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Abstract

Consider a body moving in a three-dimensional Navier-Stokes liquid
with a prescribed constant non-zero velocity ξ ∈ R3 \ {0} and non-zero
angular velocity ω ∈ R3 \ {0}. Linearizing the associated equations of
motion written in a frame attached to the body, we obtain the three-
dimensional Oseen equations in a rotating frame of reference. We will
consider the corresponding stationary problem in the whole space. Our
main result concerns elliptic Lq-estimates of the solutions. Such estimates
have been established by R. Farwig in Tohoku Math. J., Vol. 58, 2006.
We introduce a new method resulting in a much simplified proof of these
estimates. Moreover, our method yields more detailed information on the
dependency of the involved constants on ξ and ω.

1 Introduction

Consider a body moving in a Navier-Stokes liquid with a prescribed constant
non-zero velocity ξ ∈ R3 \ {0} and non-zero angular velocity ω ∈ R3 \ {0}. We
assume that ξ and ω are parallel and directed along the x3-axis. Due to a simple
transformation (see [6, Section 2]), this assumption can be made without loss
of generality whenever ξ · ω 6= 0. After a suitable non-dimensionalization, the
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corresponding equations of motion in a frame attached to the body B ⊂ R3 are

∂tv −∆v +∇p+R
(
v · ∇v − ∂3v

)
+ T

(
e3 ∧x · ∇v − e3 ∧v

)
= f in R3 \ B × (0,∞),

div v = 0 in R3 \ B × (0,∞),
v = v∗ on ∂B × (0,∞),
v(x, 0) = v0,

where R, T > 0 are non-dimensional constants. Here, v and p denotes the
velocity field and the pressure of the liquid, respectively.

We consider in this paper the corresponding stationary linearized whole
space problem, that is,{

−∆v +∇p−R∂3v + T
(

e3 ∧x · ∇v − e3 ∧v
)

= f in R3,

div v = 0 in R3.
(1.1)

The above system is the classical stationary Oseen problem with the extra term
T
(

e3 ∧x · ∇v − e3 ∧v
)
, which stems from the rotating frame of reference. Note

that due to the unbounded coefficient, this term can not be treated at a pertur-
bation of the Oseen operator.

We will prove elliptic Lq-estimates of the solutions (v, p) to (1.1) in terms of
the data f . Our main result reads:

Theorem 1.1. [Main Theorem] Let 1 < q < ∞, let R0 > 0, and consider
0 < R < R0 and T > 0. For any f ∈ Lq(R3) there exists a solution (v, p) ∈
D2,q(R3)3 ×D1,q(R3) to (1.1) that satisfies

‖∇2v‖q + ‖∇p‖q ≤ C1‖f‖q,(1.2)

with C1 independent on R0, R, and T . Moreover,

‖R∂3v‖q + ‖T
(

e3 ∧x · ∇v − e3 ∧v
)
‖q ≤ C2

(
1 +

1
T 2

)
‖f‖q,(1.3)

with C2 = C2(R0). If 1 < q < 4, then

‖∇v‖ 4q
4−q
≤ C3

(
R− 1

4 + T − 1
2

)
‖f‖q,(1.4)

with C3 = C3(R0). If 1 < q < 2, then

‖v‖ 2q
2−q
≤ C4

(
R− 1

2 + T −1

)
‖f‖q,(1.5)

with C4 = C4(R0). Moreover, if (ṽ, p̃) ∈ D2,r(R3)3 × D1,r(R3) is another
solution to (1.1), then

ṽ = v + α e3 +β e3 ∧x and p̃ = p+ γ(1.6)

for some α, β, γ ∈ R.
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The estimates and uniqueness statement in Theorem 1.1 have already been
established in [2]. Due to the term T

(
e3 ∧x · ∇v− e3 ∧v

)
, the estimates do not

follow, as opposed to the classical Oseen system, from a standard application
of well-known Fourier multiplier theorems. Therefore, in [2] the estimates are
established by a very technical application of the Littlewood-Payley decompo-
sition. The purpose of this paper is to give a simpler proof of the estimates
using a different method. More specifically, we utilize an idea going back to [4]
of transforming (1.1) into a time-dependent Oseen problem. After the trans-
formation, we are able to use standard Fourier multiplier theory to obtain the
estimates. In addition to being simpler, our method also yields more detailed
information than in [2] on the dependency of the involved constants on R and
T .

