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Abstract

We consider a class of differential models of viscoelastic fluids with diffusive
stress. These constitutive models are motivated by Peterlin dumbbell theories with
a nonlinear spring law for an infinitely extensible spring. A diffusion term is in-
cluded in the constitutive model. Under appropriate assumptions on the nonlinear
constitutive functions, we prove global existence of weak solutions for large data.
For creeping flows and two-dimensional flows, we prove global existence of a classical
solution under stronger assumptions.

1 Introduction

Modelling of polymeric fluids is a very challenging problem. They can be described by
long chain molecules, represented in simplified models as chains of beads and springs or
beads and rods, surrounded by a Newtonian fluid. Hereby, the spring forces, stochastic
forces and forces exerted by the surrounding fluid are responsible for the movement of
molecules. There are basically three different approaches how to model the environment
with which a polymer molecule interacts: dilute theories, network theories and reptation
theories. The simplest model representing the dilute solution theories is the so-called
dumbbell model consisting of two beads connected by a spring. Considering the linear
force law for the spring force: F(R) = HR, where R is the vector connecting the beads,
we obtain the upper convected Maxwell model, cf. [31]. The well-known Oldroyd-B model
has the stress that is a linear superposition of the upper convected Maxwell model and
the Newtonian model. For the nonlinear force, F(R) = γ(|R|2)R, it is not possible to
obtain a closed system of equations for the conformation tensor, except by approximating
the force law. The Peterlin approximation replaces this law by F(R) = γ(〈|R|2〉)R. That
means, the length of the spring in the spring function γ is replaced by the length of the
average spring 〈|R|2〉 = tr C. Consequently, we can derive the evolution equation for the
conformation tensor C, which is in a closed form, see [31].

In standard derivations of bead-spring models the diffusive term in the equation for the
elastic stress tensor is routinely omitted, and it is generally believed to be very small.
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However, as pointed out in [2, 8, 33] there is indeed a physical rationale for this diffu-
sive term, which appears in the Fokker-Planck equation and, consequently, also in the
corresponding macroscopic equation for the elastic stress.

Mathematical literature dealing with the analysis of micro-macro viscoelastic models is
growing quite rapidly, see, e.g., [3, 4, 6–8, 13–18, 25, 27, 28, 30] and the references therein.
In the following, we focus in particular on the state of the art regarding the global well-
posedness of initial value problems.

Concerning existence results local in time and global in time for small data let us mention
the classical results of Fernández-Cara, Guillén and Ortega [10], Guillopé and Saut [12],
Engler [9]. Recently, Geissert et al. [11] proved results of this kind for models covering a
wide range of nonlinear fluids including generalized Newtonian fluids, generalized Oldroyd-
B fluids or Peterlin dumbbell models.

The global existence result for fully two- and three-dimensional flow has been obtained by
Lions and Masmoudi [19] for the case of the so-called corotational Oldroyd-B model, where
the gradient of velocity∇v in the evolution equation for the elastic stress tensor is replaced
by its anti-symmetric part 1

2
(∇v − ∇vT ). Unfortunately, the proof cannot be extended

easily to other Oldroyd-type fluids since a specific structure of corotational model has
been used here. Another classical model, the FENE (finitely extensible nonlinear elastic)
model, assumes that the interaction potential can be infinite at finite extension length.
Taking into account the Peterlin approximation we can close the microscopic model and
arrive at the macroscopic FENE-P model. Recently, Masmoudi [26] has proved global
existence of weak solutions for the FENE-P model. The proof is based on the propagation
of some defect measures that control the lack of strong convergence in an approximating
sequence. Masmoudi also considers the PTT and Giesekus models.

A global existence result for one-dimensional shear flows of a class of differential models
of viscoelastic fluids with retardation time can be found in Renardy [32].

In the recent work [1] Barrett and Boyaval studied the diffusive Oldroyd-B model both
from the numerical as well as the analytical point of view. For two space dimensions
they were able to prove the global existence of weak solutions. Constantin and Kliegl [5]
establish global regularity in two space dimensions for the diffusive Odroyd-B model.

For finitely extensible dumbbell models having a diffusive term the global existence of
weak solutions has been proved by Barrett and Süli in [2].

