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Abstract

This thesis investigates some effective and quantitative aspects of metric fixed
point theory in the light of methods from proof theory. The thesis consists of
contributions to the program of proof mining, as developed by Kohlenbach and
various collaborators since the early 1990s (but with roots back to Kreisel’s pro-
gram “unwinding of proofs” from the 1950s). The contributions involve both
case studies — studying given prima facie ineffective proofs of certain fixed point
theorems to extract “hidden” effective information like explicit bounds and rates
of convergence for iteration sequences, and also developing further the use of
the logical machinery involved. The main theoretical tools involve Godel’s func-
tional (“Dialectica”) interpretation combined with negative translation and a
variant of Howard’s majorizability relation — and specifically the logical metathe-
orems of Kohlenbach and Gerhardy, where the reach of these techniques is ex-
tended to formal systems for analysis with various abstract spaces added as new
ground types.
The main contributions of the thesis are twofold:

(1) We construct explicit and effective full rates of convergence for the Picard
iteration sequences for two classes of selfmaps on metric spaces. One of
these are Kirk’s asymptotic contractions, and as a byproduct of the logical
analysis we obtain a string of results concerning this class of mappings, in-
cluding a characterization on nonempty, bounded, complete metric spaces
as exactly the mappings for which there exists a point to which all Picard
iteration sequences converge with a rate of convergence which is uniform
in the starting point. This shows that in the setting of bounded metric
spaces the asymptotic contractions in the sense of Kirk in some sense are
the most general mappings which still exhibit convergence of the Picard
iteration sequences of “Banach type” — to the same point and with strong
uniformity with respect to the starting point.

The other class of mappings for which we construct explicit rates of con-
vergence are the so-called uniformly continuous uniformly generalized p-
contractive mappings. Logical analysis of the concepts involved — using
monotone functional interpretation — allows us to develop an extension of
a related fixed point theorem from the case where the space is compact
to arbitrary metric spaces. This is possible because monotone functional
interpretation automatically leads us to consider the “right” uniform ver-
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sion of the corresponding contractive type condition — whereas in the proof
of the original theorem the compactness of the space “secretly” upgrades
the generalized contractive condition in question to this uniform version.
Also in this case we were able to give an effective and highly uniform rate
of convergence for the Picard iteration sequences, and by the uniformity
features of the resulting rate of convergence it follows that the mappings
under consideration are asymptotic contractions in the sense of Kirk.

We develop a method for finding, under general conditions, explicit and
highly uniform rates of convergence for the Picard iteration sequences for
selfmaps on bounded metric spaces from ineffective proofs of convergence
to a unique fixed point. We are able to extract full rates of convergence by
extending the use of a logical metatheorem due to Kohlenbach. Our novel
method provides an explanation in logical terms for the fact that we in the
case studies mentioned above could find such explicit rates of convergence.
This amounts, loosely speaking, to general conditions under which we in
this specific setting can transform a V3V-sentence into a V3-sentence via an
argument involving product spaces. This reduction in logical complexity
allows us to use the existing machinery to extract quantitative bounds of
the sort we need.
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Deutsche Zusammenfassung

Diese Dissertation untersucht effektive und quantitative Aspekte metrischer
Fixpunkttheorie mit Hilfe von Methoden der Beweistheorie. Sie besteht aus
Beitragen zum “proof mining”-Programm, entwickelt von Kohlenbach und an-
deren seit Anfang der 1990er Jahre, welches seinerseits seine Urspriingen in
Kreisels “unwinding of proofs”-Programm aus den 1950er Jahren hat. Wir
untersuchen prima facie ineffektive Beweise bestimmter Fixpunkttheoreme, um
ihnen “versteckte” effektive Informationen, wie zum Beispiel explizite Schranken
und Konvergenzraten fiir Iterationsfolgen, zu entnehmen. Dariiber hinaus en-
twickeln wir die Anwendung der logischen Methoden weiter. Die wichtigsten the-
oretischen Methoden umfassen Gddels Funktionalinterpretation (“Dialectica”)
kombiniert mit Negativiibersetzung und einer Variante von Howards Majorisier-
barkeit, sowie logische Metatheoreme von Kohlenbach und Gerhardy. Diese er-
weitern die Anwendung der zuerst genannten Techniken auf formale Systeme der
Analysis, die verschiedene abstrakte Rdume als neu hinzugefiigte Grundtypen
besitzen.
Die zwei wichtigsten Beitrage sind die folgenden:

(1) Wir konstruieren explizite und effektive Konvergenzraten fiir die Picard-
Tterationsfolgen von zwei Klassen von Selbstabbildungen auf metrischen
Raumen. Die eine Klasse sind Kirks asymptotische Kontraktionen. Als
Konsequenz der logischen Analyse erhalten wir aulerdem eine Reihe qual-
itative Ergebnisse beziiglich dieser Klasse von Abbildungen. Insbeson-
dere beweisen wir eine Charakterisierung der Klasse der asymptotischen
Kontraktionen im Sinne von Kirk fiir den Fall nichtleerer beschrénkter,
vollstdndiger metrischer Raume als genau denjenigen Abbildungen, fiir
welche es einen Punkt gibt, gegen den alle Picard-Iterationsfolgen mit
einer Konvergenzrate konvergieren, die gleichméflig beziiglich des Start-
punkts ist. Dies zeigt, dass im Falle von beschrankten metrischen Radumen
die asymptotischen Kontraktionen im Sinne von Kirk in gewissem Sinne
die allgemeinsten Abbildungen sind, die noch eine Konvergenz der Picard-
Iterationsfolgen vom “Banach-Typ” aufweisen, das heifit Konvergenz gegen
einen einzelnen Punkt und mit starker Gleichmaéfigkeit beztiglich des Start-
punktes.

Die andere Klasse von Abbildungen, fiir die wir explizite Konvergenzraten
konstruieren, sind die sogenannten gleichméflig stetigen gleichméflig ver-



allgemeinert p-kontraktiven Abbildungen. Es gelingt uns, ein verwandtes
Fixpunkttheorem zu erweitern, bei dem wir nicht langer die Kompaktheit
des Raumes (X,d) fordern. Aus den GleichméBigkeitseigenschaften der
Konvergenzrate folgt, dass diese Abbildungen asymptotische Kontraktio-
nen im Sinne von Kirk sind.

Wir entwickeln Methoden, um unter allgemeinen Bedingungen explizite
und stark gleichmé&fige Konvergenzraten fiir die Picard-Iterationsfolgen
von Selbstabbildungen auf beschrinkten metrischen Radumen aus ineffek-
tiven Beweisen von Konvergenz gegen einen eindeutigen Fixpunkt zu ent-
nehmen. Wir konnen volle Konvergenzraten extrahieren, indem wir die
Anwendung eines logischen Metatheorems von Kohlenbach erweitern. Un-
sere neuartige Methode liefert eine metamathematische Erklarung fiir die
Tatsache, dass wir in den oben erwahnten Fallstudien solche expliziten
Konvergenzraten finden konnten. Dies kommt allgemeinen Bedingun-
gen gleich, unter denen wir in bestimmten Zusammenhangen V3V-Sitze
mit Hilfe eines Arguments iiber Produktrdume zu V3-Sdtzen umformen
konnen. Diese Vereinfachung der logischen Komplexitit erlaubt es uns,
die vorhandenen Methoden zu nutzen, um quantitative Schranken, wie wir
sie brauchen, zu bestimmen.
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Chapter 1

Introduction

This thesis develops further the uses of proof mining in metric fixed point theory,
and investigates some effective and quantitative aspects of metric fixed point
theory with the help of proof mining. “Proof mining” is a label assigned to a
general project of applying methods from that part of mathematical logic known
as proof theory to core (or “ordinary”) mathematics, and we will give a general
description of this program below.

The main contributions of this thesis can be divided into two parts: In Chap-
ter [Bland Chapter [d]one will find a study of asymptotic contractions in the sense
of Kirk and related classes of mappings, where we construct explicit and highly
uniform rates of convergence for the Picard iteration sequences; and in Chap-
ter 2] we investigate how these results can be explained in logical terms via a new
method for (under general conditions) finding computable and highly uniform
rates of convergence for Picard iteration sequences for selfmaps on bounded
metric spaces from ineffective proofs of convergence to a unique fixed point.
The latter amounts, loosely speaking, to general conditions under which we in
this specific setting can transform a V3V-sentence into a V3-sentence via an ar-
gument involving product spaces. This reduction in logical complexity allows
us to use the existing machinery to extract the quantitative bounds we need.

In this chapter we will discuss the context of the work, including both the
program of proof mining in general and the relevant aspects of metric fixed point
theory.

1.1 Proof mining

“Proof mining” refers to the logical analysis of given mathematical proofs with
the help of tools and insights from that part of mathematical logic known as
proof theory, with the aim of obtaining relevant information “hidden” in the
proofs. This new information can be quantitative or numerical — in the sense
that one obtains e.g. explicit bounds or rates of convergence, but it can also
yield qualitative improvements of the original theorem through showing that the



2 1 Introduction

bounds are uniform with respect to certain parameters, or through weakening of
the premises of the theorem. Kohlenbach’s recent book [T0I] provides a wealth
of information on the various aspects of proof mining, and among other things
the relevant techniques used are described in detail.

Loosely speaking the general structure of proof mining is as follows: Suppose
one has a proof P of a theorem A (of a certain restricted logical form). One then
applies an algorithm provided by a logical metatheorem from proof theory to
get a new proof P’ of a stronger theorem A’. However, strictly speaking this is
only possible in the rare situation where the proof P is completely formalized in
a suitable formal system to which the metatheorem applies. In practice one does
not deal with completely formalized proofs — rather one identifies only the key
steps in the proof, and relies on the original algorithm only as a general guideline
in developing the new proof of the new theorem. The proof P’ will again be
an ordinary mathematical proof in the sense that it does not rely on the logical
metatheorems which provide the algorithm and assure that we can carry out
the analysis. We use the prefix “meta-" when refering to these theorems simply
to signify that they are theorems which say something about formal systems —
in which one can prove theorems. So in comparison to the theorems which one
proves in the relevant formal systems the theorems which are about the formal
systems are in some sense one step “higher”.

Here there are several things which we should say something more about
straight away:

(i) The new theorem A’ could be a strengthening in several ways. If A :=
JzB(z), then it would certainly be an improvement if one could produce
a concrete ¢ such that A’ := B(c), or if one could produce a finite number
of possible witnesses such that

A":=B(e1) V...V Bley).

If A :=VaIyB(x,y), then one could try to produce a program p giving a
realizer, i.e., such that A’ := V& B(z,p(z)). And in the case where

A :=Vz3n € NB(z,n)
one could try to produce a function p giving a bound, i.e., such that
A" :=VaIn < p(z)B(x,n).

To illustrate a possible qualitative improvement of the original theorem
we can consider the case where

A :=VaVy3dn € NB(z,y,n).
Then a new theorem A’ of the form

A = Vavydn < p(x)B(z,y,n),
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where p is a function which does not take y as an argument, would show
that there exists a bound which is uniform in y. This is an improvement
which could be of interest even if one has no interest in the numerical or
quantitative details of particular bounds or realizers. And as an example
where the new theorem has weakened premises we can consider the case
where

A:=(VneNB(n)— C)

and
A= (VYn < NB(n) — C),

for some given N € N. Theorems of the forms considered here are common
in many areas of mathematics, and we will see examples of this later.
In [T09] one can find a survey which includes a discussion of different
kinds of mathematical statements which could be strengthened via proof
mining.

Our ability to extract information such as computable bounds from a proof
of a theorem will be heavily dependent on the logical form of the theorem
and on what kind of proof principles has been used in the proof, and there
are severe limitations on what we in general can do. It is well-known that
given a theorem Va € N3y € NA(z,y), it will not in all cases be possible
to find a computable bound, i.e., a computable p : N — N such that

Vo € N3y < p(z)A(z,y).
And this is the case already in the comparatively simple case where
A(z,y) :=Vz € NBy(z,y, 2),

with Bo(z,y,2) a quantifier-free formula in the language of elementary
arithmetic. This is essentially due to the unsolvability of the halting prob-
lem. Namely, letting T'(e, z, y) be Kleene’s primitive recursive T-predicate,
which expresses that the Turing machine e with input = terminates with
computation y, we can take

Bo(z,y,2) .= (T(x,z,y) V T (x,x, 2)).

Then
Ve € NIy € NVz € N(T(x,z,y) V - T(x,x, 2))

is provable already in first order predicate logic, but a computable bound
p: N — N such that

Vz € Ny < p(z)Vz € N(T'(z,z,y) V -T(x,x,2))

would allow us to solve the special halting problem, since to decide whether
Jy € NT'(z, z, y) for given z € N we would then only have to check whether
Jy < p(x)T(z,z,y), and the latter would be decidable. Thus such a
p: N — N cannot exist.
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In contrast to this we can consider the case where we are given a theorem
Vo € N3y € NAg(z,y), where Ag(z,y) is itself a quantifier-free formula
in the language of elementary arithmetic, and therefore decidable. Then
there always exists a computable bound p : N — N such that

Vo € N3y < p(x)Ao(z,y).

Namely, we can take p(z) := min{y € N : Ag(z,y)}, since such a least
y always exists and since Ag(zx,y) is decidable. But using this argument
we have no control over how fast p grows. In this case the challenge is
to extract information from a given proof of the theorem so as to get a
subrecursive bound, i.e., a bound which does not use unbounded search.

We will be interested in the borderline between the unproblematic case
Vz € NIy € NAy(z,y)
and the highly problematic
Va € Ny € NVz € NAy(x, y, 2),

especially in their manifestations as statements about the convergence of
iteration sequences in metric fixed point theory. A central question will
be in which cases we can predict that a VdV-statement will behave like a
V3-statement.

(ili) We have already mentioned that, strictly speaking, in order to apply the
methods of proof mining the proof of the theorem under consideration
must be formalized in one of a number of suitable formal systems, which
in most cases is an unrealistic requirement. However, it is often much
simpler to establish that a proof can be formalized in a certain formal
system. This can then give important a priori information about what
kind of effective bounds or realizers can be obtained, before any actual
proof analysis has taken place. This is often an important step on the
way to obtain concrete bounds, which can be produced by more rule-of-
thumb or ad hoc methods. Applying proof mining often involves mainly
putting the statement of the theorem and the key concepts involved into
a suitable logical form and identifying the steps in the proof which need
extra consideration. From this one can often infer the existence of uniform
bounds based on general metatheorems, and if one wishes one can go on
to try to actually extract these.

The tools one uses in proof mining were first developed with a different goal in
mind: One wanted to investigate relative consistency between different formal
systems for mathematics. The idea of rather applying these methods from
proof theory in a different way — to analyze given proofs of theorems in core
mathematics — goes back to ideas of Georg Kreisel from the 1950s, and to
his program unwinding of proofs (see [115, [44] [40] and the references cited
therein). Kreisel observed that mathematical proofs of given theorems in many
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cases carry more information than just the truth of the theorem in question.
Furthermore, even though this information might be prima facie hidden, it can
often be uncovered in a systematic way through an appropriate logical analysis.
His basic question was:

“What more do we know if we have proved a theorem by restricted
means than if we merely know it is true?”

Kreisel suggested that proof theory should shift its focus away from the relative
consistency proofs which had been the original motivation for developing the
techniques, and that one should use these methods to try to establish in concrete
cases what extra information lies hidden in a proof which only uses “restricted
means”.

Proof theory had developed as a reaction to the perceived foundational crisis
in mathematics in the early 20th century, which was brought on both by the
inconsistencies which had been discovered in early attempts to develop formal
systems for mathematics, and by the criticism of classical logic and set-theoretic
mathematics which Brouwer and his school stood for. In an attempt to give
mathematics secure foundations, Hilbert together with his followers sought to
prove the consistency of the various formal systems in which parts of mathe-
matics could be developed. One originally hoped to be able to carry out such
a consistency proof using only “finitistic means”, and in this way settle the
matter once and for all. However, as a consequence of Gddel’s incompleteness
theorems, which were published in the early 1930s, it became apparent that
the goal of Hilbert’s program in its original form had to be modified. Godel
showed that to prove the consistency of even first order arithmetic with full
induction, i.e., Peano arithmetic PA, one had to go beyond what was considered
strictly finitary. Consequently one thereafter focused on finding the “minimal”
abstract notions which sufficed to prove the consistency of e.g. PA. (For histor-
ical information concerning the foundational crisis and Hilbert’s program one
can consult e.g. [I70] and [13I].) The consistency of arithmetic was soon proved
by Gentzen via transfinite induction up to the ordinal gy (see [50]), but an
alternative approach developed by Godel will be of much greater concern to
us. In [59] and [60] Godel introduced two proof interpretations: the negative
translation (a similar translation was discovered by Gentzen, and there is some
preceeding work by Kolmogorov [I11] and Glivenko [58]) and the functional (or
“Dialectica”) interpretation. Together with the negative translation the func-
tional interpretation serves to give a consistency proof of classical arithmetic,
and this is not achieved via some kind of transfinite induction, but rather by the
extension of primitive recursive arithmetic to all finite types. Negative trans-
lation combined with Goédel’s functional interpretation form the backbone of
the logical metatheorems which will be the basis for our applications of proof
mining.

