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Abstract

Consider a viscous incompressible flow around a body in R3 rotating
with constant angular velocity ω. Using a coordinate system attached
to the body, the problem is reduced to a modified Navier-Stokes sys-
tem in a fixed exterior domain. This paper addresses the question of
the asymptotic behavior of stationary solutions to the new system as
|x| → ∞. Under a suitable smallness assumption on the velocity field,
u, and the net force on the boundary, N , we prove that the leading
term of u is the so-called Landau solution U , a singular solution of the
stationary Navier-Stokes system in R3 with external force kωδ0 and
decaying as 1/|x|; here k ∈ R is a suitable constant determined by N
and δ0 is the Dirac measure supported in the origin.
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1 Introduction

1.1. Background
This paper is the continuation of our work [11] on studies of the asymp-
totic profile of viscous flow around a rotating obstacle. Let us consider the
spatial behavior of steady solutions to the Navier-Stokes equation in three-
dimensional exterior domains. We want to understand the decay structure
at infinity of the flow in each case of the following three typical situations:

(1) the obstacle is at rest;
(2) the obstacle is translating with constant velocity;
(3) the obstacle is rotating with constant angular velocity.

For the last two cases we consider the steady flow in the coordinate system
attached to the moving obstacle. The translating case (2) is relatively well
known since a series of celebrated papers, for instance [15], by Finn in 1960’s:
The leading profile of the Navier-Stokes flow is the Oseen fundamental so-
lution which exhibits a paraboloidal wake property behind the obstacle ([8],
[14], [16]) in the sense that the remaining term decays faster. In this case
the dominance of the linear part is due to the better decay structure outside
the wake region, see also [7], [30] besides the literature above.

However, that is not the case when the obstacle is at rest, because the
nonlinear part is balanced with the linear one. In fact, Deuring and Galdi [6]
proved that the leading profile of the Navier-Stokes flow, which decays like
1/|x|, is no longer the Stokes fundamental solution. Nazarov and Pileckas
[29] gave a partial answer to the asymptotic representation of the Navier-
Stokes flow, but the concrete profile of the leading term was not specified.
On the other hand, we know that the coefficient of the leading term should
be related to the total net force exerted on the boundary of the obstacle
from the fluid, see (2.5); this was suggested by [25], [3], [26]. Since nonlinear
effect must be involved in the leading term, it is reasonable to expect that
a self-similar solution to the Navier-Stokes equation (2.11) may provide the
leading profile; here, self-similarity is equivalent to (−1)-homogeneity, see
(2.12), due to the nonlinear structure.

Recently, Šverák [32] gained the crucial insight that every self-similar
Navier-Stokes flow which is smooth in R3 \ {0} must have its own axis of
symmetry and be a member of the family of exact solutions constructed by
Landau [27] (who did it in order to describe jets from a thin pipe). We call
a member of this family a Landau solution; see section 2 for details. The
Landau solution is parametrized by a vectorial parameter, which stands for
the direction of the axis of symmetry of the solution. Korolev and Šverák
[24] proved that if the Navier-Stokes flow in the case (1) decays like 1/|x| and
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is small, then the Landau solution actually provides its leading term, where
the vectorial parameter is given by the net force Ñ , see (2.5), of the given
Navier-Stokes flow. We remark that the Landau solution is the leading term
of the point singularity 1/|x| at 0 as well as for the decay at infinity for the
Navier-Stokes flow as long as it is small enough; very recently, this has been
shown by Miura and Tsai [28].

In this paper our attention centers on the rotating case (3) and we prove
that the leading term at infinity of small Navier-Stokes flow, which decays like
1/|x|, is still the Landau solution; however, this time the vectorial parameter
is parallel to the axis of rotation of the obstacle. Thus the axis of rotation is
the preferred direction in the sense that the flow is largely concentrated along
that axis. Such anisotropy has been observed at the level of linear analysis
by the present authors [11], in which the asymptotic expansion of the steady
Stokes flow at infinity has been deduced. Roughly speaking, some knowledge
of the linearized problem from [11] together with the result in [32] mentioned
above yields our main result, see section 2.

When both (2) and (3) are taken into account, in particular, the obstacle
is translating along the axis of rotation, it is proved in [20] that there is still
a wake region; in this case, very probably, the leading term of the Navier-
Stokes flow comes from the linear part which differs from the purely rotating
case (3) discussed in the present paper.