Before we in section 2 give a proof of the main theorem, we first introduce
some basic notation. By Lq(R3) we denote the usual Lebesgue space with
norm ‖·‖q. By Wm,q(R3) we standard Sobolev spaces, and by Dm,q(R3) the
homogeneous Sobolev space with semi-norm |·|m,q, that is,

|v|m,q :=
( ∑
|α|=m

∫
R3

|∂αv(x)|q dx
) 1

q

, Dm,q := {v ∈ L1
loc(R3) | |v|m,q <∞}.

For functions u : R3 × R → R, div u(x, t) := divx u(x, t), ∆u(x, t) := ∆xu(x, t)
etc., that is, unless otherwise indicated, differential operators act in the spatial
variable x only. We use Ff = f̂ to denote the Fourier transformation, and
S (Rn) to denote the class of Schwartz functions. Finally note that constants
in capital letters in the proofs and theorems are global, while constants in small
letters are local to the proof in which they appear.

2 Proof of Main Theorem

We will make use a simple transformation that transforms solutions to (1.1) into
time-periodic solutions to the classical time-dependent Oseen problem. For this
purpose, we introduce the rotation-matrix corresponding to the angular velocity
T e3. More specifically, let E3 ∈ skew3×3(R) denote the skew-symmetric adjoint
of e3 and put

Q(t) := exp(T E3t) =

cos(T t) − sin(T t) 0
sin(T t) cos(T t) 0

0 0 1

 .

For a sufficiently smooth solution (v, p) to (1.1), the transformation u(x, t) :=
Q(t)v(Q(t)Tx), p(x, t) := p(Q(t)Tx) yields a 2π

T -periodic (in time t) solution
to the time-dependent Oseen problem in the whole space. In order to prove
(1.2), we split this solution into a solution to a Cauchy problem with zero initial
value, and a Cauchy problem with zero forcing term, respectively. We then
prove (1.2) by a simple analysis of these two systems. The main idea behind

3



our proof of (1.3)–(1.5) is to exploit the time-periodicity and expand (u, p) in
a Fourier-series. We will then analyze the Lq-norm of v in terms the resulting
Fourier coefficients. As we shall see below, these coefficients each solves (in
space) a resolvent Oseen-equation. This information enables us to estimate
their Lq-norms using standard multiplier theorems.

We split the proof into several lemmas. We start by establishing existence
and higher order estimates in the case q = 2. This can be shown by an argument
based on the Galerkin method (see for example [10]), but we choose here an
approach using the ideas described above.

Lemma 2.1. Let f ∈ C∞0 (R3)3. There exists a solution

v ∈ D2,2(R3)3 ∩D1,2(R3)3 ∩ L6(R3)3 ∩ C∞(R3)3,

p ∈ D1,2(R3) ∩ L2(R3) ∩ C∞(R3).
(2.1)

to (1.1) that satisfies

‖∇2v‖2 + ‖∇p‖2 ≤ C5‖f‖2,(2.2)

with C5 independent on R and T .

Proof. Since f ∈ C∞0 (R3)3 there is a h ∈ L2(R3)3×3 with div h = f (see for
example [11, Lemma 1.6.2]). For k ∈ Z put

Fk(x) :=
T
2π

2π/T∫
0

Q(t)f
(
Q(t)Tx

)
e−iT kt dt,

Hk(x) :=
T
2π

2π/T∫
0

Q(t)h
(
Q(t)Tx

)
e−iT kt dt.

(2.3)

Note that Fk ∈ C∞0 (R3)3 and divHk = Fk. Now define

uk := F−1

[
1

i(T k −Rξ3) + |ξ|2

(
I − ξ ⊗ ξ

|ξ|2

)
F̂k

]
,

pk := F−1

[
ξ

|ξ|2
· F̂k

]
.