As already mentioned, negative translation and functional interpretation are
examples of so-called proof interpretations. In general this means that they are
transformations I mapping formulas A and proofs P of one formal system ¥
to formulas A’ and proofs P! in another formal system Y5, such that certain
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properties considered desirable are preserved. Notably, if P is a proof of A,
then P! should be a proof of A!. Further, there should be some connection
between the formula A and the interpretation A’, at least for certain classes
of formulas — typically atomic formulas are left unchanged, for example. In
particular, if (0 = 1)7 is just 0 = 1, then if one could derive 0 = 1 in ¥; one
would be able to derive 0 = 1 already in the target system X5, and if the proof
that the interpretation works is itself considered unproblematic (because the
transformation I is computable), then one has a relative consistency proof — if
Yo is consistent in the sense that one cannot prove 0 = 1 in the system, then
so is X1. Thus in concrete cases one would try to develop proof interpretations
between (strong) formal systems 31, which for some reason are considered prob-
lematic, and systems Yo for which it is considered easier to justify belief in their
consistency.

The first attempt to study proof interpretations as such appears in Kreisel’s
papers [113] [[T4] (where he also introduced another proof interpretation: the
no-counterexample interpretation). It was Kreisel’s idea to apply proof inter-
pretations not to hypothetical proofs of a contradiction such as 0 = 1, but
rather to concrete proofs from mathematics. For more information on Kreisel’s
unwinding program, where one uses tools from proof theory such as proof inter-
pretations to analyze proofs in mathematics, see [I17, 129 [130]. This general
project has in later years been dubbed “proof mining”. Unwinding of proofs
has had applications in algebra ([40]), number theory ([116, [128]), combina-
tories ([I5, B7]) and computer science ([16, 17]). And from the early 1990s
Kohlenbach and various collaborators have systematically applied proof mining
to (nonlinear) functional analysis and numerical analysis. For applications to
approximation theory, see [88], 89, 90, 110, [145], for applications to ergodic the-
ory and topological dynamics, see [10,[52], 511 [106], and for applications to metric
fixed point theory, see [23] [54], O8] 04 [97, [98] [T04], 107, [T08| 105, 122] 123, 120]
(and also [22], 28] 26], 24, 27], 28], which contain material included in this thesis).

The applications in functional analysis and approximation theory have been
based on Kohlenbach’s monotone functional interpretation (see [91] or Chap-
ter 9 in [I01]), which combines Gédel’s functional interpretation with Howard’s
majorizability relation ([72]). Very roughly we might say that monotone func-
tional interpretation is a proof interpretation which systematically transforms
the statements appearing in a proof into versions where explicit bounds or mod-
uli (like moduli of uniform continuity) are given or required — in a proof of
an implication we must make explicit the bounds or moduli required by (the
monotone functional interpretation) of the premise, and monotone functional
interpretation then transforms these into bounds or moduli for (the monotone
functional interpretation of) the conclusion. In [I09] it is argued that monotone
functional interpretation in many cases provide the right notion of numerical
implication in analysis.

Relatively recently — and in connection with the applications in functional
analysis — general logical metatheorems which rather dramatically extend the
reach of monotone functional interpretation have been developed by Kohlen-
bach [99] and Gerhardy—Kohlenbach [56]. These are based on extensions of
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monotone functional interpretation to formal systems for analysis with vari-
ous abstract spaces (e.g. metric, normed, uniformly convex normed, Hilbert,
CAT(0) or W-hyperbolic spaces) added as new ground types. (Adaptations of
these metatheorems to formal theories for R-trees, Gromov hyperbolic spaces
and uniformly convex W-hyperbolic spaces are given in [121].) The formal sys-
tem involves a formal system A% for analysis, basically Peano arithmetic in all
finite types with quantifier-free axiom of choice, dependent choice and countable
choice, but with only a certain quantifier-free rule of extensionality instead of
the full axiom of extensionality. On top of this one then “adds” e.g. an abstract
bounded metric space, obtaining a theory A“[X,d]. In general the metatheo-
rems are of the following form: Suppose a V3-sentence of a certain kind can be
proved in one of the formal systems under consideration, then from a sufficiently
formal proof one can extract an effective bound which holds in all spaces of the
appropriate kind, and moreover this bound is uniform in all parameters which
satisfy some weak local boundedness criteria. These metatheorems will be cru-
cial both for our concrete results in metric fixed point theory, where we among
other things construct explicit and highly uniform rates of convergence for the
Picard iteration sequences for Kirk’s asymptotic contractions, and also for our
results on rates of convergence for Picard iteration sequences in bounded metric
spaces in general. Details on this are provided in Chapter [2}

For additional information on applications of proof mining and proof mining
in general see also the surveys [102, [I03], the PhD theses of Oliva [146] and
Gerhardy [53], and the survey [124] by L. Leustean. For more information on
the functional interpretation, including Spector’s [I66] extension of the inter-
pretation to full classical analysis via bar recursive functionals, which is used in
the proofs of the metatheorems, see also [9], 46}, 47, [7T], 127, 1477, [169].

1.2 Some aspects of metric fixed point theory

Metric fixed point theory has its roots in methods from the late 19th cen-
tury, when successive approximations were used to establish the existence and
uniqueness of solutions to equations, and especially differential equations. This
approach is particularly associated with the work of Picard, although it was
Stefan Banach who in 1922 (in [I1]) developed the ideas involved in an abstract
setting. Banach’s contraction mapping principle is remarkable both for its width
of applications in analysis, and for its simplicity.

1.2.1 Contractions and rates of convergence

Notation 1.1. We will throughout this thesis let N denote the set of nonneg-
ative integers, including 0.

Definition 1.2. A selfmap f : X — X of a metric space (X,d) is called a
contraction if there exists k < 1 such that
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for all z,y € X. Such a k < 1 is called a contraction constant for f, and the
smallest such k is called the contraction constant.

Definition 1.3. Let (X,d) be a complete metric space, let o € X, and let
f:+ X — X be a mapping. The sequence (x,)nen defined by z,+1 := f(z,) is
called the Picard iteration sequence with respect to f and xg.

Theorem 1.4 (Banach). Let (X, d) be a nonempty complete metric space, and
let f: X — X be a contraction. Then f has a unique fized point z € X,
and for each xo € X the Picard iteration sequence (f™(xo))nen converges to z.
Moreover, we have the following error estimate: For all xg € X and alln > 1

we have
n

1-k

d(f"(x0),2) < d(xo, f(x0)),

where k is a contraction constant for f.

For a proof of this theorem (and a readable survey of different kinds of
extensions) see Chapter 1 in [85]. We note that this theorem immediately gives
us a rate of convergence for any Picard iteration sequence to the unique fixed
point, where by a rate of convergence we mean the following:

Definition 1.5. Let (X, d) be a metric space, let z € X and let (z,),en be a
sequence in X. We say that ® : N — N is a rate of convergence for (z,)nen to
z if

Vn € NVm > ®(n) (d(z,,2) <27").

Thus a computable rate of convergence gives us complete control over the
convergence of a sequence. Corresponding to a rate of convergence we also have
the following concept:

Definition 1.6. Let (X, d) be a metric space and let (z,),en be a sequence in
X. We say that & : N — N is a Cauchy rate for (x,,)nen if

vn € NVk,m > ®(n) (d(zg, zm) <27").

We next include a related notion which we will call a rate of proximity:

Definition 1.7. Let (X, d) be a metric space, let z € X and let (z,),en be a
sequence in X. We say that ® : N — N is a rate of prozimity for (x,)nen to z if

vn € Nam < &(n) (d(zpm,z) <27").



1.2 Some aspects of metric fixed point theory 9

This notion might seem somewhat artificial — and in fact, rates of proximity
are of relevance to us mainly as a step on the way to a full rate of convergence.
Rates of proximity will turn up in a natural way in the course of our proof
theoretic analysis of (ineffective) proofs that for certain kinds of selfmappings
on metric spaces all Picard iteration sequences converge to a unique fixed point.
In Chapter [2| we will discuss how we can extract rates of proximity from given
such proofs of convergence to a unique fixed point for various classes of selfmaps
of metric spaces, and we will investigate conditions which allow us to obtain a
rate of convergence instead.

Remark 1.8. We will sometimes also say that a function ® : (0,00) — N such
that
Ve > 0Vm > @(e) (d(zm, 2) < €)

is a rate of convergence for (z,)nen to 2z, and similarly we will when this is
convenient for notational reasons consider mappings ® : (0,00) — N as Cauchy
rates or rates of proximity.

Also the following notion will be relevant later:

Definition 1.9. Given a metric space (X, d) and a mapping f : X — X we say
that a sequence (,)nen i an approzimate fived point sequence for f if for all
€ > 0 there exists n € N such that for all m > n we have d(2.,, f(zm)) < €.

Another important aspect of the Banach contraction mapping principle which
is worth noting is that the rate of convergence is uniform in the starting point
xg € X except through an upper bound on the initial displacement, i.e., ex-
cept through a b > 0 such that d(zo, f(z¢)) < b. Consequently, if the space is
bounded, then the rate of convergence is fully uniform in the starting point. In
fact, the rate of convergence does not depend on the space (X, d), the mapping
f, or the starting point z¢y € X except through a contraction constant k and an
upper bound b on d(zg, f(xo)). In contrast to this, it is not in general the case
that given a continuous (even nonexpansive, see Definition selfmapping
f X — X on a bounded, complete metric space (X, d) such that all Picard
iteration sequences (f™(xo))nen converge to a unique fixed point z € X of f,
then the rate of convergence is uniform in the starting point. Consider e.g., the
following example.

Example 1.10. Let
X ={(n,k) eR*:n, ke Nk <n},
and consider the discrete metric d on X, i.e., such that
d((n. k), (0 K) = 1
for (n, k) # (n/,k"). Define now f: X — X by

(0,0) it k=0,
F((n, k) :{ (n,k—1) if k #0.
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Then (X,d) is complete and bounded, and f is uniformly continuous (and in
fact nonexpansive). Moreover, all Picard iteration sequences converge to the
unique fixed point (0, 0), but there exists no common rate of convergence for all
sequences (f™((k, k)))neN, for k € N.

The definition of a rate of convergence in Definition [I.5is very different from
the “convergence of at least order ¢” as commonly used in numerical analysis
when considering iterative methods:

Definition 1.11. Let (X, d) be a metric space, let z € X and let (zp,)nen be
a sequence in X converging to z € X. Let ¢ > 1. We say that the convergence
of (xn)nen to z is of at least order q if there exists a null sequence (g,,)nen Of
positive reals and a p > 0, with ¢ < 1 in case ¢ = 1, such that

VYn € N(d(z,zp) < &)

and

. En+1
lim -

n— o0 5%

If g =1 then (x,)nen is said to converge (at least) linearly.

In this definition the p is often called the (asymptotic) rate of convergence.
An order of convergence and a rate of convergence in the sense of Definition [I.1]]
give only asymptotic information on the convergence, one gets no information
on how far one has to go in the sequence to get close to the limit. Consider for

example the family of real sequences (x%k))neN, where for k € N we have

I(k) _ 1 ifn= k,
n 27" ifn # k.

All the sequences (x%k))neN converge to 0 with at least order 1 and with rate 1/2,
but there exists no common rate of convergence in the sense of Definition [1.5
And if we do not know which of the sequences (x%k))neN we are given, then
simply knowing that the convergence is of at least order 1 does not tell us how
far in the sequence we have to go to make sure that e.g. xS{“) < 1/2. Evidently a
rate of convergence as given in Definition provides important information if
we are to approximate the limit in practice, and similarly, uniformity properties
of the rate of convergence are important in a setting where our measurements are
inaccurate, as well as for various theoretical purposes. We will be concerned with
rates of convergence in this strong sense, and unless explicitly otherwise stated
“a rate of convergence” will in this thesis refer to the concept in Definition [1.5
rather than the one associated with Definition m (To reduce ambiguity we
could also have used the terminology “modulus of convergence” for the notion
in Definition However, we will for the most part continue to use “rate of
convergence”.)

Another concept used in numerical analysis, particularly when considering
discretization methods, involves saying that a sequence (z,)nen converges to z
with order ¢ > 0 if there exists a constant C' such that

d(zn,2) < Cn™1 (1.1)
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for all n € N, n > 1. To the extent that one is also interested in determining
the constant C' this is closer to our Definition than Definition [I.11]is, since
one does not only consider the limiting behavior as n — oo, and such a C
and ¢ give us a rate of convergence as in Definition [[.5] However, we will not
require that a rate of convergence is brought on this form, partly because we
will not exclude convergence which is slower than what one gets from for
any C,q > 0, and partly because our rates of convergence ® will depend on
other quantitative information given as parameters in ways which will make
the notion in Definition [1.5| more suitable. Treating a rate of convergence as a
function from the natural numbers to the natural numbers also gives us a good
way of handling questions related to computability. As a general reference on
computability theory one might consult [142], and for general information on
computability in analysis, see [I71]. In relation to this it is worth noting that
the rate of convergence for contractions is computable in the sense that we get
a computable ¥ : N x N x N — N such that for all b, k,n € N, all nonempty and
complete (X,d) and all f: X — X with

v,y € X(d(f(2), f(y) < (1= 27")d(x,y))
and zg € X with d(zg, f(xo)) < b we have
Az, f™(w0) < 27"
for all m > W (b, k,n), where z is the unique fixed point.

Remark 1.12. Given k € Nand b € N we thus get one fixed rate of convergence
An. U (b, k,n) in the sense of Definition which holds for all Picard iteration
sequences (f™(xo))nen such that (X, d) is a nonempty complete metric space,
f: X — X is a contraction with a contraction constant ¢ = 1 — 2%, and
zo € X is a point such that d(zo, f(z)) < b. We will somewhat loosely say
that W itself is a rate of convergence for the Picard iteration sequences of a
contraction, whereas the proper thing according to our earlier definition would
be to say that ¥ gives a rate of convergence for each Picard iteration sequence.
For other classes of mappings the quantitative information on which the rate
of convergence for each Picard iteration sequence depends might be different
— it might be e.g., certain number theoretic functions 7,6 : N — N and a
number b € N rather than the numbers b, k — but we will also in these cases in
a similar way speak of rates of convergence W for all Picard iteration sequences,
which then take these number theoretic functions (moduli) 7,5 : N — N as
arguments in addition to b and the desired accuracy n (i.e. n gives the accuracy
27™). When we say that we obtain effective rates of convergence for a certain
class of selfmaps on metric spaces, or for the Picard iteration sequences such
mappings give rise to, we refer to the fact that we obtain such a functional ¥
which is computable in some precise sense, and which take the relevant moduli
as arguments in addition to the desired accuracy. For the precise statement of
this we refer to Chapter

Similarly to the case of rates of convergence we will also call more general
functionals W which take suitable moduli for the mapping etc. as arguments
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and return rates of proximity (respectively Cauchy rates) for a Picard iteration
sequence rates of proximity (respectively Cauchy rates).

The contraction mapping principle has been extended or modified in a great
many ways, by considering other kinds of conditions on the mapping or the
space. But relatively few of these fixed point theorems offer a constructive way
to find or approximate the fixed point, and of these even fewer give information
on error estimates or effective rates of convergence.

From the point of view of computability there is here a great difference
between obtaining a rate of proximity and a rate of convergence. Assume that
(X,d) is a metric space, zg € X, and f : X — X a mapping for which we
know that f"(xg) — z as n — oo, where z € X. If we are allowed to treat the
predicate A C N x N given by

A(k,n) == d(f" (o), 2) < 27"

as c.e., either because of the way we are able to represent the space (X, d), the
mapping f and the real number d(f"(x¢), z), or because of some oracle, then
we get a computable (respectively computable in the oracle) rate of proximity:
Namely, since A is c.e. (in an oracle) there is a predicate C' C N x N x N which
is decidable (in the oracle) such that A(k,n) holds for k,n € N if and only if
Ju € NC(u, k,n) holds. And since f™(z¢) — z we have in particular

Vk € Nan € N(d(f™(z0),2) < 27%),

so given k£ € N we can search for the least m € N which via the primitive
recursive Cantor pairing function j : N x N — N (for a definition see e.g.
Definition 3.30 in [I01]) codes a pair (u,n) such that C(u,k,n) holds, which
gives that
d(f"(xo),2) <27"

holds. And from this m = j(u,n) we can get n via the second of the primitive
recursive projections associated with the Cantor pairing function. On the other
hand, it follows easily from the undecidability of the halting problem that there
exist a metric space (X,d), an g € X, and a mapping f : X — X such that
(f™(x0))nen converges to the unique fixed point z € X of f, such that the
predicate A C N x N given by

Ak, ) := d(f" (wo), 2) < 2°*
is decidable, and such that there exists no computable rate of convergence for
(f™(z0))nen to z. The following is a modification of an example in [10].