1.2. Problem
In the last decade remarkable progress in the analysis of Navier-Stokes flow
around a rotating obstacle has been made; however, many questions like
that one addressed in this paper still remain open. The steady motion in the
coordinate system attached to the rotating obstacle is governed by, see [2],
[17], [21],

−∆u− (ω × x) · ∇u+ ω × u+∇p+ u · ∇u = 0 (x ∈ D),
div u = 0 (x ∈ D),

u = ω × x (x ∈ ∂D),
u → 0 (|x|→∞),

(1.1)

where an incompressible viscous fluid occupies an exterior domain D ⊂ R3

with smooth boundary ∂D; here (u, p) denotes the velocity and pressure of
the fluid, ω = ae3 = (0, 0, a)T ∈ R3 \ {0} is the constant angular velocity
of the obstacle R3 \D which consists of a finite number of rigid bodies, and
× stands for the usual exterior product of three-dimensional vectors so that
ω×x = a(−x2, x1, 0)T is the velocity of the obstacle at the point x. Thus the
boundary condition (1.1)3 is the no-slip one. Concerning hyperbolic aspects
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of the equation (1.1)1, we refer to [13] and [21], although that is not the point
in this paper. Even if |ω| is large, problem (1.1) has at least one solution
with finite Dirichlet integral ([2], [17], [31]), however, we have less information
about the qualitative behavior of this solution for |x| → ∞.

In [18] Galdi constructed a unique solution which satisfies

|u(x)| ≤ C

|x|
, |∇u(x)|+ |p(x)| ≤ C

|x|2
(1.2)

for large |x| provided that |ω| is small enough. The present authors [10]
generalized his result in the sense that there is a unique solution of class

u ∈ L3,∞(D), (∇u, p) ∈ L3/2,∞(D) (1.3)

for the problem (1.1) with the external force f = div F when both |ω| and
‖F‖L3/2,∞(D) are small, where Lq,∞(D) denotes the the weak-Lq space. We
note that the class (1.3) is consistent with the pointwise estimate (1.2). The
stability of those steady flows was established by [19] and [23] within the
framework of L2 and Lq spaces, respectively.

The decay rate 1/|x| of the steady flow above is the same as that of the
usual Navier-Stokes flow in which the obstacle is at rest. Thus a natural
question arises: Can we catch the effect of rotation on the profile of the
flow? Since this effect must be observed even for the Stokes equation, as
a first step, we have started with the linear analysis [11] telling us what
kind of effect on the profile the rotation of the obstacle causes. In fact,
a heuristic observation in section 2 suggests a reasonable candidate of the
leading term of the Navier-Stokes flow, and this paper gives an affirmative
answer so far as small solutions in L3,∞(D) are concerned. The key of the
proof is the asymptotic expansion at infinity of the fundamental solution
(3.20), which has been derived in [11] and is crucial to explain why the flow
is concentrated along the axis of rotation, see Lemma 3.3. But we don’t have
enough information about pointwise estimates of the fundamental solution for
|x|, |y| → ∞ (unlike [24]); thus, we make use of (a variant of) Lq,∞-estimates
of solutions for the linearized problem developed in [10].

The next section provides our main theorem after introducing the Landau
solution as well as some heuristic arguments. The last section is devoted to
the proof.
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2 Result

2.1. Heuristic observation
Let (v, q) be the Stokes flow, that is, the solution to (1.1) in which the
nonlinear term is neglected. We set

N =

∫
∂D

ν · T (v, q) dS

which stands for the net force on the boundary ∂D; here ν is the exterior
unit normal to ∂D and T (v, q) denotes the Cauchy stress tensor, that is,

T (v, q) = ∇v + (∇v)T − qI, I = (δij)1≤i,j≤3. (2.1)

According to [11], the leading term of the Stokes flow v(x) is given by

V (x) =

(
ω

|ω|
·N

)
ESt(x)

ω

|ω|
,

ω

|ω|
= e3, (2.2)

where ESt(x) is the usual Stokes fundamental solution:

ESt(x) =
1

8π

(
1

|x|
I +

x⊗ x

|x|3

)
, x⊗ x = (xixj)1≤i,j≤3.

It is remarkable that the rate of decay of v(x) can be controlled only by
the third component of the net force in the sense that v(x) = O(1/|x|2) as
|x| → ∞ if and only if e3 ·N = 0. Concerning the second term (∼ 1/|x|2) of
v(x) we refer to [11]. The leading term V (x) thus satisfies

−∆V +∇Q = (e3 ·N)e3 δ0, div V = 0

in D′(R3), where δ0 denotes the Dirac measure at 0 and Q(x) = (e3·N)x3

4π|x|3 . But

the pair (V,Q) enjoys

−∆V − (ω × x) · ∇V + ω × V +∇Q = (e3 ·N)e3 δ0, div V = 0 (2.3)

as well, since
(e3 × x) · ∇V − e3 × V = 0. (2.4)

Note that (2.4) holds for all vector fields which are symmetric about Re3
(x3-axis). In fact, because such vector fields must be of the form

V = (W (r, x3) cos θ,W (r, x3) sin θ, V3(r, x3))
T
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in cylindrical coordinates r, θ, x3, we see that (e3 × x) · ∇V = ∂θV = e3 × V .
Furthermore, (2.4) holds in the sense div [V ⊗ (e3 × x)− (e3 × x)⊗ V ] = 0,
cf. (2.6) below, in D′(R3) as long as V (x) ∼ 1/|x| near the origin.

