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1. Introduction

The Boussinesq equations describe the heat convection in a viscous incom-
pressible fluid under the influence of gravity:

ut −∆u+ (u · ∇)u+∇p = gθ in Rn × [0, T ),

θt −∆θ + (u · ∇)θ = 0 in Rn × [0, T ),

div u = 0 in Rn × [0, T ),

u(0) = u0 in Rn,
θ(0) = θ0 in Rn,

where u = (u1(x, t), ..., un(x, t)), θ = θ(x, t) and p = p(x, t) denote the
velocity vector field, the temperature and the pressure of the fluid at the
point (x, t) ∈ Rn × [0, T ), respectively. Here u0 and θ0 are the given initial
data. Usually the Boussinesq equations are considered under the influence
of a constant gravity g making sense for small spatial scales in bounded
domains.

However, in this paper we will study the Boussinesq equations in the whole
space Rn. In these cases it is expedient for n = 3 to deal with a gravitational
force g which satisfies the well-known law of Newton, i.e., by classical theory
g depends on the distance like ∼ 1

|x|2 . At first sight it seems to be a purely

academic problem to extend this result to the general n-dimensional case,
n ≥ 2. But current research in theoretical physics gives cogent justifications
to investigate our problem also in higher dimensions, especially within very
tiny scales, cf. [1]. So we assume the gravity g = (g1, ..., gn) to decay as

1
|x|n−1 for |x| → ∞, modeling the gravitation field of a compact mass in Rn.
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To study the spatial behaviour of solutions to the Boussinesq equations
it will be helpful to consider the solvability of these equations in weighted
L∞-spaces. In the case of slow decay the solution decreases in the same way
as the initial velocity. But already Brandolese, Vigneron and Bae, see [2]
and [7], proved in the case of the Navier-Stokes equations that in general we
cannot expect a faster decay behaviour than 1

|x|n .

The Boussinesq system has been investigated by numerous authors and
in various domains, see e.g. [6], [8], [11], [12], [16], [18], [19]. In our
case of the whole space more tools especially from harmonic analysis are
available leading to more sophisticated results. Using the Riesz trans-

forms Rj = ∂j(−∆)−
1
2 , 1 ≤ j ≤ n, the Helmholtz projection is given by

P = (δj,h +RjRh)nj,h=1. Applying P to the first equation of the Boussinesq
system we get

(BE)



ut −∆u+ P(u · ∇)u = P (gθ) in Rn × [0, T ),

θt −∆θ + (u · ∇)θ = 0 in Rn × [0, T ),

div u = 0 in Rn × [0, T ),

u(0) = u0 in Rn,
θ(0) = θ0 in Rn.

Furthermore, it will be helpful to consider an integral equation instead
of the differential equation (BE). For the Boussinesq equations we get the
system of integral equations

u(t) = et∆u0 −
∫ t

0
e(t−τ)∆P(u · ∇u)(τ) dτ +

∫ t

0
e(t−τ)∆P(gθ)(τ) dτ(1.1)

θ(t) = et∆θ0 −
∫ t

0
e(t−τ)∆(u · ∇θ)(τ) dτ,(1.2)

where et∆ denotes the semigroup of heat conduction. In the whole space Rn
et∆ is nothing but the convolution with the heat kernel: for f ∈ S(Rn), the
Schwartz space of rapidly decreasing functions on Rn,

et∆f = Gt ∗ f, Gt(x) :=
1

(4πt)n/2
e
−|x|2

4t for t > 0, x ∈ Rn.

A solution (u, θ) of (1.1), (1.2) is called a mild solution. Since the operator
P is not bounded on L∞, we will handle u, θ in some proofs in homogeneous
Besov spaces.

The main open question of mathematical fluid dynamics is whether a
non-stationary Navier-Stokes fluid with finite energy and smooth initial data
stays regular or blow-up will occur. Recently, Brandolese introduced a new
idea to better understand this question, see [4]. He constructed an exam-
ple of a smooth solution of the Navier-Stokes equations such that for a
given finite sequence of instants 0 < t1 < ... < tN the velocity has some
concentration-diffusion effects close to each moment ti, i = 1, ..., N , i.e., the
solution concentrates by approaching ti such that it becomes better localized
and spreads out again afterwards.

Our aim is to extend this result to the Boussinesq equations by a proce-
dure similar to [4].
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2. Main Results

In this paper we assume that the initial data belong to weighted L∞-spaces.
The Banach space L∞µ (Rn), µ > 0, is defined as the set of all measurable
functions f on Rn such that

‖f‖L∞µ := ess sup
x∈Rn

(1 + |x|)µ|f(x)| <∞.

Using Banach’s fixed point theorem we get the following existence theorem
of mild solutions in spaces of weakly-∗ continuous functions in time with
values in weighted L∞-spaces.

Theorem 2.1: (Existence and Uniqueness of Mild Solutions) For
initial data (u0, θ0) ∈ L∞µ (Rn)n × L∞ν (Rn) with div u0 = 0, µ ∈ (0, n],
ν > max{0, µ − n + 1}, and g ∈ L∞n−1(Rn)n there exists a constant T > 0
and a unique mild solution

(u, θ) ∈ Cω
(
[0, T ];L∞µ (Rn)n

)
× Cω ([0, T ];L∞ν (Rn))

to the Boussinesq equations (1.1), (1.2). In particular, with the bound C0

for the operator norms in Lemma 4.1 below, any T > 0 satisfying

8C0(
√
T + T 1+κ)

(
‖u0‖L∞µ (Rn) + ‖θ0‖L∞ν (Rn) + ‖g‖L∞n−1(Rn)

)
< 1

is possible with κ := 1
2 max{µ+ ν − n, 0}.

The space Cω
(
[0, T ];L∞µ

)
denotes all L∞µ -valued weakly-* continuous func-

tions v(t) defined in [0, T ]. The necessity for working in the space Cω lies in
the fact that in general et∆f , with f ∈ L∞µ , does not converge to f in L∞µ
as t↘ 0, but only weakly-*. Therefore, we just get weak-* continuity for u
and θ.

Let us now study the strong solvability of solutions of the Boussinesq
equations (BE) in weighted L∞-spaces assuming more regularity on the
gravity. We will obtain that the solution (u, θ) depends continuously on
time t. At this point we introduce the space

Wm,∞
µ (Rn) =

{
f ∈Wm,∞(Rn) : ∂αf ∈ L∞µ (Rn) for all α, |α| ≤ m

}
, m ∈ N.

Theorem 2.2: (Existence of Strong Solutions) Let g ∈ W 1,∞
n−1(Rn)n,

u0 ∈ L∞µ (Rn)n with div u0 = 0, µ ∈ (0, n], and let θ0 ∈ L∞ν (Rn) where
ν > max{0, µ+ 1− n}. Then the mild solution (u, θ) of (1.1), (1.2) given
in Theorem 2.1 solves (BE) in L∞(Rn) and satisfies

u ∈ Cω
(
[0, T ];L∞µ

)
∩ C1 ((0, T ]; BUC) ∩ C

(
(0, T ];W 2,∞) ,

θ ∈ Cω ([0, T ];L∞ν ) ∩ C1 ((0, T ]; BUC) ∩ C
(
(0, T ];W 2,∞) .

