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Abstract

This thesis investigates some effective and quantitative aspects of metric fixed
point theory in the light of methods from proof theory. The thesis consists of
contributions to the program of proof mining, as developed by Kohlenbach and
various collaborators since the early 1990s (but with roots back to Kreisel’s pro-
gram “unwinding of proofs” from the 1950s). The contributions involve both
case studies – studying given prima facie ineffective proofs of certain fixed point
theorems to extract “hidden” effective information like explicit bounds and rates
of convergence for iteration sequences, and also developing further the use of
the logical machinery involved. The main theoretical tools involve Gödel’s func-
tional (“Dialectica”) interpretation combined with negative translation and a
variant of Howard’s majorizability relation – and specifically the logical metathe-
orems of Kohlenbach and Gerhardy, where the reach of these techniques is ex-
tended to formal systems for analysis with various abstract spaces added as new
ground types.

The main contributions of the thesis are twofold:

(1) We construct explicit and effective full rates of convergence for the Picard
iteration sequences for two classes of selfmaps on metric spaces. One of
these are Kirk’s asymptotic contractions, and as a byproduct of the logical
analysis we obtain a string of results concerning this class of mappings, in-
cluding a characterization on nonempty, bounded, complete metric spaces
as exactly the mappings for which there exists a point to which all Picard
iteration sequences converge with a rate of convergence which is uniform
in the starting point. This shows that in the setting of bounded metric
spaces the asymptotic contractions in the sense of Kirk in some sense are
the most general mappings which still exhibit convergence of the Picard
iteration sequences of “Banach type” – to the same point and with strong
uniformity with respect to the starting point.

The other class of mappings for which we construct explicit rates of con-
vergence are the so-called uniformly continuous uniformly generalized p-
contractive mappings. Logical analysis of the concepts involved – using
monotone functional interpretation – allows us to develop an extension of
a related fixed point theorem from the case where the space is compact
to arbitrary metric spaces. This is possible because monotone functional
interpretation automatically leads us to consider the “right” uniform ver-
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sion of the corresponding contractive type condition – whereas in the proof
of the original theorem the compactness of the space “secretly” upgrades
the generalized contractive condition in question to this uniform version.
Also in this case we were able to give an effective and highly uniform rate
of convergence for the Picard iteration sequences, and by the uniformity
features of the resulting rate of convergence it follows that the mappings
under consideration are asymptotic contractions in the sense of Kirk.

(2) We develop a method for finding, under general conditions, explicit and
highly uniform rates of convergence for the Picard iteration sequences for
selfmaps on bounded metric spaces from ineffective proofs of convergence
to a unique fixed point. We are able to extract full rates of convergence by
extending the use of a logical metatheorem due to Kohlenbach. Our novel
method provides an explanation in logical terms for the fact that we in the
case studies mentioned above could find such explicit rates of convergence.
This amounts, loosely speaking, to general conditions under which we in
this specific setting can transform a ∀∃∀-sentence into a ∀∃-sentence via an
argument involving product spaces. This reduction in logical complexity
allows us to use the existing machinery to extract quantitative bounds of
the sort we need.
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Deutsche Zusammenfassung

Diese Dissertation untersucht effektive und quantitative Aspekte metrischer
Fixpunkttheorie mit Hilfe von Methoden der Beweistheorie. Sie besteht aus
Beiträgen zum “proof mining”-Programm, entwickelt von Kohlenbach und an-
deren seit Anfang der 1990er Jahre, welches seinerseits seine Ursprüngen in
Kreisels “unwinding of proofs”-Programm aus den 1950er Jahren hat. Wir
untersuchen prima facie ineffektive Beweise bestimmter Fixpunkttheoreme, um
ihnen “versteckte” effektive Informationen, wie zum Beispiel explizite Schranken
und Konvergenzraten für Iterationsfolgen, zu entnehmen. Darüber hinaus en-
twickeln wir die Anwendung der logischen Methoden weiter. Die wichtigsten the-
oretischen Methoden umfassen Gödels Funktionalinterpretation (“Dialectica”)
kombiniert mit Negativübersetzung und einer Variante von Howards Majorisier-
barkeit, sowie logische Metatheoreme von Kohlenbach und Gerhardy. Diese er-
weitern die Anwendung der zuerst genannten Techniken auf formale Systeme der
Analysis, die verschiedene abstrakte Räume als neu hinzugefügte Grundtypen
besitzen.