Now, let (u, p) be the solution to the Navier-Stokes problem (1.1). Our
goal is to find the leading term, which we denote by U(x), of the velocity
u(x). In view of (2.2), it is reasonable to expect that the leading term U still
keeps the properties

(i) symmetry about the axis of rotation (that is, Re3);
(ii) (−1)-homogeneity,

and that the quantity e3 · Ñ controls the rate of decay of u(x), where

Ñ =

∫
∂D

ν · [T (u, p)− u⊗ u] dS, N =

∫
∂D

ν · T (u, p) dS (2.5)

and T (u, p) is the stress tensor defined by (2.1). Note the relation

(ω × x) · ∇u− ω × u = div [u⊗ (ω × x)− (ω × x)⊗ u], (2.6)

but ∫
∂D

ν · [T (u, p) + u⊗ (ω × x)− (ω × x)⊗ u− u⊗ u] dS = Ñ (2.7)

owing to the no-slip condition u|∂D = ω×x. As in (2.3), one can also expect
that the leading term U , together with some scalar field P , solves

−∆U−(ω×x)·∇U+ω×U+∇P+U ·∇U = (e3 ·Ñ) e3 δ0, div U = 0 (2.8)

in D′(R3). This is equivalent to

−∆U +∇P + U · ∇U = (e3 ·N) e3 δ0, div U = 0 (2.9)

because U satisfies (2.4) under the property (i) above and because

e3 ·N = e3 · Ñ (2.10)

which follows from u|∂D = ω × x together with e3 · (ω × x) = 0. Hence, by
taking the property (ii) above into account, U is a self-similar solution to

−∆u+∇p+ u · ∇u = 0, div u = 0 (x ∈ R3 \ {0}), (2.11)

and, thanks to [32], U is a member of the family of the Landau solutions
[27].
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2.2. The Landau solution
Let b ∈ R3 \ {0} be a prescribed vector, that we call the Landau parameter.
Then, among nontrivial smooth solutions of (2.11), Landau [27] (see also [5],
[24], [32], [33]) found an exact solution which satisfies:

• axially symmetry about Rb;
• the homogeneity

U(x) =
1

|x|
U

(
x

|x|

)
, P (x) =

1

|x|2
P

(
x

|x|

)
; (2.12)

• −∆U +∇P + U · ∇U = bδ0 in D′(R3).

We set x = |x|σ, σ = (σ1, σ2, σ3)
T ∈ S2 (unit sphere). When b is parallel to

e3, the Landau solution is of the form

U(x) =
2

|x|

[
cσ3 − 1

(c− σ3)2
σ +

1

c− σ3

e3

]
,

P (x) =
4 (cσ3 − 1)

|x|2(c− σ3)2

(2.13)

with parameter c ∈ (−∞,−1) ∪ (1,∞), and it satisfies

−∆U +∇P + U · ∇U = ke3 δ0, div U = 0

in D′(R3), where k is given by

k = k(c) =
8πc

3(c2 − 1)

(
2 + 6c2 − 3c(c2 − 1) log

c+ 1

c− 1

)
. (2.14)

This calculation was done by Cannone and Karch [5, Proposition 2.1]. Note
that the function k(·) is monotonically decreasing on both (−∞,−1) and
(1,∞), and fulfills

k(c) → 0 (|c| → ∞); k(c) → −∞ (c→ −1); k(c) →∞ (c→ 1).

Hence, for every k̃ ∈ R \ {0}, there is a unique c ∈ (−∞,−1) ∪ (1,∞)

such that k(c) = k̃. When k̃ = 0 (the Landau parameter b = 0), we may
understand (U, P ) = (0, 0) as the solution (2.13) with |c| → ∞.

