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ABSTRACT. Consider a domain Q C R” with possibly non compact but uniform C3-boundary and
assume that the Helmholtz projection P exists on LP(Q2) for some 1 < p < oco. It is shown that
the Stokes operator in LP({2) generates an analytic semigroup on L2 (Q) admitting maximal L9-LP-
regularity. Moreover, for ug € L% () there exists a unique local mild solution to the Navier-Stokes
equations on domains of this form provided p > n.

1. INTRODUCTION

Given an open set Q C R, it is well known that the Stokes operator is a selfadjoint and semibounded
operator in L2((2). Hence, it is the generator of an analytic semigroup (e!4);>o on L2((2). Here L2(f)
is defined by the Helmholtz decomposition of L?(Q) into LZ(Q) @& G2(Q), which is valid in L?() for
all open sets 2 C R™. The question whether (etA)tZO extends to an analytic semigroup on an LP-space
for some 1 < p < 0o and whether there are maximal LI-LP-estimates for the solution of the associated
Stokes equation is more difficult to answer. In particular, the question whether the Stokes operator
generates an analytic semigroup on LP(2) for domains with noncompact boundaries recently gained
quite some attention; see e.g. [FKS05].

An affirmative answer to the above question for bounded or exterior domains with smooth boundaries
was first given by Solonnikov ([Sol77]). His proof makes use of potential theoretic arguments. Later on,
further proofs were obtained e.g. by combining Giga’s result on bounded imaginary powers of the Stokes
operator ([Gig85]) with the Dore-Venni theorem, by Giga and Sohr [GS91a], by Grubb and Solonnikov
[GS91b] using pseudo-differential techniques, by Dan, Kobayashi and Shibata [DKS98], [DS99] by local
energy decay estimates and by Frohlich [Fro01] making use of the concept of weighted estimates with
respect to Muckenhoupt weights. For related results see also [Gig81], [FS94] and [SS08]. The half-space
case was studied e.g. in [Uka87] and [DHPO1]. For results concerning infinite layers we refer to the work
of Abe and Shibata [AS03], Abels [Abe05] and Abels and Wiegner [AWO05]. In [Fra00], [His04] the case
of an aperture domain is discussed and in [FRO8] it was shown that the Stokes operator has maximal
LI-LP-regularity estimates on tube-like domains. For applications of these results to the equations of
Navier-Stokes, see e.g.[Kat84], [Ama00] and [Soh01].

Considering unbounded domains with noncompact boundaries, no a priori estimates for the Stokes
problem or no generation result for analytic semigroups on the classical function space LP(Q2) seem to
be known in general, unless p = 2. A key problem in the investigation of the Stokes problem in such
general unbounded domains is that the Helmholtz decomposition of LP(f2) into L2(Q2) & Gp(£2) is not
possible, in general. Indeed, Bogovskil gave in [Bog86] examples of unbounded domains 2 with smooth
boundaries for which the Helmholtz decomposition of LP(f2) exists only for certain values of p. For
details, see also [Gal94].

For results on weak or strong solutions to the Stokes and Navier-Stokes equations on special domains
with noncompact boundaries, e.g. domains with strip-like or cylindrical outlets at infinity or parabol-
ically growing layers, we refer to the works of Heywood [Hey76], Solonnikov [Sol81], Pileckas [Pil05],
[Pil07], [Pil08]. In [AT09] Abels and Terasawa considered the reduced Stokes operator in unbounded
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domains with the additional assumption on 2 that the associated space for the pressure can be decom-
posed suitably. In [Abel0] the Stokes operator was studied under similar restrictons on the domain
Q.

One way to overcome the difficulties described above was shown in [FKS05] by Farwig, Kozono and
Sohr by replacing the usual LP(Q)-space by

iy . | LPQNLPQ), 2<p<oo,
Lr(@) '—{ 12(0) + I/(Q), l<po2

for domains Q C R™ with uniform C2?-boundaries. They proved that the Helmholtz projection exists
in the space L?(Q) and possesses the properties which are known for LP(Q). Moreover, it was shown
by them that the Stokes operator PA is well defined in LP(Q) and generates an analytic semigroup on
LP(Q). Furthermore, they showed the maximal L9-LP-regularity estimate

lwellpar,ie 0y + Nullpacr ey + ||V2U||L4(J;f,p(g)) IVl paersiey < Cllf e ir @)
where J = (0,T) for some T > 0, for the solution of the Stokes equation in domains 2, i.e. for
ug—Au+Vr=f inQx(0,7),
divu=0 inQx (0,7),
(1.1)
u=0 ondQx(0,T),
u(0) =up inQ

with Ug = 0.

In this paper we will follow a different approach and will consider the above Stokes equation in the
setting of usual LP-spaces. We will consider domains  C R” with a uniformly C®-boundary and assume
that the Helmholtz projection P exists for LP(€2). We then show that the Stokes operator A,, defined as
in (2.1) below, generates an analytic semigroup on L2 () and that the solution of the Stokes equation
(1.1) satisfies the maximal L?-LP-regularity estimate.

Applying the well known iteration scheme (see [Kat84], [Gig86]) to our situation, we obtain as our
second main result the existence of a unique, local mild solution to the Navier-Stokes equations defined
on domains of the above form provided p > n.

This paper is organized as follows. In Sections 2 and 3 we state our main results concerning the
Stokes and the Navier-Stokes equations, respectively. In the following Section 4 we discuss the strategy
of our approach before we present in Section 5 certain tools for the proof of the main result which will
be needed later on. Section 6 deals with representation formulas and estimates for the Stokes equations
in the half space. The gain of regularity of weak solutions to the Neumann problem is shown in Section
7, whereas Section 8 is devoted to the proof of the linear result.

The authors would like to thank Prof. Yoshihiro Shibata for valuable discussions during the prepa-
ration of this paper.