Remark: In the proof of this theorem, see §5 and also (5.2), we will see how
the regularity of the solution (u, θ) depends on the regularity of the gravity
g. In general, u, θ ∈ C

(
(0, T ];Wm+1,∞) if g ∈ Wm,∞

n−1 , m ∈ N. So a smooth
gravity yields a smooth solution. However, the initial data u0 and θ0 have
no contribution to the regularity of the solution reflecting the smoothing
property of parabolic differential equations.
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In view of the result (u, θ)(t) ∈ L∞µ (Rn)n × L∞ν (Rn) with µ ∈ (0, n] and
ν > max{0, µ+ 1− n} for mild as well as strong solutions in Theorems 2.1
and 2.2 the question occurs whether the upper bound n for µ is optimal in
some sense. Actually, the decay |x|−(n+1) is optimal for generic solutions
to the Navier-Stokes equations, see [7, Theorem 1.2, Proposition 1.6]. In
general the solution (u, θ)(t) will not belong to L∞µ (Rn)n×L∞ν (Rn) if µ > n:

a decay of u like 1
|x|µ , µ > n, will imply some properties of the integrals∫ t

0

∫
Rn

(gθ)(y, s) dy ds and

∫ t

0

∫
Rn

(
(u⊗ u)(y, s) + y ⊗ (gθ)(y, s)

)
dy ds,

see Theorem 2.3 below.

Theorem 2.3: (Spatial Asymptotic Behaviour) Let ε > 0. For µ >
n+2

2 , ν > 3, g ∈ W 1,∞
n−1(Rn)n and initial data (u0, θ0) ∈ L∞µ (Rn)n × L∞ν (Rn)

with div u0 = 0, let (u, θ) be the strong solution of Theorem 2.2. Then the
following profile holds for |x| �

√
t:

u(x, t) = et∆u0(x)−∇
[
γn
n

x

|x|n
·
∫ t

0

∫
Rn

(gθ) dy ds

]

−∇

γn n∑
h,k=1

(
xhxk
|x|n+2

−
δh,k
n|x|n

)
·
∫ t

0

∫
Rn

(uhuk + ykghθ) dy ds


+Ot(|x|−n−2+ε),

θ(x, t) = et∆θ0(x) +Ot(|x|−µ−ν).

Here γn = n
2π
−n

2 Γ
(
n
2

)
.

As long as the inital data u0 belongs to L∞µ , with µ > n, but gθ has non-zero

mean this theorem shows that in general we expect an |x|−n-decay of the
velocity. In particular, this implies no matter how small and well localized,
e.g. compactly supported, the gravity g is, it has a significant effect at large
distances. Thus the force gθ causes the velocity of the fluid to decrease less
fast in the far-field.

This conclusion is the starting point to construct solutions of the Boussi-
nesq equations (BE) with a concentration-diffusion property. For this we
define the orthogonal transformation ˜ : Rn → Rn, by

x̃ := (x2, ..., xn, x1),

cf. [4]. A function f : Rn → R is called B-symmetric if f(x̃) = f(x) for all
x ∈ Rn, and a vector-valued function h : Rn → Rn is called B-symmetric
if h(x̃) = h̃(x) for all x ∈ Rn. This B-symmetry is compatible with the
Fourier transform as well as with the Laplace operator. Furthermore, we
require the regularity assumptions

g ∈W 2,∞
n−1(Rn)n \ {0} and ∆g ∈ L∞n+δ(Rn)n(2.1)

for some δ > 0. This assumption on the decay of ∆g is physically justified.
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Theorem 2.4: Let n = 2, 3, κ > 0, let g satisfying (2.1) be either an
odd or an even function with g(x̃) = g̃(x), and let 0 =: t0 < t1 < ... < tN <
tN+1 := T , N ∈ N, be a finite sequence and 0 < ε < min{1

2(tk+1 − tk) :
k = 0, ..., N}. Further we assume that the initial velocity u0 ∈ L∞n+2(Rn)n

satisfies ũ0(x) = u0(x̃) and the symmetry properties

u0,1(−x1, x2, ..., xn) = −u0,1(x1, x2, ..., xn)

u0,1(x1, ...,−xj , ..., xn) = u0,1(x1, ..., xj , ..., xn)(2.2)

for all j = 2, ..., n.
Then there exists an initial temperature θ0 ∈ S(Rn) and for each i =

1, . . . , N there are instants t′i, t
∗
i ,∈ (ti − ε, ti + ε) such that the correspond-

ing unique strong solution u, θ ∈ C
(
(0, T ];W 2,∞), see Theorem 2.2, of the

Boussinesq equations (BE) with initial data (ηu0, ηθ0) and η > 0 sufficiently
small satisfies, for all i = 1, ..., N and all |x| large enough, the pointwise
estimate

|u(x, t∗i )| ≤ C|x|−n−2+κ,

and with ω = x
|x| there holds for almost all |x| large enough

|u(x, t′i)| ≥ cω|x|−n.

3. Preliminaries

Let us recall the definition of the homogeneous Besov space Ḃs
p,q on Rn;

for details see e.g. [3] or [15]. Let the family of functions {ϕj}j∈Z define a
Littlewood-Paley decomposition. For s ∈ R and 1 ≤ p, q ≤ ∞, we write

‖f‖Ḃsp,q :=


[∑∞

j=−∞(2js ‖ϕj ∗ f‖p)q
] 1
q

for q <∞,
sup−∞<j<∞ 2js ‖ϕj ∗ f‖p for q =∞.

The homogeneous Besov space Ḃs
p,q is defined by

Ḃs
p,q := {f ∈ Z ′ | ‖f‖Ḃsp,q <∞}.

Here Z ′ is the topological dual space of the space

Z := {f ∈ S(Rn) | ∂αf̂(0) = 0 for all α ∈ Nn}.

The above definition implies that all polynomials vanish in Ḃs
p,q. However,

it is well known that

Ḃs
p,q
∼= {f ∈ S ′ | ‖f‖Ḃsp,q <∞ and f =

∞∑
j=−∞

ϕj ∗ f in S ′}

if s < n
p or s = n

p and q = 1.

We first describe some elementary properties of these spaces.

Lemma 3.1: (i) There exists a constant C = C(n) > 0 such that for

all f ∈ Ḃs+1
∞,1, s ∈ R, the gradient belongs to Ḃs

∞,1 and satisfies the estimate

(3.1) ‖∇f‖Ḃs∞,1 ≤ C‖f‖Ḃs+1
∞,1

.



6 REINHARD FARWIG, RAPHAEL SCHULZ, MASAO YAMAZAKI

(ii) [13] Let s > 0. Then there exists a constant C(n, s) > 0 such that for

all f, g ∈ L∞ ∩ Ḃs
∞,1 there holds fg ∈ Ḃs

∞,1 and the Hölder type inequality

(3.2) ‖fg‖Ḃs∞,1 ≤ C(n, s)
(
‖f‖∞‖g‖Ḃs∞,1 + ‖g‖∞‖f‖Ḃs∞,1

)
.

(iii) [9] There holds for all f ∈ L∞ and α ∈ R the inequality

(3.3) ‖(−∆)αϕj ∗ f‖∞ ≤ 22jα ‖ϕj ∗ f‖∞, j ∈ Z,

That means if f ∈ Ḃs
∞,1 then (−∆)αf ∈ Ḃs−2α

∞,1 .

Lemma 3.2: [17] (i) Let s > 0. There exists a constant C(n, s) > 0
such that for all f ∈ L∞ there holds

‖et∆f‖Ḃs∞,1 ≤ C(n, s)t−
s
2 ‖f‖∞, t > 0 .(3.4)

(ii) Let α ≥ 0, s ∈ R and 1 ≤ p, q ≤ ∞. There exists a constant

C(α, n, s) > 0 such that for all f ∈ Ḃs
p,q

‖et∆f‖Ḃs+αp,q
≤ C(α, n, s)t−

α
2 ‖f‖Ḃsp,q , t > 0 .(3.5)

(iii) There exists a constant C(α, n) independent of f ∈ L∞ such that

(3.6) ‖et′∆f − et∆f‖Ḃs∞,1 ≤ C(α, n)(t′ − t)α‖et∆f‖Ḃs+2α
∞,1

holds for all 0 < t < t′ <∞, α > 0 and s ∈ R.