Die zwei wichtigsten Beiträge sind die folgenden:

(1) Wir konstruieren explizite und effektive Konvergenzraten für die Picard-
Iterationsfolgen von zwei Klassen von Selbstabbildungen auf metrischen
Räumen. Die eine Klasse sind Kirks asymptotische Kontraktionen. Als
Konsequenz der logischen Analyse erhalten wir außerdem eine Reihe qual-
itative Ergebnisse bezüglich dieser Klasse von Abbildungen. Insbeson-
dere beweisen wir eine Charakterisierung der Klasse der asymptotischen
Kontraktionen im Sinne von Kirk für den Fall nichtleerer beschränkter,
vollständiger metrischer Räume als genau denjenigen Abbildungen, für
welche es einen Punkt gibt, gegen den alle Picard-Iterationsfolgen mit
einer Konvergenzrate konvergieren, die gleichmäßig bezüglich des Start-
punkts ist. Dies zeigt, dass im Falle von beschränkten metrischen Räumen
die asymptotischen Kontraktionen im Sinne von Kirk in gewissem Sinne
die allgemeinsten Abbildungen sind, die noch eine Konvergenz der Picard-
Iterationsfolgen vom “Banach-Typ” aufweisen, das heißt Konvergenz gegen
einen einzelnen Punkt und mit starker Gleichmäßigkeit bezüglich des Start-
punktes.

Die andere Klasse von Abbildungen, für die wir explizite Konvergenzraten
konstruieren, sind die sogenannten gleichmäßig stetigen gleichmäßig ver-

v



allgemeinert p-kontraktiven Abbildungen. Es gelingt uns, ein verwandtes
Fixpunkttheorem zu erweitern, bei dem wir nicht länger die Kompaktheit
des Raumes (X, d) fordern. Aus den Gleichmäßigkeitseigenschaften der
Konvergenzrate folgt, dass diese Abbildungen asymptotische Kontraktio-
nen im Sinne von Kirk sind.

(2) Wir entwickeln Methoden, um unter allgemeinen Bedingungen explizite
und stark gleichmäßige Konvergenzraten für die Picard-Iterationsfolgen
von Selbstabbildungen auf beschränkten metrischen Räumen aus ineffek-
tiven Beweisen von Konvergenz gegen einen eindeutigen Fixpunkt zu ent-
nehmen. Wir können volle Konvergenzraten extrahieren, indem wir die
Anwendung eines logischen Metatheorems von Kohlenbach erweitern. Un-
sere neuartige Methode liefert eine metamathematische Erklärung für die
Tatsache, dass wir in den oben erwähnten Fallstudien solche expliziten
Konvergenzraten finden konnten. Dies kommt allgemeinen Bedingun-
gen gleich, unter denen wir in bestimmten Zusammenhängen ∀∃∀-Sätze
mit Hilfe eines Arguments über Produkträume zu ∀∃-Sätzen umformen
können. Diese Vereinfachung der logischen Komplexität erlaubt es uns,
die vorhandenen Methoden zu nutzen, um quantitative Schranken, wie wir
sie brauchen, zu bestimmen.
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Chapter 1

Introduction

This thesis develops further the uses of proof mining in metric fixed point theory,
and investigates some effective and quantitative aspects of metric fixed point
theory with the help of proof mining. “Proof mining” is a label assigned to a
general project of applying methods from that part of mathematical logic known
as proof theory to core (or “ordinary”) mathematics, and we will give a general
description of this program below.

The main contributions of this thesis can be divided into two parts: In Chap-
ter 3 and Chapter 4 one will find a study of asymptotic contractions in the sense
of Kirk and related classes of mappings, where we construct explicit and highly
uniform rates of convergence for the Picard iteration sequences; and in Chap-
ter 2 we investigate how these results can be explained in logical terms via a new
method for (under general conditions) finding computable and highly uniform
rates of convergence for Picard iteration sequences for selfmaps on bounded
metric spaces from ineffective proofs of convergence to a unique fixed point.
The latter amounts, loosely speaking, to general conditions under which we in
this specific setting can transform a ∀∃∀-sentence into a ∀∃-sentence via an ar-
gument involving product spaces. This reduction in logical complexity allows
us to use the existing machinery to extract the quantitative bounds we need.