The main aim of the present paper is to study a model for complex viscoelastic fluids,
where the Peterlin approximation is used in order to derive the evolution equation for
the elastic conformation tensor. Note that we also allow diffusive effects for the evolution
of elastic stress. This paper is a generalization of our recent results [20], where polyno-
mial (linear or quadratic) functions ψ, χ, φ have been considered in the definition of the
elastic stress tensor and in the evolution equation of the conformation tensor. Numerical
approximation of this model by means of the stabilized Lagrange-Galerkin method has
been analysed in our recent papers [21, 22]. Let us note that in [20] we have shown that
for more regular initial data v0 ∈ H2(Ω) ∩ H1

0 (Ω), div v0 = 0, C0 ∈ H2(Ω), Ω ⊂ R2

there is a unique weak solution that is more regular; in particular v ∈ L∞(0, T ;H2(Ω)),
C ∈ L∞(0, T ;H2(Ω)). In the present paper we will extend the results from [20] and allow
more general behavior of nonlinear functions ψ, χ, φ arising in the viscoelastic constitutive
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law. For a new general model we will be now able to show the existence of a weak solution
in two or three space dimensions, such that v ∈ L∞(0, T ;H)∩L2(0, T ;H1

0 (Ω)), div v = 0,
C ∈ Lp(Ω× (0, T )) ∩ L1+δ(0, T ;W 1,1+δ), for some δ > 0.

Furthermore, in the case of three-dimensional creeping flow or for two-dimensional flows
we will show the existence of a global classical solution under stronger assumptions.

The paper is organized in the following way. In the next section we present a mathematical
model for our complex viscoelastic fluid. Further, in Section 3 we show formal energy
estimates. Section 4 is devoted to the proof of global existence. We solve our problem by
combining the Galerkin approximation in velocity with the theory of quasi-linear parabolic
equations for the stress tensor. The existence of a global classical solution is studied in
Section 5.

2 Governing equations

Let Ω ⊂ Rd, d = 2, 3, be a bounded smooth domain and let T > 0. We consider the
equation of motion of an incompressible viscoelastic fluid,

∂v

∂t
+ (v · ∇)v = ν∆v + div T−∇p, (1a)

div v = 0, (1b)

on Ω × (0, T ). Here v(x, t) ∈ Rd and p(x, t) ∈ R denote, for all (x, t) ∈ Ω × (0, T ), the
velocity of the fluid and the pressure, respectively. The elastic stress tensor T is related
to the conformation tensor C in the following way:

T = ψ(tr C) C, (1c)

where C(x, t) ∈ Rd×d is a symmetric positive definite tensor for all (x, t) ∈ Ω× (0, T ) and
satisfies an equation of the form

∂C

∂t
+ (v · ∇)C− (∇v)C−C(∇v)T = χ(tr C) I− φ(tr C)C + ε∆C. (1d)

We prescribe the homogeneous Dirichlet boundary condition on v and the no-flux bound-
ary condition on C, i.e. (

v,
∂C

∂n

)
= (0,0)

on ∂Ω× (0, T ). We impose the initial condition

(v(0),C(0)) = (v0,C0) (1e)

on Ω for sufficiently smooth initial data (v0,C0). The given constants ν and ε describe
the fluid viscosity and elastic stress diffusivity, respectively.
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3 Assumptions and a priori bounds

We assume that ψ, χ and φ are continuous positive functions defined on [0,∞) and ψ
is moreover continuously differentiable and non-decreasing. Further, we suppose that for
some positive constants Ai, Bi, Ci, i = 1, 2 the following polynomial growth conditions
are satisfied for large s:

A1s
α ≤ φ(s) ≤ A2s

α, B1s
β ≤ ψ(s) ≤ B2s

β, C1s
γ ≤ χ(s) ≤ C2s

γ, (2a)

where

α + β + 1 > 2, α > 0, β ≥ 0, and γ < α + 1 or γ = α + 1 with dB2C2 < A1B1. (2b)

Recall that d is the space dimension.

Remark 1. The growth conditions (2a) for sufficiently large s >> 1 hold, in particular,
if

lim
s→∞

φ(s)

sα
= A, lim

s→∞

ψ(s)

sβ
= B, lim

s→∞

χ(s)

sγ
= C

for some positive constants A,B,C.

In what follows we shall use the following notation

V := {v ∈ H1
0 (Ω)d| div v = 0}, equipped with the norm ‖|v‖| := ‖∇v‖L2(Ω),

H := {v ∈ L2(Ω)d| div v = 0,v · n = 0 on ∂Ω},

b
(
u,v,w

)
:=

∫
Ω

(u · ∇)v ·w dx , u,v,w ∈ V,((
v,w

))
:=

∫
Ω

∇v : ∇w dx , v,w ∈ V,

B
(
v,C,D

)
:=

∫
Ω

(v · ∇)C : D dx , v ∈ V, C,D ∈ H1(Ω)d×d,((
C,D

))
:=

∫
Ω

∇C : ∇D dx , C,D ∈ H1(Ω)d×d.