Lemma 3.3: (i) [14, Prop. 11.1] The operator

Oj,h;t := ∆−1∂j∂he
t∆, 1 ≤ j, h ≤ n,

is a convolution operator with kernel Kj,h;t(x) = t−
n
2Kj,h

(
x√
t

)
, also called

Oseen kernel, where the smooth function K = (Kj,h) satisfies

(3.7) (1 + |x|)n+|α|∂αK ∈ L∞(Rn) for all α ∈ Nn.

(ii) The operator family et∆P = e−tAP, t > 0, where A = −P∆ denotes
the Stokes operator on Rn, has the following properties: et∆P is defined by
a convolution kernel E =

(
Ej,h

)n
j,h=1

,

E(x, t) :=

∫
Rn
e−4π2t|ξ|2+2πix·ξ

(
I − ξ ⊗ ξ

|ξ|2

)
dξ .

Moreover, [2], E has the asymptotic structure

E(x, t) = γn

(
x⊗ x
|x|n+2

− 1

n|x|n
I

)
+ |x|−nΨ

(
x√
t

)
(3.8)

for |x| �
√
t, where the matrix field Ψ and its gradient have an exponential

decay and γn := n
2π
−n

2 Γ
(
n
2

)
.

(iii) [17] The Riesz transforms are well-defined bounded operators on the

Besov space Ḃ0
∞,1. In particular, for all s ≥ 0 and α ≥ 0

(3.9) ‖et∆Pf‖Ḃs+α∞,1 . t
−α

2 ‖f‖Ḃs∞,1 .
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Proof of (3.9): By (3.3), (3.5)

‖et∆Pf‖Ḃs+α∞,1 = ‖(−∆)−
s
2 et∆P((−∆)

s
2 f)‖Ḃs+α∞,1

. ‖et∆P((−∆)
s
2 f)‖Ḃα∞,1 . t

−α
2 ‖P((−∆)

s
2 f)‖Ḃ0

∞,1

. t−
α
2 ‖(−∆)

s
2 f‖Ḃ0

∞,1
. t−

α
2 ‖f‖Ḃs∞,1 ,

where we exploited also the boundedness of the Helmholtz projection P on
Ḃ0
∞,1. �

Note that in Lemma 3.3 (ii) we used the Fourier transform, e.g. of a
Schwartz function φ ∈ S(Rn), in the form

Fφ(ξ) = φ̂(ξ) :=

∫
Rn
φ(x)e−2πix·ξ dx.

4. Proof of Theorems 2.1 and 2.4

To construct a unique mild solution of (1.1), (1.2) for given initial data
(u0, θ0) ∈ L∞µ (Rn)× L∞ν (Rn) we introduce the bilinear integral operators

B (u1, u2) := −
∫ t

0
e(t−s)∆P∇ · (u1 ⊗ u2) (s) ds,(4.1)

D (u, θ) := −
∫ t

0
e(t−s)∆∇ · (θu) (s) ds.(4.2)

We also define a linear operator which handles the buoyancy term, namely

C (θ) :=

∫ t

0
e(t−s)∆P (gθ) (s) ds(4.3)

depending on the given gravity field g.

Sketch of the proof of Theorem 2.1: The existence and uniqueness of mild
solutions to (1.1), (1.2) base on the abstract formulation of a solution (u, θ)
as a fixed point of the coupled system

u(t) = et∆u0 + B (u, u) (t) + C (θ) (t),

θ(t) = et∆θ0 +D (u, θ) (t)

in the Banach space Cω
(
[0, T ];L∞µ

)
× Cω ([0, T ];L∞ν ). With the help of

Lemma 4.1 below the result is proved by Banach’s fixed point theorem. �

Lemma 4.1: Let T > 0, g ∈ L∞n−1, µ ∈ (0, n], and ν > max{0, µ− n+ 1}.
Then the operators

B : Cω
(
[0, T ];L∞µ

)
× Cω

(
[0, T ];L∞µ

)
→ Cω

(
[0, T ];L∞µ

)
,

C : Cω ([0, T ];L∞ν )→ Cω
(
[0, T ];L∞µ

)
,

D : Cω
(
[0, T ];L∞µ

)
× Cω ([0, T ];L∞ν )→ Cω ([0, T ];L∞ν ) ,
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see (4.1), (4.2), (4.3), are continuous with operator norms O(
√
T + T 1+κ)

where κ := 1
2 max{µ+ ν − n, 0}.

Proof: The estimate for B is proved in [14, Prop. 25.1]. The other assertions
follow the same lines. �

For the proof of Theorem 2.3 we anticipate the results of Theorem 2.2 to be
proved in Sect. 5.

Sketch of the proof of Theorem 2.3: Besides the result of Lemma 3.3 (i) on
the Oseen kernel we note that the operators et∆Pdiv , et∆P and et∆div are
matrices of convolution operators with bounded kernels.

Similarly to [2], [7] we proceed to get an asymptotic profile of solu-
tions of the Boussinesq equations and have to deal mainly with the terms
B(u, u), C(θ) and D(u, θ) in the integral equations (1.1), (1.2). E.g., looking
at B(u, u), we write et∆P∇ as a convolution operator the kernel of which
has the asymptotic profile

γn∂j

(
x⊗ x
|x|n+2

− 1

n|x|n
I

)
+ |x|−n−1Ψj

(
x√
t

)
, |x| �

√
t ,

cf. (3.8) Further, we define remainder terms vh,k such that

(uhuk)(x, t) = G1(x)

∫
Rn

(uhuk)(y, t) dy + vh,k(x, t).

Finally, we have to combine both and to estimate the remainder terms, for
further details see [7]. The operator D is treated in an analogous way. But
the convolution operator et∆P corresponding to the term C(θ) has a worse
decay, see [2]. Therefore, we study this term more carefully by a Taylor type
formula of convolutions, see [5]:

Lemma 4.2: [5] Let n ≥ 2, m ∈ N, 0 ≤ τ < n. Let f ∈ Cm(Rn \ {0}) such
that

|x|τ+|α|∂αf ∈ L∞(Rn) for all α ∈ Nn, |α| ≤ m,
and h ∈ C(Rn \ {0}) ∩ L1 (Rn, (1 + |x|)mdx) ∩ L∞n+m(Rn). Then the convo-
lution product f ∗ h satisfies

f ∗ h(x) =
∑

0≤|β|≤m−1

(−1)|β|

β!

(∫
Rn
yβh(y)dy

)
∂βf(x) +R(x),

where R(x) can be estimated for all x 6= 0 by

C|x|−m−τ max
|α|≤m

sup
y 6=0
|y|τ+|α||∂αf(y)|

(
‖h‖L1(|y|m) + sup

y 6=0
|y|n+m|h(y)|

)
.