Example 1.13. Let (M,,),en be a computable enumeration of Turing machines,
and let (jn)nen be a computable enumeration of the natural numbers with the
property that every natural number appears infinitely often in the enumeration.
Let now (z,,)nen be a sequence of distinct points, and let z # z,, for all n € N.
Let X = {2z} U{x, : n € N}, and define a metric on X such that

d(xy,z) = 27"

if the following condition holds:
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(i) Turing machine M;, , when started with input 0, halts in less than or equal
to n steps, but not in less than or equal to n’ steps for any n’ < n such
that j,» = jn,

and
d(xp,z)=27"

if (i) does not hold, and such that
d(xny xm) = d(xru Z) + d(l‘m, Z)

for n # m. Let finally f : X — X be given by letting f(z,) = x,4+1 and
f(2) = z. Then (f™(x0))nen converges to the unique fixed point z. For if k € N,
then we can let N > k be so large that all the machines among M7, ..., M} that
eventually halt have done so in less than N steps, and then for n > N we get
d(xn,z) < 27% And given k,n € N we can decide whether d(f"(zg),2) < 27*
by first deciding whether (i) holds for n, and if yes, checking whether j,, > k,
and if no, checking whether n > k. But any computable rate of convergence
® would give us a number ®(n + 1) such that if M,, halts, then it halts in less
than ®(n + 1) steps, and this would allow us to solve the halting problem.

Notice that in this example the convergence to the fixed point is not mono-
tone, in the sense that it could be that d(f™ (o), z) > d(f™(xo),z) for m > n.
This can evidently not happen if the mapping is nonexpansive and the limit is
a fixed point:

Definition 1.14. Let (X, d) be a metric space and let f : X — X. We say that
f is nonexpansive if

Yo,y € X (d(f(x), f(y)) < d(z,y)).

Since for a nonexpansive mapping a rate of proximity to a fixed point for
a Picard iteration sequence (f™(zo))nen is already a rate of convergence, it
follows that if f : X — X is nonexpansive and (f™(zg))nen converges to a fixed
point z, then there always exists a rate of convergence which is computable
in an oracle relative to which A(k,n) with A(k,n) = d(f™(zo),2) < 27F is
c.e.. This is in marked contrast to the negative result for the general case
which we saw in Example In the case where (f™(zq))nen converges to

INotice that instead of requiring that f is nonexpansive, it is enough that Vz €
X(d(f(z),z) <d(z,z)). Then if it holds that f™(z9) — z there would exist a rate of conver-
gence which is computable in an oracle relative to which d(f™(zo),z) < 27% (as a predicate
dependent on k,n € N) is c.e.. Mappings which satisfy 32Vz € X (d(f(x),z) < d(z, z)) are
called weakly quasi-nonexpansive. Weakly quasi-nonexpansive mappings were introduced (im-
plicitly) by Kohlenbach and Lambov in [I04], and a related notion was introduced by Dotson
in [41]. The notion of weakly quasi-nonexpansive mappings was considered (independently)
under the name J-type mappings by Garcia-Falset et al. in [48], where numerous fixed point
results which hold for this class of mappings are given, thus establishing the importance of
the notion.
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a fixed point z € X and where the mapping is nonexpansive the sequence of
real numbers (d(f™(xg), 2))nen 18 monotone decreasing and converges to 0. If
on the other hand (d(f™(x0), z))nen converges, but not to 0, then it is possible
that there exists no computable rate of convergence for (d(f"(xo),2))nen to
¢ :=lim,— o d(f™(x0), 2) even if (d(f™(x0), 2))nen is a monotone decreasing and
computable sequence in QN10, 1]. Monotone and bounded sequences (@, )nen in
Q which are computable but which have no computable rate of convergence are
called Specker sequences, and their existence was proved by E. Specker in [165].
As we saw above this cannot happen if the limit of the sequence is 0, and indeed,
the limit of a Specker sequence has to be a noncomputable real number. Thus
since we are here primarily concerned with selfmaps f : X — X of metric
spaces for which we can prove that (f™(zo))nen converges to some z € X, so
that (d(f™(z0), 2))nen converges to 0, the existence of Specker sequences is not
a concern. This is in contrast to other cases in metric fixed point theory where
one e.g. can prove for some sequence (z,)nen that

lim d(xp,Tpy1) =

n—oo
for some unknown ¢ > 0. Then because of Specker’s result it might be that
there is no computable rate of convergence for (d(zn,Zn+1))nen to ¢ even if
(d(xp, Tnt1))nen is monotone decreasing and computable.

The study of classes of mappings for which we are able to construct effec-
tive and highly uniform rates of convergence to the unique fixed point is the
main focus of this thesis, with emphasis both on concrete examples, in partic-
ular Kirk’s asymptotic contractions, and also on developing a general method
— based on methods from proof mining — to find such rates of convergence in
various cases from ineffective proofs of convergence to a unique fixed point.
Whether this is possible will depend among other things on what formal system
we can formalize the proof in, and on certain uniformity features of the moduli
and bounds introduced when developing this formal system for the class of self-
mappings considered. These moduli will typically be number theoretic functions
¢ : N — N (but will sometimes be functionals of higher type, like ¢ : N¥ — N).
When it is possible to extract rates of convergence we will typically end up with
computable functionals of types of degree 2 which in addition to the desired
accuracy n (i.e., 27™) take only majorants of the moduli and bounds introduced
when formalizing the class of selfmaps in question as arguments. The precise
meaning of this will be explained in Chapter 2} Here we will only point out that
this is what makes the rates of convergence uniform; they do not depend on the
mapping, the space or any point in the space except through dependence on
majorants of the mentioned moduli and bounds. This uniformity means that
we can talk in a meaningful way about the rates of convergence being effective
for arbitrary metric spaces; since there is no direct dependence on the points of
the space we do not need to first fix a representation for a particular (separable)
space and investigate the induced computability concept. Representing various
spaces and mappings on these using essentially NN or {0,1}Y and mappings
U : NN — NN is a central element in the theory of computability on structures
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other than the natural numbers (see [14] [89] [TOT], [T7T]).

The uniformity of the rates of convergence can also lead to new mathemat-
ical results: As a byproduct of our treatment of asymptotic contractions in
the sense of Kirk we show that in the setting of bounded metric spaces these
mappings are in some sense the most general which still exhibit convergence of
the Picard iteration sequences of “Banach type” — to the same point and with
strong uniformity with respect to the starting point.

For general information on metric fixed point theory one may consult the
books [61] 63, 80, 85], and for a survey and comprehensive bibliography of
iterative approximations of fixed points, see [18].

1.2.2 Nonexpansive mappings

In the previous section we saw that the fixed point theory for contractions is
extremely nice, even from a computational point of view. There exist a large
number of results which in some sense extend the contraction mapping principle,
and in this section as well as the next ones we will consider some relevant topics.

One of the most natural ways to try to extend the contraction mapping
principle is to consider the limiting case when the Lipschitz constant is allowed
to be 1, in which case we end up with the nonexpansive mappings from Defini-
tion [[L14]

The fixed point theory of nonexpansive mappings is very different from that
of contractions, and the study of these mappings has been one of the main
research areas of nonlinear functional analysis since the 1950s. Nonexpansive
selfmappings of nonempty complete metric spaces do not in general have fixed
points — consider e.g. f: R — R with f(x) = z+1, and one consequently consid-
ers various geometric conditions on the space in order to ensure the existence of
a fixed point. And when fixed points exist, they are in general not unique, since
e.g. the identity mapping is nonexpansive. We will not here study the fixed
point theory of nonexpansive mappings as such, basically because of the lack of
uniqueness of the fixed point. We will here nonetheless include some remarks
about this theory — and we will cite negative results concerning the possibility
of finding computable rates of convergence in this setting. Instead we will study
very general kinds of contractive type mappings — where the requirements on
the mappings do guarantee the uniqueness of any fixed points, and where we
can find computable and highly uniform rates of convergence via proof mining.
It is worth noting that these classes of functions will include mappings which
are not nonexpansive.

The most famous result in the theory of nonexpansive mappings is proba-
bly the following theorem, which was proved independently by Browder [30],
Gohde [65] and KirkP] [82):

Theorem 1.15 (Browder,Géhde,Kirk). If C' is a nonempty, bounded, closed
and convez subset of a uniformly convex Banach space (X, ||||), and if f : C — C
s monexpansive, then f has a fixed point.

2Kirk actually proved a more general result, which involved the concept of normal structure.
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Even in the cases where fixed points of nonexpansive mappings exist — as for
example given by the previous theorem — the Picard iteration scheme can not
in general be used to approximate a fixed point. And this is the case even when
the fixed point is unique, as can be seen by considering e.g. X :=R, C := [0, 1],
f(z) = 1—2x and 29 = 0. Then the Picard iteration sequence alternates between
0 and 1, while the unique fixed point is 1/2. In the setting of Banach spaces (or
hyperbolic spaces) one can then approximate a fixed point via other iteration
schemes, such as the Krasnoselski-Mann iteration ([I32]), which for a given
sequence (A, )nen in [0, 1] and starting point zq is defined as follows:

Tnt1 = (1 = Ap)xpn + A f(xn).

(The special case A, = 1/2 was introduced by Krasnoselski in [I12].) A cen-
tral result in this direction is the following theorem by Ishikawa [74], which
generalizes a theorem of Krasnoselski:

Theorem 1.16 (Ishikawa). Let C be a compact convex subset of a Banach space
(X, 11D, and let f : C — C be nonexpansive. Let (Ap)nen be a sequence in [0, D]
for some b < 1 such that ZZOZO An = 00. Then for any starting point xg € C
the Krasnoselski-Mann iteration sequence (x,)nen converges to a fized point of

f.

Thus in this setting there is an effective iteration converging towards a fixed
point, but Kohlenbach [98] has shown that (essentially due to lack of uniqueness
of the fixed point) there exists no uniform effective rate of convergence:

Theorem 1.17 (Kohlenbach). There exists a (primitive recursively) computable
sequence (fi)ien of nonexpansive functions f; : [0,1] — [0,1] such that for A, :=
1/2 and x} := 0 and the corresponding Krasnoselski-Mann iterations (x)),en
there is no computable function ¢ : N — N such that

vm > 6(1) (|2t — 2| < 1/2).

Here (f1)ien is a computable sequence in the sense of computability theory,
see e.g. [I51] [I7I]. For the iteration sequence in Theorem one can still
find an effective rate of convergence for ||z, — f(z,)|| — 0, and also effective
bounds for the Herbrand normal form of the Cauchy property of (2, )nen, i-e.,
an effective bound on In € N in

Vk € NVg: N — Nan € NVi, j € [n;n + g(n)](|lzi — z;]] < 27F),

where [n;m] denotes the subset {n,n+1,...,m —1,m} of N for m > n. (For
details, see [95, [0F].)

Notice a crucial difference between the relevance of Theorem [[L17and Exam-
ple Since we can conclude by Ishikawa’s theorem that for all the mappings
f1 appearing in Theorem the corresponding Krasnoselski-Mann iterations
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converge we cannot hope to “unwind” a proof of Theorem to get a com-
putable functional which given e.g. a bound on the diameter of the space, a
modulus governing how quickly Y > /A, diverges, or even a representatiorﬁ of
a nonexpansive mapping f on the compact set C' as a functional ¥, : NN — NN,
gives a rate of convergence for f. In Example [[.I3] on the other hand, we do
not conclude that the iteration sequence converges by referring to a general the-
orem on some class of selfmaps of metric spaces whose proof we would like to
“unwind”. Thus despite of Example it could very well be that the theo-
rems we consider as candidates for proof mining involve extra conditions on the
mappings which allow us to obtain effective rates of convergence.

1.2.3 Contractive mappings

In contrast to the case of nonexpansive functions there are other ways of ex-
tending the contraction mapping principle which do retain the uniqueness of
the fixed point: This is a salient property of various kinds of “mappings of con-
tractive type”. We will first mention some results concerning mappings which
are contractive, i.e., which satisfy

Va,y € X (z #y — d(f(x), f(y) <d(z,y))).

When we later consider asymptotic contractions and mappings of contractive
type we will not require that they are contractive, or even nonexpansive. One of
the first extensions of Banach’s contraction mapping principle to become widely
known is the following theorem due to Rakotch [152]:

Theorem 1.18 (Rakotch). Let (X, d) be a nonempty, complete metric space,
and suppose f: X — X satisfies

Yo,y € X (d(f(z), f(y)) < a(d(z,y))d(z,y)),

where a : [0,00) — [0, 1) is monotonically decreasing. Then f has a unique fized
point z, and for all zo € X we have f™(x9) — z as n — oo.

Rakotch’s theorem is related to the following theorem by Edelstein [42]:

Theorem 1.19 (Edelstein). Let (X,d) be a nonempty, compact metric space,
and suppose f: X — X is contractive, i.e., satisfies

Vo,y € X (d(f(x), f(y) < d(z,y)).

Then [ has a unique fized point z, and for all gy € X we have f™(x0) — 2z as
n — 0.

3For information on representation of complete separable metric spaces, in particular
compact metric spaces, and mappings on such spaces, using essentially NN¥ and mappings
U NN — NN, see [14], [89] 10T} [I71].
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For a simple proof of this theorem, see e.g. [64]. (Edelstein actually proved a
version where X is only assumed to be complete, and where the conclusion states
that there exists a unique fixed point z in case there exists an iteration sequence
(f™(x0))nen with a convergent subsequence, and that in this case f™(zg) — 2
as n — o0.) To illustrate the use of the proof mining techniques in question
Kohlenbach and Oliva [I09] extracted a full rate of convergence for the Picard
iteration sequences from a proof of Edelstein’s theorem, and in [55] Gerhardy
and Kohlenbach extracted a full rate of convergence in the case of Rakotch’s
theorem.

A subsequent generalization of Rakotch’s result was obtained by Boyd and
Wong [21]:

Theorem 1.20 (Boyd,Wong). Let (X, d) be a nonempty, complete metric space,
and suppose f: X — X satisfies

Yo,y € X (d(f(), f(y)) < ¢ (d(x,y))),

where ¢ : [0,00) — [0,00) is upper semicontinuous from the right and satisfies
0 < ¢(t) <t fort>0. Then f has a unique fized point z, and for all xy € X
we have f"(x¢) — z as n — 0.

A quantitative variant of the Boyd—Wong theorem was proved by Brow-
der [31]:

Theorem 1.21 (Browder). Let (X,d) be a nonempty, bounded, complete metric
space, and suppose f : X — X satisfies

Vr,y € X (d(f(2), f(y) < ¢ (d(z,y))),

where ¢ : [0,00) — [0,00) is monotone nondecreasing and continuous from the
right, such that ¢(t) <t for t > 0. Then there exists a unique z € X such that
for all zy € X we have f™(x9) — z as n — oo. Moreover, if dy is the diameter
of X, then

A" (20), 2) < 6" (do),

and ¢™(dp) — 0 as n — oo.
In [I33] Meir and Keeler generalize the Boyd—Wong theorem:

Theorem 1.22 (Meir,Keeler). Let (X, d) be a nonempty, complete metric space,
and suppose [ : X — X satisfies

Ve > 036 > 0Va,y € X (e <d(z,y) <e+d —d(f(x), f(y) <e). (1.2)

Then [ has a unique fized point z, and for all o € X we have f™(xg) — 2z as
n — 0.

A mapping f : X — X on a metric space (X,d) which satisfies the condi-
tion in the theorem of Meir—Keeler is called a Meir—Keeler contraction.
In order to better compare the Boyd—Wong condition with the Meir—Keeler
condition, the latter has been characterized by T.C. Lim [125] as follows:
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Theorem 1.23 (Lim). Let (X,d) be a metric space, and let f : X — X be
a mapping. Then f is a Meir—Keeler contraction if and only if there exists a
(nondecreasing and right continuous) function ¢ : [0,00) — [0, 00) with $(0) =0
and ¢(s) > 0 for s > 0, such that

va,y € X (2 £y — d(f(@), f() < 6(d(z1))),

and such that for every s > 0 there exists § > 0 such that ¢(t) < s for all
te[s,s+4].