In this chapter we will discuss the context of the work, including both the
program of proof mining in general and the relevant aspects of metric fixed point
theory.

1.1 Proof mining

“Proof mining” refers to the logical analysis of given mathematical proofs with
the help of tools and insights from that part of mathematical logic known as
proof theory, with the aim of obtaining relevant information “hidden” in the
proofs. This new information can be quantitative or numerical – in the sense
that one obtains e.g. explicit bounds or rates of convergence, but it can also
yield qualitative improvements of the original theorem through showing that the
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2 1 Introduction

bounds are uniform with respect to certain parameters, or through weakening of
the premises of the theorem. Kohlenbach’s recent book [101] provides a wealth
of information on the various aspects of proof mining, and among other things
the relevant techniques used are described in detail.

Loosely speaking the general structure of proof mining is as follows: Suppose
one has a proof P of a theorem A (of a certain restricted logical form). One then
applies an algorithm provided by a logical metatheorem from proof theory to
get a new proof P ′ of a stronger theorem A′. However, strictly speaking this is
only possible in the rare situation where the proof P is completely formalized in
a suitable formal system to which the metatheorem applies. In practice one does
not deal with completely formalized proofs – rather one identifies only the key
steps in the proof, and relies on the original algorithm only as a general guideline
in developing the new proof of the new theorem. The proof P ′ will again be
an ordinary mathematical proof in the sense that it does not rely on the logical
metatheorems which provide the algorithm and assure that we can carry out
the analysis. We use the prefix “meta-” when refering to these theorems simply
to signify that they are theorems which say something about formal systems –
in which one can prove theorems. So in comparison to the theorems which one
proves in the relevant formal systems the theorems which are about the formal
systems are in some sense one step “higher”.

Here there are several things which we should say something more about
straight away:

(i) The new theorem A′ could be a strengthening in several ways. If A :≡
∃xB(x), then it would certainly be an improvement if one could produce
a concrete c such that A′ :≡ B(c), or if one could produce a finite number
of possible witnesses such that

A′ :≡ B(c1) ∨ . . . ∨B(cn).

If A :≡ ∀x∃yB(x, y), then one could try to produce a program p giving a
realizer, i.e., such that A′ :≡ ∀xB(x, p(x)). And in the case where

A :≡ ∀x∃n ∈ NB(x, n)

one could try to produce a function p giving a bound, i.e., such that

A′ :≡ ∀x∃n ≤ p(x)B(x, n).

To illustrate a possible qualitative improvement of the original theorem
we can consider the case where

A :≡ ∀x∀y∃n ∈ NB(x, y, n).

Then a new theorem A′ of the form

A′ :≡ ∀x∀y∃n ≤ p(x)B(x, y, n),
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where p is a function which does not take y as an argument, would show
that there exists a bound which is uniform in y. This is an improvement
which could be of interest even if one has no interest in the numerical or
quantitative details of particular bounds or realizers. And as an example
where the new theorem has weakened premises we can consider the case
where

A :≡ (∀n ∈ NB(n)→ C)

and
A′ :≡ (∀n ≤ NB(n)→ C),

for some given N ∈ N. Theorems of the forms considered here are common
in many areas of mathematics, and we will see examples of this later.
In [109] one can find a survey which includes a discussion of different
kinds of mathematical statements which could be strengthened via proof
mining.

(ii) Our ability to extract information such as computable bounds from a proof
of a theorem will be heavily dependent on the logical form of the theorem
and on what kind of proof principles has been used in the proof, and there
are severe limitations on what we in general can do. It is well-known that
given a theorem ∀x ∈ N∃y ∈ NA(x, y), it will not in all cases be possible
to find a computable bound, i.e., a computable p : N→ N such that

∀x ∈ N∃y ≤ p(x)A(x, y).

And this is the case already in the comparatively simple case where

A(x, y) :≡ ∀z ∈ NB0(x, y, z),

with B0(x, y, z) a quantifier-free formula in the language of elementary
arithmetic. This is essentially due to the unsolvability of the halting prob-
lem. Namely, letting T (e, x, y) be Kleene’s primitive recursive T -predicate,
which expresses that the Turing machine e with input x terminates with
computation y, we can take

B0(x, y, z) :≡ (T (x, x, y) ∨ ¬T (x, x, z)).

