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NUMERICAL ANALYSIS OF THE OSEEN-TYPE PETERLIN VISCOELASTIC
MODEL BY THE STABILIZED LAGRANGE-GALERKIN METHOD
PART I: A LINEAR SCHEME

MARIA LUKACOVA-MEDVIDOVA!, HANA MIZEROVA 2, HIROFUMI NOTSU® AND
MASAHISA TABATA*

Abstract. A linear stabilized Lagrange—Galerkin scheme for the Oseen-type Peterlin viscoelastic
model is presented. FError estimates with the optimal convergence order are proved under a mild
stability condition. Theoretical convergence order is confirmed by the numerical experiments. The
scheme consists of the method of characteristics and Brezzi—Pitkéranta’s stabilization method for the
conforming linear elements, which lead to an efficient computation with a small number of degrees of
freedom.
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1. INTRODUCTION

We study numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange—
Galerkin method. Here, in Part I, we present a linear scheme for the diffusive model and establish error
estimates with the optimal convergence order. In the forthcoming paper [I'7], Part II, we present a nonlinear
scheme for the diffusive and the non-diffusive model.

In the daily life we encounter many biological, industrial or geological fluids that do not satisfy the Newtonian
assumption, i.e., the linear dependence between the stress tensor and the deformation tensor. These fluids belong
to the class of the non-Newtonian fluids. In order to describe such complex fluids the stress tensor is represented
as a sum of the viscous (Newtonian) part and the extra stress due to the polymer contribution.

In the literature we can find several models that are employed to describe various aspects of complex vis-
coelastic fluids. One of the well-known viscoelastic models is the Oldroyd-B model, which is derived from the
Hookean dumbbell model with a linear spring force law. The model is a system of equations for the velocity,
the pressure and the extra stress tensor, cf., e.g., [27,28)].

Numerical schemes for the Oldroyd-B type models have been studied by many authors. For example, we can
find a finite difference scheme based on the reformulation of the equation for the extra stress tensor by using the
log-conformation representation in Fattal and Kupferman [0, 02], free energy dissipative Lagrange—Galerkin
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schemes with or without the log-conformation representation in Boyaval et al. [4], finite element schemes using
the idea of the generalized Lie derivative in Lee and Xu [IH] and Lee et al. [[6], and further related numerical
schemes and computations in [I, 8,9, [, 19, 20, P2, B3] and references therein. To the best of our knowledge,
however, there are no results on error estimates of numerical schemes for the Oldroyd-B model. As for the
simplified Oldroyd-B model with no convection terms Picasso and Rappaz [26] and Bonito et al. [2] have
given error estimates for stationary and non-stationary problems, respectively. The development of stable and
convergent numerical methods for the Oldroyd-B type models, especially in the elasticity-dominated case, is
still an active research area.

In this paper, we consider the so-called Peterlin viscoelastic model, which is derived from the dumbbell model
with a nonlinear spring force law F(R) = v(|R|?)R and the Peterlin approximation where (| R|?) is replaced
by a function y(tr C). Here C is the so-called conformation tensor and R is the vector connecting the beads. It
is a system of the flow equations and an equation for the conformation tensor, cf. [27,2%]. The diffusive Peterlin
viscoelastic model has been studied analytically in our recent paper by Lukacova-Medvidova et al. [T8], where
the global existence of weak solutions and the uniqueness of regular solutions have been proved. For the details
of the derivation of the diffusive Peterlin model we refer to [IR,21,29,80]. Let us mention that, even when the
velocity field is given, the equation for the conformation tensor in the Peterlin model is still nonlinear, while the
Oldroyd-B model is linear with respect to the extra stress tensor. Hence, we can say that the nonlinearity of the
Peterlin model is stronger than that of the Oldroyd-B model. As a starting point of the numerical analysis of
the Peterlin model, we consider the Oseen-type model, where the velocity of the material derivative is replaced
by a known one, in order to concentrate on the treatment of the stronger nonlinearity.

Our aim is to develop a stabilized Lagrange—Galerkin method for the Peterlin viscoelastic model. It consists
of the method of characteristics and Brezzi-Pitkiranta’s stabilization method [{] for the conforming linear
elements. The method of characteristics derives the robustness in convection-dominated flow problems, and the
stabilization method reduces the number of degrees of freedom in computation. In our recent works by Notsu
and Tabata [23-25] the stabilized Lagrange—Galerkin method has been applied successfully for the Oseen,
Navier—Stokes and natural convection problems and optimal error estimates have been proved. We extend the
numerical analysis of the stabilized Lagrange—Galerkin method to the Oseen-type Peterlin model. In this paper,
a linear stabilized Lagrange—Galerkin scheme for the diffusive Peterlin model is presented and error estimates
with the optimal convergence order are proved under a mild stability condition.

This paper is organized as follows. In Section B the mathematical model for the Peterlin viscoelastic fluid
is described. In Section B a linear stabilized Lagrange-Galerkin scheme is presented. The main result on the
convergence with optimal error estimates is stated in Section B, and proved in Section B. In Section B some
numerical experiments confirming the theoretical convergence order are provided.

2. THE OSEEN-TYPE PETERLIN VISCOELASTIC MODEL

The function spaces and the notation to be used throughout the paper are as follows. Let {2 be a bounded
domain in R2, I' := 9f2 the boundary of {2, and T a positive constant. For m € NU {0} and p € [1, co] we use
the Sobolev spaces W™?(02), Wy (2), H™(2) (= W™2(£2)), H}(22) and L3(2) := {q € L*(Q); [,, ¢ dz = 0}.