Assuming a sufficiently fast decaying data θ0 ∈ L∞ν , ν > 3, we can re-
place the function h by gθ, since due to Theorem 2.2 gθ(t) is continuous and
gθ(t) ∈ L1

(
(1 + |x|)2

)
∩L∞n+2 for all t > 0. Applying Lemma 4.2 with m = 2

and the functions f = Ej,h which satisfy (3.7) we obtain for all j = 1, ..., n

Ej,h∗ghθ(x) = Ej,h(x)

∫
Rn

(ghθ) (y) dy−∇Ej,h(x)·
∫
Rn
y (ghθ) (y) dy+Rj(x),
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where Rj(x) = O
(
|x|−n−2+ε

)
with an arbitrary small ε > 0. Thus we obtain(∫ t

0
e(t−s)∆P(gθ)(s)ds

)
j

(x) =

n∑
h=1

∫ t

0
(Ej,h(t− s) ∗ (ghθ)(s)) (x) ds

=

n∑
h=1

∫ t

0
Ej,h(x, t− s)

∫
Rn

(ghθ)(y, s) dy ds

−
n∑
h=1

∫ t

0
∇Ej,h(x, t− s) ·

∫
Rn
y(ghθ)(y, s) dy ds+

∫ t

0
Rj(x, t, s) ds

= γn

n∑
h=1

(
xhxj
|x|n+2

−
δj,h
n|x|n

)∫ t

0

∫
Rn

(ghθ)(y, s) dy ds

− γn
n∑

h,l=1

(
σj,h,l(x)

|x|n+2
− (n+ 2)

xjxhxl
|x|n+4

)∫ t

0

∫
Rn
yl(ghθ)(y, s) dy ds

+R
(j)
1 (x, t) +R

(j)
2 (x, t) +R

(j)
3 (x, t),

where σj,h,l(x) := δj,hxl+δh,lxj+δj,lxh. The remainder terms R
(j)
1 and R

(j)
2 ,

j = 1, ..., n, are decaying exponentially:

R
(j)
1 (x, t) :=

n∑
h=1

∫ t

0
|x|−nΨj,h

(
x√
s

)∫
Rn

(ghθ)(y, t− s) dy ds

R
(j)
2 (x, t) :=

n∑
h=1

∫ t

0
∇x
[
|x|−nΨj,h

(
x√
s

)]
·
∫
Rn
y(ghθ)(y, t− s) dy ds ,

and for all ε > 0 we have

R
(j)
3 (x, t) :=

∫ t

0
Rj(x, t, s) ds

. t
n∑
h=1

|x|−2−τ sup
0<s<t

max
|α|≤2

sup
y 6=0
|y|τ+|α||∂αEj,h(y, s)|

× sup
0<s<t

(
‖gθ(s)‖L1(|y|2) + sup

y 6=0
|y|n+2|(gθ)(y, s)|

)
= Ot

(
|y|−n−2+ε

)
.

Altogether, this completes the proof of Theorem 2.3. �

5. Proof of Theorem 2.2

At first we deal with first order spatial derivatives. Taking the partial de-
rivative ∂i in (1.1) and (1.2) we are led to the fixed point problem

∂iu = Θ(∂iu, ∂iθ),

∂iθ = Θ̃(∂iu, ∂iθ),
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where

Θ(w, w̃) := ∂ie
t∆u0 −

∫ t

0
e(t−s)∆P∇ · (w ⊗ u+ u⊗ w) (s) ds

+

∫ t

0
e(t−s)∆P ((∂ig)θ + gw̃) (s) ds,

Θ̃(w, w̃) := ∂ie
t∆θ0 −

∫ t

0
e(t−s)∆∇ · (θw + w̃u) (s) ds.

From the properties of the heat kernel we obtain

|∂iet∆u0(x)| ≤
∫
Rn
|∂iGt(x− y) · u0(y)| dy

.
∫
Rn

|u0(y)|
(|x− y|+

√
t)n+1

dy .
(
t−

1
2 + 1

)
(1 + |x|)−µ‖u0‖L∞µ

and similarly

|∂iet∆θ0(x)| .
(
t−

1
2 + 1

)
(1 + |x|)−ν‖θ0‖L∞ν .

Thus we easily see, with the space

Y := {w : t
1
2w ∈ Cω([0, T0];L∞µ (Rn)n)} × {w̃ : t

1
2 w̃ ∈ Cω([0, T0];L∞ν (Rn))}

constituting a Banach space Y with the norm

‖(w, w̃)‖Y := sup
t∈(0,T0]

t
1
2 ‖w(t)‖L∞µ + sup

t∈(0,T0]
t
1
2 ‖w̃(t)‖L∞ν ,

and Lemma 4.1 that
(
Θ, Θ̃

)
: Y → Y. Actually, given (w, w̃) ∈ Y it is

straightforward to show the weak-* continuity of t
1
2 Θ(w, w̃) and t

1
2 Θ̃(w, w̃)

in [0, T0]. Furthermore, by Lemma 4.1, the continuity of the operator
(
Θ, Θ̃

)
on Y for all 0 < T0 < T is achieved:

‖
(
Θ, Θ̃

)
(w1, w̃1)−

(
Θ, Θ̃

)
(w2, w̃2) ‖Y

.
(√

T0 + T0

)
·

(
sup
t∈[0,T ]

‖u(t)‖L∞µ + ‖g‖L∞n−1

)
‖(w1, w̃1)− (w2, w̃2)‖Y .

Choosing T0 > 0 sufficiently small such that the operator
(
Θ, Θ̃

)
is a

contraction on Y , we get a unique fixed point (w0, w̃0). By construction of

the mappings Θ and Θ̃ the fixed point (w0, w̃0) is just the derivative ∂i of
u and θ, respectively. The same argument also holds on [T0, 2T0], etc., and
finally leads to

t
1
2∂iu ∈ Cω

(
[0, T ];L∞µ (Rn)n

)
, t

1
2∂iθ ∈ Cω ([0, T ];L∞ν (Rn)) .

Hence by the previous Theorem 2.1 u, t
1
2∂iu belong to Cω

(
[0, T ];L∞µ (Rn)n

)
and θ, t

1
2∂iθ belong to Cω ([0, T ];L∞ν (Rn)), i = 1, ..., n, and thus u, θ ∈

Cω
(
(0, T ];W 1,∞). Moreover, there holds the embedding W 1,∞ ⊆ BUC, see

[20, Lemma 9.2]. Since, in contrast to L∞µ , the operators {et∆}t≥0 define

in the space BUC a strongly continuous and even analytic semigroup, et∆f
converges to f in BUC as t↘ 0. With this and Lemma 4.1 we get

‖u(t′)− u(t)‖∞ + ‖θ(t′)− θ(t)‖∞ −→ 0 as t′ ↘ t
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for all 0 < t < t′ ≤ T . Thus we have

u, θ ∈ C ((0, T ]; BUC) ,

i.e. continuous dependence on time. We notice that for all 0 < ε < T the
solution (u, θ) belongs additionally to L∞

(
[ε, T ];W 1,∞) and satisfies

u(t) = e(t−ε)∆u(ε)−
∫ t

ε
e(t−τ)∆P(u · ∇u)(τ) dτ +

∫ t

ε
e(t−τ)∆P(gθ)(τ) dτ,

θ(t) = e(t−ε)∆θ(ε)−
∫ t

ε
e(t−τ)∆(u · ∇θ)(τ) dτ.

Moreover, since there holds the embeddingW 1,∞/R ⊆ Ḃs
∞,1 for all s ∈ (0, 1),

see [13], we even have

(5.1) u, θ ∈ C
(
[ε, T ]; Ḃs

∞,1
)
, s ∈ (0, 1).

In the following we will show that u and θ belong to

C
(
(0, T ]; Ḃs

∞,1
)
, s ∈ (0, 3).

Using (3.1) and (3.9) we get

‖e(t−τ)∆P(u · ∇u)‖
Ḃ
s+1

2
∞,1

. ‖e(t−τ)∆P(u⊗ u)‖
Ḃ
s+3

2
∞,1

. (t− τ)−
3
4 ‖u⊗ u‖Ḃs∞,1 .

Furthermore, choosing α > 0 such that max{0, s− 3
2} < α < min{1, s+ 1

2},
i.e. s < 5

2 , we see from (3.3), (3.5) that

‖e(t−τ)∆P(gθ)‖
Ḃ
s+1

2
∞,1

≤ ‖(−∆)−
α
2 e(t−τ)∆P((−∆)

α
2 (gθ))‖

Ḃ
s+1

2
∞,1

. (t− τ)−
1
2

(s−α+ 1
2

)‖gθ‖Ḃα∞,1 .