Then
∀x ∈ N∃y ∈ N∀z ∈ N(T (x, x, y) ∨ ¬T (x, x, z))

is provable already in first order predicate logic, but a computable bound
p : N→ N such that

∀x ∈ N∃y ≤ p(x)∀z ∈ N(T (x, x, y) ∨ ¬T (x, x, z))

would allow us to solve the special halting problem, since to decide whether
∃y ∈ NT (x, x, y) for given x ∈ N we would then only have to check whether
∃y ≤ p(x)T (x, x, y), and the latter would be decidable. Thus such a
p : N→ N cannot exist.
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In contrast to this we can consider the case where we are given a theorem
∀x ∈ N∃y ∈ NA0(x, y), where A0(x, y) is itself a quantifier-free formula
in the language of elementary arithmetic, and therefore decidable. Then
there always exists a computable bound p : N→ N such that

∀x ∈ N∃y ≤ p(x)A0(x, y).

Namely, we can take p(x) := min{y ∈ N : A0(x, y)}, since such a least
y always exists and since A0(x, y) is decidable. But using this argument
we have no control over how fast p grows. In this case the challenge is
to extract information from a given proof of the theorem so as to get a
subrecursive bound, i.e., a bound which does not use unbounded search.

We will be interested in the borderline between the unproblematic case

∀x ∈ N∃y ∈ NA0(x, y)

and the highly problematic

∀x ∈ N∃y ∈ N∀z ∈ NA0(x, y, z),

especially in their manifestations as statements about the convergence of
iteration sequences in metric fixed point theory. A central question will
be in which cases we can predict that a ∀∃∀-statement will behave like a
∀∃-statement.

(iii) We have already mentioned that, strictly speaking, in order to apply the
methods of proof mining the proof of the theorem under consideration
must be formalized in one of a number of suitable formal systems, which
in most cases is an unrealistic requirement. However, it is often much
simpler to establish that a proof can be formalized in a certain formal
system. This can then give important a priori information about what
kind of effective bounds or realizers can be obtained, before any actual
proof analysis has taken place. This is often an important step on the
way to obtain concrete bounds, which can be produced by more rule-of-
thumb or ad hoc methods. Applying proof mining often involves mainly
putting the statement of the theorem and the key concepts involved into
a suitable logical form and identifying the steps in the proof which need
extra consideration. From this one can often infer the existence of uniform
bounds based on general metatheorems, and if one wishes one can go on
to try to actually extract these.

The tools one uses in proof mining were first developed with a different goal in
mind: One wanted to investigate relative consistency between different formal
systems for mathematics. The idea of rather applying these methods from
proof theory in a different way – to analyze given proofs of theorems in core
mathematics – goes back to ideas of Georg Kreisel from the 1950s, and to
his program unwinding of proofs (see [115, 44, 40] and the references cited
therein). Kreisel observed that mathematical proofs of given theorems in many
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cases carry more information than just the truth of the theorem in question.
Furthermore, even though this information might be prima facie hidden, it can
often be uncovered in a systematic way through an appropriate logical analysis.
His basic question was:

“What more do we know if we have proved a theorem by restricted
means than if we merely know it is true?”

Kreisel suggested that proof theory should shift its focus away from the relative
consistency proofs which had been the original motivation for developing the
techniques, and that one should use these methods to try to establish in concrete
cases what extra information lies hidden in a proof which only uses “restricted
means”.

Proof theory had developed as a reaction to the perceived foundational crisis
in mathematics in the early 20th century, which was brought on both by the
inconsistencies which had been discovered in early attempts to develop formal
systems for mathematics, and by the criticism of classical logic and set-theoretic
mathematics which Brouwer and his school stood for. In an attempt to give
mathematics secure foundations, Hilbert together with his followers sought to
prove the consistency of the various formal systems in which parts of mathe-
matics could be developed. One originally hoped to be able to carry out such
a consistency proof using only “finitistic means”, and in this way settle the
matter once and for all. However, as a consequence of Gödel’s incompleteness
theorems, which were published in the early 1930s, it became apparent that
the goal of Hilbert’s program in its original form had to be modified. Gödel
showed that to prove the consistency of even first order arithmetic with full
induction, i.e., Peano arithmetic PA, one had to go beyond what was considered
strictly finitary. Consequently one thereafter focused on finding the “minimal”
abstract notions which sufficed to prove the consistency of e.g. PA. (For histor-
ical information concerning the foundational crisis and Hilbert’s program one
can consult e.g. [170] and [131].) The consistency of arithmetic was soon proved
by Gentzen via transfinite induction up to the ordinal ε0 (see [50]), but an
alternative approach developed by Gödel will be of much greater concern to
us. In [59] and [60] Gödel introduced two proof interpretations: the negative
translation (a similar translation was discovered by Gentzen, and there is some
preceeding work by Kolmogorov [111] and Glivenko [58]) and the functional (or
“Dialectica”) interpretation. Together with the negative translation the func-
tional interpretation serves to give a consistency proof of classical arithmetic,
and this is not achieved via some kind of transfinite induction, but rather by the
extension of primitive recursive arithmetic to all finite types. Negative trans-
lation combined with Gödel’s functional interpretation form the backbone of
the logical metatheorems which will be the basis for our applications of proof
mining.