2. MAIN RESULTS FOR THE STOKES EQUATION

We start with the definition of a domain Q@ C R™ having a uniform smooth boundary. Given k € N,
a domain Q C R” is called a uniform C*-domain, if there exist constants K,a, 3 > 0 such that for
each zg € 0N there exists a Cartesian coordinate system with origin at xg, coordinates y = (y', y,) and
h € C*((—a, )™ !) with ||h||cx < K such that the neighborhood

U(zo) :=={(¥'syn) €ER" 1 h(y') = B < yn < h(y") + B, 1y'| < a}
of x satisfies
U™ (@0) = {(¥,9n) €R" : h(y') = B <yn < h(y"),|y'| <a} =U(zo) N Q
and 02N U(zo) = {(y', h(y") : ly'| < a} .
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Secondly, given an open set 2 C R™ and 1 < p < oo, we set
G,(Q) := {u € LP(Q) : u = Vr for some 7 € W-P(Q)}

loc

I2(Q) = {ue CoQ) :divu=0m Q} "
We say that the Helmholtz projection exists for LP(Q) whenever LP(Q)) can be decomposed into
LP(Q) = L7(2) & G,(9),
where @ denotes the direct sum operation. In this case, there exists a unique projection operator
Py : LP(Q) — LE () having Gp(Q) as its null space. Setting p' = ;27 it is well known (see e.g. [Gal94])
that the Helmholtz projection exists for LP(12) if and only if for every f € L?(2), there exists a unique
function v € WHP(Q) := {v € LL _(Q) : Vv € LP(Q)} satisfying

loc
(Vu, Vo) = (f, V), ¢e€ WP (Q).

Thus the Helmholtz projection exists for L?(Q) if and only if for every f € LP(Q) the above weak
Neumann problem is uniquely solvable within the class W1?(Q).
The following theorem is one of the main results of this paper.

2.1. Theorem. Let n > 2, p,q € (1,00) and J = (0,T) for some T > 0. Assume that Q@ C R"
is a domain with uniform C®-boundary and that the Helmholtz projection P exists for LP(Q). Let
f € LY(J;L2(Q)). Then equation (1.1) with ug = 0 admits a unique solution (u,m) € Wh9(J; LP(Q)) N
LA(J; W2P(Q) N W, P(Q) N L2()) x LI(J; W“’(Q)) and there exists a constant C > 0 such that

lluellLarze(y) + lullLaszey) + IV?ullLaroe@)) + IVT | La(roe@)) < CllfllLacr e @))-

Assuming as in the above theorem that the Helmholtz projection P exists for LP(2), we may define the
Stokes operator A, in L2(Q) as

D(4,) := WP(Q) N Wy (Q) N LE(),

(2.1)
Apu = PAu for u € D(4,).

Then the following corollary concerning the Cauchy problem in L (1)
u'(t) — Ayu(t) = f(t), t>0,
09 (6) - Ayu(t) = ()

u(0) = ug

holds true.

2.2. Corollary. Let n > 2, p,q € (1,00) and J = (0,T) for some T > 0. Assume that Q@ C R™ is
a domain with uniform C®-boundary and that the Helmholtz projection P exists for LP(Q). Then the
Stokes operator defined as in (2.1) generates an analytic Co-semigroup T, on LE(Y) with generator Ap.
Moreover, the solution u to the problem (2.2) satisfies

1wl Laqize @)y + 1ApullLasze@)) < CUIFlLacrsze@)) + lluollx,)
for some constant C > 0 independent of f € L(J; LE(2)) and up € Xo = (L2 (), D(Ap))1-1/g,q-

Setting Vrr = (Id — P)AR(), Ap) f, we also obtain the following result for the Stokes resolvent problem
Au—Au+Vr=f inQ,
(2.3) divu=0 in Q,
u=0 on 0,
for A € g :={A € G\ #0,|arg\| < 8} for some 6 € (0, 7).
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2.3. Corollary. Let1 < p < oo, Q C R" as above and 6 € (0,7). Then there exists A\g € R such that for
all \ € Mo+ 3, and f € LE(Q) there exists a unique (u,m) € (WP(Q) N W, P(Q) N LE(Q)) x WHP(9)
satisfying (2.3). Moreover, there exists C > 0 such that

Alllullzey + IVullre@) + IVT Loy < Cllfllze@), A € Xo+ o, f € LE(Q).

3. MAIN RESULT FOR THE NAVIER-STOKES EQUATIONS

The semigroup e“» := T}, on LP(Q) described in Corollary 2.2 admits the following LP-L? smoothing
properties, which are well known for the situation of bounded or exterior domains.

3.1. Proposition. Let p,r,s € (1,00) such that s <p <r and let T > 0. Then there exists a constant
C > 0 such that for f € L*()

_m(1_1 1 2 1 1 1 2
e Pflliry < Ct 3G |fllpey, ——-<-, -<-+=, 0<t<T.
P n r s p n
n 1 1 1 1 1 1
Ve Pfllpray < Ct 36973 fllLey, -—-<-, -<-4+-, 0<t<T.
P n T s p n
. _n(l_1y_1 1 1 1 1 1 1
et Pdiv fllpr@) < Ct 2G93 fllps@)y, - ——<-, ~<-+-, 0<t<T.
P n T s p n

Proof. Note that by Theorem 5.1 of [Ste70] and our assumption on £, there exists a continuous extension
operator E : L"(2) — L"(R"™) which is also continuous with respect to the H*P-norm. Hence, setting
a= n(% - %) it follows from Sobolev’s embeddings and the continuity of the above extension operator
that

le“» Pfllpr() < C||Ee'» Pf|rgmy < OB Pl mras @m
< C||Be Pf||iLol? (| Eete P |52

Lp(Rn) H2.p(R")
< Cllets Pl pceos e P 5o

<Ct || flloiy, fELP(Q),0<t<T,

for some constant C' > 0. Note that we used the boundedness of the Helmholtz projection in LP((2)
only. In order to prove the estimate for s < p let e*4» be the dual semigroup of et4» defined on L? (),
f,p € C(Q) and P’ the Helmholtz projection on L? (Q); see Lemma 5.1 below. Then

(42 Pf,p) = (f, P'et» P'y) = (f, e P'y)

and thus
A i
le*» PfllLo@) < IfllLe@) sup [le» Pl o
llellpr=1
3G
SOt 2 | fllpse) sup ol e oy
llellr =1
i)
<O | fllps(a)-
Since 1% -L=1_ %, the proof of the first assertion is complete. The other assertions follow in a similar
way. O

We finally consider the equations of Navier-Stokes
u—Au+ (u-V)u+Vre=0 inQx(0,7),
divu=0 in Qx (0,7),
u=0 ondx (0,T),
u(0) =wug in Q,

(3.1)
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and prove the following local wellposedness result for equation (3.1). To this end, assume that Q C R"
is a domain such that the Helmholtz projection P exists for L?(€2). Then, by a mild solution of (3.1)
we understand a function u € C([0,T); L2(Q)) for some T > 0 satisfying the integral equation

¢
u(t) = ettruy — / et=3)4e P div(u(s) ® u(s))ds, 0<t<T.
0

3.2. Theorem. Let n > 2. Assume that Q C R" is a domain with uniform C®-boundary and that the
Helmbholtz projection P ezists for LP(Y) for some p > n. Let ug € LE(). Then there exist Ty > 0 and
a unique mild solution u of (3.1).