The mappings in the theorems directly above are all contractive. But there is
also a very large amount of literature on various kinds of generalized contractions
— where the mappings are no longer contractive. The hope when considering
such generalizations is then to obtain corresponding generalizations of the fixed
point theorems one has for contractive mappings. We will first consider asymp-
totic contractions, which were introduced by Kirk in 2003, and afterwards we
will discuss how this approach in some sense subsumes much earlier work on
contractive type mappings.

1.2.4 Asymptotic contractions

Asymptotic contractions were introduced by Kirk in [83], but asymptotic fixed
point theory, where one considers conditions which involve iterates of the map-
ping, has a long history in nonlinear functional analysis, see for example [32].
Indeed, one of the first variants of Banach’s contraction mapping principle con-
sidered was the following theorem by Caccioppoli [34], which includes a kind of
“asymptotic contraction”:

Theorem 1.24 (Caccioppoli). Let (X, d) be a nonempty, complete metric space,
and let f : X — X be such that for each n > 1 there exists a constant ¢, such
that

with Y 0" | ¢n < 0o. Then f has a unique fized point z, and for all xy € X we
have f™(xzg) — z as n — oo.

In [83] Kirk introduces a wider class of mappings in order to obtain an
asymptotic version of the Boyd—Wong theorem.

Definition 1.25 (Kirk). Let (X,d) be a metric space. A mapping f: X — X
is said to be an asymptotic contraction if there exists a sequence of functions
@n 2 [0,00) — [0,00) such that

Vn € NVz,y € X (d(f"(x), ["(y)) < én (d(z,9))),

and such that ¢,, — ¢ uniformly on the range of d, where ¢ : [0,00) — [0, 00) is
continuous and satisfies ¢(s) < s for all s > 0.
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However, in the main theorem of [83] the mappings ¢,, in the above definition
are also assumed to be continuous, and it has been convenient to single out the
resulting concept (this was done by e.g. Gerhardy [54]):

Definition 1.26 (Kirk). A function f : X — X on a metric space (X,d)
is called an asymptotic contraction in the sense of Kirk with moduli ¢, ¢, :
[0,00) — [0,00) if ¢, ¢, are continuous, ¢(s) < s for all s > 0 and for all n € N
and z,y € X,

(@), () < én (d(, 1)),

and moreover ¢, — ¢ uniformly on the range of d.

Note that in the previous two definitions it is irrelevant whether we include
0 in N or not, since ¢y in any case could be taken to be the identity. Here we
use the opportunity to remark on a notational infelicity: In Chapter [3] we will
among other things prove results concerning so-called generalized asymptotic
contractions, which are meant to generalize the concept in Definition [1.26] not
the one in Definition Asymptotic contractions and various modifications
have been widely studied in recent years, see [2] [3, 4] 5] [6], [36], 54, [73], [75], [76], 80,
154), 156, 167, 168, [172] 173 174, [175] [176] [177], and also [24] 25| 26], 28], which
contain material included in this thesis.

We include for reference Kirk’s original theorem, as well as its proof, which
is a nice application of Banach space ultrapowers. (Note that, as remarked in
e.g. [2, [70], in the statement of the theorem in [83] the assumption that the
mapping must be continuous was inadvertently left out.)

Theorem 1.27 (Kirk). Let (X,d) be a complete metric space, and let f: X —
X be a continuous asymptotic contraction in the sense of Kirk. If for some
x € X the Picard iteration sequence (f™(x))nen is bounded, then f has a unique
fized point z € X and for every starting point x € X the iteration sequence
(f™(x)))nen converges to z.

Proof. The proof proceeds by first establishing three preliminary steps. For
general information on the use of nonstandard methods in fixed point theory
one might consult [, [68] and the chapter on ultra-methods in metric fixed point
theory by Khamsi and Sims in [85].

Step 1: We start by isometrically embedding X as a closed subset of a
Banach space Y and identifying X with its image in Y. (For example by taking
Y to be the space of all real-valued bounded continuous functions on X, for a
proof see e.g. [T41].)

Step 2: Let now }7~be a Banach space ultrapower of ¥~ over some nontrivial
ultrafilter U, and let X denote the image of X in Y, i.e., let

X:{iz[(xn)]Ef’:mneXforeachn}.

Let qube the metric on X inherited from the ultrapower norm || -[jzy on Y. Then
(X,d) is a complete metric space, since it is a closed subset of the Banach space
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Y. In particular, for # = [(,)], 7 = [(yn)] € X it follows that (z,) and (y,) are
bounded sequences, so that

liLr[n AT, yn) = d(Z,7)
always exists.

Step 3: Define f, f : X — X by for & = [(x,,)] € X letting

f(@) = [(f(zn))]

and R
(@) = [(f"(zn))].

Then f is well-defined since ¢, is continuous, and f is well-defined since the
orbits of f are bounded.

We can now use that f and f o f are commuting contractive mappings on
X. Since ¢, — ¢ uniformly it follows that

d(f@. @) = 1@ = @) =lim | @a) = £ )|
= limd (f"(zn), f"(yn)) < limdn (d(zn, yn))
= o (imdeava)) = 6 (d(.9)).

Since ¢ is continuous and satisfies ¢(s) < s for all s > 0 it follows by the
Boyd-Wong theorem that f has a unique fixed point Z € X. On the other
hand,

d(fof@ fof@) = IFof@ —7Fof@l=tmlf (@) = /" (ya)l
(fn+1 fn+1( ))Slg{n¢n+1(d($n,yn))

1) (hmd(xn, yn)) =9 (a?,(:i,gj)) .

= lim
u

So also f o f has a unique fixed point, and since f and f o f commute it follows
that

fof(2) = fof(f(2)) = fo(fof)(2) = (fof)of(2) = (fof)(2) = f(f(2)) = f(2),

so since the fixed point of f is unique it follows that f (2) = Z. From this we
conclude that
libr{n d(zn, f(zn)) = 0.

One can now extract from the sequence (z,) a sequence (z,) such that

lim d(xy, f(z,)) =0.

n—oo
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Suppose now that (y,) is a sequence in X for which lim, o d(yn, f(yn)) = 0.
Then 3 = [(y)] is also a fixed point of f, and so for k € N we have

Az = d(F5E. 7)) = limd (/*(z0), (o)
< limey (d (20, 90)) = o1 (d(z,y)) ,
since the moduli ¢ are continuous. By letting k& — oo we obtain
d(z9) < ¢ (d(2,9)),
and since ¢(s) < s for s > 0 we conclude that d(Z,7) = 0. Thus

for any approximate fixed point sequence (y,) of f. Now suppose that
lim d(x,, f(z,)) =0
n—oo

and

but lim, 0o d(2n,yn) # 0. By if necessary considering subsequences we can
assume that lim,, . d(2,,y,) =: € > 0. This implies

=limd ns Yn <limd nsy <An limd ny2n) = 0,
e =limd(zn, yn) < limd(wn, 20) +limd(yn, z0)

which is a contradiction. Thus lim, o d(2,, y,) = 0 for any pair of approximate
fixed point sequences for f.
Now for n > 1 let

F,:={re X :d(z, f(x)) < 1/n}.

Since there exists a sequence (x,) such that lim, .o d(2,, f(x,)) = 0 we have
that F,, # () for all n > 1, and since f is continuous each set F,, is closed.
Furthermore, F,, ;1 C F,,. Suppose that we do not have lim,,_,, diam (F,) = 0.
Then there exists a p > 0 such that for any n > 1 one can find z,,y, € F,
with d(2,,yn) > p/2. Since (z,) and (y,) are fixed point sequences for f this
contradicts limy,— oo d(Zp, yn) = 0. Thus

lim diam (F,) =0,

n—oo
and since X is complete it follows by Cantor’s intersection theorem that (-, F,
is a singleton {z}, and z is necessarily the unique fixed point of f.

Finally we show that the Picard iteration sequences converge to z. Let
x € X, and let + € N. Then
limsup d (f”(a:), f”“(m)) = limsupd (f””(x), f””“(x))

lim oy, (d (f'(z), [+ (2)))
= o (d(f'(@), [ (@),

IN
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and letting ¢ — oo we get

n—oo n—oo

s d (7). /) < 6 (imsuwpd (7). /" 2) ).

from which lim,, o d (f"(z), f*™(z)) = limsup,_ . d (f"(z), [""(z)) = 0.
Thus given any k > 1 the sequence (f"(x))$2 is eventually in F}, and since
the diameters of the sets Fj, tend to 0 as k — oo, we get lim,, o f™(z) = 2.

O

In [54] P. Gerhardy develops a quantitative version of Kirk’s theorem by
making use of techniques and insights from proof mining in order to analyze the
concepts involved. This involves modifying the definition of an asymptotic con-
traction, subsuming the old definition under the new one, and giving a bound,
expressed in the relevant (new) moduli and a bound on the Picard iteration
sequence, on how far one must go in the Picard iteration sequence to at least
once get close to the fixed point. That is, he constructs a uniform and effective
rate of proximity for the Picard iteration sequences to the unique fixed point,
and in the process gives a completely elementary proof of Kirk’s theorenﬁ This
theorem does not, however, give a rate of convergence to the fixed point in the
general case. The convergence needs not be monotone, and so for m > n it is
not the case that f™(x) needs to be close to the fixed point if f"(x) is. For an
example of such a function, see Example 2 in [76]. In contrast to this, the results
in [54] do give a rate of convergence when the convergence to the fixed point
is monotone, and this is the case for a very large class of functions, including
the nonexpansive ones. (For further discussion of the logical analysis, see also
Chapter 4 in [53].)

In Chapter [3]we give an effective rate of convergence for the Picard iteration
sequences, expressed in the relevant moduli and a bound on the sequence, alter-
natively in the relevant moduli and strictly positive upper and lower bounds on
the initial displacement d(zo, f(zg)), i.e., b,c¢ > 0 such that ¢ < d(xg, f(zo)) < b.
Thus the rate of convergence is uniform in the space, the mapping and the start-
ing point except through dependence on the mentioned moduli and such b, ¢ > 0.
If the mapping f is not continuous we get the same rates of convergence to the
common limit z of all Picard iteration sequences (which needs not be a fixed
point), and if the space is not complete we likewise get explicit Cauchy rates for
the iteration sequences.

Additionally we prove that there exists a rate of convergence (which we do
not give explicitly) which depends on nothing but moduli ¢, ¢, : [0,00) — [0, c0)
as given in Definition such that ¢,, — ¢ uniformly on [0, 00), and an upper

4Previously 1.D. Arandelovié¢ had published an elementary proof of a slight generalization
of Kirk’s theorem in [2]. However, that proof turned out to contain an error, and the theorem
as stated is false — see J. Jachymski’s note [75], where he also gives conditions which serve to
repair the proof in such a way that the resulting theorem still covers Kirk’s theorem. Around
the same time as Gerhardy’s result H.-K. Xu [I77] and T. Suzuki [167] developed versions
of the theorem with proofs which do not rely on ultrapower techniques. J. Jachymski and
I. J6zwik had earlier given an elementary proof under the additional assumption that the
mapping is uniformly continuous, see [76].
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bound b > d(zo, f(zo)) for the initial displacement. Thus the convergence does
not depend on a lower bound ¢ > 0 on the initial displacement.

As a byproduct of the analysis we furthermore give a characterization of
asymptotic contractions in the sense of Kirk on bounded, complete metric
spaces, showing that they are exactly the mappings for which all Picard it-
eration sequence converge to the same point with a rate of convergence which is
uniform in the starting point. As already mentioned this characterization gives
an indication why asymptotic contractions in the sense of Kirk are of interest:
In the setting where the space is bounded they are in a sense the most general
mappings for which the Picard iteration sequences have convergence of “Banach
type”, i.e., to the same point and uniformly with respect to the starting point.
We also prove that the assumption in Theorem [I.27] that one iteration sequence
is bounded is superfluous — since any sequence (f™(zg))nen is bounded in any
casd’]

The fact that we for asymptotic contractions in the sense of Kirk could ob-
tain a full rate of convergence for the Picard iteration sequences instead of only
a rate of proximity can be explained in logical terms (thus far only when we
restrict to the setting where the space is bounded) via the work which appears
in Chapter [2] where we establish general conditions, under which we can extract
such explicit and highly uniform full rates of convergence for the Picard itera-
tion sequences for selfmaps on bounded metric spaces from ineffective proofs of
convergence to a unique fixed point. This is done by extending the use of one
of Kohlenbach’s metatheorems, which concerns the theory A“[X,d], a formal
theory for analysis with an abstract metric space added as new ground type.
This metatheorem allows us to extract (via negative translation and monotone
functional interpretation) uniform bounds for certain V3-sentences provable in
the theory. We will give conditions for when we can transform a V3V-sentence
expressing that a Picard iteration sequence is Cauchy into a certain V3-sentence
via a product space argument. This will allow us to extract full rates of conver-
gence for the iteration sequences in these cases, and by considering Gerhardy’s
proof of Kirk’s theorem on asymptotic contractions we will see that the condi-
tions are satisfied in that particular case.

Similarly we will be able to explain that we in another case study were able
to obtain a full rate of convergence for the Picard iteration sequences — namely
for the so-called uniformly continuous uniformly generalized p-contractive map-
pings. This is a particularly general kind of mapping of contractive type. We
will in the following briefly discuss the background for this.

1.2.5 Mappings of contractive type

One of the earliest definitions of a condition of “contractive type” where the
mappings satisfying the condition need not be contractive is due to Kannan
(see [78] [79]), who showed that if (X, d) is a nonempty complete metric space

5 After having published [26], where among other things this is proved, the author became
aware that T. Suzuki had already proved that this assumption is superfluous, see [167] and [24].



1.2 Some aspects of metric fixed point theory 25

and f: X — X a selfmap such that there exists an a € (0,1/2) for which

Va,y € X (d(f(2), f(y)) < ald(z, f(x)) +d(y, f(y)]),

then there exists a unique fixed point to which all Picard iteration sequences
converge. It is noteworthy that here the mapping f does not need to be contin-
uous. In [I57], B.E. Rhoades compared 25 contraction conditions, most of them
previously considered in the literature, and also considered generalizations of
the 25 basic conditions to the cases where the condition holds for various iter-
ates of the function. The basic conditions are numbered (1)—(25), and of these
Kannan’s is number (4). The comparison of the 25 conditions was completed by
P. Collago and J. Carvalho e Silva in [38]. That is, the implications that hold
between the different conditions are completely determined. In particular, it is
known that condition (25),

Vo,y € X(x #y —d(f(z), f(y)) < diam {z,y, f(z), f(v)}),

is the most general. So if f satisfies one of the conditions (1)—(24), then it also
satisfies condition (25), and a fixed point theorem for functions satisfying (25)
would entail as corollaries corresponding fixed point theorems for conditions
(1)-(24). However, a function on a nonempty complete metric space satisfying
(25) need not have a fixed point. If on the other hand f is continuous and X
compact and nonempty, then f has a unique fixed point, and for any xg € X
the Picard iteration sequences (f™(xo))nen converges to this fixed point, and
moreover this also extends to the case where (25) holds for an iterate of the
function, i.e., if there exists p € N such that

Vo,y € X(z #y — d(fP(z), fP(y)) < diam {z,y, f*(x), fF(y)})-

This was proved by Rhoadeﬁ in [I58], and also by Hicks and Sharma[] in [69)
and Kincses and Totik in [8I]. The conditions on f obtained by requiring
that for some p € N the function f? should satisfy respectively (1)-(25) are
numbered respectively (26)—(50). Given p € N we will call a function generalized
p-contractive if it satisfies (25) for fP, and we will single this out as a definition
for ease of reference:

Definition 1.28. Let (X, d) be a metric space, let f: X — X and let p € N.
We say that f is generalized p-contractive if

Vo,y € X(x #y — d(fP(x), fP(y)) < diam {z,y, f*(z), f"(y)})- (1.3)

6In [158] Rhoades proved a more general theorem: Instead of compactness of the space it
is enough if the mapping f : X — X is a compact map. We will say more about this later.
Rhoades also claimed to have proved the theorem for a more general contractive definition, but
in his review of his own paper in Zentralblatt MATH this was modified. The results in [15§]
are proved by noting that the proofs of some theorems by Janos [77] for another contractive
definition go through for the new contractive definition.