Analogously as in [34] one can easily show that

b(u,v,w) = −b(u,w,v) u,v,w ∈ V (3a)

B(v,C,D) = −B(v,D,C) v ∈ V, C,D ∈ H1(Ω)d×d. (3b)

3.1 Formal energy estimates

We proceed with the formal energy estimates for our model. We multiply the momentum
equation (1a) by v and integrate using the Gauss theorem. The solenoidality of velocity
and the boundary conditions yield the following equality

1

2

∫
Ω

|v|2 dx − 1

2

∫
Ω

|v0|2 dx = −ν
∫ t

0

∫
Ω

|∇v|2 dx dt −
∫ t

0

∫
Ω

T : ∇v dx dt . (4)
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Now, we multiply (1d) by ψ(tr C), take half the trace and integrate this equation using
the Gauss theorem. Again, by the divergence freedom of velocity and the boundary
conditions, we have

1

2

∫
Ω

Ψ(tr C) dx +
ε

2

∫ t

0

∫
Ω

ψ′(tr C)|∇tr C|2 dx dt+

+
1

2

∫ t

0

∫
Ω

φ(tr C)ψ(tr C)tr C dx dt −
∫ t

0

∫
Ω

(∇v) : Cψ(tr C) dx dt =

=
1

2

∫
Ω

Ψ(tr C0) dx +
d

2

∫ t

0

∫
Ω

χ(tr C)ψ(tr C) dx dt ,

(5)

where Ψ denotes the primitive function of ψ. Thus, the sum of equations (4) and (5) yields
the following energy equality

1

2

∫
Ω

|v|2 dx +
1

2

∫
Ω

Ψ(tr C) dx + ν

∫ t

0

∫
Ω

|∇v|2 dx dt+

+
ε

2

∫ t

0

∫
Ω

ψ′(tr C)|∇tr C|2 dx dt +
1

2

∫ t

0

∫
Ω

φ(tr C)ψ(tr C)tr C dx dt =

=
1

2

∫
Ω

|v0|2 dx +
1

2

∫
Ω

Ψ(tr C0) dx +
d

2

∫ t

0

∫
Ω

χ(tr C)ψ(tr C) dx dt .

(6)

Let us note that we have used the property of the trace of the product of square matrices
that tr ABT = tr BAT = A : B and consequently the identity∫ t

0

∫
Ω

T : ∇v dx dt −
∫ t

0

∫
Ω

(∇v) : Cψ(tr C) dx dt = 0.

Employing the assumptions (2a) we get

1

2

∫ t

0

∫
Ω

φ(tr C)ψ(tr C)tr C dx dt ≥ A1B1

2

∫ t

0

∫
Ω

(tr C)α+β+1 dx dt

and

d

2

∫ t

0

∫
Ω

χ(tr C)ψ(tr C) dx dt ≤ dB2C2

2

∫ t

0

∫
Ω

(tr C)β+γ dx dt .

Hence, equality (6) together with (2b) implies

tr C ∈ Lp(Ω× (0, T )) for p := α + β + 1 > 2 (7a)

and

v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ). (7b)

It can be proved that (1d) preserves the positive definiteness of the conformation tensor
at least for enough smooth C, cf. [29] and the references therein. For a symmetric positive
definite matrix D there exists an equivalent norm given by its trace, i.e. for some positive
constants c1, c2 it holds that

c1‖tr C‖Lp(Ω×(0,T )) ≤ ‖C‖Lp(Ω×(0,T )) ≤ c2‖tr C‖Lp(Ω×(0,T )). (8)
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See, e.g., [29] for the details. Therefore (7a) implies C ∈ Lp(Ω × (0, T )). Consequently,
we get bounds on φ(tr C)C, ψ(tr C)C and χ(tr C) in Lq(Ω× (0, T )) for

q = min

{
p

α + 1
,

p

β + 1
,
p

γ

}
. (9)

If β > 0, our assumptions imply that q > 1.

However, if β = 0 we only have p = α + 1 > 2 (which implies α > 1), and hence q as
defined above equals 1, which is not enough for our further needs. Therefore we proceed
with the second a priori estimate for the conformation tensor. We multiply equation (1d)
by (tr C)α−1. Taking the trace of the resulting equation and integrating it using the Gauss
theorem yields

1

α

∫
Ω

(tr C)α dx + ε(α− 1)

∫ t

0

∫
Ω

(tr C)α−2|∇tr C|2 dx dt+

−
∫ t

0

∫
Ω

(∇v) : C (tr C)α−1 dx dt +

∫ t

0

∫
Ω

φ(tr C)(tr C)α dx dt =

=
1

α

∫
Ω

(tr C0)α dx + d

∫ t

0

∫
Ω

χ(tr C)(tr C)α−1 dx dt .