The proof follows the lines of the well known iteration procedure described in [Kat84] and [Gig86].
We will not give a detailed proof here and note only that the two main linear estimates for et4» needed
for the proof, namely the L*-L"-smoothing property and the gradient estimate for e*4» are provided by
Proposition 3.1.

4. COMMENTS ON LOCALIZATIONS AND THE DIVERGENCE EQUATION

Before starting with the proof of our main theorem some comments about our localization procedure
and the divergence equation are in order.

Starting from the corresponding result for the halfspace R}, the main problem is that the usual
localization procedure known from elliptic problems does not transfer to the situation of the Stokes
equation. Indeed, the usual localization procedure does not respect the divergence free condition. In
[GHHSS08] a new localization procedure for the Stokes resolvent problem (2.3), respecting the divergence
free condition, was introduced.

Before explaining the main idea, let us note that our assumption implies that one may choose for
some r € (0,a), depending only on «a, 3, K, balls B; := B,(z;) with centers z; € Q and C3-functions
hj, 3 =1,2,...,N if Q is bounded and j € N if ) is unbounded, such that

ﬁCU?iIBj, ECU(JIJ‘) if x; € 09, ECQifII}jEQ.

Moreover, we may construct this covering in such a way that not more than a finite fixed number Ny € N
of these balls can have a nonempty intersection. Thus, choosing Ny + 1 different balls By, Ba, ..., their
common intersection is empty. If Q is bounded, we may choose Ny = N.

Given the covering (B;), there exists a partion of unity ¢; € C°(R") satisfying supp ¢; C B; and
0<¢p; <1.

In order to explain our main idea, let us consider

N N
U= ZQOJ'U]', ﬁ:ZQOjﬂj,
j=1 j=1
where ¢; are cut-off functions and (u;,7;) is the push-forward of the solution (u;,7;) to
Xij — Ai+ Vi, = f; in R,
divi; =0 in R},
4=0 ondRY},
with a suitable right hand side fj. Since we assume that 2 has boundary of class C3, we may con-

struct the pull-back and push-forward mappings in such a way that they preserve the condition on the
divergence. Hence, u; is solenoidal by construction. But 4 is not solenoidal in general, since

N

divii=Y (Vg;)u; # 0.

=1
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Therefore, we use the modified ansatz
N

(4.1) Z pju;j + Bp(div(p;u;))) ,
j=1

where Bp denotes Bogovskii’s operator on an open set D C 2 such that U;'V:o supp(Vy;) C D.
Inserting (u, ) in (2.3), we obtain

Au—Au+Vr=f+Thf inQ,
divu =0 in Q,
u=20 on 01,

where T denotes the correction terms. In order to show that T) is small for A large, it is crucial to
estimate the correction terms involving the pressure 7 and Bogovskii’s operator.

Note that, for domains with compact boundary it is enough to consider the divergence problem on
suitable bounded domains, only. In particular, D as defined above is bounded. If the domain does not
have a compact boundary it seems to be necessary to correct the divergence term on an unbounded
domain. It would be tempting to extend this approach to countable many cut-off functions. However,
in this case one would need estimates for the Bogovskii operator in suitable higher order Sobolev spaces
for the unbounded set D.

Recently, Diening, Rizitka and Schumacher developed in [DRS08] a technique to decompose L?
functions on very rough domains Q2. These domains 2 are allowed to be unbounded, e.g. some fractal
domains satisfy a condition which is related to John’s condition. Then, they constructed a solution
u € WHP(Q) of the divergence problem for suitable f € LP(2) by using a decomposition technique.
Their approach allows to give a solution to the divergence problem for certain unbounded and rough
domains. However, it seems to be unclear whether estimates of the form

||BD9||W5+1,P(D)n < Cllgllwgrpy, g€ Wy (D),

for higher order as well as negative Sobolev spaces, which would be needed, hold true in our situation.

In order to circumvent these difficulties, we present an approach to the Stokes problem on domains
which noncompact boundaries which relies on the above localization procedure where, however, the
Bogovskil correction term is replaced by the weak solution of the Neumann problem:

Av=divf inQ,

4.2
“2) @_fll on 0f.

To be more precise, we use the ansatz
oo
Z pju; + Vuj),
j=1

where v; is a weak solution to the Neumann problem (4.2) with f = ¢;u;. Note that the existence and
uniqueness of v; is guaranteed since the Helmholtz projection exists by assumption. By construction
we then obtain

o0
divu = z div(pju;) + Av; = 0.

j=1
However, the tangential component of u does not vanish at the boundary anymore. This leads to
additional correction terms. In our main linear result we show that (2.3) has a unique solution for any
f € L1(Q) satisfying the usual resolvent estimates.

Replacing norm bounds by R-bounds (see e.g. [DHP03] or [KW04]) in the arguments above, we even

obtain the maximal L9-LP-estimate in view of the vector-valued version of Mikhlin’s theorem due to
Weis [WeiO1].
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5. TOOLS FOR THE PROOF

This section is devoted to the presentation of several tools needed later on in the proof of our main
result.

First, we consider the Helmholtz decomposition in LP(f2). More precisely, we prove that this decom-
position exists in L?(Q) if and only if it exists for the dual space L? () where 1/p+1/p' = 1.

5.1. Lemma. Let Q) C R™ be open and assume that the Helmholtz projection exists on LP(QY) for some
p € (1,00). Then the Helmholtz projection ezists on L¥' (), where p' denotes the dual exponent of p.

Proof. Tt is well-known that the existence of the Helmholtz-projection is equivalent to the unique solv-
ability of the following weak Neumann problem (WN;): Given f € LP(QQ), there exists a unique solution

u € WhP(Q) satisfying
(Vu, Vo) = (£, V), @€ Wh (Q).

—~ — — '
Since WP () can be identified with a closed subspace of L?(Q), for given g € W~12(Q) := (Wl*P(Q))
there exists f € LP(Q) such that

(5.1) (£,V0) = (9,0), weW" (Q).