Furthermore, we employ function spaces H™, (£2) := {D € H™(£2)**2; D = DT} and C™,,,(02) := C™(2)**2N

sym sym

Hs";m(.Q), where the superscript T stands fyi)r the transposition. For any normed space Sy with norm || - ||s, we
define function spaces H™(0,T;.S) and C(]0,T]; S) consisting of S-valued functions in H™(0,7T) and C([0,T7),
respectively. We use the same notation (-,-) to represent the L?(f2) inner product for scalar-, vector- and
matrix-valued functions. The dual pairing between S and the dual space S’ is denoted by (-,-). The norms on
WP (§2) and H™(f2) and their seminorms are simply denoted by || - [|mp and || - [lm (= || - |lm,2) and by |- |m.p
and | - | (= | - [m,2), respectively. The notations || - |lmps | - lm.p> || - lm and | - |, are employed not only for
scalar-valued functions but also for vector- and matrix-valued ones. We also denote the norm on H~1(£2)? by
Il - |=1. For ¢ty and ¢; € R we introduce the function space,

Z™ (to, t1) := {0 € H (to, tr; H"7(2)); j=0,...,m, [¢llzm(g,) < o0}
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with the norm

m 1/2
1l zm (t0,62) = {Z ||w||%{j(tg,t1;H7”J(Q))} )

j=0

and set Z™ := Z™(0,T). We often omit [0, 7], §2, and the superscripts 2 and 2 x 2 for the vector and the matrix
if there is no confusion, e.g., we shall write C'(L>°) in place of C([0, T]; L°°(£2)?*?2). For square matrices A and
B € R**? we use the notation A : B := tr (AB") =37, - A;;By;.

We consider the system of equations describing the unsteady motion of an incompressible viscoelastic fluid,

Du

D div (2vD(u)) + Vp = div[(tr C)C| + in 2x(0,7), (1a)
divu = 0 in 2 % (0,T), (1b)

DC
D eAC = (Vu)C + C(Vu)! — (rC)*C + (tr )L+ F in 2x(0,7T), (1c)

oC

u = 07 ain = 07 on I x (0,71)7 (1d)
u=u’, C=cC" in 2, at t =0, (le)
where (u,p,C) : 2 x (0,T) = R?> x R x RZx2 are the unknown velocity, pressure and conformation tensor,
v > 0 is a fluid viscosity, ¢ > 0 is an elastic stress viscosity, (f,F) : £2 x (0,T) — R* x R2¥? is a pair of given

external forces, D(u) := (1/2)[Vu + (Vu)?] is the symmetric part of the velocity gradient, I is the identity
matrix, n : I' — R? is the outward unit normal, (u°, C°) : 2 — R? x Rﬁ;,i is a pair of given initial functions,
and D /Dt is the material derivative defined by

where w : 2 x (0,T) — R? is a given velocity.

Remark 1. The model (W) is the Oseen approximation to the fully nonlinear problem, where the material
derivative terms,

Ou 0C
— -V — -V)C
5+ (u-V)u, o +(u-V)
exist in place o % and % in equations (Id) and (). The existence of weak solutions and the uniqueness of

reqular solutions to the fully nonlinear model have been proved in Lukacova-Medvid’ova et al. [I8, Theorems 1
and 3. The corresponding results are obtained under regularity condition on w to the model (W), which is
simpler than the fully nonlinear model. Numerical analysis of the fully nonlinear problem is a future work.

We set an assumption for the given velocity w.
Hypothesis 1. The function w satisfies w € C([0,T]; Wy ™°(£2)?).

Let V := H}(2)?, Q := L(2) and W := H} (). We define the bilinear forms a,, on V x V, bon V x Q,

sym

Aon (VxQ)x(VxQ)and a. on W x W by

ay (u,v) :=2(D(u),D(v)), b(u,q) = —(divu,q), A((u,p),(v,q)) := vay (u,v) +b(u,q) +b(v,p),
a.(C,D) := (VC, VD),
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respectively. We present the weak formulation of the problem (I); find (u,p,C) : (0,7) — V x @ x W such
that for t € (0,7)

<]])3?(t>w) +A((u,p)(t), (v,q)) = = (tr C(t) C(t), Vv) + (£(t), V), (2)

(DD(;(t),D) +ea.(C(t),D) = 2((Vu(t))C(t),D) — ((tr C(t))*C(t), D) + (tr C(t)I, D) + (F(t),D), (2b)
V(v,q,D) eV xQxW,

with (u(0), C(0)) = (u’, C0).

3. A LINEAR STABILIZED LAGRANGE—GALERKIN SCHEME

The aim of this section is to present a linear stabilized Lagrange—Galerkin scheme for the model ().

Let At be a time increment, Np := |T/At] the total number of time steps and t" := nAt for n =0, ..., Nr.
Let g be a function defined in 2 x (0,7) and g" := g(+,¢™). For the approximation of the material derivative
we employ the first-order characteristics method,

g"(z) — (8" ' o XT) (x)
At

Dg
2 (z,t") =
Dt (z,t")

+ O(At), (3)
where X7' : 2 — R? is a mapping defined by
X' (z) :=a — w"(z)At,
and the symbol o means the composition of functions,
(8" ' o XT)(2) == g" " (XT (@)

For the details on deriving the approximation (8) of Dg/Dt, see, e.g., [24]. The point X{*(x) is called the upwind
point of x with respect to w™. The next proposition, which is a direct consequence of [31] and [32], presents
sufficient conditions to ensure that all upwind points defined by X7 are in (2 and that its Jacobian J" :=
det(0X7/0x) is around 1.

Proposition 1. Suppose Hypothesis @ holds. Then, we have the following for n € {0,..., Np}.

(i) Under the condition

At|W|C(W1,m) <1, (4)
X1 2 = 2 is bijective.
(ii) Furthermore, under the condition
At‘W|C(W1,oo) < ]./4, (5)

the estimate 1/2 < J™ < 3/2 holds.

For the sake of simplicity we suppose that {2 is a polygonal domain. Let 7, = {K} be a triangulation of
2 (= UKeTh K), hi the diameter of K € T}, and h := maxge7, hx the maximum element size. We consider a
regular family of subdivisions {7} } 5,0 satisfying the inverse assumption [8], i.e., there exists a positive constant
ap independent of A such that

M <y VK €T VA
hk
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We define the discrete function spaces Xy, Vi, My, @ and Wj, by

Xn = {vn € C(2)% vix € PI(K)* VK € Ty}, Vi i=Xp OV,
Mh = {QhEC(Q), Qh‘KGPI(K)aVKeﬁL}7 Qh = Mth’
W, = {Dh € Osym(o)v Dh\K € Pl(K)2X27vK € 771} )

respectively, where P;(K) is the polynomial space of linear functions on K € Tj,.