(2.4)

Both of these expressions are well-defined as the inverse Fourier transformation
of a tempered distribution multiplied with the Schwartz function F̂k. Clearly,
by Plancherel’s identity, (uk, pk) ∈ D2,2(R3) × D1,2(R3). In fact, we see that
uk ∈W 2,2(R3) for k 6= 0. Moreover, inserting Ĥk ·ξ for F̂k in (2.4), we see, again
by Plancherel’s identity, that pk ∈ L2(R3), and, by the mapping properties of
the Riesz potential ([8, Theorem 6.1.3]) that u0 ∈ L6(R3). By construction of
(uk, pk) we also have{

iT kuk −∆uk +∇pk −R∂3uk = Fk in R3,

div uk = 0 in R3.
(2.5)
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Now put for (x, t) ∈ R3 × R:

u(x, t) :=
∑
k∈Z

uk(x) eiT kt, p(x, t) :=
∑
k∈Z

pk(x) eiT kt,

F (x, t) :=
∑
k∈Z

Fk(x) eiT kt .
(2.6)

Note that since

Fk(x) =
1
k2

1
T 2π

2π/T∫
0

∂2
t

[
Q(t)f

(
Q(t)Tx

)]
e−iT kt dt,

the series above converge even point-wise. Observe that{
∂tu−∆u+∇p−R∂3u = F in R3 × R,
div u = 0 in R3 × R.

(2.7)

Finally, we define v(x, t) := Q(t)Tu
(
Q(t)x, t

)
and p(x, t) := p

(
Q(t)x, t

)
. As

one easily verifies, v and p are time independent and solve (1.1). Moreover,
repeatedly using Plancherel’s identity, it follows that

‖∆v‖22 + ‖∇p‖22 =
T
2π

2π/T∫
0

∫
R3

|∆v(x)|2 + |∇p(x)|2 dxdt

=
∫
R3

T
2π

2π/T∫
0

|∆u(x, t)|2 + |∇p(x, t)|2 dtdx

=
∫
R3

∑
k∈Z
|∆uk(x)|2 + |∇pk(x)|2 dx

≤ c1
∑
k∈Z
‖Fk‖22 = c1

∫
R3

T
2π

2π/T∫
0

|Q(t)f
(
Q(t)Tx

)
|2 dtdx

= c1‖f‖22,

where c1 is independent on R and T . Thus, (2.2) follows. Similarly, we find
that v ∈ D1,2(R3) ∩ L6(R3) and p ∈ D1,2(R3) ∩ L2(R3). By standard elliptic
regularity theory, we also find, since (v, p) solves (1.1), that both v and p lie in
C∞(R3). This concludes the lemma.

In the next lemma, we establish higher order Lq-estimates for the solution
found above.

Lemma 2.2. Let 1 < q < ∞, and let f ∈ C∞0 (R3)3. The solution (v, p) from
Lemma 2.1 satisfies (1.2).
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Proof. Assume first that q > 2. Let T > 0. For (x, t) ∈ R3 × R put

u(x, t) := Q(t)v
(
Q(t)Tx−Rt e3

)
, p(x, t) := p

(
Q(t)Tx−Rt e3

)
,

F (x, t) := Q(t)f
(
Q(t)Tx−Rt e3

)
.

Then 
∂tu−∆u+∇p = F in R3 × (0, T ),

div u = 0 in R3 × (0, T ),

u(x, 0) = v(x) in R3.

(2.8)

We denote by ξ = (ξ1, ξ2, ξ3) ∈ R3 and (ξ0, ξ) ∈ R4, and consider the operator

Φ : S (R4)3 → S ′(R4)3, Φ(ψ) := F−1

[
1

iξ0 + |ξ|2 + 1
T

(
I − ξ ⊗ ξ

|ξ|2

)
ψ̂

]
.

By the Hörmander-Mihlin multiplier theorem ([7, Theorem 5.2.7]), we deduce
that Φ extends to a bounded operator Φ : Lr(R4)→ Lr(R4) for all 1 < r <∞.
We then put

u1(x, t) := et/T Φ
(
F (x, t)χ[0,T ](t) e−t/T

)
,

where χ[0,T ] denotes the indicator function of the interval [0, T ]. Note that
F (x, t)χ[0,T ](t) e−t/T ∈ Lr(R4) and thus u1 ∈ Lr(R3× (0, T )) for all 1 < r <∞.
As one may verify,

∂tu1 −∆u1 +∇p = F in R3 × (0, T ),

div u1 = 0 in R3 × (0, T ),
lim
t→0+

‖u1(·, t)‖r = 0.
(2.9)

for all 1 < r <∞. In particular, (2.9)3 follows by a standard argument (see for
example [9, Sec. 5, Theorem 6]). Furthermore, again by the Hörmander-Mihlin
multiplier theorem, we obtain