It thus follows from (5.1) that the existence of the Helmholtz-projection is equivalent to the solvability of
the following weak Neumann problem (WN2,,), which is different from (WN,,): For given g € W~ 1:7(Q)
there exists a unique u € W1?(Q) satisfying

(Vu, Vo) = (9,¢), o € WP (Q).
By duality, (WN2,) is uniquely solvable if and only if (WN2,) is uniquely solvable. Hence, the
Helmholtz projection exists on L7 (Q). O

In the following we make use of the concept of R-bounded families of bounded operators. Here we
only state the definition and refer to [DHP03] or [KWO04] for further properties. Given Banach spaces
X and Y, we call a family 7 C L(X;Y) R-bounded, if there exists a positive constant C' such that for
alLeN, Ty eT,ze€ X for £ € {1,...,L} and for all independent, symmetric, {—1,1}-valued random
variables €, on a probability space M the following inequality holds:

L L
(5.2) 1Y eeTemelloaeyy < CIUD_ eemellzo(arx)-
=1 =1

The smallest constant C such that (5.2) holds is called R-bound of 7 and will be denoted by Rx .y (7).
We simply write Rx (7) = Rx—x(T). A sectorial operator B is called R-sectorial, if R{A(A — B)~' :
AE Ty} < oo.

Next, we will state well known properties of the solution of the Stokes resolvent problem on R™. More
precisely, consider

u—Au+Vg=f in R™,
(5.3) o
Vou=0 in R™.

Then the following result holds true.

5.2. Lemma. Forp € (1,00), f € LE(R"), 6 € (0,7) and A € Xg there exists a unique solution (u,q) of
(5.3) in the class (W?P(R*) N LE(R™)) x WLP(R™). Moreover, there exists a constant C > 0 such that

(5.4) Rir@m){AA — At dexi<cC.
In particular, there exists a constant C' > 0 such that

(5.5) Allully + N2 1Vull, + 1V%ull, < Clifllp,  f € LE(R™), X € .
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Next, we consider the Stokes resolvent equations in the half space with homogeneous boundary data
—Au+Vg=f in R},
(5.6) V-u=0 in R?
u=20 on OR? .

Then the following result is also known.

5.3. Proposition. Let p € (1,00), 6 € (0,7), A € Xy and f € LE(R}). Then there exists a unique
solution (u,q) € (W2P(RT)N Wol’p(Rﬁ) NLE(RT)) x WHP(RT) of equation (5.6).

For a proof of these facts we refer e.g. to [Sol77], [Uka87] or [DHPO1].
The following lemma contains further estimates on the solution of the Stokes resovent equations. In
order to formulate the assertion precisely, let (39 C R} be a bounded Lipschitz domain. We set

U\ : LE(R}Y) = LE(RL), UNfi=wu
M} : LB(RY) — LP(Qo), TI}f =g,
where (u, q) is a solution (5.6) with f € L2(R") satifying fQo qg=0.

5.4. Lemma. Let p € (1,00), s € [0,2], a € (0, 2%') and 0 € (0,7). Then there exists a constant C > 0
such that

(5.7) Rrz®m)—»werrn{(l+ NP0 ezl <G,
(5.8) RLﬁ(Ri)—»WLP(Rj_){Hi : A€ Ea} <,
(59) RLg(R:_)—)LP(QO){)‘aH])-\ : )\ € EG} S C

For a proof of this lemma, see [GHHSSO08].

Next, we establish R-bounds for the operators which appear in the representation formula of the
solution of the Stokes resolvent problem with inhomogeneous boundary data. Here A’ denotes the
Laplacian with respect to the coordinates ' = (21, - ,Zn_1)-

5.5. Lemma. Let p € (1,00),a € (0, ﬁ), Xo > 0 and 0 € (0,7). Then there exists a constant C > 0
such that

(5.10) Rip@n-1-rr@y ATV 1 X € X0 + B0} < C,
(5.11) Rywz-1/p.0 (me-1) Lo @) {A'eTVATE" 2 A€ X+ 3} < C.

Proof. We recall from [DHPO1] that A’ admits an R-bounded H*°-calculus in LP(R"~!). Note that

Rir@r-1{A%e™V AmAEn XN € N+ 5} < sup [A¥emVATEEn| < C’a:;?ae_cmz", zp >0
)\E)\o+25,z€2¢

for any ¢ € (0,7 —6) and some constant ¢ > 0. Let L € N, \; € A\g + ¥y and &, symmetric, independent
{—1,1}-valued random variables on a probability space P and a, € LP(R*~!) for £ € {1,--- ,L}. Then

L o0
1Y exte S alupnany = [ [
1221 ¢ L»(P;L»(R7%)) p o Jrat

L

oo

< C/ / x;2pae—cmwn da,|| ZEZG’EHII),P(R"_I) dw
P JO =1
L

L P
ZEgA?e_V Ae=Aan g (2] da' dzy, dw
=1

< C” Z 54a4||:‘[),p(7>;Lp(Rn—1))-
=1

This proves (5.10).
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In order to prove (5.11) we use similar arguments as above. The boundedness of the term
(VA +V2)/ (VA + z) for A € Ao + Ty and z € ¥4 implies

e~ VATaTa < Ce—(\/X+\/Z)z,._
Hence, using the R-bounded H*-calculus for A’ we obtain

P
|| ZEeA' VB, o) < / / Zse\/—A’ VAT [Z Ny (of)| do dw
P
< C/ / ZE(\/ —Ale(VAetV=ANan /- —A'ay(z")| drdw
+le=1
L p
< / / e PVAozn ZE@\/-A’e*V —Aen/“Nlay(z')| dedw
PIRY =1
L
< 4‘zz:zsfg\/—Ale—\/fA - /_Alag||’£p(p,Lp(R1))
1
<C| ng\/—AlagHLp PWi-1/pp(R-1))
=1
L
< C” Z8ea’l||ip('P’W2—l/p,p(R’n—l))'
=1
Note that in the second last inequality we used the maximal regularity property of +/—A'. O

The final lemma of this section gives a tool to calculate R-bounds of expressions appearing during
the localization procedure desribed later on. Given Banach spaces X; and Yj for j € N, we set

(X)) ={F = (F)jen s f5 € X5, I1F1 = QCNF511%)MP < o0}
j=1
5.6. Lemma. Let (X;),(Y;), j € N, be sequences of Banach spaces and I be an arbitrary indez set.