(10)
Employing assumptions (2) we can write∫ t

0

∫
Ω

φ(tr C)(tr C)α dx dt ≥ A1

∫ t

0

∫
Ω

(tr C)2α dx dt = A1‖tr C‖2α
L2α(Ω×(0,T ))

and, by the Hölder and the Young inequalities, we have

d

∫ t

0

∫
Ω

χ(tr C)(tr C)α−1 dx dt ≤ dC2

∫ t

0

∫
Ω

(tr C)α+γ−1 dx dt

≤ dC2|Ω|(α+1−γ)/(2α)

∫ T

0

‖tr C‖α+γ−1
L2α dt .

For the following, let ‖ · ‖q abbreviates the notation of the norm in Lq(Ω). If γ < α + 1,
we can estimate that right hand side by

ε1‖tr C‖2α
L2α(Ω×(0,T )) + c(T, |Ω|, 1/ε1)

for sufficiently small ε1 > 0. If, on the other hand γ = α + 1, we note that, by our
assumptions, A1 > dC2. Similarly, using the first a priori estimates for velocity (7b), we
get ∫ t

0

∫
Ω

(∇v) : C (tr C)α−1 dx dt ≤ c

∫ T

0

‖∇v‖L2‖tr C‖αL2α dt

≤ ε2‖tr C‖2α
L2α(Ω×(0,T )) +

c

ε2
‖∇v‖2

L2(Ω×(0,T )),

for sufficiently small ε2 > 0. Thus, the energy equality (10) yields tr C ∈ L2α(Ω× (0, T ))
and the norm equivalence (8) gives us also C ∈ L2α(Ω × (0, T )), α > 1. From this, we
can now also conclude that φ(tr C)C, ψ(tr C)C and χ(tr C) are in Lq(Ω× (0, T )) for a
q > 1.
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4 Main result

In what follows we explain in which sense a weak solution to the generalized Peterlin
model (1) will be considered.

Definition 1. (weak solution)
Let the initial data (v0,C0) ∈ H × L2(Ω)d×d and let the couple (v,C) be such that

v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ),
∂v

∂t
∈ Lq(0, T ;W−3,2(Ω)),

C ∈ Lp(Ω× (0, T )) ∩ L1+δ(0, T ;W 1,1+δ),
∂C

∂t
∈ L1+δ(0, T ;W−1,1+δ(Ω))

for some q > 1, p > 2 and 0 < δ << 1. Then (v,C) is a weak solution to the generalized
Peterlin model (1) if it satisfies∫

Ω

∂v

∂t
·w dx +

∫
Ω

(v · ∇) v ·w dx + ν

∫
Ω

∇v : ∇w dx = −
∫

Ω

ψ(tr C)C : ∇w dx∫
Ω

∂C

∂t
: D dx +

∫
Ω

(v · ∇) C : D dx −
∫

Ω

(
(∇v)C + C(∇v)T

)
: D dx+

+ε

∫
Ω

∇C : ∇D dx =

∫
Ω

χ(tr C)I : D dx −
∫

Ω

φ(tr C)C : D dx

for all smooth functions (w,D) such that w is divergence free and zero on the boundary,
and (v(0),C(0)) = (v0,C0).

Theorem 1. (existence of weak solutions)
There exists a weak solution to model (1) in the sense of Definition 1.

In what follows we present the proof of the existence of a weak solution to the generalized
Peterlin model. To this end we introduce an approximation scheme, find energy estimates
and, based on a compactness argument, we pass to the limit with the approximate solution.

4.1 Preliminaries

First of all let us list some preliminary results that shall be used later in the proof of
existence of a weak solution. In order to pass to the limit in some nonlinear terms we
shall employ the following consequence of Vitali’s convergence theorem, see e.g., [24, 29].

Lemma 1.
Let M ⊂ Rn be measurable and bounded. Let the sequence {gm}∞m=1 be uniformly bounded
in Lq(M) for a q > 1. Finally, let gm → g a.e. in M for some g ∈ Lq(M). Then∫

M

gm →
∫
M

g.