For example, we can set α := s
3 . The previous estimates and (3.5) as well

as (3.2) yield

‖u(t)‖
Ḃ
s+1

2
∞,1

. (t− ε)−
1
4 ‖u(ε)‖Ḃs∞,1 +

∫ t

ε
(t− τ)−

3
4 ‖(u⊗ u)(τ)‖Ḃs∞,1 dτ

+

∫ t

ε
(t− τ)−

1
2

(s−α+ 1
2

)‖gθ(τ)‖Ḃα∞,1 dτ

. (t− ε)−
1
4 ‖u(ε)‖Ḃs∞,1 + t

1
4 sup
ε≤τ≤T

‖u(τ)‖∞ sup
ε≤τ≤T

‖u(τ)‖Ḃs∞,1

+ t
3
4
− s

2
+α

2 sup
ε≤τ≤T

(
‖g‖∞‖θ(τ)‖Ḃα∞,1 + ‖g‖Ḃα∞,1‖θ(τ)‖∞

)
.

Similarly, we have

‖θ(t)‖
Ḃ
s+1

2
∞,1

. (t− ε)−
1
4 ‖θ(ε)‖Ḃs∞,1 +

∫ t

ε
(t− τ)−

3
4 ‖(θu)(τ)‖Ḃs∞,1 dτ

. (t− ε)−
1
4 ‖θ(ε)‖Ḃs∞,1

+ t
1
4 sup
ε≤τ≤T

(
‖u(τ)‖∞‖θ(τ)‖Ḃs∞,1 + ‖θ(τ)‖∞‖u(τ)‖Ḃs∞,1

)
.
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Immediately, from (5.1), we get that u, θ ∈ L∞
(
[ε, T ]; Ḃs

∞,1
)
, s ∈ [1, 3

2). So
we can conclude by iteration that

sup
ε≤τ<T

‖u(τ)‖Ḃs∞,1 + sup
ε≤τ<T

‖θ(τ)‖Ḃs∞,1 <∞

holds for all 0 < ε < T and all s ∈ (0, 3). Thus

u, θ ∈ L∞
(
[ε, T ]; Ḃs

∞,1
)
, s ∈ (0, 3).

Now we show that

u, θ ∈ C
(
(0, T ]; Ḃs

∞,1
)
, s ∈ (0, 3).(5.2)

To this aim we choose β ∈ (0, 1
2) such that − s

3 < β < 1− s
3 with s ∈ (0, 3).

Since for all 0 < ε < t < t′ < T the function u satisfies

u(t′)− u(t) = (et
′∆ − et∆)u(ε)−

∫ t′

t
e(t′−s)∆P(∇ · (u⊗ u)− gθ)(s) ds

−
∫ t

ε

(
e(t′−s)∆ − e(t−s)∆)P(∇ · (u⊗ u)− gθ)(s) ds,

we get the following estimate by Lemmata 3.1 and 3.2 as well as (3.9):

‖u(t′)− u(t)‖Ḃs∞,1 . (t′ − t)
1
2 ‖et∆u(ε)‖Ḃs+1

∞,1

+

∫ t

ε
(t′ − t)β‖∇e(t−τ)∆P(u⊗ u)(τ)‖

Ḃs+2β
∞,1

dτ

+

∫ t

ε
(t′ − t)β‖e(t−τ)∆P(gθ)(τ)‖

Ḃs+2β
∞,1

dτ

+

∫ t′

t

(
‖∇e(t′−τ)∆P(u⊗ u)(τ)‖Ḃs∞,1 + ‖e(t′−τ)∆P(gθ)(τ)‖Ḃs∞,1

)
dτ

. (t′ − t)
1
2 ‖et∆u(ε)‖Ḃs+1

∞,1

+

∫ t

ε
(t′ − t)β(t− τ)−

1
2
−β‖u⊗ u(τ)‖Ḃs∞,1 dτ

+

∫ t

ε
(t′ − t)β(t− τ)−

s
3
−β‖gθ(τ)‖

Ḃ
s
3
∞,1

dτ

+

∫ t′

t

(
(t′ − τ)−

1
2 ‖u⊗ u(τ)‖Ḃs∞,1 + (t′ − τ)−

s
3 ‖gθ(τ)‖

Ḃ
s
3
∞,1

)
dτ.
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Finally, (3.2), (3.4) yield

‖u(t′)− u(t)‖Ḃs∞,1 . (t′ − t)
1
2 t−

s+1
2 ‖u(ε)‖∞

+ (t′ − t)βt
1
2
−β

(
sup

ε≤τ≤t′
‖u(τ)‖Ḃs∞,1∩L∞

)2

+ (t′ − t)βt1−
s
3
−β

(
‖g‖∞ sup

ε≤τ≤t′
‖θ(τ)‖

Ḃ
s
3
∞,1

+ ‖g‖
Ḃ
s
3
∞,1

sup
ε≤τ≤t′

‖θ(τ)‖∞

)

+ (t′ − t)
1
2

(
sup

ε≤τ≤t′
‖u(τ)‖Ḃs∞,1∩L∞

)2

+ (t′ − t)1− s
3

(
‖g‖∞ sup

ε≤τ≤t′
‖θ(τ)‖

Ḃ
s
3
∞,1

+ ‖g‖
Ḃ
s
3
∞,1

sup
ε≤τ≤t′

‖θ(τ)‖∞

)
.

Therefore, we get u ∈ C
(
(0, T ]; Ḃs

∞,1
)

for all s ∈ (0, 3).

Moreover, for θ we have by (3.6)

‖θ(t′)− θ(t)‖Ḃs∞,1 . (t′ − t)
1
2 ‖et∆θ(ε)‖Ḃs+1

∞,1

+

∫ t

ε
(t′ − t)β‖∇ · e(t−τ)∆(uθ)(τ)‖

Ḃs+2β
∞,1

dτ

+

∫ t′

t
‖∇ · e(t′−τ)∆(uθ)(τ)‖Ḃs∞,1 dτ

and further by Lemmata 3.1 and 3.2

‖θ(t′)− θ(t)‖Ḃs∞,1 . (t′ − t)t−
s+1
2 ‖θ(ε)‖∞ +

[
(t′ − t)βt

1
2
−β + (t′ − t)

1
2

]
× sup
ε≤τ≤t′

(
‖u(τ)‖∞‖θ(τ)‖Ḃs∞,1 + ‖u(τ)‖Ḃs∞,1‖θ(τ)‖∞

)
,

and thus θ ∈ C
(
(0, T ]; Ḃs

∞,1
)

for all s ∈ (0, 3). Altogether, this estimate, the

same result for u and (3.1) imply that

∂iu, ∂iθ , ∂i∂ju , ∂i∂jθ ∈ C
(
(0, T ]; Ḃ0

∞,1
)
⊆ C

(
(0, T ]; BUC

)
for all i, j = 1, ..., n and hence

u, θ ∈ C
(
(0, T ];W 2,∞) .

In the final step of the proof we show that (u, θ) is a solution to (BE)
in the strong sense. Using the boundedness of the Helmholtz projection on
Ḃ0
∞,1 and Lemmata 3.1 and 3.2 we get

‖P(u · ∇u)‖Ḃ0
∞,1
. ‖∇(u⊗ u)‖Ḃ0

∞,1
. ‖u⊗ u‖Ḃ1

∞,1
. ‖u‖2

Ḃ1
∞,1∩L∞

,

‖u · ∇θ‖Ḃ0
∞,1

= ‖∇ · (uθ)‖Ḃ0
∞,1
. ‖u‖∞‖θ‖Ḃ1

∞,1
+ ‖u‖Ḃ1

∞,1
‖θ‖∞.

Since gθ and ∇(gθ) belong to L∞n−1 ⊆ Lp, p > n
n−1 , we get P(gθ) ∈ W 1,p.