Let Ly € L(EP(X;),LP(Y;)) for any t € I be a diagonal operator, i.e. Lix = (L( )xj)]eN, where L(J) €

L(X;,Y;). If for any j € N the set {L\7) : t € I} is R-bounded and max;en{R{LY : t € I}} = R < oo,
then {L; : t € I} is R-bounded with R{L; :t € I} < R.

Proof. Note first that by Kahane’s inequality it is possible to replace the exponent 2 in the definition
of the R-bound by p. Let M be a probability space and let (¢x) denote a sequence of independent
symmetric {—1,1}-valued random variables. We write X = ¢P(X;). Further let K € N and t; € I,

fr= (fk(:j))jeN € X,for k=1,---,K. Setting Ly := L;, we calculate
1/
L))

K
||ZEkkak||LP(M;Y) = (/ (Z H Za L(J
k=1
(S [ | Z e 0
J;l » o K ke 1/p
(St | $ om0
K "
([ Il )

Therefore, {L; : t € I'} is R-bounded. O

AN
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6. THE HALF SPACE WITH INHOMOGENEOUS BOUNDARY DATA

In this section we consider the resolvent problem for the Stokes equation in the half space with inhomo-
geneous boundary data. In particular, we prove R-boundedness of our solution operator with respect
to certain Sobolev norms and show moreover decay estimates with respect to A. To this end, we first
introduce the scaling matrices

1 0 0 N
Ky:=10 A 0 and K} = ( 0 (1)>
0 0 1

and set
Xop:={a € W YPPORY)" :a-v =0} x {be W2 V/PP(ORL)" : b-v = 0}.
Since a-v =a, =0and b-v = b, = 0 for (a,b) € Xa,b, we denote for simplicity the first n — 1

components of a also by a, i.e. a = a’, if no confusion seems to be likely.
We now define U3 : X, 5 — W2P(R7)™ and II3 : Xo 5 — WHP(RT) by

(6.1)
()t = A (1 - )

7 [ A =Ap) (=VIB@Y) \ . _via. Yl oAb
(Ux(a, b)) (xn) = ( (A= AZ)_I(—anﬁg(a,b)) ) +e A ( \/AV_I'A, (,\_)‘A,a _ )\élAlb) :

Later on, we will set a = b. The reason to use different variables here is due to the fact that we will
estimate the boundary data with respect to different norms. For a we will use the W' 1/??_-norm
and exploit the decay in X of this norm. For b we will use the W2 /PP.norm with no decay in \.
Since we have to estimate R-bounds of sets parameterized by A we cannot use A dependend norms like
lllelly + v/ Vull, + | Aull, (cf. Lemma 6.1.(c).

Mapping as well as decay properties of o2  and H?\, respectively, are being described in the following
lemma.

6.1. Lemma. (a) Let (a,b) € )?a,b. Then
V- Z//\’f(a,b) =0 mRY},
v- ﬁf(a, b)=0 onORYy.
In particular, U3 : X, 5 — W>P(R?) N L2(R%).
(b) Let a € W2=1/P2(RP=1)" with v -a = 0. Then, (u,q) := (U%(a,a),112(a,a)) is the unique
solution of
A —Au+Vg=0 inRY,
V-u=0 inR},

u=a onJR}.
(¢) For X, > 0 there exists C > 0 such that
R, irnixoxay A K s A €145} <C
R, {VIRK'Y 1A €146} <C,
C

2—k ~ —
Ry swiogen AT DK AET+5} <0, k=012,
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Proof. a) We first prove that v-U2(a, b)jorr = 0. We set v := (A= An) ™! (=0,113(a, b)). In order to see
this, we rewrite v in view of the second term in the formula for ﬁf in (6.1). Let (a,b) € )?a,bmch(aRi )2.
We set 0,113 (a,b) =: e~V ~2"®nc =: w; where

(VA=A — /=AY

c:= A (AV'a — A'V'D).

Then obviously Aw; = 0. Setting ws = —v — A"!w; it follows that

(A= Aws = (A= Ao — ~ (ot — Awy)

A
1
:wl—wl-i—XAwl:O 1n]Ri
1 1
anw2 = 37;,1) — X(?nwl = Xv —Alc on 6]&1
Hence, wy = —% /\__AA', e~ VA-A2a and therefore
1 1 V-=A AT 1 S~ AT
V= —wWy — W = —v~—FV———€ A=ATn L ZgmV AT
A AV A A

In particular, we have

o e ) (25

1
- (AV'-a—-A'V'-}).
X— A

)(W'-a—A'V'-b)

Therefore v - U ?(a,b) = 0 on OR}. A density argument proves the first assertion for all (a,b) € )/(:a’b.
Note that 8,(A — Ax)~! = (A — Ap)~'8,. This gives V - U2(a,b) =0 in R” .
b) The representation

’.
113 (a,0) () = — (VA= & — V=&7) V82 V8

ﬁi(aaa)('axn) = < ()\_AD)il(_v,lji(a’a)) ) +e—\/——A’z" ( Va.la )
Aa,a))

yields Au — Au+ Vp =0 and ﬁf(a, a)' = a' on OR% . Together with (a) this proves (b).
c) For X,, > 0 we define

4y {Lp(Ri) — L/(RY)

)
B {Wll/’”’”(aRi) > LR x (0, X)) N WP (RY)

a (@) > e VAT ATV g
B {WQ_I/I)((?RQ) — LP(R™) B

b o> (20) o eV R En TR AN L,

We thus may write
113 (a,b) = —Ax (ABi(a) — Ba(b))
V'3 (a,b) = —A\V' (ABy(a) — By(b)).
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Since C}y := RLP(R:;){/\%A,\ tAEL+ 3y} < o0, C% = RLP(Ri){VIA)\ A €14 %4} < oo and By and
B> are bounded, we obtain

Lo o1
R remix(on) AP IREN s X €140} < C4 (IBil] + |1Ball) < oo,
-~ -1
Rsssir(zrix(0,x | VIRE'S ' s A € 1450 } < CH[|Byl| + CAlIBl| < oo.