As already mentioned, negative translation and functional interpretation are
examples of so-called proof interpretations. In general this means that they are
transformations I mapping formulas A and proofs P of one formal system Σ1

to formulas AI and proofs P I in another formal system Σ2, such that certain
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properties considered desirable are preserved. Notably, if P is a proof of A,
then P I should be a proof of AI . Further, there should be some connection
between the formula A and the interpretation AI , at least for certain classes
of formulas – typically atomic formulas are left unchanged, for example. In
particular, if (0 = 1)I is just 0 = 1, then if one could derive 0 = 1 in Σ1 one
would be able to derive 0 = 1 already in the target system Σ2, and if the proof
that the interpretation works is itself considered unproblematic (because the
transformation I is computable), then one has a relative consistency proof – if
Σ2 is consistent in the sense that one cannot prove 0 = 1 in the system, then
so is Σ1. Thus in concrete cases one would try to develop proof interpretations
between (strong) formal systems Σ1, which for some reason are considered prob-
lematic, and systems Σ2 for which it is considered easier to justify belief in their
consistency.

The first attempt to study proof interpretations as such appears in Kreisel’s
papers [113, 114] (where he also introduced another proof interpretation: the
no-counterexample interpretation). It was Kreisel’s idea to apply proof inter-
pretations not to hypothetical proofs of a contradiction such as 0 = 1, but
rather to concrete proofs from mathematics. For more information on Kreisel’s
unwinding program, where one uses tools from proof theory such as proof inter-
pretations to analyze proofs in mathematics, see [117, 129, 130]. This general
project has in later years been dubbed “proof mining”. Unwinding of proofs
has had applications in algebra ([40]), number theory ([116, 128]), combina-
torics ([15, 57]) and computer science ([16, 17]). And from the early 1990s
Kohlenbach and various collaborators have systematically applied proof mining
to (nonlinear) functional analysis and numerical analysis. For applications to
approximation theory, see [88, 89, 90, 110, 145], for applications to ergodic the-
ory and topological dynamics, see [10, 52, 51, 106], and for applications to metric
fixed point theory, see [23, 54, 95, 94, 97, 98, 104, 107, 108, 105, 122, 123, 120]
(and also [22, 25, 26, 24, 27, 28], which contain material included in this thesis).

The applications in functional analysis and approximation theory have been
based on Kohlenbach’s monotone functional interpretation (see [91] or Chap-
ter 9 in [101]), which combines Gödel’s functional interpretation with Howard’s
majorizability relation ([72]). Very roughly we might say that monotone func-
tional interpretation is a proof interpretation which systematically transforms
the statements appearing in a proof into versions where explicit bounds or mod-
uli (like moduli of uniform continuity) are given or required – in a proof of
an implication we must make explicit the bounds or moduli required by (the
monotone functional interpretation) of the premise, and monotone functional
interpretation then transforms these into bounds or moduli for (the monotone
functional interpretation of) the conclusion. In [109] it is argued that monotone
functional interpretation in many cases provide the right notion of numerical
implication in analysis.