‖∇2u1‖Lr(R3×(0,T )) ≤ c1‖F‖Lr(R3×(0,T )),(2.10)

with c1 independent on T . Next, put

u2(x, t) := (4πt)−3/2

∫
R3

e−|x−y|
2/4t v(y) dy.(2.11)

An elementary calculation shows that u2 ∈ L6(R3 × (0, T )), ∂tu2,∇u2,∇2u2 ∈
L6
loc(R3 × (0, T )), and that u2 solves

∂tu2 −∆u2 = 0 in R3 × (0, T ),

div u2 = 0 in R3 × (0, T ),
lim
t→0+

‖u2(·, t)− v(·)‖6 = 0.
(2.12)
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Taking second order derivatives on both sides in (2.11) and applying Young’s
inequality, we obtain

‖∇2u2(·, t)‖Lq(R3) ≤ c2 t−
3
2 ( 1

2−
1
q ) ‖∇2v‖2,(2.13)

with c2 independent on T . Next, we claim that u = u1 +u2 in R3× (0, T ). This
follows from the fact that u1 + u2 satisfies (2.8) combined with a uniqueness
argument (see [5, Lemma 3.6]). We can now calculate

T‖∆v‖qq =

T∫
0

∫
R3

|∆u(x, t)|q dxdt

≤ c3
(
‖∆u1‖qLq(R3×(0,T )) +

T∫
0

‖∆u2(·, t)‖qq dt
)

≤ c4
(
‖F‖qLq(R3×(0,T )) +

T∫
0

t−
3
2 ( 1

2−
1
q )‖∇2v‖2 dt

)
= c4

(
T‖f‖qq + T−

3
2 ( 1

2−
1
q )+1‖∇2v‖2

)
,

with c4 independent on T , and of course also on R and T . Dividing both sides
with T and subsequently letting T → ∞ (note that q > 2 by assumption),
we conclude that ‖∆v‖q ≤ c4‖f‖q. Finally, we deduce directly from (1.1), by
taking div on both sides in (1.1)1, that −∆p = div f . From this it follows that
also ‖∇p‖q ≤ c5‖f‖q, with c5 independent on R and T . Hence (1.2) follows in
the case q > 2.

The case q = 2 was shown in Lemma 2.1. Consider now 1 < q < 2. In
this case will establish (1.2) by a duality argument. Consider for this purpose
ϕ ∈ C∞0 (R3). Just as in Lemma 2.1, one can show the existence of a solution
(ψ, η) in the class (2.1) to the adjoint problem{

−∆ψ −∇η +R∂3ψ + T
(

e3 ∧x · ∇ψ − e3 ∧ψ
)

= ϕ in R3,

divψ = 0 in R3.
(2.14)

By arguments as above, we can also show for 2 < r <∞ that

‖∇2ψ‖r + ‖∇η‖r ≤ c6‖ϕ‖r,(2.15)

with c6 independent on R and T . We now exploit that∫
R3

∆v · ϕdx =
∫
R3

∆v ·
[
−∆ψ −∇η +R∂3ψ + T

(
e3 ∧x · ∇ψ − e3 ∧ψ

)]
dx.

As one may verify, the summability properties of (v, p) and (ψ, η), ensured by
the fact that both pairs lie in the class (2.1), suffice for us to integrate partially
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in the integral on the right-hand side above. Consequently,∫
R3

∆v · ϕdx =
∫
R3

[
−∆∆v −R∂3∆v + T

(
e3 ∧x · ∇∆v − e3 ∧∆v

)]
· ψ dx.

Note that ∆
[

e3 ∧x · ∇v
]
i

=
[

e3 ∧x · ∇∆v
]
i
+ 2∇2vi : E3 =

[
e3 ∧x · ∇∆v

]
i
. We

thus deduce from the above that∫
R3

∆v · ϕdx =
∫
R3

∆f · ψ dx =
∫
R3

f ·∆ψ dx.