Recall that 9,112 = —\/—A’ﬁi. Finally, the estimates for ﬁf follow easily from Lemma 5.5 and well-
known resolvent estimates for the Dirichlet- and Neumann-Laplacian. O

Next, let )?f = LE(RY}). We set

)? = )?f X Xa,b;
. J% — LP(Q) NWhP(RY)
T (ab) o TS + T (a,b),
. X — W2P(RE) N LE(R?)
Ux:= 71 772
(f7a7b) ’_)U)\(f)_}—U)\(aﬁb)

Then the subsequent lemma follows by combining Lemma 5.4 with Lemma 6.1.

6.2. Lemma. For a € (0, 2%,) there exists C > 0 such that
R)?—>LP(QO) {)\aﬁAK/\—l TAEL+ Eg} < C,
R o psa) {Vﬁu{;l Ael+ 29} <,
Rfﬁwk,p(Ri) {/\¥fj,\K;1 ;/\€1+Eg} <C, k=0,1,2.

7. REGULARITY OF THE NEUMANN PROBLEM

We consider the following Neumann problem in 2:
Av =V-g inQ,
(N) {I/-Vv =v-g on 0f.
Here v is a scalar-valued function and g a vector-valued function. It is known (see e.g. [FS94], [SS96])
that the Helmholtz decomposition for LP(2) exists if and only if for g € LP(2) there exists a unique

weak solution v € W'P(Q) to (N), i.e. (Vo,Ve) = (g,V), ¢ € W'P(Q). In this case there exists
C > 0 such that

(7.1) IVollp < Cllgllp-

The next proposition shows that higher order estimates hold as well provided the boundary of Q and
the right hand side g are smooth enough. We start with a Poincaré type inequality.

7.1. Lemma. Let Q C R" be a bounded domain with diameter § and let 1 < p < oo. Assume that there
exists a ball B := By(yo) C Q for some yo € Q and some ¢ > 0 such that Q is starshaped with respect
to anyy € B. Then

1 6n+1 |Sn—1| 1p
||u_® B“(y)dy”Lp(Q) S |B| IVullLe), ve W P(4),

where S"~! denotes the unit sphere in R™.

Proof. Let z € Q,y € B with z # y. By assumption, z + t(y — z)/ly —z| € Q for all ¢t € [0, |z — y|].
Assuming first that v € C*(£2), we have

lz=yl 2 _y y—1
- = Vu(z +t dt.
o) =ut) = [ E e+ =
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Integrating with respect to y and extending Vu by 0 to all of R” we obtain
=1 [T L) dtdy
y) dy / / Vu T+ - dt dy
IB | /B | z|

|z— yl y—
// |Vu(:c+t|y |)|dtdy

g/ / |Vu(a:+ti)|dtdz
Bs(0) Jo 2|

" -
=— [ |z — 2" ""|Vu(z)| dz.

n Jao

|Bllu(z) —

Hence, by Young’s inequality
on
lu= 157 /| 5@l < Sgrllollioen IVl

where g(z) = 1g|z|'™™ with K = Q—Q and thus the assertion for u € C*(Q). Approximating
u € WHP(Q) by a sequence (u,) € C'(2) N WHP(Q)) which converges by the Meyers-Serrin theorem
towards u in W1P(Q), the proof is complete. O

7.2. Proposition. Let p € (1,00) and assume that Q@ C R™ is a domain with uniform C®-boundary
and that the Helmholtz decomposition exists. Then for ko = 2,3 there exists C > 0 such that for
g € Wko=LP(Q) with v- g =0 on 90 the weak solution v € W'P(Q) of (N) satisfies the estimate

ko
(72) D IVEoll, < C(llglly + 11V - gllwro-2) -
k=1

Proof. Let p € (1,00) and let v € W“’(Q) be a weak solution to (N). Let {B;}32, denote the open
covering of Q described in the beginning of Section 4, where r > 0 is chosen later to be small enough.
By definition of a uniform C3-boundary, we may assume that after a suitable rotation and translation
the boundary of B; N 0N can be described by a height functions h; satisfying

(7.3) 1Pjllwre <er, lhjllws= <C, jeN

Here and in the following C' > 0 denotes a constant independent of r and j and €, > 0 denotes a constant
independent of j but depending on r and satisfying e, =+ 0 asr — 0. For j € N, we set U; := B; N}
and choose cut-off functions §; € C(), supp 6; C B; with Ujentt; =1} D Q, [[D*0;]| L~ (8;) < Cr,
la| =1,2,3, 10;]|lp=(B;) < 1,5 € Nand v-V8; = 0 on 0Q. Here, C, denotes a constant independent of
J but depending on r which may grow as r — 0. Note that {6;};en is not a partition of unity.

By [Gal94, Lemma TI1.3.4] it follows that U; is starshaped with respect to a ball B; provided the
radius 7 of the balls B; is small enough. Let us now consider v; := v — ‘57 J B, v Clearly, v; still solves
(N).

Integrating by parts yields
(V(0;v;), Vo),

((V8;)v5, Vodu, + (0;(Vvs), Velu,
((V8;)vj, Voo, + (Vs V(0i9))a — (Vus, (VO;)p)u,
= (V- ((V8;)v;), 0yu; = (0;V - 9,000 = ((VO;) - Vs, )y
= —((A8b;)vj,p)u; — 0V - g, 0)u; — 2((VH;) - Vs, )
= (G, P, p €W (Uy),
with g; = —(Ab;)v; — 0;V - g — 2(V0;) - Vv;. Therefore, 6;v; is the weak solution of the Neumann-
Laplace problem on U; with right hand side g;. Changing U; to a set U; in (supp ;)¢ such that U; has
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a smooth boundary, it follows form standard elliptic regularity theory that 6,v; € WP (ﬁ' ;) and

195051135 < C5 (18lzncasy + 10593 o)) -

In order to show that {C;};en is uniformly bounded, we transfer the Neumann-Laplace problem on
U; to a Neumann-Laplace problem on a fixed domain S C R" with smooth boundary satisfying

{z:=(x1,-- ,2p) €R" : |2| < 1/2,2, >0} C S C{x:= (21,--- ,2p) € R" : |2| < 1,2, > 0}.