Relatively recently – and in connection with the applications in functional
analysis – general logical metatheorems which rather dramatically extend the
reach of monotone functional interpretation have been developed by Kohlen-
bach [99] and Gerhardy–Kohlenbach [56]. These are based on extensions of
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monotone functional interpretation to formal systems for analysis with vari-
ous abstract spaces (e.g. metric, normed, uniformly convex normed, Hilbert,
CAT(0) or W -hyperbolic spaces) added as new ground types. (Adaptations of
these metatheorems to formal theories for R-trees, Gromov hyperbolic spaces
and uniformly convex W -hyperbolic spaces are given in [121].) The formal sys-
tem involves a formal system Aω for analysis, basically Peano arithmetic in all
finite types with quantifier-free axiom of choice, dependent choice and countable
choice, but with only a certain quantifier-free rule of extensionality instead of
the full axiom of extensionality. On top of this one then “adds” e.g. an abstract
bounded metric space, obtaining a theory Aω[X, d]. In general the metatheo-
rems are of the following form: Suppose a ∀∃-sentence of a certain kind can be
proved in one of the formal systems under consideration, then from a sufficiently
formal proof one can extract an effective bound which holds in all spaces of the
appropriate kind, and moreover this bound is uniform in all parameters which
satisfy some weak local boundedness criteria. These metatheorems will be cru-
cial both for our concrete results in metric fixed point theory, where we among
other things construct explicit and highly uniform rates of convergence for the
Picard iteration sequences for Kirk’s asymptotic contractions, and also for our
results on rates of convergence for Picard iteration sequences in bounded metric
spaces in general. Details on this are provided in Chapter 2.

For additional information on applications of proof mining and proof mining
in general see also the surveys [102, 103], the PhD theses of Oliva [146] and
Gerhardy [53], and the survey [124] by L. Leuştean. For more information on
the functional interpretation, including Spector’s [166] extension of the inter-
pretation to full classical analysis via bar recursive functionals, which is used in
the proofs of the metatheorems, see also [9, 46, 47, 71, 127, 147, 169].

1.2 Some aspects of metric fixed point theory

Metric fixed point theory has its roots in methods from the late 19th cen-
tury, when successive approximations were used to establish the existence and
uniqueness of solutions to equations, and especially differential equations. This
approach is particularly associated with the work of Picard, although it was
Stefan Banach who in 1922 (in [11]) developed the ideas involved in an abstract
setting. Banach’s contraction mapping principle is remarkable both for its width
of applications in analysis, and for its simplicity.

1.2.1 Contractions and rates of convergence

Notation 1.1. We will throughout this thesis let N denote the set of nonneg-
ative integers, including 0.

Definition 1.2. A selfmap f : X → X of a metric space (X, d) is called a
contraction if there exists k < 1 such that

d(f(x), f(y)) ≤ k · d(x, y)
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for all x, y ∈ X. Such a k < 1 is called a contraction constant for f , and the
smallest such k is called the contraction constant.

Definition 1.3. Let (X, d) be a complete metric space, let x0 ∈ X, and let
f : X → X be a mapping. The sequence (xn)n∈N defined by xn+1 := f(xn) is
called the Picard iteration sequence with respect to f and x0.

Theorem 1.4 (Banach). Let (X, d) be a nonempty complete metric space, and
let f : X → X be a contraction. Then f has a unique fixed point z ∈ X,
and for each x0 ∈ X the Picard iteration sequence (fn(x0))n∈N converges to z.
Moreover, we have the following error estimate: For all x0 ∈ X and all n ≥ 1
we have

d(fn(x0), z) ≤ kn

1− k
d(x0, f(x0)),

where k is a contraction constant for f .

For a proof of this theorem (and a readable survey of different kinds of
extensions) see Chapter 1 in [85]. We note that this theorem immediately gives
us a rate of convergence for any Picard iteration sequence to the unique fixed
point, where by a rate of convergence we mean the following:

Definition 1.5. Let (X, d) be a metric space, let z ∈ X and let (xn)n∈N be a
sequence in X. We say that Φ : N→ N is a rate of convergence for (xn)n∈N to
z if

∀n ∈ N∀m ≥ Φ(n)
(
d(xm, z) < 2−n

)
.

Thus a computable rate of convergence gives us complete control over the
convergence of a sequence. Corresponding to a rate of convergence we also have
the following concept:

Definition 1.6. Let (X, d) be a metric space and let (xn)n∈N be a sequence in
X. We say that Φ : N→ N is a Cauchy rate for (xn)n∈N if

∀n ∈ N∀k,m ≥ Φ(n)
(
d(xk, xm) < 2−n

)
.