But in the case p > n this Sobolev space is embedded into the Hölder space
C0,γ with γ = 1 − n

p , see [20, Lemma 9.2]. That means P(gθ) is uniformly
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continuous. Moreover, P(gθ) ∈ Lp ∩C0,1−n
p , n < p <∞, is bounded. Using

the inclusion Ḃ0
∞,1 ⊆ BUC/R we have

P(u · ∇u), P(gθ), u · ∇θ ∈ C ((0, T ]; BUC) .

Since, for 0 ≤ t < t′ ≤ T ,

u(t′)− u(t)

= (e(t′−t)∆ − I)u(t)−
∫ t′

t
e(t′−τ)∆ [P(u · ∇u− gθ)] (τ) dτ

and for each h ∈ BUC2(Rn)

lim
t′↘t

e(t′−t)∆ − I
t′ − t

h = ∆h in BUC ,

we obtain

ut = lim
t′↘t

u(t′)− u(t)

t′ − t
= ∆u− P(u · ∇u) + P(gθ) ∈ C ((0, T ]; BUC) .

Similarly, with

θ(t′)− θ(t) =
(
e(t′−t)∆ − I

)
θ(t)−

∫ t′

t
e(t′−τ)∆(u · ∇θ)(τ) dτ,

we get in BUC

θt = lim
t′↘t

θ(t′)− θ(t)
t′ − t

= ∆θ − u · ∇θ ∈ C((0, T ]; BUC).

Now the proof of Theorem 2.2 is complete. �

6. Proof of Theorem 2.4

To prove this quantitative result of the solution we need a representation of
(u, θ), as the limit of an iteration, following ideas from [4, §2.1]:

T1(u0, θ0) := et∆u0, T̃1(u0, θ0) := et∆θ0,

Tk(u0, θ0) :=

k−1∑
l=1

B
(
Tl(u0, θ0), Tk−l(u0, θ0)

)
+ C

(
T̃k−1(u0, θ0)

)
,(6.1)

T̃k(u0, θ0) :=
k−1∑
l=1

D
(
Tl(u0, θ0), T̃k−l(u0, θ0)

)
, k ≥ 2.

Under smallness assumptions on the initial data the series

φ(u0, θ0) :=

∞∑
k=1

Tk(u0, θ0) and ψ(u0, θ0) :=

∞∑
k=1

T̃k(u0, θ0)(6.2)

will be shown to be absolutely convergent. Then (u, θ) = (φ, ψ)(u0, θ0) is a
solution of the equations

u = et∆u0 + B(u, u) + C(θ), θ = et∆θ0 +D(u, θ)

in the space Y × Ỹ where

(6.3) Y = Cω
(
[0, T ];L∞µ (Rn)

)
, Ỹ = Cω ([0, T ];L∞ν (Rn)) .
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Assume that

c := max{‖et∆u0‖Y , ‖et∆θ0‖Ỹ } < 1.

Then mathematical induction and Lemma 4.1 applied to (6.1) yield a se-

quence of estimates of ‖Tk‖Y , ‖T̃k‖Ỹ in terms of ‖Tl‖Y , ‖T̃l‖Ỹ , 1 ≤ l ≤ k−1,
which finally leads to the bound

‖Tk‖Y + ‖T̃k‖Ỹ ≤ k
− 3

2 (12C0

√
c)k−1(

√
c+ c), k ≥ 2,

where the constant C0 = C0(T ) is a bound of the norms in Lemma 4.1. If
the initial data (u0, θ0) is small enough, such that max{12C0

√
c, c} < 1 the

series

∞∑
k=1

‖
(
Tk, T̃k

)
(u0, θ0)‖Y×Ỹ ≤ (

√
c+ c)

∞∑
k=1

k−
3
2 (12C0

√
c)k−1 <∞

converges, i.e., the series
∑∞

k=1

(
Tk, T̃k

)
(u0, θ0) converges in the Banach

space Y × Ỹ . Finally, the limit φ(u0, θ0), ψ(u0, θ0), see (6.2), solves the
Boussinesq integral equations (1.1) and (1.2). We notice that this represen-
tation of a solution is unique on [0, T ] due to Theorem 2.1.

Lemma 6.1: Let n ∈ {2, 3}, 0 =: t0 < t1 < ... < tN with N ∈ N and
0 < ε < min{1

2(tk+1 − tk) : k = 0, ..., N − 1}. Let g belong to (2.1) and
be either an odd or an even B-symmetric vector field. Then there exists a
real-valued B-symmetric function θ0 ∈ S(Rn) such that the function

E(θ0) : R+ → R, E(θ0)(t) :=

∫ t

0

∫
Rn
g1(x)

(
es∆θ0

)
(x) dx ds,

changes sign inside (ti − ε, ti + ε), i = 1, ..., N .

Proof: At first we treat the two-dimensional case. Without lost of gen-
erality we prove this assertion by assuming that g = (g1, g2) is odd. By our

assumption on the gravity g ∈W 2,∞
1 (R2) we do not expect that g ∈ L2(R2).

So we cannot use Fourier methods like the Parseval relation directly. But
the Laplacian ∆g ∈ L∞n+δ(R2) lies in L1(R2) ∩ L2(R2). In particular the
Fourier transform F(∆g) is odd, continuous and vanishes at infinity. Hence
there is a vector 0 6= α0 ∈ R2 such that

(T g) (α0) := F (∆(g1 + g2)) (α0)−F (∆(g1 + g2)) (−α0) 6= 0.

Otherwise, since F(∆(gj) is odd and T g is continuous, T g would vanish
identically. Since

|T g(α0)| = |T g(α̃0)| = |T g(−α̃0)| = |T g(−α0)|

we can assume that α0 belongs to the open sector {ξ ∈ R2| ξ1 > |ξ2| > 0}.
Furthermore, due to the continuity of T g, there exists a constant σ1 > 0
such that (T g) ((1 + σ)α0) 6= 0 for all 0 ≤ σ < σ1. Note that T g(·) ∈ iR.

Continuing, for 0 < δ < σ1
N+1 , we regard with

(6.4) αj =
√

1 + δ(j − 1)α0 ∈ R2
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and λj ∈ R, j = 1, . . . , N + 1, to be determined below, the function

E(t) :=

N+1∑
j=1

λj
(1− e−4π2t|αj |2)

(2π)4i|αj |4
(T g) (αj) =

N+1∑
j=1

bj(1− e−4π2t|αj |2)

where bj := λj
1

(2π)4i|αj |4 (T g) (αj). With Ti := e−4π2|α0|2ti we have

E(ti) =

N+1∑
j=1

bj
(
1− T 1+δ(j−1)

i

)
.

We want to determine λj , ..., λN+1 in such a way that E(t) vanishes at
t1, ..., tN and changes sign at these points. In particular there has to hold

(6.5) 0 6= E′(ti) = 4π2|α0|2
N+1∑
j=1

(1 + δ(j − 1))bjT
1+δ(j−1)
i .

To satisfy these conditions we consider a corresponding linear system with
the unknowns b = (b1, ..., bN+1)T ∈ RN+1. To be more precise, we define
the (N + 1)× (N + 1)-matrix

M(δ) :=


1− T 1

1 1− T 1+δ
1 . . . 1− T 1+δN

1
...

...
. . .

...

1− T 1
N 1− T 1+δ

N . . . 1− T 1+δN
N

1 · T 1
1 (1 + δ)T 1+δ

1 . . . (1 + δN)T 1+δN
1

 .

Note that

M(1) =


1− T1 1− T 2

1 . . . 1− TN+1
1

...
...

. . .
...