Let dp be a small positive constant fixed arbitrarily and (-,-)x the L?*(K)? inner product. We define the
bilinear forms Ay, on (V x HY(2)) x (V x HY(2)) and S, on H*(£2) x H'(2) by

Ah ((uap)V (V, q)) = Vay (ll,V) + b(uv Q) + b(V,p) - Sh(pv q)v Sh(pv Q) = 50 Z h%{(vpv Vq)K
KeTy

Let (£,,Fy) == ({7107, {Fp3N7)) € L2(02)? x L2(2)?*% and (u),CY) € Vi, x W), be given. A linear
stabilized Lagrange-Galerkin scheme for () is to find (up,pn, Cp) := {(u},p, C}) ,]2[21 C Vi X Qp x Wy, such
that, for n =1,..., Nr,

u? —u ltoXxn
(hgtl,vh> + Ah((uﬁ,pﬁ), (Vh, qh)) = —((tr (o}l )C}fl, Vvh) + (£, vn), (6a)
Cp—Cp'oXy
( h Xt °21 7Dh> +ea.(C},Dy) = 2((Vup)Cp~ ", Dy) — ((tr C} 1 )*CR, Dy,)

+ ((tr C; "I, Dy,) + (F1, D), (6b)
Y(Vh, g, Dn) € Vi, x Qp X Wi,

4. THE MAIN RESULT

In this section we state the main result on error estimates with the optimal convergence order of scheme (B),
which is proved in the next section.

We use ¢ to represent a generic positive constant independent of the discretization parameters h and At. We
also use constants ¢, and ¢y independent of h and At but dependent on w and the solution (u,p,C) of (),
respectively, and ¢, often depends on w additionally. Furthermore, ¢ may depend on v and € but neither ¢,
nor ¢ depends on them. The symbol “/ (prime)” is sometimes used in order to distinguish two constants, e.g., cs
and cj, from each other. We use the following notation for the norms and seminorms, |-, = [||ly, = [|ll;,

Il = lllq, = IIllo;

2 9 1/2
108, O)ll i) = {10100 + 1€ 00y |

Nr 1/2
2
[l e (xy i= max flu"|x,  [[ullp(x 1—{At§ ||u"||x} ;
n=0,...Nr n=1

0,.

1/2 Nr 1/2

o= { 5 0V} e = {ar bR
KeTy, n=1

for X = L%(£2) or H'(£2). Da; is the backward difference operator defined by Dasu™ := (u™ —u"~1)/At.
The existence and uniqueness of the solution of scheme (B) are ensured by the following proposition, which
is also proved in the next section.

Proposition 2 (existence and uniqueness). Suppose Hypothesis O holds. Then, for any h and At satisfying (B)
there exists a unique solution (up,pp, Cr) C Vi X Qn X Wy, of scheme (B).
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We state the main results after preparing a projection and a hypothesis.

Definition 1 (Stokes—Poisson projection). For (u,p,C) € V x Q x W we define the Stokes—Poisson projection
(ﬁhaﬁhmch) S Vh X Qh X Wh Of <u7pa C) by

Ap ((QnsPn), (Vi qn)) + €ae(Chy Dp) + (Chy Di) = A((1, p), (Vh, qn)) + £ac(C,Dp) + (C,Dy),
Y(Vh, qn, Dp) € Vi x Qp x W, (7)

The Stokes—Poisson projection derives an operator H}SLP VXQXW — Vi xQp x W), defined by H;SLP (u,p,C) :=
(Qp, Pn, Ch) We denote the i-th component of IT5F (u,p, C) by [II;F (u,p, C)]; for i = 1,2,3 and the pair of
the first and third components (i1, Cp,) = ([ITSF (w, p, C)]1, [II5F (u, p, C)]3) by [IT5F (u,p, C)]1 3 simply.

Remark 2. The identity (@) can be decoupled into the Stokes projection and the Poisson projection. For the
simplicity of the notation we use (@) in the sequel. Since the Neumann boundary condition (Id) is imposed
on C, we use the Poisson projection corresponding to the operator —eA + I for the unique solvability.

Hypothesis 2. The solution (u,p, C) of (2) satisfiesu € Z2(0,T)*NH(0,T; VNH?(2)?)NC([0, T); W (£2)?),
pe HY0,T;QN HY()) and C € Z%(0,T)**?> N HY(0,T; W N H?(£2)?%2).

We now impose the conditions
(u(})uc%) = [H}SLP(u0707CO)]1,37 (fthh) = (f7F) (8)

Theorem 1 (error estimates). Suppose Hypotheses O and B hold. Then, there exist positive constants hg, cg
and cy such that, for any pair (h, At) satisfying

h e (Ovho]a At < CO/(l + ‘1Ogh|)1/27 (9)

the solution (up,pp, Cp) of scheme (B) with (B) is estimated as follows.

[Chlle= (=) < IClle@=) + 1, (10)
— oC
||uh—u||[oo(L2), ||uh—ll||£2(H1)7 |ph—p|22(‘.|h)7 ||Ch_c||[oo(H1), DaCp — — SCT(At-‘rh).
ot £2(L?)
(11)
5. PROOFS
In what follows we prove Proposition B and Theorem 0.
5.1. Preliminaries
Let us list lemmas employed directly in the proofs below. In the lemmas, «;, i = 1,...,4, are numerical

constants, which are independent of h, At, v and £ but may be dependent on 2.

Lemma 1 ( [i0] ). Let 2 be a bounded domain with a Lipschitz-continuous boundary. Then, the following
inequalities hold.

D)o < [vlls < el D(V)llo, Vv € Hy(£2)%.

Let IIj, : C(£2) — Mj, be the Lagrange interpolation operator. The operators defined on C'(£2)? and C/(§2)2*?
are also denoted by the same symbol IT;,. We introduce the function

D(h) := (1 + |logh|)*/2, (12)

which is used in the sequel.
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Lemma 2 ( [5,8] ). The following inequalities hold.