The interpolation inequalities in the Sobolev spaces, see e.g., [23], are useful to ensure the
strong convergence of a sequence of approximations in an appropriate functional space,
cf. (17).
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Lemma 2. (interpolation inequality)
Let g ∈ W k,r1(Ω). Then, for r1 ≥ r ≥ r2 it holds that

‖g‖Wk,r ≤ c‖g‖αWk,r1‖g‖1−α
Wk,r2

, (11)

where α ∈ (0, 1) satisfies the equality

1

r
=
α

r1

+
1− α
r2

.

4.2 Approximation scheme

The aim of this subsection is to define an approximation scheme and to find uniform a
priori bounds following the formal energy estimates from Subsection 3.1.

Let {wi}∞i=1 denote the orthonormal countable base of space V, i.e.

V = span{wi}∞i=1.

The m-th approximate solution (vm,Cm) satisfies

vm(t) =
m∑
i=1

gim(t)wi,(
v′m(t),wj

)
+ b
(
vm(t),vm(t),wj

)
+ ν
((

vm(t),wj

))
= −

(
tr Cm(t) Cm(t),∇wj

)
,

vm(0) = v0m,
(12a)

∂Cm

∂t
+ (vm · ∇)Cm − (∇vm)Cm −Cm(∇vm)T = χ(tr Cm) I− φ(tr Cm)Cm + ε∆Cm,

(12b)

Cm(0) = C0

for j = 1, . . . ,m, t ∈ [0, T ].

Obviously, vm is the Galerkin approximation of the velocity. The function v0m is the
orthogonal projection in H of v0 on the space spanned by wj. For any m there exists
a maximal solution vm defined in the interval [0, tm], since (12a) can be rewritten as a
nonlinear system of differential equations equipped with the initial conditions. Uniform
a priori bounds, see (13) below, imply tm = T for all m. Due to parabolic regularity and
a priori bounds on finitely dimensional velocity (13) there exists an approximation of the
conformation tensor Cm = C(vm) satisfying (12b) such that Cm ∈ C1([0, T ], C2(Ω)). It
can be shown that the positive definiteness of the conformation tensor is preserved for a
smooth solution, see, e.g., [5, 29].

To find a priori bounds for (vm,Cm) we repeat the formal energy estimates. Thus, we
multiply (12a) by gjm and take the sum for j = 1, . . . ,m. Further, we multiply equation
(12b) by ψ(tr Cm), take half the trace and integrate. Adding up the resulting equations
we obtain the energy equality that indicates the appropriate functional spaces for the
approximate solution, i.e.

vm ∈ L∞(0, T ;H) ∩ L2(0, T ;V ),

tr Cm ∈ Lp(Ω× (0, T )),
(13a)
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and by (8) we also obtain Cm ∈ Lp(Ω× (0, T )), p = α+ β + 1 > 2. Consequently, by (2)
there exists q > 1 of (9) such that

φ(tr Cm)Cm, ψ(tr Cm)Cm, χ(tr Cm) ∈ Lq(Ω× (0, T )). (13b)

Moreover, for β = 0 we are able to show that Cm ∈ L2α(Ω× (0, T )) for α > 1.

4.3 Compact imbeddings

In order to pass to the limit as m goes to infinity in our approximation scheme (12) we
need compact imbeddings. To this end, let −A denote the Stokes operator, let Xk denote
the domain of (A)k/2 and let X−k denote its dual. Note that V = X1 and H = X0. We
rewrite (12a) in the operator form

v′m = −Avm + Bvm + ECm,

where the operators A, B and E are defined as

A : V → X−3 〈Av,w〉 := ((v,w)) , w ∈ X3,

B : V → X−3 〈Bv,w〉 := −b (v,v,w) , w ∈ X3,

E : Lp(Ω)d×d → X−3 〈EC,v〉 := − (ψ(tr C)C,∇w) , w ∈ X3.

From the theory of the Navier-Stokes equations, cf. e.g., [29, 34] it follows immediately
that Av ∈ L2(0, T ;X−3) and Bv ∈ L2(0, T ;X−3). Further, the Sobolev imbeddings
theorem yields the continuous imbedding of W 2,2(Ω) into C(Ω) for both d = 2, 3, see
e.g., [34]. Thus, we get

〈EC,w〉 ≤ ‖∇w‖C‖ψ(tr C)C‖L1 ≤ ‖w‖X3‖ψ(tr C)C‖1‖L1 ,∫ T

0

‖EC‖qX−3 dt ≤ c

∫ T

0

∫
Ω

|ψ(tr C)C|q dx dt .

This yields EC ∈ Lq(0, T ;X−3), cf. (13b). We conclude v′m ∈ Lq(0, T ;X−3). The Lions-
Aubin lemma and (13a) directly implies that the sequence {vm}∞m=1 is compactly embed-
ded into L2(0, T ;L2(Ω)), since V ↪→↪→ H ↪→ X−3.