2.3. Main theorem
Let 1 < q <∞. By Lq(D) we denote the usual Lebesgue space. The weak-Lq

space Lq,∞(D) is obtained as one of the Lorentz spaces via real interpolation
of Lebesgue spaces. For a measurable function f , we know that f ∈ Lq,∞(D)
if and only if

sup
t>0

t |{x ∈ D; |f(x)| > t}|1/q <∞.
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This quantity is equivalent to the norm ‖f‖Lq,∞(D) (cf. [3, Section 2]), from
which we easily see that 1/|x|n/q ∈ Lq,∞(D), where n(= 3) is the space
dimension, and that Lq,∞(D) is strictly larger than Lq(D). Some related
function spaces over the whole space R3 will be introduced in subsection 3.2.
We often use the same symbols for denoting the spaces of scalar and vector
functions if there is no confusion.

Given a smooth solution (u, p) of the Navier-Stokes problem (1.1), we

take N and Ñ as in (2.5), and recall (2.10). Suppose u ∈ L3,∞(D) rather
than the pointwise estimate |u(x)| ≤ C/|x|. We now single out a special
solution as the leading term of u(x). Let (U, P ) be the Landau solution with
the Landau parameter

b = (e3 ·N)e3 = (e3 · Ñ)e3; (2.15)

that is, (U, P ) is given by (2.13) with c determined by k(c) = e3 ·N and k(·)
as in (2.14); it is the trivial solution in case e3 ·N = 0. Since U is symmetric
about Re3, as already observed, (U, P ) solves not only (2.9), but also (2.8)
in D′(R3).

Our main theorem reads as follows.

Theorem 2.1 Let ω = ae3 with a ∈ R \ {0}. For each q0 ∈ (3/2, 3) there
exists a constant η = η(q0) > 0 such that if (u, p) is a smooth solution to
(1.1) in the class u ∈ L3,∞(D), p ∈ L3/2,∞(D) and satisfies

‖u‖L3,∞(D) + |e3 ·N | ≤ η, (2.16)

then, for every q ∈ (q0, 3), we have

u− U |D ∈ Lq(D), ‖u− U‖Lq(D) ≤ C(|a|−3/q+1 + 1) (2.17)

with some C = C(q) > 0, where U is the Landau solution for (2.15) as
explained above.

From (2.17) we find that the remainder u−U possesses better summabilty
suggesting the pointwise decay 1/|x|2 at infinity; in this sense, the Landau
solution U is the leading term of the small solution u. The singular behavior
for a → 0 of the remainder is also observed because the leading term of
the usual Navier-Stokes flow found by [24] is different, namely the Landau

solution for b = Ñ .
We don’t really use the exact form (2.13) except for the observation that

the smallness of |e3·N | implies that of ‖U‖L3,∞(R3), see (3.13) below. However,
equation (2.8) rather than (2.13) is essentially needed in the proof.
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Remark 2.1 We cannot conclude that P , associated with the Landau solu-
tion U above, is the leading term of the pressure p. The reason is as follows.
Consider the linear whole space problem (3.6) with f ∈ C∞

0 (R3). Under the
condition e3 ·

∫
R3 f = 0, we obtain the better decay u(x) = O(1/|x|2), see

Lemma 3.4; however, the same condition does not imply any better decay of
the pressure such as p(x) = O(1/|x|3).

3 Proof

3.1. Reduction to the whole space problem
For the proof of Theorem 2.1 it does not seem to be easy to treat directly the
exterior problem (1.1). So, as in [24], we reduce (1.1) to the problem in the
whole space R3. Then the information on the boundary ∂D will go to the
external force of the equation, see (3.2) below. We use the following lemma
([1], [4], [16]) on the equation of continuity in order to recover solenoidality.

Lemma 3.1 Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2. Then there
is a linear operator B : C∞

0 (Ω) → C∞
0 (Ω)n such that for 1 < q < ∞ and

j ∈ N0

‖∇j+1Bf‖Lq(Ω) ≤ C‖∇jf‖Lq(Ω)

with C = C(Ω, q, j) > 0 independent of f ∈ C∞
0 (Ω); moreover,

div (Bf) = f

for all f ∈ C∞
0 (Ω) with

∫
Ω

f(x) dx = 0.