"Without considering the case of iterates fP.
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Notation 1.29. We will also say that f is generalized p-contractive if there
exists some k € N such that

Va,y € X(a #y — d(f*(), ff(y)) < diam {z,y, f* (), fF()}), (1.4)

that is, if f satisfies (50). When we say that a mapping f is generalized p-
contractive it will be clear from the context whether “p” refers to some given
number or whether we mean that there exists k satisfying (|1.4).

Theorem 1.30 (Rhoades,Hicks,Sharma,Kincses,Totik). Let (X,d) be a non-
empty compact metric space, and let p € N. Let f : X — X be continuous
and generalized p-contractive. Then f has a unique fived point z, and for every

xo € X we have
lim f"(xo) = 2.

n—oo

One of our case studies in proof mining concerns this theorem: In Chap-
ter 4] we construct an effective and highly uniform Cauchy rate for the Picard
iteration sequences. And by using the uniformities of this Cauchy rate we give
an improved version of the theorem — where we by isolating the requirements
on the mapping, specifically on the contractivity condition, extend the theorem
from the compact case to the setting of arbitrary metric spaces, without re-
quiring the map to be compact. The extension from compact metric spaces to
arbitrary metric spaces is accomplished by considering a uniform variant of the
contractive condition (50), which we are naturally lead to by applying mono-
tone functional interpretation to the condition. In the case of Theorem [1.30] the
compactness of the space means that condition (50) is upgraded to this uniform
version, much as continuity is upgraded to uniform continuity. And it turns
out that we can prove the theorem assuming only that we have such uniform
versions of the contractive condition and continuity, along with a bound on the
iteration sequence. Here it is essential that the proof does not use completeness
or separability of the space in an essential Wayﬂ For a fuller discussion of the
general issues involved — how monotone functional interpretation in a sense sys-
tematically transforms certain statements into their “right” uniform versions —
and in the process makes it explicit what quantitative information one has to
take as input, and how this can be used to remove compactness assumptions,
see [55, [I0I]; and for the use of a certain nonstandard principle of uniform
boundedness in this connection, see [93], [100].

In order to tie our results together we then note that by the uniformity of the
Cauchy rate given it follows as a special case that all continuous selfmappings
on a compact metric space satisfying one of the conditions (1)—(50) are in fact
asymptotic contractions in the sense of Kirk. But note that the uniformity of
the convergence with respect to the starting point in the cases where one of
the conditions (1)—(50) are satisfied and where the space is compact and the
mappings continuous was already present in [I5§].

8Except that completeness is used to ensure the actual existence of the common limit of
all Picard iteration sequences.
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Analogously to the case of the asymptotic contractions in the sense of Kirk
the fact that we could obtain a full rate of convergence instead of a rate of
proximity can now be explained in logical terms by the results in Chapter

However, Theorem [I:30]is by no means the most general of its kind. We will
discuss some other general contractive conditions here, and refer to some rele-
vant literature. The relationships between several general theorems for contrac-
tive type mappings which exist in the literature and the version of Theorem [1.30)
extended to general metric spaces which we obtained in the course of our case
study remain unclear, but to the extent that one is interested in explicit and
effective rates of convergence this is not too relevant. For a mapping f: X — X
on a metric space (X, d), and an x € X, we denote by O(x) the orbit of z, i.e.,

O(z) ={f™(z) : n € N}.
Given z,y € X we let O(z,y) = O(z) UO(y). We say that x € X is regular if
diam (O(z)) < oo,

i.e., if the Picard iteration sequence with starting point x is bounded. One of
the comparatively few results which do provide quantitative information is the
following theorem by Hegediis [66].

Theorem 1.31. Let c € [0,1), and let f : X — X be a selfmap of a nonempty

complete metric space (X,d) such that all x € X are regular, and such that

d(f(ac),f(y)) < ¢ - diam (O(x,y))

forallz,y € X. Then f has a unique fized point z € X, and all Picard iteration
sequences converge to z. Furthermore, we have the following error estimates.
For allm € N and all v € X we have

d(z, fr(x)) < o - A2 S (@)

1—c ’

and if n # 0 we also have

AU @), (@)

Gz, (@) < S

Notice that the existence of such a ¢ € [0,1) means that this theorem is in
some sense more closely related to Banach’s contraction mapping principle than
to Edelstein’s theorem or Theorem [1.30| above, and indeed, the theorem shows

that such f have a very nice and simple rate of convergence. In [149] Park
proves the following theorem, which does not give quantitative information:

Theorem 1.32. Let f : X — X be a continuous compact selfmap of a nonempty
metric space (X,d) satisfying

V,y € X(m +y— d(f(x), f(y)) < diam (O(x,y)))

Then f has a unique fized point z € X, and all Picard iteration sequences
converge to z, uniformly in the starting point.
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An extension of this to the case where the contractive condition holds for an
iterate fP gives a generalization of Theorem [1.30} To prove this theorem also
Park uses the approach of Janos [77]. That the convergence in Theorem [1.32]
is uniform in the starting point follows from the proof — the statement of the
theorem is the weaker claim that for any ¢ € (0,1) there is a metric p on X which
is topologically equivalent to d, such that f is a contraction with contraction
constant ¢ relative to p. This is related to a result by Meyers [135], which is used
by both Janos, Rhoades, and Park, and which provides a converse to Banach’s
contraction mapping principle. (See also [136].) We state this in the form given
by Leader in [IT9], where he essentially rediscovered Meyers’ theorem:

Theorem 1.33. Let (X,d) be a metric space, let z € X, and let f: X — X be
continuous. Then there exists a metric p on X which is topologically equivalent
to d and relative to which f is a contraction mapping with fixed point z if and

only if
1. lim, 00 f™(x0) = 2 for each zp € X.

2. There exists a neighborhood U of z such that f™(xo) — z uniformly for
all g € U.

Notice that a consequence of this theorem is that if we are interested in the
rate of convergence to z € X for a Picard iteration sequence (f"(xo))nen for a
selfmap f : X — X on a metric space (X,d), then knowing that there exists
some metric p on X which is topologically equivalent to d and relative to which
f is a contraction is no big help. In order to draw any conclusions we would
at least have to know that zy € U, where U is the neighborhood appearing
in Theorem This is not too surprising, given that e.g., even if (X,d) is
unbounded there always exists a topologically equivalent metric on X relative
to which X is bounded by 1.

For further information on contractive type mappings see e.g. [18, [66] [67]
126, 134, 148, [149], 150} [159] and the references found there.



Chapter 2

Logical aspects of rates of
convergence in metric
spaces

This chapter contains material which appears in [22], but the material has been
revised, some things have been left out, and additional comments and corollaries
have been added. Likewise certain definitions etc. taken from other sources
which were only referred to in [22] have now been included.

2.1 Introduction

We will in this chapter develop further the uses of proof mining in metric fixed
point theory. Much of the work in proof mining has been centered around ap-
plications in (nonlinear) functional analysis, and strong logical metatheorems
for functional analysis based on Gdédel’s functional interpretation and certain
notions of majorizability are provided in [99] and [56]. A special case of one
of these theorems can be used to get information on the convergence of the
Picard iteration sequences (f™(z))nen to a unique fixed point z € X of a self-
mapping f : X — X on a bounded metric space (X, d). Before explaining this
in more detail we will include the following definitions, which in addition to

Definitions and will be relevant for our discussion:

Definition 2.1. Let (X, d) be a metric space and let f : X — X. We say that
f is asymptotically regular if

Vzo € XVn € Nam € NVk > m (d (f*(zo), f* (z0)) < 277).

Definition 2.2. Let (X,d) be a metric space and let f: X — X. We say that
® : N — N is a modulus of uniform asymptotic reqularity for f if

Vo € XVn € NVm > ®(n) (d(f™ (20), f™ T (20)) <277).

29
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Definition 2.3. Let (X, d) be a metric space and let f: X — X. We say that
® : N — N is a modulus of uniform almost asymptotic regularity for f if

Vo € XVn € Nam < &(n) (d(f™(zo), f™(20)) <27").

The word “uniform” in the previous two definitions refers to the fact that ®
does not depend on xg.

Definition 2.4. Let (X, d) be a metric space and let f : X — X. We say that
® : N — N is a modulus of uniqueness for f if

2
Vri, 29 € XVn €N (/\ d(zi, f(x;)) < 2- () _, d(zy,29) < 2‘") )

i=1

The notion of a modulus of uniqueness was defined in full generality by
Kohlenbach in [89]. Moduli of uniqueness show up in e.g. approximation theory
under the name of strong unicity or rate of strong uniqueness, see [I38] for the
first investigation of this in the case of Chebysheff approximation, and see [12]
for a general discussion of the relevance of the concept.

Now, if one can prove in a suitableﬂ formal system for classical analysis with
a new ground type for elements of an abstract bounded metric space (X, d) that
all f: X — X from a suitable class of functions are asymptotically regular
and that any fixed point of such an f must be unique, then the metatheorem
assures that there existﬂ a (not necessarily fixed) point z € X to which all
Picard iteration sequences converge, and we can extract a rate of proximity (cf.
Definition for all Picard iteration sequences to this point z which is uniform
in the starting point (see [99] and [109]@). Namely, in this case the metatheorem
provides an algorithm for extracting such a rate of proximity from given formal
(ineffective) proofs of uniqueness and asymptotic regularity. Note that we do not
require the space to be compact. In practice one does not deal with completely
formalized proofs, but the algorithm can then be used as a guideline for actually
extracting a uniform and explicit rate of proximity.

Here we develop a general method for finding uniform and explicit full rates
of convergence for Picard iteration sequences of selfmaps on (complete) bounded
metric spaces (cf. Definition , as opposed to rates of proximity. Loosely

'What is meant by “suitable” will be made clear later.

2For convenience we assume here that the space is complete.

3[109] is older work, and in that paper the setting involves (i) a formal system which
does not include a ground type for an abstract bounded metric space, and (ii) a concrete
Polish space which can be represented in the formal system. In that setting one requires
compactness to ensure uniformity of the rate of proximity. However, much of the general
information in [I09] on how logical metatheorems can provide quantitative information which
can give us e.g. a rate of proximity is relevant also in the new setting of [99].
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speaking our approach will be based on requiring certain uniformity features of
the majorants of the moduli introduced when axiomatizing the class of mappings
to which f belongs. This will in a sense reduce the V3V-sentence expressing that
the iteration sequence is Cauchy to a V3-sentence. The metatheorem will then
guarantee the existence of a uniform full rate of convergence. Earlier one could
only get a full rate of convergence from a rate of proximity in the special case
where f is required to be nonexpansive. In two case studies we have found
such explicit and uniform rates of convergence for Picard iteration sequences for
certain classes of (not necessarily nonexpansive) selfmappings of metric spaces,
namely for asymptotic contractions in the sense of Kirk and also for so-called
uniformly continuous uniformly generalized p-contractive mappings. The results
of these case studies are included in Chapters[3land[d] The results of this chapter
provide an explanation for these findings (when restricted to bounded spaces)
in logical term&ﬂ But it is by no means necessary to acquaint oneself with the
material in this chapter in order to appreciate or understand the material in
Chapter [3| and Chapter [4f The concrete theorems and the proofs there do not
in any way depend on the results in this chapter. Rather, the results here allow
us to explain (to the extent noted above) that we could prove the results in
Chapters [3] and [d] and it gives us a recipe for proving similar results in other
concrete cases.

The general organization of the chapter is as follows: in the next section
we will present the formal setting for the metatheorems, in Section [2.3] we will
discuss how these theorems relate to questions concerning the convergence of
iteration sequences for selfmaps of metric spaces, while in Section we will
present the main results. The mentioned applications are given in Section [2.5

2.2 Formal framework and Kohlenbach’s meta-
theorem for bounded metric spaces

We will here present Kohlenbach’s metatheorem for bounded metric spaces
from [99]. (The metatheorems have been extended in [56], replacing the condi-
tion that the space be bounded with some weak local boundedness criteria. We
will remark further on this below.) The starting point for the metatheorems
in [99] is the formal system A¥ := WE-PA“ + QF-AC + DC, basically Peano
arithmetic in all finite types with quantifier free axiom of choice, dependent
choice and countable choice, but with only a certain quantifier-free rule of ex-
tensionality instead of the full axiom of extensionality. We will for reference
present this system below. For more information, see [99, [10T], 127, [169].

2.2.1 The system A%

We will begin with a series of definitions.

4However, we cannot yet properly explain that we in the concrete cases were able to find
rates of convergence also in the setting of unbounded metric spaces.
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Definition 2.5. The set T of all finite types is defined inductively by
0€T, and if p,7 € T, then (p — 7) € T.
The set P of pure types is generated inductively by
0€P, and if p € P, then (p — 0) € P.

Pure types are often denoted by natural numbers by letting n+1 denote (n — 0),
so that e.g. 1 denotes (0 — 0).

Remark 2.6. Any type p # 0 can be written in the normal form

p=(p1— (p2—...(pr = 0)...)),

which we usually write as
pL— p2 — ... — pr — 0.

Notation 2.7. We usually do not write the outermost brackets for types, and
we will often drop other brackets which are uniquely determined.

The intended interpretation of the base type 0 is the set of natural numbers
N = {0,1,2,...}, and so we will sometimes blur the distinction and use “N”
instead of “0”. Likewise we will sometimes write “natural numbers” instead
of “objects of type 0”. We present first the system WE-HA® called weakly
extensional Heyting arithmetic in all finite types.

Definition 2.8. The language L(WE-HA®) of WE-HA¥ includes the language
of a many-sorted version IL¥ _ of first order intuitionistic predicate logic IL__
without equality, with variables x# and quantifiers Va”, 3z* for every finite
type p. Furthermore £(WE-HA“) includes constants 0°, S°~9 (successor), and
for all finite types 4, p,7 a projector II57277# and combinator X, - (of type
(6 —=p—1)— (0 = p) — 0 — 7), and also recursor constants R, for

simultaneous primitive recursion in all finite types. £(WE-HAY) also contains a
binary predicate constant =g (equality between objects of type 0).

Definition 2.9. The terms of WE-HA% are determined by:
1. Constants and variables of type p are terms of type p.

2. If tP77 is a term of type p — 7 and s” is a term of type p, then (ts) is a
term of type 7.

We will also when specifying terms sometimes omit uniquely determined
brackets. In expressions such as tsw, association is assumed to be to the left. If
t97P=T s P are terms, we will sometimes write ¢(s,w) for ((ts)w).

Definition 2.10. The formulas of WE-HA®“ are determined by:
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1. Prime formulas (also called “atomic formulas”) s =, t° are formulas.
Also L is a prime formula.

2. If A, B are formulas, then (AAB), (AV B) and (A — B) are also formulas.
3. If A(xP) is a formula, then also (Va?A(z)) and (Jz”A(x)) are formulas.

We will write =4 for A — 1, and A < B for (A — B)A (B — A). We
will furthermore write = #¢ y for =(z =¢ y). We will let A(z), B(z), C(z) and
so on denote formulas in £(WE-HA*) with z4,...,z, free, where z is the tuple
X1y...,Tn. We will let Ag(z), Bo(z), Co(z) and so on denote quantifier-free
formulas in L(WE-HA®).

We note that the only primitive predicate in the language is =g, so that in
particular equality between higher type objects is not primitive. In fact, higher
type equality is defined extensionally:

Definition 2.11. Higher type equality =, is defined by

sP =, =y, oy (s(ya, - yk) =0 t(ya, -5 Uk)),
where p=p; — p2 — ... = pp — 0.
Definition 2.12. The axioms and rules of WE-HA® are as follows.

1. The axioms and rules of IL¥Y_. We axiomatize first order intuitionistic
predicate logic IL__ without equality using Godel’s system (introduced in

[60], see also [T0T1 [169]).
2. Equality axioms for =¢:
(a) z =0z,

(b) x =0y —y =0z,

(¢) z=0yANy=0z—x=p 2
3. Successor axioms:

(a) Sz #00,
(b) Sz =¢ Sy — z =¢ y.

4. Induction schema:
(IA) : A(0) AV (A(z) — A(Sz)) — Va'A(x),
where A(z%) is an arbitrary formula of WE-HA®.
5. Axioms for I, -, 35, and EE:
() : T, ary” =, o,

(D) 1 X5, ,207P7 Ty P20 = 22(yz2),
(R) : Eg()gg =Y and EE(SzO)gg =p g(ﬂgasgg)x,
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where p = p1,..., px, yi is of type p; and z; of type

pr— ... = pr— 0—p;.

6. The following quantifier-free rule of extensionality:

A() — S =p t
Ay — rls] = r[t]

QF-ER:

where p, 7 are arbitrary types and s?,t?, r[z”]™ are terms of WE-HAY.
No effort has been made to eliminate redundancies in this system.