Let us now rewrite equation (12b) in the following form

∂Cm

∂t
− ε∆Cm = Fm,

where

Fm := −(vm · ∇)Cm + (∇vm)Cm + Cm(∇vm)T + χ(tr Cm)I− φ(tr Cm)Cm.

Employing a priori bounds (13) we are able to show that Fm ∈ L1+δ(0, T ;W−1,1+δ(Ω))
for a sufficiently small δ > 0. Then, using the bootstrapping algorithm and the standard
parabolic estimates, we obtain

∂Cm

∂t
∈ L1+δ(0, T ;W−1,1+δ(Ω)), Cm ∈ L1+δ(0, T ;W 1,1+δ(Ω)).

This suffices for compact imbedding of {Cm}∞m=1 into L1+δ(Ω× (0, T )). Indeed, since

W 1,1+δ(Ω) ↪→↪→ L1+δ ↪→ W−1,1+δ(Ω),

the Lions-Aubin lemma yields the desired imbedding. This is good enough to pass to the
limit in all terms which appear in the equations satisfied by the approximate solution.
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4.4 Passage to the limit

A priori estimates (13) and the compact imbeddings of {vm}∞m=1 into L2(Ω× (0, T )) and
{Cm}∞m=1 into L1+δ(Ω × (0, T )) imply the *-weak, weak and strong convergences. More
precisely,

vm ⇀∗ v in L∞(0, T ;H), (14a)

vm ⇀ v in L2(0, T ;V ), (14b)

vm → v in L2(Ω× (0, T )), (14c)

Cm ⇀ C in Lp(Ω× (0, T )), (14d)

Cm ⇀ C in L1+δ(0, T ;W 1,1+δ(Ω)), (14e)

Cm → C in L1+δ(Ω× (0, T )). (14f)

We can now pass to the limit in the approximation scheme (12) letting m → ∞. Let us
multiply (12a) and (12b) by ϕ(t) such that ϕ ∈ C1([0, T ]), ϕ(T ) = 0 and integrate by
parts over [0, T ].

We first pass to the limit in the equation for the velocity. Let us only concentrate on the
nonlinear term arising due to the divergence of the elastic stress tensor, since the limiting
process in (12a) is then straightforward due to (14a) - (14c). In order to pass to the limit
in the term ∫ T

0

∫
Ω

ψ(tr Cm)Cm : ∇wϕ(t) dx dt (15)

we employ the consequence of Vitali’s convergence theorem, see Lemma 1. There exists
l > 1 such that gm := ψ(tr Cm)Cm : ∇wϕ(t) is uniformly bounded in Ll(Ω × (0, T )).
Indeed,∫ T

0

∫
Ω

|ψ(tr Cm)Cm : ∇wϕ(t)|l dx dt ≤ ‖ϕ‖lC‖∇w‖lC
∫ T

0

|ψ(tr Cm)Cm|l dt .

It suffices to take l = q, cf. (9), and employ a priori bound (13b).

In what follows we only concentrate on the limiting process in the difficult terms in
equation (12b). The limiting process in other terms can be easily done using (14d) -
(14f). It holds that(

(∇vm)Cm − (∇v)C
)

= (∇vm −∇v) C− (∇vm) (C−Cm) . (16)

Suppose that CD ∈ L2(Ω) (which holds for smooth D). Then, by (14b) we get∫ T

0

∫
Ω

(∇vm −∇v) CDϕ(t) dx dt → 0 as m→∞.

To pass to the limit in the second term on the righ-hand side of (16) we recall Lemma 2.
By the interpolation inequality (11) for k = 0, r1 = p, r2 = 1 + δ and α ∈ (0, 1) satisfying

1

r
=
α

p
+

1− α
1 + δ
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there exists r such that p ≥ r ≥ 1 + δ and

‖C−Cm‖Lr ≤ c‖C−Cm‖αLp‖C−Cm‖1−α
L1+δ . (17)

Since we know that Cm is bounded in Lp(Ω × (0, T )), p > 2 and (14f) holds, we can
conclude that Cm converges to C strongly in Lr(Ω× (0, T )), r > 2. Hence, we write∫ T

0

∫
Ω

(∇vm) (C−Cm) Dϕ(t) dx dt ≤ c‖ϕ‖C
∫ T

0

‖∇vm‖L2‖C−Cm‖Lr dt

≤ c‖ϕ‖C‖∇vm‖L2(Ω×(0,T ))‖C−Cm‖Lr(Ω×(0,T )) → 0

as m → ∞. Passing to the limit in the terms containing the functions φ and χ is done
analogously as for the term (15), i.e. employing Lemma 1.