[InDlly o < Dl - VD € C(2)**?,
[1I,D — D||; < azoh||D],, vD € H*(2)>,
[Drllp oo < @21D(h) Dy, VD), € W,

The next lemma is obtained by combining the error estimates for the Stokes and the Poisson problems, see,
e.g., [6,8,13] for the proof.

Lemma 3. Assume (u,p,C) € (VNH2(2)2) x (QNHY(2)) x (W NH2(R)). Let (tn, pr, Cn) € Vi X Qn x Wi
be the Stokes-Poisson projection of (u,p, C) by (@). Then, the following inequalities hold.

lan —ully, [1Br —pllg, [Pr — pln < asih ||(w,p)|| g2y g1 s ICh — Cll1 < as2h||C2.

Lemma 4 ( [24,81] ). Under Hypothesis O and the condition (B) the following inequalities hold for any n €

g o XTllp < (1+ as|w"|1,00At) (8]l » Vg € L*(12)°,
lg —goX{'llp < carllW" o0 At I8l vg € H'(2)",

where s =2 or 2 x 2.

Proof. We prove only the former estimate, since the latter is a direct consequence of [24, Lemma 6]. Let
n € {0,..., Nz} be fixed arbitrarily. By changing the variable from x to y := X}*(z), we have

21

Ay < (14 w1 A0 g3,

lgo X7 = /quq%x)f d = /Qg@)

where J" is the Jacobian det(dy/dx). Here we have used the estimate,

1 1
< <1421 = J" <1+ 2w AL < (1 "1 o A1)?,

which is derived from Proposition 0-(ii) and 1/(1 — s) < 1+ 2s (s € [0,1/2]). Thus we obtain the result by
setting ayg = c. O

5.2. Proof of Proposition
For each time step n scheme (B) can be rewritten as

n

(R2ova) + vau(ui,va) + b(va.pi) + (tr GG Vvi) = (gvi), Vi € Vh,  (130)
b(uy, qn) — Su(pn,qn) =0, Yan € Qn, (13b)

C’I’L
(I’;,Dh) +ea. (Cy,Dy) — 2 ((Vup)Cp ', Dy) + ((tr C;~1)?C,Dy) = (G}, Dy,), VD, € Wy, (13c)

where g == (1/At)(u} ! o X7) + £ and G} := (1/At)(C} ' o XP) + (tr C;'')I + F7. Selecting specific
bases of V},, @ and W), and expanding uj, p; and C} in terms of the associated basis functions, we can
derive the system of linear equations from (I3). The result, i.e., existence and uniqueness, is equivalent to the
invertibility of the coefficient matrix of the system, which is obtained by proving (uf, p}, C}') = (0,0, 0) below
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when (g}!, G}}) = (0,0
we have

). Substituting (u, —pj’, 3 (tr C )I) into (v, qn, Dy) in (

1 n||2 ny |2 n n n— n
At aiillo + 2v ID(uf) Iy + dolpi |7 + ((tr C1)CL 1, V) =0,

2
oAz Itr Ch I + HVUCZ llo —

By the identity

((tr (o} )szl, Vuﬁ) —

the sum of (IZa) and (I[4H) yields
1 2
~ 1o + 20 IDQ)IlG + dolpf 17 + 5

Hence, we have (u}, p}') = (

1 n n n—
~; ICHIG + < IVCRIG + [t Ci )

which implies C = 0. Thus, we get (u},pj,C}) =

5.3. An estimate at each time step

(tr[(Vup)Cp~Y], tr CF)

2At

1 n— n
+5lwcp ey 2 =
(tr[(VuZ)CZﬁlLtr CZ) =0,

€ 2
ler CR 15+ 5 19 CF [ +

0,0). Substituting C} into Dy, in (I3d) and noting that u} = 0, we obtain

hHOZO7

(0,0,0), which completes the proof.

In this subsection we present a proposition which is employed in the proof of Theorem M.

Let (ﬁh,ﬁh, Ch)(t) =

II3F (u,p, C)(t) € Vi, x Qp x W, for t € [0,T] and let

Sl Ci ey |2 =

[3) and adding ([3H) to (L3d),

(14a)

(14b)

e i=ul —ay, eli=pr—pp, Er:=Cpr-Cp )= (u—1)t), E):=(C-Cy).
Then, from (B), (@) and (&), we have for n > 1
et —el loXxn
<hhAtl’Vh> +Ah((eza€ﬁ)7 (Vhth)) = (rh, Vi), V(Vh,qn) € Vi X Qn,

E' —E' 'oXp
( h gt L Vh> + EQC(EZ,D;L) = <R27Dh>7 VD, € Wy,
where
4 11
ry, ::ZrZiEVF/u Z::ZRZZ‘EW}/N
=1 =1
) Du"” u"—u"loX}
r,vy) = - Ve,
hls VH Dt At h
n 1 n n— n
<rh27vh> = Kt (71 -n To Xl 5Vh) y
rhg,Vh = ( tr CTL Cn 1 v—’ﬂ 1 EZ_l),vVh),
I‘h4,Vh : ( En Cn ! Vvh)
Dcn Cn —Cn- 1 o X1
(Rjy1, Dy) == AL ! 7Dh),

(15a)

(15b)

(16)
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(Rjy,Dy) = (8"~ & o X{,Dy)

(Rp3, D) == —(E",Dy),

(Rjiy, D) := 2 ((Vep)Cp ™1, Dy),

(Rji5, D) := =2 ((Vn")C} ™1, Dy),

R}, Dy) i= =2 ((Vu")(C” crl+ 2" —E;Y),Dy)
(Rji7, D) := ((tr C3~1)*(E" — E}),Da),

Ry, D) i= —([tr (C} 1 + CP7H](tr Ef~H)C™, D),
(Rjig, D) == ([tr (C" ' + Cp 7 H)](trE"1)C", Dy),
(R0, Dy) == ([tr (C" + C")][tr (C" — C"~1)]C", Dy),
(R}, D) i=— ([tr(C" —C" '+ E" ' —E} "I, Dy,).