Using (2.15), we then obtain

|
∫
R3

∆v · ϕdx| ≤ ‖f‖q‖∆ψ‖q′ ≤ ‖f‖q‖ϕ‖q′ ,

where q′ denotes the Hölder conjugate of q. It follows that ‖∆v‖q ≤ c6‖f‖q, and
thus ‖∇2v‖q ≤ c7‖f‖q, with c7 independent on R and T . Again, the estimate
‖∇p‖q ≤ c8‖f‖q follows simply from the fact that −∆p = div f . This concludes
the lemma.

Having dealt with the higher order terms, we now establish estimates for the
other terms on the left-hand side of (1.1).

Lemma 2.3. Let 1 < q < ∞, and let f ∈ C∞0 (R3)3. The solution (v, p) from
Lemma 2.1 satisfies (1.3).

Proof. Consider first 1 < q ≤ 2. We let (u, p, F ) and (uk, pk, Fk) be as in the
proof of Lemma 2.1, that is, as in (2.3), (2.4), and (2.6). Since (uk, pk) satisfies
(2.5), we have

uk = F−1

[
1

iT k + |ξ|2

(
I − ξ ⊗ ξ

|ξ|2

)
F
[
Fk +R∂3uk

]]
The multiplier mk(ξ) := 1

iT k+|ξ|2 satisfies |ξ||α||∂αmk(ξ)| ≤ c1
|T k| for all multi-

indices α ∈ N3
0. Thus, by the Hörmander-Mihlin multiplier theorem ([7, Theo-

rem 5.2.7]), we obtain for all k 6= 0:

‖uk‖q ≤
c2
|T k|

(
‖Fk‖q + ‖R∂3uk‖q

)
,

with c2 independent on R and T . By interpolation, it follows that (k 6= 0)

‖uk‖q ≤
c3
|T k|

(
‖Fk‖q +Rε‖uk‖q +

R
ε
‖∇2uk‖q

)
(2.16)
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for all ε > 0. Recall that u(x, t) = Q(t)v(Q(t)Tx) and, by definition of u as the
Fourier series with respect to Fourier coefficients uk,

uk(x) =
T
2π

2π/T∫
0

u(x, t) e−iT kt dt.

Consequently, using Lemma 2.2, it follows that ‖∇2uk‖q ≤ c4‖f‖q, with c4
independent on R and T . Clearly, ‖Fk‖q ≤ ‖f‖q. Thus, choosing ε = |T k|

2Rc3 in
(2.16), we conclude that (k 6= 0)

‖uk‖q ≤
c5
|T k|

(
1 +

R2

|T k|

)
‖f‖q,

with c5 independent on R and T . We can now estimate( ∑
k∈Z\{0}

‖uk‖qq
)1/q

≤ c6
( ∑
k∈Z\{0}

1
|T k|q

(
1 +

R2

|T k|

)q
‖f‖qq

)1/q

≤ c7
|T |

(
1 +
R2

|T |

)
‖f‖q

(2.17)

where c7 is independent on R and T . We now put U(x, t) := u(x, t) − u0(x).
Recall that 1 < q ≤ 2. Let q′ = q

q−1 denote the corresponding Hölder conjugate.
Using the Hausdorff-Young inequality for Fourier-series (see for example [1,
Proposition 4.2.7]), we obtain the estimate

(
T
2π

2π/T∫
0

|U(x, t)|q
′
dt
) 1

q′

≤
( ∑
k∈Z\{0}

|uk(x)|q
) 1

q

,

which we write as

(
T
2π

2π/T∫
0

(
|U(x, t)|q

) 1
q−1

dt
)q−1

≤
∑

k∈Z\{0}

|uk(x)|q.

Integrating now both sides above over R3 and subsequently using the Minkowski
inequality (recall that 1 < q ≤ 2), we deduce that

(
T
2π

2π/T∫
0

(∫
R3

|U(x, t)|q dx
) 1

q−1
dt
)q−1

≤
∑

k∈Z\{0}

‖uk‖qq.(2.18)

Define

v1(x) := v(x)− u0.(2.19)
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Recall the definition of u0 and observe that Q(t)Tu0(Q(t)x, t) = u0(x) for all
t ∈ R. It follows that v1(x) = Q(t)TU(Q(t)x, t). We now see that the inner
integral on the right-hand side in (2.18) evaluates to ‖v1‖qq. Combined with
(2.17), we thus have

‖v1‖q ≤
c7
|T |

(
1 +
R2

|T |

)
‖f‖q.(2.20)