Definition 2.13. We obtain the system E-HA¥, called extensional Heyting
arithmetic in all finite types (with the same language, terms and formulas as
WE-HAY) by replacing the rule QF-ER with the following axioms for higher type
extensionality:

k

— P 14 Pk Pk _ —
Ep ':vzpvxllvylla"'amk y Ui (/\('rl —pi yi)_>2§—0 Zy)7
i=1

where p=p;1 — ... — pp — 0.

The systems we will use will only have the restricted form of extensionality
QF-ER, because one uses Godel’s functional interpretation to extract compu-
tational witnesses from proofs as a step in the metatheorems, and this is not
possible if we have full extensionality (see [72]). However, the need to restrict
to weak extensionality also has a natural mathematical interpretation, see the
discussion on extensionality in [99].

Definition 2.14. By adding the law of excluded middle, that is, the schema
LEM: AV —A,

we obtain WE-PA“ (respectively E-PA“) from WE-HA“ (respectively E-HA“).
E-PA¥ and WE-PA“ are called respectively extensional and weakly extensional
Peano arithmetic in all finite types.

— w — w

Remark 2.15. The fragments (W)E-PA [, (W)E-HA | of respectively (W)E-PA®,
(W)E-HA® are obtained by excluding all the recursors R, except the recursor
Ry for type-O-recursion, and by restricting the induction schema to the schema
of quantifier-free induction

QF-1A: Ap(0) A Va?(Ag(z) — Ao(S(x))) — Va' Ay (),

where A is quantifier-free and may contain parameters of arbitrary types. The
set-theoretic functionals which are denoted by closed terms of E/—ﬁ’—\w[ are called
the primitive recursive functionals of finite type in the sense of Kleene, and were
first introduced (for pure types) in [87], where they are called S1-S8 computable
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functionals. It turns out that the Kleene primitive recursive functionals of type
1 are exactly the ordinary primitive recursive functions. This is in contrast to
the primitive recursive functionals in the sense of Godel, i.e., the set-theoretic
functionals denoted by closed terms of E-PA”, where the functionals of type

—_— W

1 form a wider class. The systems (W)E-HA | were introduced by Feferman
in [43)].

Definition 2.16. The schema QF-AC of quantifier-free choice in all finite types
is given by
QF-AC : Vz3yAo(z,y) — Y VzAo(z,Y z),

where Ay is quantifier-free and x, y are tuples of variables of arbitrary type. The
quantifier-free axiom of choice in types p, 7 is the schema

QF-AC”" . VaP3y" Ag(z,y) — IYP7"VzP Ag(z, V),
where x” and y” are single variables of the indicated types.

Definition 2.17. The schema of dependent choic€E| DC is defined by DC:=
U,er{DC"}, where DC” is

vVl yP 3P A, y, z) — 30TV Ala, f(2), F(S(x))),
for A an arbitrary formula.

Definition 2.18. The system A% is defined by
AY .= WE-PA* + QF-AC + DC.

In A“ one can handle rational numbers and real numbers via an appropriate
representation. Rational numbers are represented as pairs (n,m) of natural
numbers coded into a single natural number j(n,m) via the Cantor pairing
function j. This is done in a way so that each natural number cLodes a unique

rational number. Namely, j(n,m) denotes the rational number -2+ if n is even,
n+1

and the negative rational number —mTH otherwise. For a rational number of
the form 27" we write (27") for the (canonical) representative j(2,2" — 1), and
for a natural number n we write (n) or ng for the (canonical) representative
j(2n,0). An equality relation =g on the representatives of the rational numbers,
together with operators +q, —g, g, etc. and also predicates <g and <qg are
defined primitive recursively in the natural way. Real numbers are represented

by type 1 objects f : N — N such that
v (1f(n) —o f(n+1)lg <o 27"71)) .

One ensures that each functional f of type 1 represents a unique real number
via the following construction, which can be carried out in A%:

oy = { ) 00 (709 o [k + Dig < 241
: f(k) for mink < n with |f(k) —g¢ f(k+1)|g > (27%71) else.

5This formulation combines the usual formulation of dependent choice and countable
choice, see [107].
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Then f represents the real number represented by ]? Real numbers are thus
represented by functionals representing Cauchy sequences of rational numbers
with a fixed Cauchy modulus n — 27", For natural numbers b € N we write bg
for the functional An.bg representing the real number b. For a rational number
of the form 27" for n € N we write (27")r for the functional Ak.j(2,2™ — 1)
representing the real number 27". One defines relations =g, <g and <g on
representatives of real numbers as follows:

fi=s fo = ¥n(lfitn+1) =g Patn+ Dl <q 27)

fi<efo = 30 (Rn+1) g iln+1) ¢ 271)

fi<e fo = ~(f2<r f1)
Thus =g and < are IIY-predicates, while <g is a %{-predicate. One can now
define operators +g, —g, ‘r etc. on representatives of real numbers by primitive

recursive functionals (see [99] for details). We include also the following lemma,
which appears in [99]:

Lemma 2.19. A“ F VK (|f e A0 (k)R <w (2—k)R).

2.2.2 The formal system A“[X,d]| for abstract bounded
metric spaces

The theory A“[X,d] for which the relevant metatheorem is proved is now ob-
tained from A¥ by “adding” an abstract metric space (X,d). A“[X,d] results
by (see [99]):

(i) Extending A“ to the set T of all finite types over the two ground types
0 and X, i.e.

0,X € T¥, and ifp,TETX, then (p — 7) eTX

(in particular, the constants II, -, Xs , -, R, for A-abstraction and simul-
taneous primitive recursion (in the extended sense of Gédel [60]) and their
defining axioms, and the schemes IA, QF-AC, DC and the weak extension-
ality rule QF-ER are now taken over the extended set of types (and the
extended language)).

(ii) Adding a constant Ox of type X and a constant bx of type 0.

(i) Adding a constant dy of type X — X — 1 together with the axioms
(1) v (dX(l‘ r) =g Or),
(2) (dX( ay) —R dX(ya ))7

(3) V»’UX X, X (dx (2, 2) < dx(z,y) +r dx (y,2)),

(4) (dx(.’b,y) SR (bX)]R) (Wlth (bX)]R = )\koj(2bx,0))
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Still only equality at type 0 is a primitive predicate. One defines 2* =y y*X as
dx(z,y) =r Ogr and equality for complex types as extensional equality using =g
and =y for the ground types.

To state the metatheorem in the next section we will need some notions and
some more terminology. We first recall the definition of the full set-theoretic
type structure over N. All of the rest is taken from [99].

Definition 2.20. The full set-theoretic type structure
§Y = <Sp>p€T

over N is defined by Sy := N and S, := S;f*. Here Spsf is the set of all
set-theoretic functions S, — S,.

Definition 2.21. Let X be a nonempty set. The full set-theoretic type struc-
ture
SoN = <SP>p€TX

over N and X is defined by Sp := N, Sx := X and S,_, := Sf*. Here Sf* is
the set of all set-theoretic functions S, — S,.

We note that if p € T, then p € T for any nonempty X, and S, is the
same whether thought of as belonging to S or S“X.

Definition 2.22. For z € [0, 00) define (z), € NY by
(2)o(n) :=j (2ko, 2" = 1),

where

k
ko:_max{ng:keN}.

The following lemma, which lists some of the important properties of the
function (+), : [0,00) — NN is a part of Lemma 2.10 in [99].

Lemma 2.23.

(1) Ifx €]0,00), then (x), is a representation of x in the sense of our repre-
sentation of real numbers indicated above.

(2) If x,y € [0,00) and x < y (in the sense of the usual order on R), then
(#)o <k (y)o and (x)o <1 (Y)o.

Definition 2.24. We will say that a sentence of the language L(A¥[X,d]) of
A®[X,d] holds in a bounded metric space (X,d) if it holds in the models of
A“[X,d] obtained by letting the variables range over the appropriate universes
of the full set-theoretic type structure S“~X with the set X as the universe
for the base type X, letting Ox be interpreted by an arbitrary element of X,
letting bx be interpreted as some integer upper bound (also denoted “b”) for
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d, and by letting dx be interpreted by Az, y.(d(x,y))o, where (-), refers to
the construction in Definition We will sometimes denote a model of (an
extension of ) A“[X, d] with domain S**X by S¥X | and similarly we will denote
a model with domain M“**X (to be defined below) by M.

Definition 2.25. A type p € T has degree 1 if
p=T1—...—= 7, —0

(including p = 0), with 7; = 0 for 1 <4 < k. The type p has degree 2 if
p=T1—...—= 7, —0

including p = 0), with 7; of degree 1 for 1 < i < k. A type p € T has degree
p p
(0, X) if

p=1— ... o1 —> X

(including p = X), with 7, = 0 for 1 < i < k. The type p has degree (1, X) if
p=T1— ... T — X
(including p = X), where 7; has degree 1 or (0, X) for 1 <i < k.

Definition 2.26. A formula F' is called a V-formula (resp. 3-formula) if it has
the form F' = VaZFy(a) (resp. F = JaZFy(a)), where Fy does not contain any
quantifier and the types in o are of degree 1 or (1, X).

Note that when we elsewhere somewhat informally refer to “V3V-sentences”
or “JV-sentences” then this indicates only the logical complexity of the preﬁxﬂ
with no restriction on the degrees of the types.

Definition 2.27. Between functionals z”, y? of type p € T we define a relation
<, by induction on p as follows:

x<py := x <y for the usual (prim. rec.) order on N,
V27 (2(2) <7 y(2))-

T <gury

Definition 2.28. The extensional type structure M« := <Mp>peTX of all
hereditarily strongly majorizable set-theoretical functionals of type p € T over
N and a set X, together with the relation z* s-maj, z (“strong majorizability”)
between functionals x*, x of type p € T, is defined as follows:

My :=N, r¥s-majyr:=r* > Azx",x €N,
Mx =X, r¥s-majy r :=x*,x € Mx,
¥ s-maj,_,, T
=% € MMe A Wyt y € M, (y° s-maj, y — o (y") s-maj, o* (y), 2(y))
M,—. ={ze MM :3z* € MM~ (2*smaj,_, z)} (0,7 € T).

Here MM= denotes the set of all total set-theoretical mappings from M, to M.

SWith “33Vv” counted as “dv”, etc.
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There is a syntactic counterpart of s-maj formulated in £(A“[X,d]), which
we also denote by “s-maj”. For z*, y” we define s-maj, as follows:

r¥s-majyx =x <o ¥,
r¥s-majy z:=0=90,
x* S_maja'ﬂ'r T = Vy*a y(y* S_ma’ja Yy— (E*y* S_maj'r ‘T*y, (ﬁy)

The notion of majorizability was originally introduced by Howard ([72]), and
subsequently modified by Bezem ([19]). The version in Definition where
majorizability is extended to the new types in T, is due to Kohlenbach. (We
will often write “majorizable” or “majorant” instead of “strongly majorizable”
and “strong majorant”.)

Remark 2.29. The reason why we can define the majorization relation for
objects of type X in this trivial way is that the space (X,d) is bounded, so
that we have a common upper bound b for the distance between any two points.
Already for normed spaces (which are also treated in [99]) the relation becomes

r¥s-majyx =¥, v € Mx A |lz¥|| > ||z

In [56] the approach which we are following here is extended to unbounded
metric spaces, with associated generalizations of the theorems, and then the
majorizability notion used is more involved; roughly speaking it becomes z* >
d(a,x), where now x* is a natural number and a € X is a reference point. For
reasons given later we will not here consider these formal systems where the
space is allowed to be unbounded (see Remark .

The following definition is a special case of a more general construction used
in the proofs of the theorems in [99].

Definition 2.30. Define ¢'~! by recursion (using Ry) such that

Qb(xlv O) =0 I(O), and ¢(I15 z+ 1) =0 InélX (d)(xa Z)’I(Z + 1))a

where maxg is the usual (primitive recursively definable) maximum between
natural numbers. We write 2 := \z%.4(z, 2).

2.2.3 A metatheorem for bounded metric spaces

The theorem we state below is a part of Theorem 3.7 in [99].

Theorem 2.31 (Kohlenbach). Let o, p be types of degree 1 and let T be a type of
degree (1,X). Let s77° be a closed term of A*[X,d] and let By(z?,y”,27,u°)
be a V-formula containing only x,vy,z,u free. Let also Cs(x°,y?,27,v°) be an
I-formula containing only x,y, z,v free. If

VaoVy <, s(x)Vz" (VuOBv(m, Y, z,u) — 3°Cs(z,y, 2,v)) (2.1)
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is provable in A¥[X,d], then one can extract a computable functional ® : S, X
N — N such that for all x € S, and allb e N

Vy <, s(x)Vz" [Vu < ®(x,b)By(z,y, z,u) — Jv < &(z,0)C5(z, y,2,v)]  (2.2)

holds in any (nonempty) metric space (X, d) whose metric is bounded by b € N
(with bx interpreted by b).

Some additional comments on Theorem 2.31}

(i) The computational complexity of the functional ® can be estimated in
terms of the strength of the A“-principle instances actually used in the
proof. ® can always be defined in the calculus T+(BR) of so-called bar
recursive functionals, i.e. as a closed term of WE-PA“+(BR). (For the
definition of the schema (BR) of bar recursion we refer to e.g. Chapter 11
of [I0T]. Bar recursion was introduced by Spector in [166].) In particular,
if DC is not used in the proof then ® can be given as a closed term of
WE-PA¥, and so it is primitive recursive in the sense of Godel.

The proof of Theorem [2.31] provides an extraction algorithm for .

(ii) Instead of single variables x, y, z, u, v we may also have finite tuples of
variables z, v, z, u, v as long as the elements of the respective tuples satisfy
the same type restrictions as z, y, z, u, v. Moreover, instead of a single
premise of the form Yu®By(z,v, z,u) we may have a finite conjunction of
such premises.

The proof of this theorem is based on an extension of Spector’s [166] interpre-
tation of classical analysis by bar recursive functionals to the system A“[X, d],
and we will say more about the proof below. But first we will comment on pos-
sible extensions of the theorem which will be of relevance to us. Such extensions
were implicit in [99], and explicitly commented on in [50].

An extension of Kohlenbach’s metatheorem

Let A“[X, d]+A be the theory A“[X, d ] extended with new constants ¢1, ..., ¢m
of types of degree 2 and new constants ¢, 11, - - - , ¢, of types of degree (1, X) and
with purely universal closed axioms with the types of all quantifiers of degree 2
or (1, X). Assume that there exist closed terms cj, ..., ¢, of AY[X,d]+ A with
the constants interpreted such that

SUX = ¢f s-maj, ¢ for 1 <i <m, (2.3)

where o; is the type of ¢;. Then the theorem still holds in the sense that if
AY[X,d]+ A proves (2.1)) (where By and C3 are now formulas of AY[X,d]+ A
and where s is a closed term of A“[X, d]+ A) then from a proof of we can
extract a partial functional

D:S5, xSy X x8,;, xN—=N,
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which can be defined in T4+BR, and whose restriction to
My X My, X+ x M, xN
is a total (bar recursively) computable functionaﬂ such that

Vy Sp S(:L‘)VZT [Vu < (I)(SC, [CT]S%X P [C:n]S“”X ) b)Bv(SE, Y, z, u) -
Jv < B(z, [¢f]sw.xy .-y [Ch)]sw.x, 0)Ca(, Yy, 2, V)]

holds in any (nonempty) metric space (X, d) bounded by b € N which satisfies
the new purely universal axioms (with by interpreted by b and with the new
constants interpreted by functionals from the appropriate universes of S¥>X such
that holds). Here [c}]se.x denotes the interpretation of ¢} in S***. All of
this follows from the proof of Theorem 3.7 in [99], and in the setting of [56] such
extensions were explicitly commented on in Remark 4.13 in [56]. In relation to
the proof we note that the restriction on the types of the new constants ensures
that these can be interpreted by the same functionals in S¥X and in M“X,
and that
SN = ¢ s-maj,, ¢;

implies
M¥ = o smaj,, ¢

when all constants are interpreted in the same way in S“% and in M*“X. The
restriction on the types of the quantifiers in the new axioms ensures that truth of
the axioms in S¥*¥ implies truth of the axioms in M“X. ® does not depend on
interpretations of majorants of ¢,,11,...,C,, since we can take these majorants
to be Az”.0x for suitable types p. And dependence on the interpretations of
these terms can be eliminated by an easy extension of the method on page 121
of [99] used to eliminate the dependence on the interpretation of 0x.

We could be more liberal in our type restrictions for ¢,,+1,. .., ¢y, but types
of degree (1, X) are more than enough for our applications. We note also that if

C1,...,Cm are of types of degree 1 then cj, ..., c), as required here always exist,

rm

by a construction analogous to the one in Definition And in this case ® is
total, since then S,, = M,, for 1 <i <m (and since S, = M,).