1− TN 1− T 2
N . . . 1− TN+1

N

T1 2T 2
1 . . . (N + 1)TN+1

1

 ,

where an explicit computation, see [4], yields

detM(1) = −T1(1− T1)
N∏
i=1

(1− Ti)
N∏
i=2

(T1 − Ti)
∏

1≤i<j≤N
(Tj − Ti) 6= 0

since Ti ∈ (0, 1) and Ti 6= Tj for i 6= j, i, j = 1, ..., N . Now detM(δ) can be
considered as an analytic function on C, and we conclude that there exists
0 < δ < σ1

N+1 such that detM(δ) 6= 0.
The equations

E(ti) = 0, i = 1, ..., N, and E′(t1) = γ

are fulfilled with b = (b1, ..., bN+1)T ∈ RN+1 if and only if

(6.6) M(δ)b = 4π2|α0|2 eN+1, eN+1 = (0, ..., 0, 1)T .

Since detM(δ) 6= 0, we obtain a unique vector 0 6= b ∈ RN+1 such that
E vanishes at t1, ..., tN and changes sign at t1. The conditions E′(ti) 6= 0,
i = 2, ..., N , are then automatically fulfilled. Indeed, if we had E′(ti) = 0
for some i = 2, ..., N , then the matrix M(δ) obtained when replacing the
last row by

Ti (1 + δ)T 1+δ
i . . . (1 + δN)T 1+δN

i
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would have a vanishing determinant in contradiction with the general for-
mula for detM ; to use this argument for i = 1, . . . , N we possibly have to
choose δ > 0 smaller as before. Finally this solution determines the desired
coefficients

λj =
(2π)4ibj |αj |4

(T g) (αj)
.

We note that T g(αj) 6= 0, j = 1, ..., N + 1, by construction.

To construct the initial temperature θ0 we choose a real-valued radially
symmetric function φ ∈ S(R2) such that φ̂ ∈ C∞0 (R2) satisfying supp φ̂ ⊆
B1(0) and

∫
R2 φ̂ = 1. Moreover, for ρ > 0, we define φ̂ρ(ξ) := ρ−nφ̂(ρ−1ξ).

Then for each α ∈ R2 let

θ̂α(ξ) := i
(
φ̂(ξ − α)− φ̂(ξ + α) + φ̂(ξ − α̃)− φ̂(ξ + α̃)

)
satisfying θ̂α(ξ̃) = θ̂α(ξ) and θ̂α(−ξ) = −θ̂α(ξ). Thus θα is real-valued, odd

and B-symmetric, i.e. θα(x̃) = θα(x). We define θ̂ρα as before, by replacing

φ̂ with φ̂ρ in the corresponding definition.
Using the theorem of Parseval we get

E(θραj )(t) =

∫ t

0

∫
Rn
g1(x)

(
es∆θραj

)
(x) dx ds

= −
∫
Rn

(
1− e−4π2t|ξ|2

) (∆g1) (̂ξ)

(2π)4|ξ|4
θ̂ραj (ξ) dξ.

Furthermore, due to the symmetry properties of θ̂ραj , we obtain

E(θραj )(t) = −
∫
ξ1>|ξ2|

(
1− e−4π2t|ξ|2

) (T g) (ξ)

(2π)4|ξ|4
θ̂ραj (ξ) dξ.

Let us now choose ρ0 > 0 sufficiently small, such that

supp θ̂ρ0αj ∩ supp θ̂ρ0αk = ∅ and

supp φ̂ρ0(· − βj) ∩ supp φ̂ρ0(· − β′j) = ∅

for all j 6= k with βj , β
′
j ∈ {αj ,−αj , α̃j ,−α̃j}, βj 6= β′j . Therewith, for all

0 < ρ ≤ ρ0, there holds

E(θραj )(t) = −i
∫
ξ1>|ξ2|

(
1− e−4π2t|ξ|2

) (T g) (ξ)

(2π)4|ξ|4
φ̂ρ(ξ − αj) dξ.

Since T g is continuous and {φ̂ρ : ρ > 0} is an approximation of identity,
E(θραj )(t) converges (uniformly with respect to t ≥ 0) to

Eαj (t) :=
(

1− e−4π2t|αj |2
) (T g) (αj)

(2π)4i|αj |4

as ρ→ 0. We observe that Eαj (t) is real-valued.
Eventually, we consider

θρ0 :=

N+1∑
j=1

λjθ
ρ
αj .
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Since supp θ̂ρ0αj ∩ supp θ̂ρ0αk = ∅, j 6= k, there holds

E
(
θρ0
)
(t) =

N+1∑
j=1

λjE
(
θραj
)
(t)

for all 0 < ρ ≤ ρ0. As ρ → 0, this term converges uniformly to E(t) =∑N+1
j=1 λjEαj (t). Finally, we see that if ρ′ > 0 is sufficiently small then

E
(
θρ
′

0

)
changes sign in the interval (ti − ε, ti + ε), for i = 1, ..., N . Hence we

choose θ0 := θρ
′

0 as initial temperature.

The case n = 3. Firstly we assume g to be odd and choose

α0 ∈ Ω := {ξ ∈ R3 | min{ξ2, ξ3} > max{ξ1, 0} }

to be a vector such that

(T g) (α0) := F (∆(g1 + g2 + g3)) (α0)−F (∆(g1 + g2 + g3)) (−α0)

= 2
3∑

k=1

F (∆gk) (α0) 6= 0.

Moreover, let σ1 > 0 be a constant such that (T g) ((1 + σ)α0) 6= 0 for all
0 ≤ σ < σ1. In contrast to the two-dimensional case the gravity g ∈ L∞2 (R3)3

belongs now to L2(R3). However, we will again use ∆g since we need a
continuous and decaying Fourier transform.

We build the initial temperature analogously as above and define θα ∈
S(R3) through

θ̂α(ξ) = i
(
φ̂(ξ −α)− φ̂(ξ +α) + φ̂(ξ − α̃)− φ̂(ξ + α̃) + φ̂(ξ − ˜̃α)− φ̂(ξ + ˜̃α)

)
.

Once again we have θ̂α(ξ̃) = θ̂α(ξ) and θ̂α(−ξ) = −θ̂α(ξ). Thus θα is real-
valued, odd and B-symmetric. The definition (6.4) for αj ,

E(t) :=
N+1∑
j=1

λj
(1− e−4π2t|αj |2)

(2π)4i|αj |4
(T g) (αj)

and the conditions on E at t1, . . . , tN yield the same linear system (6.6) as
above. Hence we obtain a vector of coefficients (λ1, ..., λN ) 6= 0, such that
E(t) vanishes at t1, ..., tN and changes sign at these points. Imposing the
condition αj ∈ Ω (which is satisfied if we set αj as in (6.4)) we get

E(θραj )(t) =

∫ t

0

∫
Rn
g1(x)es∆θραj (x) dx ds

= −
∫

Ω̃

(
1− e−4π2t|ξ|2

) (∆g1)̂ (ξ) + (∆g1)̂ (ξ̃) + (∆g1)̂ (
˜̃
ξ)

(2π)4|ξ|4
θ̂ραj (ξ) dξ

= −
∫

Ω

(
1− e−4π2t|ξ|2

) (T g) (ξ)

(2π)4|ξ|4
θ̂ραj (ξ) dξ

with Ω̃ := {ξ ∈ R3| min(ξ2, ξ3) > max(ξ1, 0) or max(ξ2, ξ3) < min(ξ1, 0)}.
Geometrically, the condition αj ∈ Ω corresponds to cutting R3 into six con-
gruent regions that can be obtained from each other through the orthogonal
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transforms ξ 7→ ξ̃ and ξ 7→ −ξ. If we choose again ρ0 > 0 small enough then
E(θραj )(t) equals

−i
∫

Ω

(
1− e−4π2t|ξ|2

) (T g) (ξ)

(2π)4|ξ|4
φ̂ρ(ξ − αj) dξ.

As ρ→ 0, the function E(θραj )(t) converges uniformly in t to

Eαj (t) :=
(

1− e−4π2t|αj |2
) (T g) (αj)

(2π)4i|αj |4

and thus

E
(
θρ0
)
(t) =

N+1∑
j=1

λjE
(
θραj
)
(t) → E(t).