We define w;(z) := (0;v;)(H;(z)) — uy for z € H;l(Uj) and wj(z) =0 for z € S\ H; L(U;), where

Hy o) i= () + By, )= (L )+ = X E(@uh) 0u0505) 0 ).
k=1

and E : W'—1/P2(5S) — W?P(S) denotes an extension operator satisfying 8, Ef = f on 05.
Note that in the change of coordinates we have neglected translation and rotation and that the
function 9;h(0;6;v;) o H; is extended by 0 to dS. The Jacobian Jy, of H; satisfies

(7.4) Ty = Id+ T @), g, @l <er, IV?H;@)<C, jeN,

and, moreover, w; solves

Awj = gy o Hy + (Vuy, AH) + Tr ((J5 + T, + T, 5 )V?w0;) = Aua, in S,

(7.5)
v-Vw; =0, on 08S.
We estimate
n—1 n—1
luallwzr(sy <Y Clidkh; (0x6505) 0 Hjllwi-1/nm(asy < C Y 10kh; (0x8;v;) © Hjllwre(s)
k=1 k=1

-1
CZ VA loo (06 VO;0;) 0 Hj - Ju, || Los) + Crll VA lw.oe [0l wre(u;) )
k=1

(€r||V 0;5v; L (u;) + Cr ”UJ”WlP(U,)): JeN

Since w; solves (7.5), we again use elliptic regularity theory and (7.4) to get

(7

< C (119 0 HjllLe(sy + lwjllwre(s) + erllwsllwze(sy + lusllwzs(s))

< C (l1gillzewy) + Collvjllwrew,) + erllwjllwze(sy + llusllwzr(s))

< C(IV - gllzewy) + Crllvjllwre ;) + erllwjllwzesy + eIV 050)lru;)) » 7 €N

”wj”WQ’P(S)

Hence, by choosing r := ry small enough, we obtain
||V2(0]’U3)||LI’(UJ) S CT‘O ||Uj||W1’p(Uj) + C”V : g”LI’(UJ‘)
< CTOHV’UJ'HLP(UJ-) +C||V- 9||LP(Uj)a JEN,
where we used Lemma 7.1 in the last step. We finally obtain

IV0llzr@) < C IV B30Iy < €3 (N0l + 19 - glliaqey ) < C UVl + 19 - g1l,)

j=1 Jj=1
< C(llgllp + 11V - gllp)

This proves (7.2) with kg = 2. The case ko = 3 now follows similarly. O
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8. PROOF OF THE LINEAR ESTIMATES

The proof of Theorem 2.1 is, roughly speaking, based on the localization method described in Section 4.
Note that due to the given situation of domains with possible noncompact boundaries, we need to
consider a countable covering of (2.

For each zy € 02 local coordinates corresponding to z¢ are defined as coordinates obtained from
the original ones by a rotation and a shift which moves z¢ into the origin and after which the positive
T,-axis has the direction of the interior normal to 9 at xz.

Let now z¢ € 09 and choose local coordinates corresponding to xo. By definition of a uniform C3-
boundary, there exists an open neighbourhood U = U; x U, C R” containing zo = 0 with U; C R*!
and U, C R open and a height function h € C®(U,) satisfying 90NU = {z = (¢',z,) € U : 2, = h(z')}
and QNU = {z € U : z,, > h(z')}. Note that choosing U; small , we may assume that ||h]|e + ||V 0o
is as small as we like. Next we define

(8.1) g(z) = (% _m;l(x,)> , zel.

Since 99 is a uniform C3-boundary, all derivatives of g and of g~ (defined on U := g(U)) up to order
3 may be assumed to be bounded by a constant independent of xg.

For a function u: UNQ — R we define the push-forward v = Gu on UN R? by v(y) := u(g~"(y)). Due
to the regularity of the boundary, this transformation is an isomorphism W*?(U N Q) — W*?(U N R%)
for all p € (1,00) and s € [-2,2].

Similarly, for a function u: UNQ — R™ we define the push-forward v, = G,u for the solenoidal spaces
by vs(y) := Jy(u(g~'(y))), where J, denotes the Jacobian of g. In fact, the linear transformation g, is
an isomorphisms from L2(U N Q) to L2(U N R} ). Furthermore, it is an isomorphism from W*?(U N Q)
to W#2(U N R7) for all p € (1,00) and s € [—2,2]. The corresponding pull-back mappings G;' and
G~! are defined in a similar way. Note, that we may choose h = 0 if U N 9Q = 0.

For any € € (0,1) let {Q5 : j € N} of Q2 denote a family of locally finite covers, cf. [GHHSS08], such
that

(82) VAl <e,
(8.3) D xo:(@) <C, z€Q
JEN

where A5 is the height function corresponding to 25 and C' > 0 is independent of €. For each such
covering {25} jen we choose a partition of unity {¢j5 : j € N} subordinate to this covering. Furthermore,
denote by G5, G5 ., gj‘l’a, g;}*f the corresponding push-forward mappings and pull-back mappings.

The commutator [A, g;;’s]ﬂ, @ € W*P(R7), of A and g;;’g can be split into two parts: [A, gjj;*f]ha
contains second order terms of u only and [A, g;;’s]lﬂ contains all lower order terms. In particular, by
(8.2) there exists a constant C' > 0 such that

(84) ||[A7g_jj;’s]ha||LP(Qj)" < CE”,EL”WZ,P(Q;)n? €€ (07 1)7 .7 € N7 (XS W2’p( Aj)n7
(8.5) 1A, G5 Yillza,yn < Cllilly sy €€ (01), 5 €N, &€ W (@)™,
Here and in the following Qj denotes the transformation by the j-th push forward map of Q5. In the

same way 45 denotes the function living on the half space R} which is connected with uj through the
j-th push forward map. Similar to (8.4), there exists a constant C' > 0 such that

86) (VG =G Villze@y» < Celldllgran, €€ (0,1), §€N, §€WH(Q5).