Furthermore, since also Q(t)TF0(Q(t)x, t) = F0(x), it follows that v1 satisfies
(1.1) with f − F0 as the right-hand side. Consequently, Lemma (2.2) yields

‖∇2v1‖q ≤ C1‖f − F0‖q ≤ c8‖f‖q,(2.21)

where c8 is independent on R and T . Next, we observe that u0 is a solution to
the classical whole space Oseen problem. From standard theory (see for example
[3, Theorem VII.4.1]), we have

‖∇2u0‖q +R‖∂3u0‖q ≤ c9‖F0‖q ≤ c9‖f‖q,(2.22)

where c9 is independent on R and T . Combining (2.20), (2.21), and (2.22), we
can finally estimate

‖R∂3v‖q ≤ R‖∂3u0‖q +R‖∂3v1‖q
≤ c10‖f‖q +R(‖v1‖q + ‖∇2v1‖q)

≤ c11
(

1 +
R
T

+
R3

T 2
+R

)
‖f‖q

≤ c12
(

1 +
1
T 2

)
‖f‖q,

where c12 = c12(R0), but is otherwise independent on R and T . This concludes
the proof in the case 1 < q ≤ 2. The case 2 < q < ∞ follows by a duality
argument similar to that in the proof of Lemma 2.2.

Using a simple interpolation argument, we will now show estimates for the
lower order terms of the solution.

Lemma 2.4. Let 1 < q < ∞, and let f ∈ C∞0 (R3)3. The solution (v, p) from
Lemma 2.1 satisfies (1.4)-(1.5).

Proof. The proof will follow from the decomposition (2.19) of v into a part u0,
which satisfies the classical Oseen problem and thus enjoys corresponding Lq-
estimates, and a part v1, which satisfies (2.20) and (2.21). Note that (2.20) and
(2.21) were established in Lemma 2.3 under the assumption that 1 < q ≤ 2.
It is, however, immediately clear from the argument in Lemma 2.3 that (2.21)
holds for all 1 < q <∞. Moreover, by a duality argument similar to that in the
proof of Lemma 2.2, one readily shows that (2.20) also holds for all 1 < q <∞.
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Consider now 1 < q < 4. By well known theory (see for example [3, Theorem
VII.4.1]),

‖∇u0‖ 4q
4−q
≤ c1R1/4‖F0‖q ≤ c1R1/4‖f‖q.(2.23)

By Sobolev embedding (see for example [3, Lemma II.2.2]), (2.20), and (2.21)
it follows that

‖∇v1‖ 4q
4−q
≤ c2‖∇v1‖

1
4
q ‖∇2v1‖

3
4
q

≤ c3
[
1 +

1
|T |

(
1 +
R2

|T |

)] 1
4

‖f‖q ≤ c4
(

1 + T − 1
2

)
‖f‖q,

(2.24)

with c4 = c4(R0). Combining (2.19), (2.23), and (2.24) gives us (1.4).
Consider next 1 < q < 2. It is well known that ([3, Theorem VII.4.1])

‖u0‖ 2q
2−q
≤ c5R1/2‖F0‖q ≤ c5R1/2‖f‖q.(2.25)

Again by Sobolev embedding we find that

‖v1‖ 2q
2−q
≤ c6‖v1‖

1
2
3q

3−q

‖∇v1‖
1
2
3q

3−q

≤ c7(‖v1‖q + ‖∇v1‖q)
1
2 ‖∇2v1‖

1
2
q

≤ c8
[
1 +

1
|T |

(
1 +
R2

|T |

)] 1
2

‖f‖q ≤ c9
(

1 + T −1

)
‖f‖q,

(2.26)

with c9 = c9(R0). Combining (2.19), (2.25), and (2.26) yields (1.5)

We can now finalize the proof of Theorem 1.1.