5 Strong solutions

More many applications of viscoelastic flows, the Reynolds number is very small. It
is hence of interest to consider the case where inertial terms, or at least the inertial
nonlinearity, can be neglected. We shall therefore consider the case where (1a) is simplified
to

∂v

∂t
= ν∆v + div T−∇p. (18)

Our goal in this section is the following theorem.

Theorem 2. In addition to our assumptions above, assume that α > β + 1 and that
|ψ′(s)| ≤ Ksβ−1 for large s. We also assume that the functions φ, ψ and χ are smooth.
If either the inertial nonlinearity (v · ∇)v is neglected or the problem is two-dimensional,
then there exists a global classical solution.

We begin with the case where the inertial nonlinearity is neglected. Using maximal
regularity for the Stokes system, we can obtain the estimate

‖∇v‖Lp/(β+1)(Ω×(0,T )) ≤ C(1 + ‖T‖Lp/(β+1)(Ω×(0,T ))) ≤ C(1 + ‖C‖β+1
Lp(Ω×(0,T ))), (19)

for any p < ∞. We now choose p large, multiply (1d) by (tr C)p−α−1 and proceed as in
(5). To estimate the term arising from the integral of (∇v) : C (tr C)p−α−1, we use the
bound

‖(∇v) : C(tr C)p−α−1‖Lp/(p+β−α+1)(Ω×(0,T )) ≤ C‖C‖p+β−α+1
Lp(Ω×(0,T )). (20)

On the other hand, the integral of φ(C)C(tr C)p−α−1 is bounded below by a constant times
‖C‖pLp(Ω×(0,T )). In this fashion, we therefore obtain an a priori bound for ‖C‖Lp(Ω×(0,T )).
If we choose p large enough, we can use this as the starting point of a bootstrap argument
to obtain higher regularity of the solution. We note that the energy estimate shown so
far has been formal. However, for sufficiently regular initial data, existence of a smooth
solution is guaranteed at least on some time interval, and while a smooth solution exists,
our estimates hold. We can then use this as a basis for a continuation argument in the
usual way, which guarantees global existence of a smooth solution.
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In the two dimensional case, we can adapt this argument even if the inertial nonlinearity
is included. To do this, we need to consider bounds for the term (v · ∇)v = div (vvT ).
As a preparation for this, we need to obtain some additional a priori bounds. We revisit
the equation

∂C

∂t
− ε∆C =

−(v · ∇)C + (∇v)C + C(∇v)T + χ(tr C)I− φ(tr C)C. (21)

Note that we have a priori bounds for v in L∞(0, T ;L2(Ω)) and for C in L2α(Ω× (0, T )).
This yields a bound for the product CvT in L2α(0, T ;Lq(Ω)), where q = 2α/(1 + α) > 1.
It follows that (v · ∇)C = div(CvT ) is bounded in L2α(0, T ;W−1,s(Ω)) for some s > 2.
Moreover, the term φ(tr C)C is in L(2α)/(α+1)(Ω × (0, T )), and the remaining terms are
only better behaved. It follows that all terms are in L2(0, T ;H−1(Ω)), and consequently
we obtain an a priori bound for ∇C in L2(Ω × (0, T )). This yields a bound for ∇T
in Lq(Ω × (0, T )) for some q > 1. Now we also note that T ∈ L2α/(β+1)(Ω × (0, T )),
and 2α/(β + 1) > 2. Thus T ∈ L2α/(β+1)(0, T ;L2(Ω)) ∩ L1(0, T ;W 1,q(Ω)) for some q >
1. We note that in two dimensions W 1,q(Ω) embeds into Hδ(Ω) for some δ > 0. By
interpolation, we find that T ∈ L2(0, T ;Hε(Ω)) for some ε > 0. Consequently, div T ∈
L2(0, T ;H−1+ε(Ω)).