We note that
(e). Ef) = (uf),Ch) — (a5, C}) = [IT;7 (0, —p°, 0)]1,3. (17)

In the following we use the constants «; defined in Lemma i, i = 1,...,4, and the notation H? := H?(§2)?
HY(92) x H?(£2)?*2
Proposition 3. Suppose that Hypotheses @ and B hold and assume (8). Let My be a positive constant indepen-
dent of h and At. Let (up,pn, Cp) be the solution of scheme (B) with (B). Suppose that for ann € {1,...,Nr}

ICH ™ 0,00 < Mo. (18)

Then, there exist positive constants ¢1 and co, dependent on My but independent of h and At, such that

— 1 n
DAt(§||eh”(2) DE? ) 5a 2||eh||1+50|€h|h+ ||DAtE 12
1 n— Y0 n—
< er (e I8 + 2 gt + 22 mpe)
+ o [Atl\(u, C)l|Z2(pn-1 4m) + h2(EH(u,p, C) 131 (41 ey + 1)} (19)

where o = ve/{32a3 (e + 1) MZ}.
For the proof we use the next lemma, which is proved in Appendix.

Lemma 5. Suppose Hypotheses O and B hold. Let n € {1,...,Nr} be any fivzed number. Then, under the
condition (B) it holds that

Irhllo < cw VALl z2(n-1 ), (20a)
Cwh
I'n < A u, 1(¢n—1 ¢n.fJ2 1Y, QOb
[rhallo < \/EII( P H(en=1 em 2 5 H1) (20Db)
Irhsll—1 < es(IER o + VALCl i (n-1,im,12) + h), (20c)
Ierall-1 < eslICh oo (IER o + 1), (20d)
IR71llo < cw VAL|C[z2(pn-1 1), (20e)
IR72ll0 < (20f)

r||C||H1 t"‘ 1 RALH HQ),
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IRRsllo < csh,

IRE4llo < 411C5 oo lleh 1,

IREsllo < csl|Ch ™ o,

IRAsllo < s (1B, ™o + VALCl a1 n-1,6m;22) + 1),
IRG7llo < csllCh I o (1R llo + B,

IRZsllo < es(1C, ™ lo.e + DIEL o,
[Rigllo < esh,

IR} 10/l < es VAL Cl 1 g1 0m; 12,
”RZH”O S CS(”E;LL_l”O + Vv At”CHHl(tnflin;LQ) + h)

Proof of Proposition B. Substituting (e}, —e}) into (v, ¢s) in ([Ad) and noting that

e —e, o X}
At

1 B
> Dac(5ller ) - culler ™13,
n _n n n 21/2 ni|2 n|2
Ap((ef,er), (e, —€p)) = E1Heh”1 + dolphn
a? v
(ri,ep) < [lepll—alleplly < 2lrill?y + = lleql?
’ iy a? b
we have
) 1 n|2 4 ni|2 n|2 Oé% ni|2 n—12
D (5leh12) + Zglierl +doles 2 < ThIRIZ, + cullef ™ I3
1

Similarly, substituting E}' and EAtEZ into Dy, in (I5H) and noting that

<E;; ~E} o X7

— -
22 5y ) > Dau(5IBRIR) - calER 1B

5a0< Z’Ez> = €|EZ|% > 0,

n n n n n 1 n
RLED) < IR ol|ERo < |RRNG + ZIIEhH%,

Bj By loX] — L\ _ (poge Ba “EioXp o
At aDAtEh = DAtEh+ At 7DAtEh

0,00 B} 1D acER o,

_ B 1
> [DAERIE - cul B2 - ZIDaERIR,

> [[DaER ]G — oan||w"|

3.5 n n—
= ZIDaERE = cul BRI,
— — €
ca.(Ej;, DaiE}) = Do (5ER ).

n N n n ) n n I = n
(Rh, DacEq) < [IREllol[DacErllo < [IREIE + 51D aERIG,

1 _ 1 _
ok ) 2 5y (kI = e~ 0 XT1R) > 5 e = (1 + asols™ A1
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we have the following two inequalities,

— 1 " .

Dae(GIERIZ) < IRRIE + cu(ERIE + 1B 13), (228)
— (€ 1~ . . .
Dm(§IEhI?) + S IDAERE < IREIE + o[ B, (22b)

Lemma B, (I8) and (IR) imply that

7124 < o (MZIRRIR + I 12) + [ A, Ol oy + 72 (5 10 D) s o gy + M5 +1)],
(23a)
IREIR < ca [MABRI + (MZ + DIEL 3] + ¢, [ANCHaqons.0my + 12 (R IO 1 ey + M+ 15 +1)]
+ 16MG [ler |3 (23b)
Multiplying (228) by o and (E22ZB) by vo/¢, adding them to (E1) and using (23) and 16 MZvo(c+1)/e = v/(2a3),
we get

- 1 n 1 n— 0 n—
Dae (llefl18 + IBEIT) + 5o R17 + Golehf + Q2D sBRIE < o1 (Mo) (5l I + I3 + S IERIE)

#p2(Mo) [ A0, ©) -1 4y + 12 (510852, ) 1 gy 1)

where p;(£), ¢ = 1,2, are polynomials in £ with non-negative coefficients independent of A and At. By taking
ci = pi(My), i = 1,2, we finally obtain (I9).

0
5.4. Proof of Theorem M
We prove Theorem [ through three steps, where the function D(h) defined in (I?) is often used.
Step 1 (Setting ¢ and hg): From (B) and (C7) we have
llebllo < [[uh — [l + [lu® — @}y < 2051k (w,p)° | g2xm = V2erh (24)

for ¢; = v2as1||(u,p)°|| g2 1. The constants ¢; and ¢y in Proposition 8 depend on M.