By Bρ we denote the open ball centered at the origin with radius ρ > 0.
We take R > 0 so that R3 \ D ⊂ BR−2. Given a smooth solution (u, p) to
(1.1), we set

ũ = (1− φ)u+ B[u · ∇φ], p̃ = (1− φ)p, (3.1)

where φ ∈ C∞
0 (BR) is a given function such that φ(x) = 1 in BR−1, and B is

the operator defined by Lemma 3.1 for the domain AR = BR \ BR−2. Note
that u · ∇φ ∈ C∞

0 (AR) and∫
AR

u · ∇φ dx =
1

R− 2

∫
|x|=R−2

(−x) · u dS =

∫
∂D

ν · u dS = 0

on account of u|∂D = ω × x together with the identity∫
∂D

ν · (ω × x) dS = −
∫

R3\D
div (ω × x) dx = 0.
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The pair (ũ, p̃) obeys

−∆ũ− (ω × x) · ∇ũ+ ω × ũ+∇p̃+ ũ · ∇ũ = g, div ũ = 0 (x ∈ R3)

with some g ∈ C∞
0 (AR) which satisfies∫

R3

g(x) dx = Ñ , (3.2)

where Ñ is the net force (2.5). We note that (3.2) follows only from the
structure of the equation; in other words, we don’t need any exact form of
g. In fact, by (1.1) and (2.7) we have∫

AR

g(x) dx

= −
∫

AR

div [T (ũ, p̃) + ũ⊗ (ω × x)− (ω × x)⊗ ũ− ũ⊗ ũ] dx

= −
∫
|x|=R

x

R
· [T (u, p) + u⊗ (ω × x)− (ω × x)⊗ u− u⊗ u] dS

=

∫
∂D

ν · [T (u, p) + u⊗ (ω × x)− (ω × x)⊗ u− u⊗ u] dS = Ñ

which shows (3.2).
Let (U, P ) be the Landau solution for b = (e3 ·N)e3. To regularize (U, P )

around x = 0, one may follow the same manner as in (3.1):

Ũ = (1− φ)U + B[U · ∇φ], P̃ = (1− φ)P. (3.3)

We observe, using (2.12),∫
AR

U · ∇φ dx =
1

R− 2

∫
|x|=R−2

(−x) · U dS =
1

ε

∫
|x|=ε

(−x) · U dS = O(ε)

as ε→ 0 to obtain
∫

AR
U · ∇φ dx = 0. Then the pair (Ũ , P̃ ) enjoys

−∆Ũ − (ω × x) · ∇Ũ + ω × Ũ +∇P̃ + Ũ · ∇Ũ = h, div Ũ = 0 (x ∈ R3)

with some h ∈ C∞
0 (AR); one can also find∫

R3

h(x) dx = (e3 · Ñ)e3. (3.4)
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In fact, using a test function ψ ∈ C∞
0 (R3) satisfying ψ(x) = 1 (|x| ≤ R) and

ψ(x) = 0 (|x| ≥ R + 1), we see from (2.8) that∫
AR

h(x) dx

= −
∫
|x|=R

x

R
· [T (U, P ) + U ⊗ (ω × x)− (ω × x)⊗ U − U ⊗ U ] dS

=

∫
R3

[T (U, P ) + U ⊗ (ω × x)− (ω × x)⊗ U − U ⊗ U ] · ∇ψ(x) dx

= 〈(e3 · Ñ)e3 δ0, ψ〉

which yields (3.4). Then we set (v,$) = (ũ− Ũ , p̃− P̃ ), and get that in R3

−∆v − (ω × x) · ∇v + ω × v +∇$ + v · ∇ũ+ Ũ · ∇v = g − h,

div v = 0.
(3.5)

3.2. Linear theory
The linear theory for the whole space problem

−∆u− (ω × x) · ∇u+ ω × u+∇p = f, div u = 0 (x ∈ R3) (3.6)

has been developed by [12], [22] and [10] (see also [9] in which the Oseen
term as well as rotation is taken into account) in Lebesgue and even Lorentz
spaces. However, here we need - due to the presence of the Coriolis term
ω × u - a variant in order to ensure the summability of the velocity u itself
as well as ∇u.

Let 1 < q <∞. We denote by ‖ · ‖q and by ‖ · ‖q,∞ the norms of Lq(R3)
and Lq,∞(R3), respectively, where the latter space is defined as in subsection
2.3. We also introduce the homogeneous Sobolev spaces over R3 adopted in
[22], [10]. Set

Ẇ 1
q (R3) = C∞

0 (R3)
‖∇(·)‖q

= {u ∈ Lq,loc(R3); ∇u ∈ Lq(R3)}/R.

Let 1 < q0 < q < q1 <∞ and 1/q = (1− θ)/q0 + θ/q1. For r = 1 and r = ∞
we define

Ẇ 1
q,r(R3) =

(
Ẇ 1

q0
(R3), Ẇ 1

q1
(R3)

)
θ,r

with norm ‖∇(·)‖q,r, where (·, ·)θ,r denotes the real interpolation functor.
Finally, the space Ẇ−1

q,∞(R3) is defined as the dual space of Ẇ 1
q′,1(R3), where

1/q′ + 1/q = 1.
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We begin with the following proposition, a special case of [10, Proposition
3.2] which follows essentially from the Lq-theory in [22]. When (u, p) satisfies
(3.6) in the sense of distributions, we simply call (u, p) solution to (3.6).