We now consider the Navier-Stokes equation

∂v

∂t
+ (v · ∇)v − ν∆v +∇p = f , div v = 0, (22)

with f ∈ L2(0, T ;H1−ε(Ω)).Our goal is to obtain an a priori bound on v ∈ L2(0, T ;Hε(Ω)).
With A denoting the Stokes operator as above, we multiply by Aεv and integrate. The
result is the identity

1

2

d

dt
‖Aε/2v‖2

L2 + ‖A(1+ε)/2v‖2
L2 = (f ,Aεv)−

∫
Ω

((v · ∇)v)Aεv dx. (23)

On the right hand side, we have

|(f ,Aεv)| ≤ C‖f‖H−1+ε‖v‖H1+ε ,∣∣∣∫
Ω

((v · ∇)v)Aεv dx
∣∣∣ ≤ C‖(v · ∇)v‖H−1+ε‖v‖H1+ε ≤ C‖(v · ∇)v‖L2/(2−ε)‖v‖H1+ε

≤ C‖v‖L2/(1−ε)‖∇v‖L2‖v‖H1+ε ≤ C‖v‖Hε‖v‖H1‖v‖H1+ε

≤ δ‖v‖2
H1+ε + C(δ)‖v‖2

H1‖v‖2
Hε . (24)

We can now use the existing a priori estimate on ‖v‖2
H1 in L1(0, T ) and a standard

Gronwall argument to obtain the a priori bound on v ∈ L∞(0, T ;Hε(Ω)).

We now turn to getting bounds on (v · ∇)v = div (vvT ). We first note that, from the
energy inequality, we already have an a priori bound for the norm of v in L∞(0, T ;L2(Ω))
and hence for div (vvT ) in L∞(0, T ;W−1,1(Ω)). Next, we choose p large, and set s =
p/(β + 1), s′ = s+ δ and r = 2s′/(s′ + 2). Then we note that Lr(Ω) ⊂ W−1,s′(Ω) by the
Sobolev embedding theorem, and moreover, if we choose δ sufficiently small relative to ε,
then the product of a function in Ls(Ω) and a function in Hε(Ω) is in Lr(Ω). We find

‖(v · ∇)v‖Ls(0,T ;W−1,s′ (Ω)) ≤ C‖(v · ∇)v‖Ls0,T ;Lr(Ω) ≤ C‖v‖L∞(0,T ;Hε(Ω))‖∇v‖Ls(Ω×(0,T )).
(25)
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Finally, we note that, by interpolation, we have

‖(v · ∇)v‖Ls(0,T ;W−1,s(Ω)) ≤ ν‖(v · ∇)v)‖Ls(0,T ;W−1,s′ (Ω)) + C(ν)‖(v · ∇)v)‖L∞(0,T ;W−1,1(Ω)),
(26)

where ν can be chosen arbitrarily small. Combining all these estimates, we finally have
the bound

‖(v · ∇)v‖Ls(0,T ;W−1,s(Ω)) ≤ ν‖∇v‖Ls(Ω×(0,T )) + C(ν), (27)

where ν can be chosen arbitrarily small and C(ν) is bounded. Consequently, we can treat
the inertial nonlinearity as a perturbation and follow the same argument as above for the
case of creeping flow.

6 Conclusions

We have proved global in time existence of weak solutions to the diffusive Peterlin model
describing time evolution of complex viscoelastic fluids, see Theorem 1. The governing
equations are as given in Section 2 and we need to assume growth conditions on the
nonlinear constitutive functions as given in Section 3. The method of proof is based
on a priori estimates which combine energy estimates and standard estimates for linear
parabolic equations. These a priori estimates are combined with a Galerkin discretization
of the momentum equation and compactness estimates which allow passing to the limit.
Under a strengthend growth condition, we can also prove global existence of smooth
solutions for creeping flows, as well as in the two-dimensional case, see Theorem 2.
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[23] J. Málek, J. Nečas, M. Růžička, and M. Rokyta, Weak and measure-valued
solutions for evolutionary PDE’s, vol. 13, Chapman & Hall, London, 1996.
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[29] H. Mizerová, Analysis and numerical solution of the Peterlin viscoelastic model,
PhD thesis, University of Mainz, Germany, 2015.

[30] M. Renardy, An existence theorem for model equations resulting from kinetic the-
ories of polymer solutions, SIAM J. Math. Anal., 22 (1991), pp. 313–327.

[31] M. Renardy, Mathematical analysis of viscoelastic flows, CBMS-NSF Conference
Series in Applied Mathematics 73, Society for Industrial and Applied Mathematics,
2000.

[32] M. Renardy, Global existence of solutions for shear flow of certain viscoelastic
fluids, J. Math. Fluid Mech., 11 (2007), pp. 91–99.

15



[33] J. D. Schieber, Generalized Brownian configuration field for Fokker–Planck equa-
tions including center-of-mass diffusion, J. Non-Newton. Fluid, 135 (2006), pp. 179–
181.

[34] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-
Holland Publishing Company, Amsterdam, New York, Oxford, 1977.

16