We next include a related notion which we will call a rate of proximity :

Definition 1.7. Let (X, d) be a metric space, let z ∈ X and let (xn)n∈N be a
sequence in X. We say that Φ : N→ N is a rate of proximity for (xn)n∈N to z if

∀n ∈ N∃m ≤ Φ(n)
(
d(xm, z) < 2−n

)
.
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This notion might seem somewhat artificial – and in fact, rates of proximity
are of relevance to us mainly as a step on the way to a full rate of convergence.
Rates of proximity will turn up in a natural way in the course of our proof
theoretic analysis of (ineffective) proofs that for certain kinds of selfmappings
on metric spaces all Picard iteration sequences converge to a unique fixed point.
In Chapter 2 we will discuss how we can extract rates of proximity from given
such proofs of convergence to a unique fixed point for various classes of selfmaps
of metric spaces, and we will investigate conditions which allow us to obtain a
rate of convergence instead.

Remark 1.8. We will sometimes also say that a function Φ : (0,∞)→ N such
that

∀ε > 0∀m ≥ Φ(ε) (d(xm, z) < ε)

is a rate of convergence for (xn)n∈N to z, and similarly we will when this is
convenient for notational reasons consider mappings Φ : (0,∞)→ N as Cauchy
rates or rates of proximity.

Also the following notion will be relevant later:

Definition 1.9. Given a metric space (X, d) and a mapping f : X → X we say
that a sequence (xn)n∈N is an approximate fixed point sequence for f if for all
ε > 0 there exists n ∈ N such that for all m ≥ n we have d(xm, f(xm)) < ε.

Another important aspect of the Banach contraction mapping principle which
is worth noting is that the rate of convergence is uniform in the starting point
x0 ∈ X except through an upper bound on the initial displacement, i.e., ex-
cept through a b > 0 such that d(x0, f(x0)) ≤ b. Consequently, if the space is
bounded, then the rate of convergence is fully uniform in the starting point. In
fact, the rate of convergence does not depend on the space (X, d), the mapping
f , or the starting point x0 ∈ X except through a contraction constant k and an
upper bound b on d(x0, f(x0)). In contrast to this, it is not in general the case
that given a continuous (even nonexpansive, see Definition 1.14) selfmapping
f : X → X on a bounded, complete metric space (X, d) such that all Picard
iteration sequences (fn(x0))n∈N converge to a unique fixed point z ∈ X of f ,
then the rate of convergence is uniform in the starting point. Consider e.g., the
following example.

Example 1.10. Let

X = {(n, k) ∈ R2 : n, k ∈ N, k ≤ n},

and consider the discrete metric d on X, i.e., such that

d
(
(n, k), (n′, k′)

)
= 1

for (n, k) 6= (n′, k′). Define now f : X → X by

f
(
(n, k)

)
=
{

(0, 0) if k = 0,
(n, k − 1) if k 6= 0.
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Then (X, d) is complete and bounded, and f is uniformly continuous (and in
fact nonexpansive). Moreover, all Picard iteration sequences converge to the
unique fixed point (0, 0), but there exists no common rate of convergence for all
sequences

(
fn
(
(k, k)

))
n∈N, for k ∈ N.

The definition of a rate of convergence in Definition 1.5 is very different from
the “convergence of at least order q” as commonly used in numerical analysis
when considering iterative methods:

Definition 1.11. Let (X, d) be a metric space, let z ∈ X and let (xn)n∈N be
a sequence in X converging to z ∈ X. Let q ≥ 1. We say that the convergence
of (xn)n∈N to z is of at least order q if there exists a null sequence (εn)n∈N of
positive reals and a µ > 0, with µ < 1 in case q = 1, such that

∀n ∈ N (d(z, xn) ≤ εn)

and
lim
n→∞

εn+1

εqn
= µ.

If q = 1 then (xn)n∈N is said to converge (at least) linearly.

In this definition the µ is often called the (asymptotic) rate of convergence.
An order of convergence and a rate of convergence in the sense of Definition 1.11
give only asymptotic information on the convergence, one gets no information
on how far one has to go in the sequence to get close to the limit. Consider for
example the family of real sequences (x(k)

n )n∈N, where for k ∈ N we have

x(k)
n =

{
1 if n = k,
2−n if n 6= k.