Proposition 3.1 Let 1 < q <∞ and suppose f ∈ Ẇ−1
q,∞(R3). Then problem

(3.6) has a solution (u, p) ∈ Ẇ 1
q,∞(R3)× Lq,∞(R3) subject to the estimate

‖∇u‖q,∞ + ‖p‖q,∞ + ‖(ω × x) · ∇u− ω × u‖Ẇ−1
q,∞(R3) ≤ C‖f‖Ẇ−1

q,∞(R3),

where C = C(q) > 0 is independent of ω. The solution is unique in the class
above up to a constant multiple of ω for u.

Let 1 < q < 3 and let (u, p) be the solution obtained in Proposition 3.1.
Then, by [3, Lemma 5.6], we have the embedding relation

‖u+ β‖q∗,∞ ≤ C‖∇u‖q,∞,
1

q∗
=

1

q
− 1

3
, (3.7)

with some constant vector β = β(u) ∈ R3. But we don’t know whether β is
parallel to ω = ae3, i.e., ω × β = 0; thus, u+ β could fail to be a solution to
(3.6) as long as the class of pressure is kept as p ∈ Lq,∞(R3).

To get around this difficulty, we introduce another class for the pressure
function, namely, Lq,∞(R3) + Y where

Y = {α · x; α ∈ R3 with ω · α = 0}. (3.8)

Note that, given α ∈ R3, there is a vector β ∈ R3 satisfying α = ω×β if and
only if ω ·α = 0. For later use we prepare the following variant of Proposition
3.1.

Proposition 3.2 Let 1 < q < 3, 1
q∗

= 1
q
− 1

3
, and suppose f ∈ Ẇ−1

q,∞(R3).

Then problem (3.6) has a solution of class

u ∈ Ẇ 1
q,∞(R3) ∩ Lq∗,∞(R3), p ∈ Lq,∞(R3) + Y (3.9)

subject to the estimate

‖∇u‖q,∞ + ‖u‖q∗,∞ ≤ C‖f‖Ẇ−1
q,∞(R3), (3.10)

where C = C(q) > 0 is independent of ω. The solution is unique in the class

u ∈ Lq∗,∞(R3), p ∈ Lq,∞(R3) + Y. (3.11)
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Proof. By (u0, p0) ∈ Ẇ 1
q,∞(R3) × Lq,∞(R3) we denote the solution to (3.6)

obtained in Proposition 3.1. Let β = β(u0) ∈ R3 be a constant vector with
u0 + β ∈ Lq∗,∞(R3) and (3.7). Then the pair of functions

u = u0 + β, p = p0 − (ω × β) · x

belongs to the class (3.9) with (3.10) and satisfies (3.6) in the sense of dis-
tributions.

Next we show uniqueness. Let (u, p) be a solution of class (3.11) to (3.6)
with f = 0; note that consequently u and p are tempered distributions.
Writing p = p0 + α · x with some p0 ∈ Lq,∞(R3), we immediately see p0 = 0
on account of ∆p0 = ∆p = 0 since

div [(ω × x) · ∇u− ω × u] = (ω × x) · ∇div u = 0.

Set β := α× ω/|ω|2. Then it follows from ω · α = 0 that

ω × β =
1

|ω|2
[(ω · ω)α− (ω · α)ω] = α = ∇(α · x) = ∇p.

As a consequence, we find

−∆(u+ β)− (ω × x) · ∇(u+ β) + ω × (u+ β) = 0

in S ′(R3). As shown in [12], [22] by use of the Fourier transform, we get

supp ̂(u+ β) ⊂ {0},

which implies that u + β is a polynomial, and hence so is u. Since u ∈
Lq∗,∞(R3), we obtain u = 0. Further, α = ∇p = 0, and thus p = α · x = 0.
This completes the proof. 2

3.3. Proof of Theorem 2.1
We start with the lemma on the extended functions defined by (3.1) and
(3.3).

Lemma 3.2 We have

ũ, Ũ ∈ L3,∞(R3), p̃, P̃ ∈ L3/2,∞(R3).

