theory to dependen- 
cies in relational databases. In [14] he gave a detailed analysis of  the relationship 
between functional dependencies and semilattice congruences. As he pointed out, 
modular lattice theory necessarily comes in when studying embedded multivalued 
dependencies. From a mathematical point of  view, a database is a family (0A) A ~ u 
of  partitions on a set, each partition named with an "attribute". The underlying set 
can be seen as the set of rows and two rows having the same value of a given 
attribute will be in the same class of the partition. A functionM dependency X--* Y 
now amounts to Ox-~ 0r  where Ox = 0 A ~ x OA. Following Alan [15], an embedded 
multivalued or symmetric dependency [X, Y] is satisfied if Oxo Or = Ox~v. A 

multivalued dependency is one where Xw Y = U, the total set of attributes. An 
implication 2 ~ a between a finite set of  dependencies and a dependency is 
(finitely) valid if o- is satisfied in all (finite) databases satisfying 2. An important 
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question for each kind of dependencies is to find a sound and complete aziomatiza- 
tion of this semantic consequence operator or an algorithm deciding whether an 
implication is (finitely) valid: the (finite) implication problem, see the survey of P. 
Kanellakis [59]. Positive and negative results have been obtained in various cases. 

On the basis of what happens in terms of meets and products of equivalence 
relations, Alan suggested in [ 15] a natural lattice interpretation of dependencies via 
sets of relations: A map cp : U ~ L is a model for X ~ Y if IIcpX _< ri  o Y and a 
model for [X, Y] if for all Z _~ X w Y one has ricp(Z u ( J (n  Y)) = ri~0(Z u X) + 
ricp(Z u Y). So, with an implication of dependencies there corresponds a conjunc- 
tion of universal Horn lattice formulas. A lattice variety ~ provides a sound and 
complete natural interpretation if this conjunction is valid in U if and only if the 
implication is valid for databases. Alan showed in [15]: 

T H E O R E M  11. For the class of functional and multivalued dependencies, every 
nontrivial lattice variety provides a sound and complete natural interpretation - and 
this yields a new solution of the (finite) implication problem. 

For embedded multivalued dependencies such interpretation has to be in terms of 
a non-distributive modular variety. 

In particular, the rather effective methods of solving word problems in the class 
of all lattices can be applied. But the following remains open: 

Problems. Is there a non-distributive modular lattice variety providing a sound 
and complete (natural) interpretation of embedded multivalued dependencies? Does 
such have to be Arguesian? 

Though, in the same mood one sees that the (finite) implication problem is 
unsolvable for embedded multivalued dependencies [50]: given an n-frame, n > 3, in 
a partition lattice and finitely many elements of the coordinate domain plus some 
auxiliary ones, if one requires sufficiently, but finitely many permutability and meet 
relations between these partitions, then they generate a sublattice of the partition 
lattice which is a sublattice of the congruence lattice of a suitably chosen module [48]. 
Since meet and permutability relations can be captured by embedded multivalued 
dependencies (it needs a little trick of Vardi's to eliminate functional dependencies) 
one can interpret an unsolvable word problem for semigroups into implications. 

12. Frames in congruence modular varieties 

The ring showing up in the above had been identified by Alan in a fine paper 
with E. Kiss [24], earlier. Even, they clarified the relationships between the various 
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rings arising in Co-ordinatization and Commutator Theory-  establishing one of 
the essential links between Lattice Theory and Universal Algebra. 

T H E O R E M  12. For a n-frame, n >_ 3, with top z and bottom ft, o f  congruences 

o f  an algebra A in a congruence modular variety ~ the following rings are canonically 

isomorphic: 

(1)  The v .S taud t -v .Neumann  projective coordinate ring. 

(2)  The D a y -  Pickering coordinate ring. 

(3)  The subdirect product o f  the Euc l id -Hi lber t  affine coordinate rings o f  the 

classes o f  r/ft. 
(4)  The J6nsson ring o f  equivalence relations on A/ f l  derived f rom any o f  the 

associated 2-frames. 

(5)  The D a y - K i s s  ring o f  equivalence classes o f  endomorphisms o f  the pair 

(Atf, r/f). 
(6)  The F r e e s e - M c K e n z i e  ring R( ~ )  o f  the variety, provided the f rame  is f ree  in 

the variety. 

I f  the variety ~ is residually small and either solvable or locally f inite then its 

congruence variety is that o f  R(~C~)-modules or distributive. 

Problems. Has the congruence variety of groups a decidable equational theory? 
Is it generated by its finite members, even? 
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