Finally, we choose ρ′ > 0 such that E
(
θρ
′

0

)
changes sign inside (ti− ε, ti + ε),

for i = 1, ..., N , and set θ0 := θρ
′

0 .
If g is an even function we can show this lemma in the same way by

defining

T g :=

n∑
k=1

F (∆gk)( ·) + F (∆gk) (−·) = 2

n∑
k=1

F (∆gk)

and

θ̂α(ξ) := φ̂(ξ − α) + φ̂(ξ + α) + φ̂(ξ − α̃) + φ̂(ξ + α̃) or,

θ̂α(ξ) := φ̂(ξ − α) + φ̂(ξ + α) + φ̂(ξ − α̃) + φ̂(ξ + α̃) + φ̂(ξ − ˜̃α) + φ̂(ξ + ˜̃α)

for n = 2 or n = 3, respectively. �

Proof of Theorem 2.4. At first we will construct a solution such that

t 7→
∫ t

0

∫
Rn (g1θ) (x, s) dx ds changes sign inside (ti−ε, ti+ε) for i = 1, ..., N .

Maybe we have to modify the initial data θ0 constructed in Lemma 6.1 by
multiplying it by a sufficiently small constant η0 > 0 to ensure that the
corresponding solution (u, θ) is defined on (0, tN +ε). By our representation

of (u, θ) ∈ Y × Ỹ with initial data (ηu0, ηθ0), 0 < η ≤ η0, introduced in
(6.2), (6.3), we obtain∫ t

0

∫
Rn

(gθ) (x, s) dx ds =

∫ t

0

∫
Rn
g(x)

∞∑
k=1

T̃k(ηu0, ηθ0)(x, s) dx ds

=

∞∑
k=1

ηkSk (u0, θ0) (t)

where Sk : Y × Ỹ → C([0, T ]).
Remembering the notation of Lemma 6.1 we see that

(S1(u0, θ0))1 (t) =

∫ t

0

∫
Rn

(
g1e

s∆θ0

)
(x) dx ds = E (θ0) (t).

Hence for small η > 0 the series
∑∞

k=1 η
k (Sk (u0, θ0))1 (t) behaves like

ηE(θ0)(t). By Lemma 6.1 E(θ0) changes sign in the interval (ti−ε, ti+ε) for
i = 1, ..., N . Let t+i , t

−
i ∈ (ti−ε, ti+ε) for i = 1, ..., N such that E(θ0)(t+i ) > 0
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and E(θ0)(t−i ) < 0. At each such instant t+i or t−i , i = 1, ..., N , we can find

a small 0 < η+
i ≤ η0 or 0 < η−i ≤ η0, respectively, such that∫ t+i

0

∫
Rn

(g1θ) (x, s) dx ds > 0 and

∫ t−i

0

∫
Rn

(g1θ) (x, s) dx ds < 0.

With η := mini=1,...,N{η+
i , η

−
i } we see that the term

∫ t
0

∫
Rn (g1θ) (x, s) dx ds

changes sign inside (ti − ε, ti + ε), i = 1, ..., N , too. In particular, due

to the continuity of t 7→
∫ t

0

∫
Rn (g1θ) (x, s) dx ds this map has a zero t∗i ∈

(ti − ε, ti + ε), i = 1, ..., N .
The assumption on the symmetry of the gravity and the initial data, i.e.

g(x̃) = g̃(x) and θ0(x̃) = θ0(x), respectively, are obviously preserved during
the evolution in the sense that θ(x̃, t) = θ(x, t). Furthermore, we get in the
case n = 3 that ∫ t

0

∫
R3

g1θ =

∫ t

0

∫
R3

g2θ =

∫ t

0

∫
R3

g3θ.

Thus all these terms vanish at t∗i ∈ (ti − ε, ti + ε), i = 1, ..., N .
By Theorem 2.3 and the assumption u0 ∈ L∞n+2(Rn)n we know that

u(x, t) =
γn
n
∇
[
x

|x|n
·
∫ t

0

∫
Rn

(gθ)(y, s) dy ds

]
+Ot(|x|−n−1),(6.7)

and θ ∈ C ((0, T );L∞ν (Rn)) for all 0 < t < T and all ν > 0. Consider the
gradient on the right-hand side of (6.7). The map

(6.8) x 7→ ∇
[
x

|x|n
·
∫ t

0

∫
Rn

(gθ)(y, s) dy ds

]
is identically zero if and only if the term

∫ t
0

∫
Rn g1θ and with it the terms∫ t

0

∫
Rn g2θ and conditionally

∫ t
0

∫
Rn g3θ vanish, like this is the case at the

instants t∗i , i = 1, ..., N . Hence for some constant C ′ > 0 we obtain the
upper bound

|u(x, t∗i )| ≤ C ′|x|−n−1

for all x sufficiently large and i = 1, ..., N .
Otherwise, if the map (6.8) is not identically zero, it is homogeneous of

degree −n. Thus we can reduce our consideration to the sphere Sn−1. Unless

(6.9)
∂

∂xj

[
x

|x|n
·
∫ t

0

∫
Rn

(gθ)(y, s) dy ds

]
has a zero at some point of Sn−1, we find t′i ∈ (ti − ε, ti + ε), i = 1, ..., N ,

and a constant c
(j)
ω , ω := x

|x| , such that

|uj(x, t)| ≥ c(j)
ω |x|−n

for all x large enough and i = 1, ..., N , j = 1, ..., n. But since the zeros of
the map (6.9) are the zeros on the unit sphere of a homogeneous polynomial
of degree two, cω > 0 for almost every ω ∈ Sn−1.
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Finally, due to Theorem 2.3 we know that the term of order |x|−n−1 in
(6.7) equals

Q(x) := ∇

γn n∑
h,k=1

(
xhxk
|x|n+2

−
δh,k
n|x|n

)
·
∫ t

0

∫
Rn

(uhuk + ykghθ) dy ds

 .
Let us define the matrix K = (Kh,k)nh,k=1 by

Kh,k(t) :=

∫ t

0

∫
Rn

(uhuk + ykghθ) dy ds.

In the case of a symmetric matrix K Brandolese and Vigneron [7, Prop. 2.9]
showed that Kh,k = αδh,k for any α ∈ R if and only if Q(x) ≡ 0. Apparently,
in our case the matrix K is not symmetric in general. But we can prove in
the same manner as in [7] that

Q ≡ 0 if and only if Kh,k = −Kk,h and Kh,h = Kk,k for all h 6= k.

Due to our symmetry assumptions on the initial velocity u0, see (2.2), the
k-th component of the initial data u0 is odd in the k-th variable and even
in the j-th variable, j, k = 1, ..., n and j 6= k. Due to the invariance of the
Boussinesq equations under the transformations of this symmetry group,
these symmetries are preserved during the evolution and are thus satisfied
at each moment t ∈ [0, T ] by the solution u(t). Under these symmetry
assumptions we finally get∫ t

0

∫
Rn

(uhuk)(y, s) dy ds = 0,∫ t

0

∫
Rn
u2
i (y, s) dy ds =

∫ t

0

∫
Rn
u2

1(y, s) dy ds

for all i, k, h = 1, ..., n and h 6= k. Furthermore, since due to our construction
of the initial temperature θ0 in Lemma 6.1 gθ0 is an even function we obtain∫

Rn
(y1g2θ0 + y2g1θ0)(y) dy = 0.

Also this property preserves during the evolution such that the |x|−n−1-term
of the asymptotic profile of u vanishes at all moments t ∈ [0, T ]. Hence for
some constant C > 0 we obtain the upper bound

|u(x, t∗i )| ≤ C|x|−n−2+ε

for all x with sufficiently large norm and i = 1, ..., N .
Now Theorem 2.4 is completely proved. �
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