Remarks on the proof of the metatheorem

We will not present the proof of Theorem for full details we refer to [99]
and the references cited therein, and also to [I01]. The proof is based on an
extension of Spector’s [166] and Howard’s [71] interpretation of the system A%
by Spector’s bar recursive functionals (T+BR) to the new formal system. One
then interprets these functionals in M“X | makes use of the restricted logical
form of the sentences and the low degrees of the types involved to prove that
the conclusion holds in M“ X, and uses the logical form of the sentences and
the low degrees of the types involved to conclude that it holds also in S¥X.

"In the sense of [87] relativized to the typestructure M¥.
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Spector’s interpretation of classical analysis is an extension of Godel’s inter-
pretation of classical arithmetic by primitive recursive functionals of all finite
types, which Godel accomplished by combining his negative translation, which
interprets classical arithmetic in intuitionistic arithmetic, with the functional
(“Dialectica”) interpretation which he developed in [60]. We will give the def-
inition of a variant of the negative translation due to Kuroda [I18], and also
the definition of the functional interpretation, both times in the specific setting
where the system under consideration is A“[X, d].

Definition 2.32. Let A be a formula in the language of A“[X, d]. The negative
translation A’ of A is defined as follows. We let A’ := —=—A*, where A* is defined
by induction on the logical structure of A:

(i) A*:= A, if A is a prime formula,
(ii) (AOB)*:
(i) (307 A(2))" = For(A(2)",
(iv) (VzPA(x))* :=Var—-—(A(z))*.

Definition 2.33 (Functional interpretation of A“[X,d]). To every formula A
in the language of A“[X,d] we assign a translation

AP = HQVQAD (z, y)

(A*OB*), where O € {A,V, —},

in the same language. The free variables of AP are the same as those of A. The
types and length of z,y depend only on the logical structure of A, and Ap is a
quantifier-free formula. For prime formulas A we let AP := Ap := A. Assuming
that AP = 32VyAp(z,y) and BP = JuVuBp(u,v), we define:

(i) (AAB)P =3z, uVy,v[Ap(z,y) A Bp(u,v)],
(i) (AV B)P :=32% z,uvy,v[(z = 0 — Ap(z,y)) A (2 # 0 — Bp(u,v))],
(iif) (32PA(2))" = 3z, 2¥yAp(z,y, 2),

)

)

(iV (VZPA(Z))D = HXV'%QAD(KZayy Z)a

(v) (A— B)P :=3U0,YVz,v(Ap(z,Y zv) — Bp(U z,v)).

One can then combine negative translation and functional interpretation, so
that given a formula A the functional interpretation of the negative translation
A of Ais (A)P = JaVy(A')p(z,y). In order to state the next lemma we ought
to introduce the extension A“[X,d]+(BR) of A*[X, d], which results by for all
tuples p = p1,...,pm and 7 = 7y, ..., T of types in T adding new constants
B2T to the language — called bar recursors — and new axioms (BR2T) for these
constants. In the setting of A“ these were introduced by Spector in [166].
However, we will not give the definition of bar recursion, but rather refer to
Chapter 11 (and Chapter 17) in [I0I] for full details. The following lemma,
which is crucial in [99], is a simple extension of Spector’s deep result for A% to

A“X, d].
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Lemma 2.34. Let A be a sentence in the language of A“[X,d]. If
A“[X,d] + A,
then one can construct a tuple of closed terms t of A“[X,d]+(BR) such that
A“[X,d] — QF-AC + (BR) F Vy(A") p (£, )-

Here A¥[X,d]—QF-AC+(BR) is the system A“[X, d]+(BR) without QF-AC.
The construction of these ¢ by recursion on a proof of A is a fundamental
part of the algorithm for the extraction of bounds mentioned in Theorem [2.31
together with subsequent majorization. For a full proof of Lemma [2.34] we refer
to Kohlenbach’s book [101].

2.3 Some proof mining in metric fixed point the-
ory

In this section we will explain how one in certain cases can extract rates of
proximity for the Picard iteration sequences (f™(zg))nen for selfmaps f: X —
X on bounded metric spaces (X, d) from ineffective proofs of convergence to a
unique fixed point.

2.3.1 Extracting rates of proximity

Let A“[X,d] + A be an extension of A“[X,d] as in the discussion after The-
orem above, with a distinguished constant c; of type X — X. Then
A?[X,d]+ A determines a certain class of selfmappings on a class of nonempty
bounded metric spaces in the sense that a selfmapping f : X — X on a
nonempty bounded metric space (X,d) is a member of this class if one can
obtain a model of A¥[X,d] 4+ A by letting the variables range over the appro-
priate universes of the full set-theoretic type structure S“-* with the set X
as the universe for the base type X, letting Ox, bx and dx be interpreted as
in Definition letting ¢y be interpreted by f and by letting the other new
constants be interpreted such that holds.

Let (X,d) be a nonempty bounded metric space, and let f : X — X be a
selfmapping in the class of selfmappings determined by A“[X,d]+ A. Suppose
we can prove that any fixed point of f is unique if it exists, i.e., that

Ve,ye X (f(x) =z A fly) =y —z=y),
and furthermore that f is asymptotically regular, i.e., that
Vo € XVk € N3m € Nvn > m (d (f"(z), "' (z)) < 27%). (2.4)
Suppose further that this can be proved in A¥[X,d] + A, i.e., that
A“[X,d] + A F V¥ Vy™ (cp(x) =x s Acp(y) =x y — = =x y) (2.5)
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and
A°[X,d] 4+ A F Yag VE"ImOYn® (n >0 m — dx (2, 2nt1) < (27%)r), (2.6)

where x,, is the n-th member of the Picard iteration sequence starting with xg,
which is definable in the theoryF] We will hold these assumptions fixed for the
remainder of the section.

We can write (2.5) as
A[X,d] + A F V2, y X VEO (Vm® Ao, y,m) — |dx (2, y)(k + Dlg <q (27%)),

where

Ag(w,y,m) = |dx (2, cpz)(m+1)|g <g (27™) (2.7)

ANldx (y,cry)(m +1)|g <@ (27™)

is quantifier-free. So Kohlenbach’s metatheorem implies that we can extract
(from the corresponding formal proof) a partial functional

O:NxNxS§;, x---x8, —N

such that

2
Vo, 20 € XVk €N </\ d(zq, f(x5)) < 272E0E) gz 29) < 2"“) (2.8)
i=1

holds, where F; denotes the interpretation of ¢ and where we use the notation
O(k, b, ﬁ) for ®(k,b, F1, ..., Fp). (In 1 and x5 do not denote members of
a Picard iteration sequence but rather arbitrary elements of X). Thus f has a
modulus of uniqueness \k.®(k, b, F). And holds in fact for all b-bounded
metric spaces (X, d) and mappings f satisfying A“[X,d]+ A with the constants
suitably interpreted. Note that from and it follows that all Picard
iteration sequences are Cauchy and that

Vo, y0 € XVk € NIm € NVn > m (d(2p, yn) < 277) .

Thus if the space is complete then there exists z € X such that all Picard
iteration sequences (x,)nen converge to z, and if in addition f is continuous
then we can conclude that z is a fixed point.

To treat we first notice that (since we have (2.6)) we in particular have

A°[X,d] + A F Y VE Im® (dx (Tm, Tmtr) <z (27F)R) . (2.9)
Similarly to the above we can now extract a partial functional

U:NXxNxS, x---x85, —N

8Formally we can for example let x, := P(xg,n), where P := Xz, n®. RxnOzX 2, with
z = AzX ,mO cpz. Using A-abstraction is allowed since we in A“[X,d] + A have closure
under functional abstraction by a trivial extension of Lemma 2.4 in [99].
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such that
Voo € XVn € N3m < U(n, b, F) (d(@m, Tmi1) < 277), (2.10)

with (z,)nen the Picard iteration sequence with starting point o € X. Thus

An.U(n, b, ﬁ) is a modulus of uniform almost asymptotic regularity for f. We
can combine the functional ¥ in (2.10) with a modulus of uniqueness for f as
follows. Suppose that f has a fixed point z € X. Then for each n € N we have

d(z, f(z)) < 27™, and so from (2.8) and (2.10) it follows that

Voo € XVn € NIm < U(®(n,b, F),b, F) (d(zm,2) <27"). (2.11)
That is, the function )\n.\I/(CD(n7 b, ﬁ), b, ﬁ) is a rate of proximity for all Picard
iteration sequences (Z,)nen to z. Assume now that X is complete, and let

z € X be the point to which all Picard iteration sequences converge. If z is not
a fixed point, then we get

Vg € X¥n € NIm < U(®(n,b, F),b, F) (d(zm,2) <27").

Namely, let xp € X and n € N. Then given € > 0 we can let £ € N be such that
d(zy, z) < e and
d(xg, xp41) < 2= e )

There exists . .
m < ¥(®(n,b, F),b, F)

such that

AT, Tma1) < 274’("’1”13),

and so by we have
A, 2) < d(@m, xr) + d(Tr, 2) < 27" + €.
Since \D(Q)(n,b, ﬁ), b, ﬁ) does not depend on & we get d(x,,,z) < 27" for some
m < (®(n,b, F),b, F).

If f is nonexpansive and if we assume that f has a fixed point then (2.11)
yields a uniform rate of convergence to the fixed point:

Yz € XVYn € NVm > U (®(n, b, F),b, F) (d(zm,2) <27"). (2.12)

So in this case a rate of proximity gives a rate of convergence. Note that if f
is nonexpansive but if we do not assume that f has a fixed point then we get

from (2.10) that
Voo € XVn € NYm > U(n,b, F) (d(zm, mi1) < 277). (2.13)
From this and from (2.8)) it follows that

Yzo,y0 € XVn € NVm > \I/(fb(n,b, ﬁ),b,ﬁ) (d(mm,ym) < 2_") . (2.14)
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Hence if the space is complete then in this case there exists a unique fixed point z
such that all Picard iteration sequences converge to z with a rate of convergence
which is uniform in the starting point.

The account thus far is based on the discussion in [I09]. For the sake of
illustrating the concepts in question this approach was used there to obtain a
constructive version of Edelstein’s theorem for contractive mappings. In [54] this
general approach was used to obtain a quantitative version of Kirk’s theorem on
asymptotic contractions. This involved finding a rate of proximity to the unique
fixed point for all Picard iteration sequences. This rate of proximity is then a
rate of convergence if we restrict ourselves to nonexpansive mappings. However,
asymptotic contractions in the sense of Kirk need not be nonexpansive. We have
been able to build on Gerhardy’s work to obtain a full rate of convergence for
asymptotic contractions in the sense of Kirk without assuming the mappings
to be nonexpansive: this work appears in Chapter [8] We have also used the
approach outlined here to find a rate of proximity for uniformly continuous
uniformly generalized p-contractive mappings, and also in this case we found
that we could extend our results so as to get a full rate of convergence without
assuming the mappings to be nonexpansive: this work appears in Chapter [4

These results prompted the investigations in this chapter into the role of
uniqueness of the fixed point and the existence of uniform rates of convergence
in the general case.

However, before proving our theorem we will comment on a variation of the
method above which often works in practice and which amounts to a numerical
improvement.

2.3.2 Eliminating the modulus of uniqueness

The rate of proximity above was obtained as a combination of a modulus of
uniqueness ¢ with the functional ¥ extracted from a proof of . In fact, in
many cases the proof that for any k£ € N and for any z¢g € X and 1 := f(z0)
there exists an m € N such that d(f™(zg), f™(x1)) < 27% does not use that
x1 = f(xo), ie., it is exactly the same as a proof that for any z¢p € X and
yo € X there exists an m € N such that d(f™(zo), f™(yo)) < 27F, just with
the variables z; and yg interchanged. Then from the proof of the formalized
statement we get that

Vo, Yo € XVn € NIm < U(n,b, F) (d(zm, ym) < 27") . (2.15)

Now, if the space is complete then we know that there is a point z € X to which

all Picard iteration sequences converge (by the discussion after (2.8)) above, since
we still assume that we have (2.5) and (2.6])), and it is easy to see that

Vao € XVn € Nam < U(n, b, F) (d(zm,2) <277). (2.16)

Namely, let zp € X and n € N. Then given € > 0 we can let yy in (2.15)) be
such that d(yg,2) < € for all k € N. This we can do by e.g. letting yo = x; for
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large enough [ € N. Then by the triangle inequality and (2.15) we have that
there exists m < U(n,b, F') with

d(xm,2) <27" +e.

Since ¥(n, b, ﬁ) does not depend on ¢ we get d(z,,z) < 27" for some m <
U(n,b, F). In contrast to this, if z is a fixed point then we get directly from 1)
that

Voo € XVn € Nam < ¥(n,b, F) (d(zm,2) <27"). (2.17)

That is, An.¥(n,b, ﬁ) is a rate of proximity to z for all Picard iteration se-
quences. Compared to the previously obtained rate of proximity

AU (®(n,b, F),b, F)

this is in most cases a significant quantitative improvement, since moduli of
uniqueness A\n.®(n, b, F') in practice tend to satisfy ®(n,b, F) > n. We say that
we have “eliminated the modulus of uniqueness”. For the quantitative version
of Edelstein’s theorem on contractive mappings mentioned above, and also for
the quantitative result on generalized p-contractive mappings, one could numer-
ically improve the convergence rates obtained in exactly this way (see [23] and
Chapter . Also in the case of the rate of proximity for asymptotic contrac-
tions in the sense of Kirk obtained in [54] we could numerically improve the
results by eliminating what in that context functions more or less as a modulus
of uniqueness (see Chapter [3]).

2.4 Main results

We will exploit the fact that the bounds which the metatheorem guarantees are
uniform in the space (X,d) and the mapping f : X — X except through a
bound b € N on the space and majorants for the new constants one introduces
when developing a formal theory for the class of mappings under consideration
by adding purely universal axioms to A“[X,d].

2.4.1 A combinatorial lemma concerning finite product
spaces

We will need a lemma which in itself has nothing to do with logic or proof
mining, and which might deserve some independent interest.

Definition 2.35. Let (X, d) be a metric space, let f: X — X and let m > 1
be a natural number. We define a metric space (X™,d,,) by supplying the
Cartesian product X™ with a metric d,, defined by

din (%, ) = max {d(z',y"),...,d(=",y™)},
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where & = (z!,...,2™) and 7 = (y',...,y™). (We here use superscripts instead
of subscripts to indicate the i-th coordinate, in order to avoid confusion with
members of iteration sequences.) We define the mapping f,, : X™ — X™ by

fn(@) = (f(@h),..., f@@™)).

We note that if (X, d) is bounded by b > 0 then for all m > 1 we have that
also (X™,d,,) is bounded by b.

Lemma 2.36 (Main combinatorial lemma). Let (X,d) be a metric space and
let f: X — X be a mapping. Assume that there exists a function ® : N — N
such that

Vk € NVZ, 5 € X™3n < ®(k) (d (f1 (), fio (7)) <27573) (2.18)

holds for infinitely many natural numbers m > 1, where (X™,d,,) and fp, are
respectively the product space and the product mapping introduced in Defini-
tion 235l Then

Vk € NVz,y € XVi,n > ®(k) (d (f'(z), f"(y)) <27%).

And so if the space is complete then there exists z € X such that all Picard
iteration sequences (f"(x)), cn converge to z with a rate of convergence which is
uniform in the starting point, and if f is continuous then z is the unique firzed

point of f.