Furthermore,

‖ũ‖3,∞ ≤ C‖u‖L3,∞(D), ‖Ũ‖3,∞ ≤ C‖U‖3,∞ (3.12)

and
‖Ũ‖3,∞ → 0 when e3 ·N → 0. (3.13)

13



Proof. One may regard u 7→ ũ defined by (3.1) as the mapping from Lq(D) to
Lq(R3) to see that it is bounded for every q ∈ (1,∞) by Lemma 3.1. Hence
real interpolation implies that this mapping is continuous from Lq,∞(D) to
Lq,∞(R3) for every q ∈ (1,∞). The class u ∈ L3,∞(D) for the Navier-Stokes
flow under consideration thus yields ũ ∈ L3,∞(R3); and, similarly, we get

Ũ ∈ L3,∞(R3) by considering U 7→ Ũ defined by (3.3). We have also obtained
(3.12). The assertion for the pressure functions is obvious.

In view of (2.13), (2.14) with k(c) = e3 · N , we see that ‖U‖3,∞ → 0 if
and only if |c| → ∞, i.e., if e3 · N → 0. This combined with (3.12) yields
(3.13). 2

We may regard (3.5) as a linear problem for the unknown (v,$). When
(v,$) satisfies (3.5) in the sense of distributions, it is simply called solution
to (3.5). We have the following results on uniqueness (Proposition 3.3) and
summability (Proposition 3.4) of solutions.

Proposition 3.3 There is a constant γ > 0 such that the solution (v,$) to
(3.5) in the class

v ∈ L3,∞(R3), $ ∈ L3/2,∞(R3) + Y (3.14)

is unique provided
‖ũ‖3,∞ + ‖Ũ‖3,∞ ≤ γ, (3.15)

where Y is as in (3.8).

Proof. Let (v,$) be the solution to (3.5) in which the right-hand side g − h
is replaced by 0. Set

f := −(v · ∇ũ+ Ũ · ∇v) = − div (ũ⊗ v + v ⊗ Ũ). (3.16)

Then we find f ∈ Ẇ−1
3/2,∞(R3) with

‖f‖Ẇ−1
3/2,∞(R3) ≤ ‖ũ⊗ v + v ⊗ Ũ‖3/2,∞ ≤ C

(
‖ũ‖3,∞ + ‖Ũ‖3,∞

)
‖v‖3,∞

by the weak Hölder inequality (cf. [3, Lemma 2.1]). By virtue of the class
(3.14) one can regard (v,$) as the solution to (3.6) with force (3.16) obtained
in Proposition 3.2 (for q = 3/2) because of the uniqueness assertion of that
proposition, see (3.11). Combining the estimate above with (3.10), we get

‖v‖3,∞ ≤ C3

(
‖ũ‖3,∞ + ‖Ũ‖3,∞

)
‖v‖3,∞

which concludes v = 0 under the condition (3.15) with γ = 1/(2C3) (the
constant C3 is the same as in (3.25) below with q∗ = 3). Thus ∇$ = 0,
yielding $ = 0 by (3.14). 2
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Proposition 3.4 For each q0 ∈ (3/2, 3) there is a constant γ̃(q0) ∈ (0, γ]
(with γ as in (3.15)) such that problem (3.5) has a solution (v,$) of class
(3.14) and

v ∈ Lq0,∞(R3) (3.17)

subject to
‖v‖q ≤ C(|a|−3/q+1 + 1) for all q ∈ (q0, 3) (3.18)

with some C = C(q) > 0 provided

‖ũ‖3,∞ + ‖Ũ‖3,∞ ≤ γ̃(q0). (3.19)

We postpone the proof of Proposition 3.4 to that of Theorem 2.1.

Proof of Theorem 2.1. By (3.12) together with (3.13), the condition (2.16)
implies (3.19) when we take a suitable constant η = η(q0) > 0. Then we see

from Proposition 3.4 that ũ− Ũ is in the class (3.17) and also enjoys

ũ− Ũ ∈ Lq(R3), ‖ũ− Ũ‖q ≤ C(|a|−q/3+1 + 1)

for all q ∈ (q0, 3) because, by Proposition 3.3 and Lemma 3.2, the only

solution of class (3.14) is (ũ− Ũ , p̃− P̃ ). Since u− U = ũ− Ũ for |x| ≥ R,
we obtain (2.17). 2

For the proof of Proposition 3.4, we introduce the fundamental solution
for (3.6):

Γ(x, y) =

∫ ∞

0

O(at)T (GI +H)(O(at)x− y, t) dt,

Q(x, y) =
x− y

4π|x− y|3
(3.20)

where

G(x, t) = (4πt)−3/2e−|x|
2/(4t), H(x, t) =

∫ ∞

t

∇2G(x, s) ds,

O(t) =

 cos t − sin t 0
sin t cos t 0
0 0 1

 .