Proof of Theorem 1.1. Lemma 2.1–2.4 establish the theorem, except for the
uniqueness statement, in the case f ∈ C∞0 (R3). We shall now extend the
statements to the general case f ∈ Lq(R3). Therefore, let f ∈ Lq(R3) and
choose {fn}∞n=1 ⊂ C∞0 (R3) with limn→∞ fn = f in Lq(R3). Let (vn, pn) be the
solution from Lemma 2.1 to (1.1) with fn as the right-hand side. Then choose
αn, βn, κn, ιn ∈ R3 such that

0 =
∫
B1

∂1vn − αn dx =
∫
B1

∂2vn − βn dx,(2.27)

0 =
∫
B1

vn − (κn + αnx1 + βnx2) dx,(2.28)

and 0 =
∫
B1
pn − ιn dx. Put rn := κn + αnx1 + βnx2. From Lemma 2.2–2.3

we see, using Poincaré’s inequality, that {(vn − rn, pn − ιn)}∞n=1 is a Cauchy
sequence in the Banach-space

Xm := {(v, p) ∈ L1
loc(R3)3 × L1

loc(R3) | ‖(v, p)‖Xm
<∞},

‖(v, p)‖Xm := ‖∇2v‖q + ‖∇p‖q +R‖∂3v‖q + ‖v‖Lq(Bm) + ‖p‖Lq(Bm)
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all m ∈ N. Here, Bm := {x ∈ R3 | |x| < m}. Consequently, there is an element
(v, p) ∈ ∩m∈NXm with the property that limn→∞(vn − rn, pn − ιn) = (v, p) in
Xm for all m ∈ N. Put

L(V, P ) :=
(
−∆V +∇P −R∂3V + T (e3 ∧x · ∇V − e3 ∧V ), div V ).

It follows that limn→∞ L(vn−rn, pn− ιn) = L(v, p) in D′(R3). By construction,
we have limn→∞ L(vn, pn) = limn→∞(fn, 0) = (f, 0) in Lq(R3). We thus deduce
that limn→∞ L(rn, ιn) = (f, 0)−L(v, p) in D′(R3). Consequently, (f, 0)−L(v, p)
must be equal to L(r, ι) for some first order polynomial r and constant ι. It
follows that (v + r, p + ι) ∈ D2,q(R3) × D1,q(R3) solves (1.1). Moreover, since
(vn, pn) satisfies (1.2)–(1.3), so does (v + r, p+ r). This proves the first part of
the theorem.

If 1 < q < 4, we repeat the argument above with the modification that we
ignore (2.27) (put αn = βn = 0) and add the term ‖∇v‖ 4q

4−q
to the Xm-norm.

We then obtain a solution to (1.1) that also also satisfies (1.4). If 1 < q < 2,
we ignore both (2.27) and (2.28) (put αn = βn = κn = 0), and add the term
‖v‖ 2q

2−q
to the Xm-norm. We then obtain a solution to (1.1) satisfying (1.5).

Finally, we prove uniqueness. Assume that (ṽ, p̃) ∈ D2,r(R3)3 ×D1,r(R3) is
another solution to (1.1). Put w := v− ṽ and q := p− p̃. It immediately follows
that ∆q = 0, which, since q ∈ D1,q(R3) +D1,r(R3), implies that q is a constant.
Now put U(x, t) := Q(t)w(Q(t)Tx) for (x, t) ∈ R3 × R. Since U is smooth and
2π/T -periodic in t, we can write U in terms of its Fourier-series

U(x, t) =
∑
k∈Z

Uk(x) eiT kt, Uk(x) :=
T
2π

2π/T∫
0

U(x, t) e−iT kt dt.

As one may easily verify, Uk satisfies iT kUk −∆Uk −R∂3Uk = 0. Thus, taking
the Fourier transform yields

(
i(T k−Rξ3) + |ξ|2

)
Ûk = 0. It follows that Uk = 0

for all k 6= 0. Moreover, since
(
− iRξ3 + |ξ|2

)
Û0 = 0, it follows that supp(Û0) ⊂

{0}. Consequently, since U0 ∈ D2,q(R3) + D2,r(R3), U0 = Ax + b for some
A ∈ R3×3 and b ∈ R3. Note that U(x, t) = U0(x) = Q(t)w(Q(t)Tx) for all
t ∈ R. Thus, Q(t)T

(
AQ(t)x + b

)
is t-independent. Combining this property

with the fact that div(Ax) = 0 and ∂3(Ax) = 0, we find that A3i = Ai3 = 0
(i = 1, 2, 3), A12 = −A21, Aii = 0 (i = 1, 2, 3), and b∧ e3 = 0. We thus see that
w = U0 = β e3 ∧x+ α e3 and q = γ for some α, β, γ ∈ R.
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