Now, we take
My = ||Cll¢(L=) + 1. Then, ¢; and c; are fixed. Let c3 and ¢, be constants defined by

3eiT
s 1= exp (3 ) max{ vaall(w, ©)llz2, Ve (l(w,p. C) i 2y + VT) + 1 .

and ¢, = c31/2/70. We can choose sufficiently small positive constants ¢y and hg such that

Q21 [C*{Co + hoD(ho)} + (OZQO + agg)hoD(h0)||CHc(H2)] < 1, (253)
Co 1
< < —
(At <) Dlhy) = 301 (25b)
Co|W|1 00 1
< 100 el
(At|w‘1700 —) D(ho) 43 (25C)

since hD(h) and 1/D(h) tend to zero as h tends to zero.

Let (h, At) be any pair satisfying (4). Since condition (#) is satisfied, Proposition B ensures the existence

and uniqueness of the solution (uy, pp, Cp) = {(u}, py, Cﬁ)}nNil C Vi X Qp X Wy, of scheme (B) with (B).
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Step 2 (Induction): By induction we show that the following property P(n) holds for n € {0,..., Nr},

1 n 70 n v ’YO Y
(a) §||eh||(2) + ?HEh”% + EH%H%(HU +dolenlZz (.1 + 2*€||DAtEh||3g(L2)
P(n): < exp(3einAt) [ S22 + 20 B2 2 AL?|(u, C)|)2 h? C)|I2 At
< exp(3eina) [ Q113 + 2IBGIE + e2{ AR, OlZaqomy + 72 (10, Ol ey +10) ],

(b) ICk

0,00 < ICllezeey + 1,

where ||eh||4%(H1) = |6h|g%(|i|h) = ||EAtEh||£§L(L2) =0 forn=0.
P(n)-(a) can be rewritten as

T, + At Z y; < exp(3c1nAt) (mo + At Z bi)7 (26)
i=1 i=1
where
Lo Y0 | gn Vo i 0 H wi
Tn = §||eh”(2) + ?HEh”%v Yi = Td%”ehﬁ + dolen |7 + ?€||DAtEh||%v
1
by = CQ{AtH(m )15 (pimr 4oy + 12 (Ktn(u,p, )1 (i1 g1 ey + 1) }

We firstly prove the general step in the induction. Supposing that P(n — 1) holds true for an integer
n € {1,..., Nz}, we prove that P(n) also holds. We prove P(n)-(a). Since (B) and (I¥) with My = ||C||¢(p=)+1
are satisfied from (E5d) and P(n — 1)-(b), respectively, we have (M) from Proposition B. The inequality (I9)
implies that

ﬁAtmn + Yn S Cc1 (xn + .Tn,1) + bna
which leads to
Tn + Aty, < exp(3c1At)(rp—1 + Atby) (27)

by (14+c1At)/(1 — 1 At) < (14 c1At) (1421 At) < exp(3c1At), where ¢; At < 1/2 from (E5H). From (24) and
P(n — 1)-(a) we have

n n—1 n—1
Ty + At Z yi < exp(3c1At)(zn—1 + Atby,) + At Z yi < exp(3c1At) (mnl + At Z yi + Atbn)
i—1 i=1 i=1

n—1
< exp(3c; At) [exp{3cl(n —1)At} <xo + At Z bi> + Atbn}

i=1

< exp(3cinAt) (mo + At Z bi) )

i=1

Thus, we obtain P(n)-(a).
For the proof of P(n)-(b) we prepare the estimate of |E}|;. We have

1 Yo 1
7o = SllefI3 + LI = Sllef < 32 (28)
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from (24). P(n)-(a) with (E8) implies that

1, 7o
§Ileh||3 5 I1Eh 1T+ 55 llenllZ ) + dolenl ||h>+ ||DAtEh||z2 (L?)

=
2a2
< exp(3erT) [} 0 + 2 { AL (0, ©) 22 + 12 (1| (w9, ©) s ey + T) }]
< exp(3c1T) |:02At2||(u, O3 + hZ{CQ(H(u,p, C)||§{1(Hz) +T) + c?}]

< {es(at+n)}?, (29)

which yields

2
IER 1 < \/;03(At + h) = c.(At + h). (30)

We prove P(n)-(b) as follows:

IChllo.c0 < IC = IThC™ [lo,00 + HTnC" 0,00 < @21 D(R)[|C — IT,C™ |1 + [T C 0,0
< an D(h)(||IC; = Chll + |Cf = C" [ +|C™ = 11,C"[|1) + [[11,.C" o,
< a1 D(h) [c. (At + h) + asah]|C[|2 + azoh]|C||2] + |C™[|o,c0
< azgi[ex{co + hoD(ho)} + (@20 + az2)ho D(ho) | Clle(ar)] + ICllor)
<1+ |[Cllew=),
from (B0), (8) and (258). Therefore, P(n) holds true.

The proof of P(0) is easier than that of the general step. P(0)-(a) obviously holds with equality. P(0)-(b) is
obtained as follows:

IC ll0.00 < IC} = ThCl0.00 + 1114 C°l0,00 < a1 D(R)(|Ch — C°lly + [ C” = 1, Cl1) + || 1T
< an(azo + as2)hD()]|COll2 + [|C°lo,0
<1+ [[Cllows)-

Thus, the induction is completed.

Step 3: Finally we derive (M) and (IW). Since P(Nr) holds true, we have (M) and
lenllesz2ynezays lenlezqin)s IDacEnllez(rz) < ces(At + h) (31)
from (29). Combining (81) and the estimates

lun — l1||z<>o(L2) < llenlle(z2y + Mlle=(z2) < llenlle 2y + asihll(w,p) oz x a1y,
80"

HEAtCZ H < IDatE}lo + IDacE™|o + HDNC"

asoh 9?C
< |[DaER|lo + FHCHHW" Ltn; H2) \/7H at2

we can obtain the first and the last inequalities of () with a positive constant ¢ independent of h and At.
The other inequalities of () are similarly proved by using (80) and (BT). O

’
Lz(tn—17tn;L2)
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6. NUMERICAL EXPERIMENTS

In this section we present numerical results by scheme (B) in order to confirm the theoretical convergence
order. We refer to [21] for the detailed description of the algorithm that has been used to perform the numerical
simulations. Further numerical experiments for linear scheme (B) as well as for the nonlinear scheme that will
be discussed in our forthcoming paper [I7], Part II, can also be found in [21].