Proof. Let x,y € X and let k € N. Let M be the set of natural numbers m > 1
such that holds. Assume for the moment that 1 € M. Then taking m = 1
and z, f(r) € X in (where we identify (X1, d;) with (X,d)) we get that
for some n < ®(k) we have

d (@), [ (@) < 2745,

Likewise, if 2 € M, then taking m = 2 and (2, z), (f(z), f*(z)) € X? in (2.18)
we get that for some n < ®(k) we have

d (f"(x),f"“(x)) < 27k=3 A d(f"(x),f””(x)) < 27k=3,

In general, for any m € M we take (z,...,z), (f(z),..., f™(z)) € X™ in (2.18).
Then for some n < ®(k) we have

/\ (d (fn(.’);‘),fn-H(.%‘)) < 2—k—3) )

Since there are only finitely many n < ®(k) and since ®(k) is independent from
m it follows that there is some n; < ®(k) such that

(d(f™ (), f () <27773)

~-

=1
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holds for infinitely many m > 1, i.e., such that
d(f"(z), fr(x) < g7k=3
holds for all ¢ € N. Then in particular
d(f™ (@), f* 0 (@) <2747,
and so by the triangle inequality we have that
d(f*® (@), fr(z)) <273 g 27h 8 =o7h2
holds for all n > ®(k). Analogously we get that

d(f*® (y), fr(y)) <27+2

holds for all n > ®(k). Let my € M. By (2.18) we know that for any
e > 0 there exists i € N such that for 2/ = (f*®(z),..., f*®(z)) and

v = (2 (y),..., [P (y)) we have

iy (Finy (1), Fiy (V) <&,
and thus
d(fEEF(z), BT (y)) < e

Hence

d(f*® (), PP (y)) < d(f*P (@), FPO(2)) +
d(fEEFi (), FEOT () + d(FPEF(y), F2E ()
< 2Rty oh2

and since € > 0 was arbitrary we have

d(f*®) (z), 2P (y)) < 27F1

So for I,n > ®(k) we have

d(fl'(2), f*(y)) < d(f(2), PP () +
d(f*® (), f* P (y)) +d(£*®) (y), f(v))
< 27k2 g7kl 9mk2
= 27k

O

We note that it is easy to see that if (2.18]) in the lemma above holds for some
m then it holds for all positive integers m’ < m. Thus under the assumptions
of the lemma we have that (2.18]) holds for all m > 1.
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2.4.2 Uniform product space models

The following definition is meant to capture a certain relationship between a
formal theory A“[X,d] 4+ A for some class of selfmappings on bounded metric
spaces and a bounded metric space (X, d) together with a mapping f: X — X.
Loosely speaking this involves that not only should (X,d) and f : X — X
give rise to a model of A“[X,d] + A, but so should every finite product space
(X™,d,,) and product mapping f,, and this should happen in a certain uniform
way for all m > 0. We will in the last section of this chapter see two concrete
examples from metric fixed point theory of classes of mappings on bounded
metric spaces such that one can find theories A“[X,d] + A for which every
mapping of the kind considered together with the bounded metric space on
which it is defined provide a uniform product space model.

Definition 2.37. Let A“[X,d] 4+ A be the theory A“[X,d] extended with a
new constant ¢y of type X — X and with new constants cy,...,cy,, of types
of degree 2 and new constants ¢,, 11, ..., s, of types of degree (1, X), and also
with purely universal closed axioms with the types of all quantifiers of degree 2
or (1, X). We say that a nonempty bounded metric space (X, d) and a selfmap
f:+ X — X together provide a uniform product space model for AY[X,d] + A
if:

() There exist closed terms 7, ...,c; of A“[X,d]+ A such that for all m in

? g

an infinite set M C N\ {0} one can obtain a model of A“[X,d] + A by:

(i) letting the variables range over the appropriate universes of the full
set-theoretic type structure S X with the set X™ as the universe
for the base type X,

(ii) letting Ox be interpreted by an arbitrary element of X™ and letting
Cny41,- - -5 Cny De interpreted by functionals from the appropriate uni-
verses of SWX"

(iii) letting bx be interpreted by an integer upper bound b for d,, and
letting dx be interpreted by Az, y. (dm(z,v)),,

(iv) letting ¢y be interpreted by fp,
(v) and finally by letting ¢, ..., c,, be interpreted such that

S X" = ¢; s-maj, ¢; for 1 <i<ny,
where o; is the type of ¢;.

And furthermore for all m € M the terms cj,...,c;, are interpreted by

the same functionals Fi, ..., Fj,, in the models above.

The concept in this definition will be crucial in our theorems below.
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2.4.3 A theorem guaranteeing the extractability of uni-
form and effective rates of convergence

The following theorem is our main result in this chapter. It uses the notion of
a metric space (X,d) and a mapping f : X — X providing a uniform prod-
uct space model for a theory (which is meant to capture the class of mappings
to which f belongs) to give conditions guaranteeing the extractability of com-
putable and uniform rates of convergence. However, we do not need the full
strength of Theorem to explain the results of our case studies, and so we
include some corollaries which do suffice in many cases.

Theorem 2.38. Let A“[X,d] + A be as in Definition m Suppose that
A“[X,d]+ A proves

Vo vy X (cp(z) =x z Aep(y) =x y = = =x y) (2.19)
and

vxé(,yé(Vk:Oﬂno (dX(xnaxn-l-l) <R (Q_k)R A dX(ynayn-i-l) <R (Z_k)R) ) (2-20)

where x,, and y, are the n-th members of the defined Picard iteration sequencesﬂ
starting with respectively xo and yo. Then from the proofs in A[X,d] + A

of (2.19) and (2.20) one can extract a partial functional
P:NXxNxS, x--x5;, —N,

which can be given as a closed term of WE-PA¥+(BR), and whose restriction to
NxNx My, X+ xM,, is atotal (bar recursively) computable functional, such
that whenever we have a nonempty metric space (X, d) bounded by b € N and a

mapping [ : X — X, which together provide a uniform product space model for
AY[X,d]+ A, then

Vk € NVz,y € XVi,n > ®(k,b, F) (d (f'(z), f*(y)) < 27%)

holds in (X, d), where F is as in condition (x) in Definition m

Proof. As commented on after Theorem [2.31 above it follows from the proof of
Theorem 3.7 in [99] that Theorem [2.31]can be extended to cover A*[X,d]+A, in
the sense that if a sentence of the form (where By and C3 are now formulas
of A“[X,d]+A and where s is a closed term of A“[X, d]+A) from Theorem 2.31]
is provable in A“[X,d] + A, then we can extract a partial functional (which is
total when restricted to the majorizable elements)

VS, XS5 X %X 8, XxN—=N

OTny

which can be defined by a closed term of WE-PA“+(BR), such that

Yy <, s(x)VzT[Vu < U(z, F,b)By(x,y, z,u) —
v < U(x, F.b)C(z,y, 2,)]

9That is, we write x, for P(zg,n), where P := Xx¥X,n0. Rxnl2z%Xz, with 2z :=
)\LEX,mO.sz.
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holds in any nonempty metric space (X, d) bounded by b € N which satisfies
the new purely universal axioms with bx interpreted by b and with the new
constants interpreted by functionals from the appropriate universes of S

*

such that there are closed terms c7, ..., c; interpreted by Fi, ..., Fy,, such that
§UX = ¢f smaj,, ¢ for 1 <i<ny. (2.21)

Since (2.19) and (2.20) are of the appropriate logical form (when we treat (2.19))

as in the discussion at the beginning of Section we can extract functionals ¥y
and Wy such that for any nonempty bounded metric space (X, d) and mapping
f: X — X which provide a uniform product space model for A[X,d]+ A we
have for all m in an infinite set M C N\ {0} that

2
Vfl,fg e X™WEkeN </\ dm (fl,fm(fl)) < Q_Wl(k’b’F) — dm(fl,fg) < 2_k>
=1
and
2
Vflva € X™Vk € Ndn < \IJQ(kabv F) (/\ dm (fgz(fz%fgz—i_l(fl)) < 2_k> )
i=1

where b € N is a bound on d and where Fi,...,F,, are as in (%) in Defini-
tion m It is here essential that for each m € M the product space (X™, d,,)
gives rise to a model of A“[X,d]+ A as specified in () in Definition and

that the majorants F' are uniform in m. Hence with ® defined by
®(k, b, F) 1= Uy (\Ill(k +3,b, F),b, ﬁ)
we have
Vk € NVZ, 5 € X™3n < ®(k,b, F) (dw (f1(Z), fr () < 27F73)  (2.22)
for all m € M. Thus by Lemma we have
Vk € NVz,y € XVI,n > ®(k,b, F) (d (f'(z), f*(y)) <27%).

O
We will include some corollaries. The first one is directly a special case of

Theorem [2.38]

Corollary 2.39. Let A“[X,d]+ A be as in Definition but such that the
new constants ci,...,cn, are of types of degree 1. Suppose that A*[X,d] + A

proves (2.19)) and (2.20)) from Theorem m Then from the proofs in A X, d ]|+
B2

A of ) and one can extract a computable functional

P :NXNxS; X xS, —N
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which can be defined by a closed term of WE-PA“+(BR), such that whenever we
have a nonempty metric space (X, d) bounded by b € N and a mapping f : X —
X, which together provide a uniform product space model for A“[X,d]+A, then

Vk € NVz,y € XVi,n > ®(k,b, F) (d (f'(z), f"(y)) < 27%)

holds in (X,d), where F is as in condition (x) in Definition m

Proof. That @ is total follows from Theorem since S,, = M,, for types
o; of degree 1.
0O
Notice that in the case of Corollary [2:39] the new constants can always be
majorized — the question is whether these majorants are the same for all product
spaces and product mappings.

Corollary 2.40. Let A“[X,d]+ A—=DC be as AY[X,d]+ A in Definition
but without DC, and such that the new constants ci1,...,cn, are allowed to be
of arbitrary types o; € T, and the new purely universal axioms are allowed to
have quantifiers of arbitrary types o € T instead of only types o € T which
are of degree 2. Suppose that A*[X,d] + A—DC proves ([2.19) and ([2.20) from
Theorem [2.38, Then from the proofs in A“[X,d]+ A—DC of (2.19) and (2.20)

one can extract a functional

P:NXNxS, x--xS;, —N,

(which can be defined in T, i.e. as a closed term of WE-PA® ) such that when-
ever we have a nonempty metric space (X, d) bounded by b € N and a map-
ping [ : X — X, which together provide a uniform product space model for
A?[X,d] + A=DC in the sense of fulfilling the variant of Definition one
gets by replacing AY[X,d] + A by A°[X,d] + A—DC, then

Vk € NVa,y € XVi,n > ®(k,b, F) (d (f'(z), f"(y)) < 27%)

holds in (X,d), where F is as in condition (x) in Definition m

Proof. This follows from the proof of Theorem 3.7 in [99] (which we included as
Theorem , since if the theory does not include DC then we do not need the
bar recursive functionals to interpret it, and so we do not need to take the detour
via M“X . And the reason for the restriction on the types of the new constants
C1,...,Cn, Was that we wanted to ensure that these could be interpreted by the
same functionals in S“** and in M“¥ and that

SN = ¢ s-maj,, ¢;

would imply
M = ¢f ssmaj,, ¢;

if all constants were interpreted in the same way in S“X and in M“X. The
restriction on the types ¢ € T of the quantifiers in the new axioms was there
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to ensure that truth of the axioms in S“* would imply truth of the axioms in
Mw,X .
O
In the following corollaries we will give alternatives to the formal statements
which we in Theorem [2:38| required that the theory should prove.

Corollary 2.41. If we in Theorem Corollary or Corollary
remove condition (2.20) but instead require that A“[X,d] + A proves

Vatg(Vk‘OﬂmOVno (n >om — dx(Tn, Tni1) <r (Q_k)R) )

where x,, is the n-th member of the defined Picard iteration sequence starting
with xq, then the conclusion of the theorem (respectively the relevant corollary)
still holds.

Proof. The condition in the corollary amounts to requiring asymptotic regu-
larity of any interpretation f : X — X of c;. This obviously implies

2
Vry, 20 € XVk € NIn € N (/\ d(f" (), [" (@) < 2—k> , (2.23)

i=1

and it is easy to see that the required argument can be formalized in A“[X,d]+
A. Thus we have that A“[X,d]+ A proves (2.20). (In x1 and x5 do not
denote respectively the first and second member of a Picard iteration sequence,
but rather arbitrary elements of X.)

O

Corollary 2.42. If we in Theorem [2.38, Corollary 2.39, or Corollary [2:40]
replace the condition that A“[X,d] + A should prove (2.19) and (2.20) by the
condition that A“[X,d] + A should prove

Vo, yo VECIn® (dx (@, yn) <w (27F)r) (2.24)

then the conclusion of the theorem (respectively the relevant corollary) still holds.

Proof. We notice that (2.24]) has the appropriate logical form, so that we can
extract a functional ® such that

Vk € NVz,y € X3n < ®(k,b, F)(d(f"(x), f"(y)) < 27F)

holds in any nonempty metric space (X,d) bounded by b € N which satisfies
the new purely universal axioms with by interpreted by b and with the new
constants interpreted by functionals from the appropriate universes of S

such that there are closed terms c7, ..., ¢, interpreted by F1,..., Fy,, such that

8% = ¢f s-maj,, ¢; for 1 <7< my. (2.25)

Since this ® is independent of the space and the mapping f it follows that for
any nonempty bounded metric space (X,d) and mapping f : X — X which
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provide a uniform product space model for A“[X,d] + A we have for all m in
an infinite set M C N\ {0} that

Vk € NVZ, § € X™3n < O(k,b, F) (dy, (f5n (), () <27%),  (2.26)

where b € N is a bound on d and where Fi,..., F,, are as in (x) in Defini-
tion [2:37 Now we can use Lemma [2.36] as in the proof of Theorem [2.38|
O

Corollary 2.43. If we in Theorem Corollary or Corollary
replace the condition that A“[X,d] + A should prove (2.19) and (2.20) by the
condition that there exists an integer N > 1 such that AY[X,d] + A proves

Vag Vyg (n =x To AYN =x Yo — To =x Yo)

and

Vag, yg VR 3n® (dx (2, 2ngn) <r (27F)r A dx (Yns Ynan) <r (27F)r),
then the conclusion of the theorem (respectively the relevant corollary) still holds.

Proof. Analogous to the proof of Theorem [2.38
O
The importance of Theorem [2.38 comes from the fact that it has been possi-
ble to find such theories A“[X, d] + A and uniform majorants F of the moduli
introduced (i.e. of the interpretations of the new constants of relevant type)
such that conditions and (or the similar conditions in the corol-
laries above) are provable and such that all members of certain classes of self-
mappings of metric spaces considered in the literature satisfy condition (*) in
Definition [2.37] By recasting the definitions of the relevant classes of selfmaps
by introducing certain moduli and purely universal axioms (to get a suitable
formalization A“[X,d] + A) such that if (X,d) and f fulfill the definition then
for infinitely many m also (X™,d,,) and f,, fulfill the definition, and such that
there exist majorants for the moduli introduced which are uniform in m, we
reduce the question whether all Picard iteration sequences are convergent to
the same poinﬂ (that they are Cauchy is expressed by a V3V-sentence) to the
question whether certain V3-sentences are provable in a suitable formal theory
A¥[X,d]+ A. This reduction in logical complexity allows us to extract uniform
bounds as described in Theorem 2.38
We will in Section below present two such classes of selfmaps on bounded
metric spaces. In both of these cases we had already constructed explicit and
uniform rates of convergence independently of Theorem — these results
are contained in Chapter [3| and Chapter However, Theorem [2.38| provides
an explanation for why we were able to construct such rates of convergence.
And that the conditions in Theorem [2.38| are fulfilled in these cases provides

10The existence of the limit of the iteration sequences is not guaranteed unless the space is
complete.
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a justification for the conditions concerning product spaces and existence of
uniform majorants for moduli which we require in the theorem. However, before
considering the applications of Theorem we include two remarks.

Remark 2.44. The logical metatheorems in [99] (Theorem [2.38 above depends
on Theorem 3.7 in [99]) have been extended in [56] so as to no longer require
the relevant spaces to be bounded. Instead, some local boundedness criteria
are required, and a more involved majorizability relation is used. Our results
here hinge on a combinatorial argument (Lemma involving a condition
which for selfmappings on unbounded metric spaces seems restrictive and some-
what peculiar, but we would not be surprised if the results here could, suitably
adapted and restricted, be transfered to the setting in [56].

Remark 2.45. Let A“[X,d]| + A be as in Theorem - Let p1, p2 be types
of degree 1 and let 71, 75 be types of degree (1,X). Let 0" and s3** be
closed terms of AY[X,d]+ A. Let

By(zX, ™~ K010, 2 wl)

and

X X 10 ,0 _p2
OV(xO » Yo )k y Uy 29 7w2 )

be V-formulas in £(A“[X,d] 4+ A) with free variables among those indicated.

Suppose we in Theorem [2.38| replace the condition that A“[X,d] + A should
prove (2.19)) and (2.20) by the condition that A“[X,d] 4+ A should prove

VEOVz < <, si(k )Vw{l,xX,yX((VuoBv(x,y,k,u, 21,W1)
AYm® Ag(z,y,m)) — |dx (2, y)(k + Dlg <g 275)),
where Ag(z,y,m) is as in , and also
VEOV 2y < <,, s2(k )ngz,on Yo (VuOCv(xo,yo,k,u,ZQ,wQ)
— IO (dx (Tn, Tns1) <k (27F)r A dx (Yn, Ynt1) <r (27%)r)).

These formulas are of the logical form required by (an extension to A“[X,d]|+A
of) Th