Note that G(x, t)I+H(x, t) is the fundamental solution of the usual unsteady
Stokes equation; see [11, Section 2] for the derivation of the fundamental
solution. The following asymptotic expansion of Γ(x, y) near infinity has
been proved in [11, Section 4].
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Lemma 3.3 For |y| ≤ R and |x| → ∞ we have

Γ(x, y) = Φ(x) +

(
1 +

1

|a|

)
O

(
1

|x|2

)
with

Φ(x) =
1

8π|x|3

 0 0 x1x3

0 0 x2x3

0 0 |x|2 + x2
3

 .

Set

v0(x) =

∫
R3

Γ(x, y)(g − h)(y) dy,

$0(x) =

∫
R3

Q(x, y) · (g − h)(y) dy.

(3.21)

Then (v0, $0) satisfies (3.6) with f = g − h (and is a representative of the
solution obtained in [12]). Since g − h ∈ C∞

0 (AR), we find

v0 ∈ Ẇ 1
3/2,∞(R3) ∩ L3,∞(R3), $0 ∈ L3/2,∞(R3), (3.22)

see [10, Proposition 3.3]. The crucial point is the following lemma, which tells
us the reason why good summability properties at infinity can be deduced in
Proposition 3.4.

Lemma 3.4 The function v0 given by (3.21) satisfies

v0(x) = O

(
1

|x|2

)
as |x| → ∞,

‖v0‖q,∞ ≤ C(|a|−3/q+1 + 1) for all q ∈ [3/2, 3]

(3.23)

with some C = C(q) > 0.

Proof. Let |x| ≥ 2R. Since g− h ∈ C∞
0 (AR), it follows from Lemma 3.3 that

v0(x) =

(
e3 ·

∫
R3

(g − h)(y) dy

)
1

8π

(
e3
|x|

+
x3x

|x|3

)
+

(
1 +

1

|a|

)
O

(
1

|x|2

)
.

By (3.2) and (3.4) we find

e3 ·
∫

R3

(g − h)(y) dy = 0,
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which proves (3.23) for q = 3/2. This combined with ‖v0‖3,∞ ≤ C completes
the proof. 2

We note that $0(x) = O(1/|x|3) cannot be in general expected, see Re-
mark 2.1.

Let 1 < q < 3. We take q∗ ∈ (3/2,∞) so that 1/q∗ = 1/q − 1/3. Given
v ∈ Lq∗,∞(R3), we denote by Mv the velocity part of the unique solution to

(3.6) with f = −(v ·∇ũ+ Ũ ·∇v) obtained in Proposition 3.2. Then problem
(3.5) is rewritten as

v = v0 +Mv. (3.24)

We have f ∈ Ẇ−1
q,∞(R3) with

‖f‖Ẇ−1
q,∞(R3) ≤ C

(
‖ũ‖3,∞ + ‖Ũ‖3,∞

)
‖v‖q∗,∞,

by which together with (3.10) there is a constant Cq∗ > 0 independent of ω
such that Mv ∈ Ẇ 1

q,∞(R3) ∩ Lq∗,∞(R3) with

‖Mv‖q∗,∞ ≤ Cq∗

(
‖ũ‖3,∞ + ‖Ũ‖3,∞

)
‖v‖q∗,∞ (3.25)

for all v ∈ Lq∗,∞(R3).

Proof of Proposition 3.4. Fix q0 ∈ (3/2, 3) arbitrarily. We employ (3.25) with
q∗ = q0 and q∗ = 3. From them combined with (3.23) we obtain a solution
v ∈ Lq0,∞(R3) ∩ L3,∞(R3) of (3.24) subject to

‖v‖q0,∞ ≤ 2‖v0‖q0,∞, ‖v‖3,∞ ≤ 2‖v0‖3,∞

under the condition (3.19) with γ̃(q0) = min {1/(2Cq0), γ}; here, recall γ =
1/(2C3) in Proposition 3.3. Those estimates together with (3.23) yield (3.18)
by real interpolation. Since the pressure associated with Mv is of class (3.9)
with q = 3/2 and since we know (3.22) for $0, the obtained solution (v,$)
is of class (3.14) as well as (3.17). We have completed the proof. 2
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Kôkyûroku Bessatsu B1 (2007), 127–143.

[21] T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior
of a rotating obstacle, Arch. Rational Mech. Anal. 150 (1999), 307–348.

[22] T. Hishida, Lq estimates of weak solutions to the stationary Stokes equations
around a rotating body, J. Math. Soc. Japan 58 (2006), 743–767.

[23] T. Hishida and Y. Shibata, Lp-Lq estimate of the Stokes operator and Navier-
Stokes flows in the exterior of a rotating obstacle, Arch. Rational Mech. Anal.
193 (2009), 339–421.
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