]70-

As in [GHHSS08] we use Bogovskii’s operator to construct localized data for our localization proce-
dure. For a bounded Lipschitz domain Q' C @ and g € LP(Q') with [, g = 0 Bogovskii’s operator Bo
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is a solution operator to the problem

divu = g in,
(8.7) { u = 0 ondQ,

see [Bog86], [Gal94] or [GHHSS08]. By [GHHSS08], there exists C' > 0, independent of j € N, such that
(88) ||BQ§f||L1’(Q§)" S C“f”LP(Qj): €€ (07 1)7 .7 € Na f € LP(Q;_)

We finally choose cut-off functions 1; € Cg°(Q5) such that 1); = 1 on supp ¢5; see [GHHSS08]. For
f € Xy := L?(Q) we define the local data by

f5 += ¥ f — Bas ((V¥5)f)

and let J?j denote the extension to R} by 0 of the push-forward G ; f5. By (8.8), we obtain fj € LE(R%)
and

(8.9) ||ff||Lv(R1)n < C||f||LP(Q§)",
where C' > 0 is independent of ¢, j and f. Hence, (8.3) yields that
(8.10) ((S])iem)eeon) C £(X1, (X))

is uniformly bounded, where S}’Ef = J/‘;E Similarly, for (a,b) € X, = {a € W'=Y/PP(0Q)" :a-v =
0} x {b € W2~1/PP(9Q)" : b- v = 0}, we define the local data a5 = ¥Sa, b5 = ¥Sb and @5 = Goo " Vea,
Zj = gﬁfj’sxy;b. Here, gﬁf,’*s is the restriction of G5 ; to the boundary of 2. Again, we have that

(8-11) ((S]?,E(aa b))jEN)se(O,l) C ‘C(Xa,baep()?a,b))

is uniformly bounded, where Sf’s(a, b) = (a3 ,/I;j) We set

Us(f,a,b) =Y 95G; 7°UAS5 (f,a,b) = VN (O 056, 2 UxS5 (£, a,b)),

JEN JEN

where N is the solution operator of the weak Neumann problem (N) and S5(f,a,b) := (S}’Ef, SJZ-’E(a, b)).
Here, similarly as in [GHHSS08], we add a correction term in order to have a solenoidal ansatz U§.
However, in contrast to [GHHSS08] the correction term is based on the solution operator of the weak
Neumann problem instead of Bogovskii’s operator. Inserting u := U§(f, a,a), we calculate

A — PAu = f+T°(f,a,a) inQ,
(8.12) divu =0 in Q,
u=a+T"(f,a,a) indQ,

where

(T (f,a,b), TS (f,a,0), T, (f,a,0)) = T (f, a,b) := TE \(f,a,b) + -+ - + Tg A (f, a,b)
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with

75 (fa,b) = (Pa Y5 (90, = 009 FLuS5 (. a,0),0,0),

j=1

Ts \(f,a,b) PQZ Vi) G; P IINS5 (£, a,0),0,0),

T3 )\(faa b PQ Z[A SDJ]QT;’EﬁASJE‘(f, a, b);an);
Jj=1
e _ = e —1.e7 7. Q€
T4,)\(f5 a, b) = _(PQ Z‘PJ[A7 g] ]hUASJ (f7a7b)7070)7
j—l
T; \(f,a,b) PQZQOJ gt lUASE(f,a b),0,0),

TGE,)\(faaab) = 0 VN Z‘p]g_l EUASE(faa b))laﬂaVN Z(p]g—l EU)\SE(faaab))|39)'

jeN JjEN

This means that we obtain a solution of the Stokes resolvent problem which is given by

(8.13) RN :=US1+T%2) (£,0,0) = U5 D (=T5)"(£,0,0),

n€ENp

provided the above sum is convergent.

In the following we show that the Neumann series > n (75)"(f,0,0) exists for some ¢ € (0,1),
which hence yields the existence of a solution to (8.12). The uniqueness of the solution follows from a
standard duality argument. Hence, we finally obtain

RN = (A -4~

In order to estimate the above Neumann series, we set X := Xj X X, 5. Then, the representation
formula (8.13) can be written as

RN =U; Y (T5)™1,0,0) = UK Y (KaT{E; )" Ka(£,0,0)

neNp neNp

= UKD Y (KaTEKT)™(£,0,0)

n€Np

provided the above series converges. In the following lemma we show that
Rx{K\TyK i ed+3p) < 1

for some A9 > 0. Hence, R*()) is well defined for some € € (0,1) and all A € A9 + Xy with )¢ large
enough.

8.1. Lemma. For a € (0,1/2p') there exist g € (0,1) and C > 0 such that for all € € (0,e0) :
(a) Rx{EK\T{ \K;': A€1+3%} <1,
(b) Rx{\E)\T§, K ' : A e€l1+%5} <C,
(c) Rx{NK\T5, K" : A €1+ 5} <C,
(d) Rx{E\T{ Ky : X€1+3%p} <1,
(€) Rx{N:KA\TE K\t : A €1+ 5} <C,
() Rx(AFEOTE Ky A €1+ 5} < C.
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Proof. By (8.10) and (8.11), ((S5)jen)ee(0,1) C L£(X, (X)) is uniformly bounded. Moreover, since
lpflleo < 1,7 €N, € €(0,1), it follows from (8.3) and (8.6) that

o0

E —1,e -~ p
|PQZSOJ g b gJ”Lp(Q) _CZ”[V g; b ]gJ”Lp(Qs) = Z(Ej||gj||iy‘1,p(u1))

< Cspll(gg)ll e€(0,1).

(Wi (RY))’

Hence, by Lemma 5.6, Lemma, 6.2 and (8.2), we obtain

Rx{KATIE’AK; A€ Eg} < CERX%WIP(R"){H}\K)\ A€eELl+ 29} <

e e

for € € (0,e1) and ¢; small enough. This shows (a).
By similar arguments as above it follows from (8.4) that

|PQZSO][A g] ]th”LP(Q) < CE”(Q])”lp(Wz 2(R7))
j=1

and, therefore, there exists g9 € (0,¢1) such that (d) holds.

Now, choose X, > 0 such that ﬁjo C R*! x (0,X,) for € € (0,£1) and j € N. Then, by (8.5) there
exists C' > 0 such that

1Pa > (Ves®)G; % Gllne () < ClI(95) e (e ®n-1x(0,%.)))
j—l

p92[¢;o,A]g > Gillze@) < Cl@)ller(zr®n))
7j=1

1P Z‘Peo [A, G5 % NGille) < CN@i)lercwrr ()

||VNZ<,0§°Q_15°93|89|| wri-2p 00 S OG5 ler(wrer ®mynLewny), k=0,1,

(62) —

and (b), (¢), (e), (f) are proved as above. O

Summing up, Lemma 8.1 and Lemma 6.2 imply

(8.14)

A—PAR®N)f=Ff A€l +Zy feLf(Q),

and Rz ) {AR©(A) : A € Ao + Zg} < C for Ao > 0 large enough. Finally, thanks to Lemma 5.1,
uniqueness of the solution of (RS) follows from standard duality arguments. The proof of Theorem 2.1
is complete.
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