Example. In problem (I) we set 2 = (0,1)? and T = 0.5, and we consider three cases for the pair of v and €.
Firstly we take both viscosities to be equal 107%, d.e., (v,e) = (1071,1071). Secondly, we consider the case
(v,e) = (1071,1073), since the elastic stress viscosity is typically much smaller than the fluid viscosity. Lastly,
we set (v,e) = (1,0) to deal with the non-diffusive case. The functions £, F, u® and C° are given such that the
exact solution to (W) is as follows:

u(x,t) = <§;p2(x7t), —g;/}l(a:,t)) , pla,t) =sin{r (a1 + 222 + 1)},
Cyi(x,t) = %sinz(ﬂ'xl) sin?(way) sin{m(z + 1)} + 1,

Cao(z,t) = % sin?(mxy ) sin® (o) sin{m(ze + )} + 1, (32)
Cia(z,t) = %sinQ(msl) sin?(way) sin{m(x; + x2 + 1)} (= Cor(x,t)),

Y(x,t) = \2/—5 sin? (7, ) sin® () sin{m(zy + 2 +1)}.

Proposition @ and Theorem M hold for any fixed positive constant §y. Here we simply fix g = 1. Let N
be the division number of each side of the square domain. We set N = 16, 32,64, 128 and 256, and (re)define
h :=1/N. The time increment is set as At = h/2. To solve Example we employ scheme (B) with (u?,C)) =
[H§P<u07 0, CO)]L?)'

For the solution (uy, pn, Cp,) of scheme (B) and the exact solution (u, p, C) given by (B2) we define the relative
errors Eri, 1 =1,...,6, by

. ||uh—Hhquoo(L2) . ||uh—thl||g2(H1)

Erl= , Er2=

Ilnhllngoo(m) HHhu”gz(Hl)

—II — 11 .

Br3 = lon hp||€2(L2)7 Erd— lph — IIplez().),)

11Tnplle2 (22 [ Inplle2 (L2

C,, — 11;,C||p C, — 11;,C

Er5— ” h h ”2 (L2)’ Er6— || h h ||£2(H1)

[ 15, Clle= (L2 [ Ih.Clle2(r1)

where the same symbol II;, has been employed as the scalar and vector versions of the Lagrange interpolation
operator.

The values of the errors and the slopes are presented in the tables below, while the corresponding figures
show the graphs of the errors versus h in logarithmic scale. Table I summarizes the symbols used in the figures.
Tables & Figures I, B and B present the results for the cases (v,¢) = (107%,1071), (1071,1073) and (1,0),
respectively.

For all the cases it is confirmed that all the errors except Er 6 for (v,€) = (1,0) are almost of the first order
in h. These results support Theorem . Since there is no diffusion for C in equation (Id) in the case (v,¢) = (1, 0),
it is natural that the slope of Er 6 does not attain 1. While the theorem is not proved for e = 0 and Er 3 is not
discussed in this paper, scheme (B) has worked well in the numerical experiments.
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up Ph Chu

) ° AN A O |
Erl Er2 Er3 FEr4 Er5 Er6

TABLE 1. Symbols used in the figures.

h Er1l slope Er2 slope

1/16 6.15 x 1072 ~ 7.85x 1072 -
1/32 221 x1072 148 3.13x1072 1.33
1/64 8.97x107% 1.30 1.31x1072 1.25
1/128 4.07x 1073  1.14 6.34x 1073  1.05
1/256 1.95x 1073 1.07 285x107% 1.15

h Er3 slope Er4 slope

1/16 2.02x 107! - 1.70x 107! -
1/32 7.12x107% 151 4.99x1072? 1.77
1/64 2.68x 1072 141 1.86x 1072 1.42
1/128 1.11x1072 127 839x107% 1.15
1/256 5.01 x 1073 1.15 3.69 x 1073  1.19

h Erb5 slope Er6 slope

1/16 2.87 x 1072 - 1.23x107¢ -
1/32 114 x 1072 133 441x1072 148
1/64 4.91x 1072 1.22 1.72x1072 1.36 107
1/128 230 x 1073 1.09 7.64x107% 1.17 i
1/256 1.11 x 1072 1.05 3.59 x 1073 1.09

10(l -

Relative errors
S 3
o a

17256 1/128 1/64 1/32  1/16
h

TaBLE & FIGURE 1. Errors and slopes for (v,e) = (1071,1071)

7. CONCLUSIONS

In this paper we have presented a linear stabilized Lagrange-Galerkin scheme (B) for the Oseen-type dif-
fusive Peterlin viscoelastic model. The scheme employs the conforming linear finite elements for all un-
knowns, velocity, pressure and conformation tensor, together with Brezzi-Pitkdranta’s stabilization method.
In Theorem M we have established error estimates with the optimal convergence order under a mild con-
dition At = O(1/4/1+ |loghl|). The theoretical convergence order has been confirmed by two-dimensional
numerical experiments.

Although we have treated the stabilized scheme to reduce the number of degrees of freedom, the extension
of the result to the combination of stable pairs for (u,p) and conventional elements for C is straightforwards,
e.g., P2/P1/P2 element. Furthermore, the argument can be applied to the three-dimensional case under a little
stronger condition At = O(v/h). In future we will extend this work to the Peterlin viscoelastic model with the
nonlinear convective terms.

We study a nonlinear stabilized Lagrange—Galerkin scheme in our forthcoming paper [17], Part II, where
essentially unconditional stability and error estimates with the optimal convergence order are proved including
the case ¢ = 0.
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Relative errors

N

10(] .

