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Periods of modular functions
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Stabilizer of Q in I': T, = (Ay) where
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Distribution of periods of j

Tro() = Y i(wg), Qp = {bin. quad. forms of discr. D}
QeQp/T

Duke-Friedlander-lwaniec and independently Masri:

Trp(j)

(D) — 720 as D — +o0.

Theorem (B-Imamoglu)
[Conjectures of Kaneko]
(i) Re(j(w)) < 744, ((z)=q 1 +7444..))
and the bound is optimal;

(ii) If all the partial quotients in the period of the (negative)
continued fraction expansion of w are > 3e°°, then
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For N > 2, consider

N++VN2—4 —
SRS SN N = (W),
where
1
(30,31,82,...) =49 — 1
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with (ao € Z,a; > 2fori> 1).
Theorem (B-I)
For all N > 2, j(MYIP=4) ¢ R and |im,\,%oj(’\’+7 Vz"’z—“) — 744,

Theorem (B-I)

Let v and w be two quadratic irrationalities with respective periods
in their c.f. a1,...,an and by, ..., b, with m|n.

If b, > e>a, forallr=1,...,n, then

Re(j(w)) > Re(j(v))-
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Periods of j at Markov quadratics

Hurwitz: For all x € R,

for infinitely many g with (p,q) = 1.

o) =tim inf allaxl, L= {r(9hex € [0 |

» v(x) =0 for almost all x € R

» if v(x) > 0, x is called badly approximable. v(x) > 0 < all
partial quotients of x are bounded. Example: quadratic
irrationalities (their c.f. is eventually periodic)

» if x and x” are PGL(2, Z)-equivalent, then v(x) = v(x’)



L 1[0, F|is continuous, where F ~ 0.220856 is Freiman's
constant, L (1 (F. 1] has a fractal structure, LN (3, %] is discrete.

w is a Markov quadratic if v(w) € LN (3, %] and any other x
with v(x) = v(w) is PGL(2,Z) equivalent to w.

Markov quadratics:

(2,3) (3,2.4)
(3,2,3,4)
/\
(3,2,32,4) (3,2,4,2.3, 4)

/\ /\

(37273374) (37273:4?273254) (37274a (2=3=4)2) (37(274)272%334]

NN N /N



Theorem (B-I)

(i) The convergence property is preserved for the periods of j at
the Markov quadratics.

(ii) The sandwich property is preserved for the periods of j at the
Markov quadratics that are located below some level in the
tree.
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Farey parametrization of Markov tree
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Why does Diophantine approximation come in?

Let w have a purely periodic c.f.

vi=w, a=[wvl; Vipl = . a1 = [Vig1]
aj — Vv

Then w = (a1,---,3,) and v; = (37, 3i41, - > an, -, 3i-1)-

Another algorithm:

wi—1=0( )(w) ifw>1,

wip=w—1 wi = w;

1_W_:(11 Dwi) if0<w <1

This algorithm is cyclic: we get wy, ..., wp.



Lemma

2mi/3

J(w) L / j(2)K(z, w)dz,

"~ 2logep Joriss

where
¢

K(z,w):z L1

e~ z — W, Z— W
i=1

and w; is the Galois conjugate of w;.



Example: proof of Th. 2.

For 6 € [r/3,2m/3],

» Ky(e®) = Ky(e'™9) = Tm(j(w)) =0,

Kn(e'®)
2logep

> Ky(e®) — 2log N as N — oo = —~Llas N — oo =

_ 2r/3
lim j((N)):/ j(e)iedf = 744.
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