1256 1/128 1/64  1/32  1/16
h

TABLE & FIGURE 2. Errors and slopes for (v,e) = (1071,1072)

h Er1l slope Er2 slope
1/16 5.93 x 1072 - 714 x 1072 -
1/32 1.95x 1072 1.61 288x1072 1.31
1/64 7.65x1073% 1.35 1.20x 1072 1.26

1/128 3.35x 1072 1.19 590 x 1073 1.03
1/256 1.58 x 1072  1.08 2.66 x 1073 1.15

h Er3 slope Er4 slope
1/16 2.52x 107! ~ 2.06 x 107! -
1/32 919x 1072 145 6.08x 1072 1.76
1/64 3.33x1072 147 211x1072 153

1/128 1.29 x 1072 1.37 878 x 1073 1.26
1/256 549 x 1072 1.23 3.74x 1073 1.23

h Er5 slope Er6 slope
1/16 5.17 x 1072 ~ 541 x 107! -
1/32 1.94x1072 142 255x 107!  1.09
1/64 7.55x 1073 1.36 1.05x 107! 1.28

1/128 3.28 x 1072  1.20 3.88x 1072 1.44
1/256 1.53 x 107 1.10 1.35x 1072 1.52

h Er1l slope Er2 slope
1/16 4.43 x 1072 ~ 5.79 x 1072 -
1/32 141 x1072 1.65 2.35x1072 1.30
1/64 451 x1073 1.65 9.83x 1073 1.26

1/128 1.52x 1072 1.57 4.89x 1073 1.01
1/256 5.71 x 107*  1.41 2.10x 1073  1.22

h Er3 slope Er4 slope
1/16 4.80 x 107! - 317x 107! -
1/32 201 x107' 126 9.19x 1072 1.79
1/64 7.05x1072 1.51 295x 1072 1.64

1/128 2.32x 1072 1.61 1.17x107%2 1.33
1/256 8.05x 1072 1.52 501 x 1073 1.23

h Erb5 slope Er6 slope
1/16 5.15 x 1072 ~ 8.03x107! -
1/32 1.94x1072 141 6.05x 1071 0.41
1/64 7.35x 1073 140 5.32x 107!  0.19

1/128 2.92x 1072  1.33 4.04x107'  0.40
1/256 1.25 x 1072  1.23 2.74x 10~%  0.56

Relative errors

10(l .

17256 1/128 1/64 1/32  1/16
h

TABLE & FIGURE 3. Errors and slopes for (v,¢) = (1,0)



TITLE WILL BE SET BY THE PUBLISHER 17

Acknowledgements. This research was supported by the German Science Agency (DFG) under the grants IRTG 1529
“Mathematical Fluid Dynamics” and TRR 146 “Multiscale Simulation Methods for Soft Matter Systems”, and by the
Japan Society for the Promotion of Science (JSPS) under the Japanese-German Graduate Externship “Mathematical
Fluid Dynamics”. M.L.-M. and H.M. wish to thank B. She (Czech Academy of Science, Prague) for fruitful discussion
on the topic. H.N. and M.T. are indebted to JSPS also for Grants-in-Aid for Young Scientists (B), No. 26800091 and
for Scientific Research (C), No. 25400212 and Scientific Research (S), No. 24224004, respectively.

APPENDIX
Proof of Lemma . We prove only (208)—(E0d), (B0H) and (EOI), since the other estimates are similarly obtained.

Let t(s) :=t""1 + sAt (s € [0,1]) and y(z,s) := x — (1 — s)w"(z)At.
We prove (P0d). We have that

rp(x) = {(gt+w() V)u}xt” fAiu )T

s=0

:{(8 +w"(z) - V sct” /0{( +w( -V)u}(y(x,s),t(s))ds
bt

—At/ ds/ aﬁw v)
_At/o 31{(3 +w"( )Qu} (z,51),t(s1))ds1,

— ok

u x,81), ))d51

which implies

Iriallo < At / s {(5+ w00 9) whsn), b)) dsr < wv/Blull s o,

where for the last inequality we have changed the variable from x to y and used the evaluation det(dy(x, s1)/0x) >
1/2 (Vs1 € [0,1]) from Proposition O-(ii).
We prove (P0H). Since we have that

we also have
Ieialo < [ [ ( (2wt 9)abwte o)) s < / (122050t + ol Tna 1. )]s

< [ (| )], + collonte oo b < 2 (|22

< \/:ta31h(1+0w)||( S I

which implies (20H), where Proposition [I-(ii) has been used for the third inequality.
(pOg), (P0d) and (POH) are obtained as follows:

Lz(t" 1 A L2 +CvanHL2(tn—l7tn;L2)>

Irig)l—1 < el[(trC™)(C" = C" '+ BV —Ep Yo < e (IC" = C" Hlo + 12" o + |1E; o)
< s (VAY|C| grrgn—1 4 12) + as2h|C" 2 + |1 E; o)
< (B Mo + VALCl g gn-1,pns22) + h),



18

TITLE WILL BE SET BY THE PUBLISHER

Irhall—1 < ell[tr E" — EDICE o < | CR ™ oo lItr (B — ER) o
< c|Cr Moo (I llo + B3 [lo) < el L™ lo,00 (32hl| C |2 + 1B o)
< lICR oo (1ER o + h),

IRG4llo = 2[[(Ver)Cr ™ o < 4I1C3 ool VeRllo < 41C, ™ lo.ccll€k 1,

where in the estimate of |R},|lo the inequality |[AB|lo < 2|[All0,00llBllo for A € L>°(£2)?*2? and B € L?(£2)**?
has been employed.
Finally, (E0) is proved as

IRZsllo = [lltr (C = + CR~HI(tr ER=H)C o < e(IC7 ™ Moo + I1CH ™ lo,00) B o
< & (1C oo + DIER o,

where for the last inequality we have used the boundedness of ||(A3‘Z71||0’oo obtained by the estimate

(1]
2]
(3]
[4]
(5]
[6]
(7]

(8]
1]

[10]
(11]

(12]
13]

[14]
[15]

[16]

[17]

IC Mlo0o < IICH" = ITWC™ 0,00 + TTLC™ 0,00 < azi D(W)|C " = L C" M|y + [|Cllo)
<anDMh)(|Cp = C" YL +[|C" 7t = I,C" Y1) + [ICllo(r=)

a1 D(h) (s2h]|C" |z + azoh]|C" 7 2) + [[Cllc(ze)

az1hD(h)(az0 + as2)|Cllcmz) + [[Cllows)

ag1h1 D(h1)(az0 + a32)[|Cllc(mz) + [Cllow) < cs- O
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