All the sequences (x(k)
n )n∈N converge to 0 with at least order 1 and with rate 1/2,

but there exists no common rate of convergence in the sense of Definition 1.5.
And if we do not know which of the sequences (x(k)

n )n∈N we are given, then
simply knowing that the convergence is of at least order 1 does not tell us how
far in the sequence we have to go to make sure that e.g. x(k)

n < 1/2. Evidently a
rate of convergence as given in Definition 1.5 provides important information if
we are to approximate the limit in practice, and similarly, uniformity properties
of the rate of convergence are important in a setting where our measurements are
inaccurate, as well as for various theoretical purposes. We will be concerned with
rates of convergence in this strong sense, and unless explicitly otherwise stated
“a rate of convergence” will in this thesis refer to the concept in Definition 1.5
rather than the one associated with Definition 1.11. (To reduce ambiguity we
could also have used the terminology “modulus of convergence” for the notion
in Definition 1.5. However, we will for the most part continue to use “rate of
convergence”.)

Another concept used in numerical analysis, particularly when considering
discretization methods, involves saying that a sequence (xn)n∈N converges to z
with order q > 0 if there exists a constant C such that

d(xn, z) < Cn−q (1.1)
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for all n ∈ N, n ≥ 1. To the extent that one is also interested in determining
the constant C this is closer to our Definition 1.5 than Definition 1.11 is, since
one does not only consider the limiting behavior as n → ∞, and such a C
and q give us a rate of convergence as in Definition 1.5. However, we will not
require that a rate of convergence is brought on this form, partly because we
will not exclude convergence which is slower than what one gets from (1.1) for
any C, q > 0, and partly because our rates of convergence Φ will depend on
other quantitative information given as parameters in ways which will make
the notion in Definition 1.5 more suitable. Treating a rate of convergence as a
function from the natural numbers to the natural numbers also gives us a good
way of handling questions related to computability. As a general reference on
computability theory one might consult [142], and for general information on
computability in analysis, see [171]. In relation to this it is worth noting that
the rate of convergence for contractions is computable in the sense that we get
a computable Ψ : N×N×N→ N such that for all b, k, n ∈ N, all nonempty and
complete (X, d) and all f : X → X with

∀x, y ∈ X(d(f(x), f(y)) ≤ (1− 2−k)d(x, y))

and x0 ∈ X with d(x0, f(x0)) ≤ b we have

d(z, fm(x0)) < 2−n

for all m ≥ Ψ(b, k, n), where z is the unique fixed point.

Remark 1.12. Given k ∈ N and b ∈ N we thus get one fixed rate of convergence
λn.Ψ(b, k, n) in the sense of Definition 1.5 which holds for all Picard iteration
sequences (fn(x0))n∈N such that (X, d) is a nonempty complete metric space,
f : X → X is a contraction with a contraction constant c = 1 − 2−k, and
x0 ∈ X is a point such that d(x0, f(x0)) ≤ b. We will somewhat loosely say
that Ψ itself is a rate of convergence for the Picard iteration sequences of a
contraction, whereas the proper thing according to our earlier definition would
be to say that Ψ gives a rate of convergence for each Picard iteration sequence.
For other classes of mappings the quantitative information on which the rate
of convergence for each Picard iteration sequence depends might be different
– it might be e.g., certain number theoretic functions η, β : N → N and a
number b ∈ N rather than the numbers b, k – but we will also in these cases in
a similar way speak of rates of convergence Ψ for all Picard iteration sequences,
which then take these number theoretic functions (moduli) η, β : N → N as
arguments in addition to b and the desired accuracy n (i.e. n gives the accuracy
2−n). When we say that we obtain effective rates of convergence for a certain
class of selfmaps on metric spaces, or for the Picard iteration sequences such
mappings give rise to, we refer to the fact that we obtain such a functional Ψ
which is computable in some precise sense, and which take the relevant moduli
as arguments in addition to the desired accuracy. For the precise statement of
this we refer to Chapter 2.

Similarly to the case of rates of convergence we will also call more general
functionals Ψ which take suitable moduli for the mapping etc. as arguments
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and return rates of proximity (respectively Cauchy rates) for a Picard iteration
sequence rates of proximity (respectively Cauchy rates).

The contraction mapping principle has been extended or modified in a great
many ways, by considering other kinds of conditions on the mapping or the
space. But relatively few of these fixed point theorems offer a constructive way
to find or approximate the fixed point, and of these even fewer give information
on error estimates or effective rates of convergence.

From the point of view of computability there is here a great difference
between obtaining a rate of proximity and a rate of convergence. Assume that
(X, d) is a metric space, x0 ∈ X, and f : X → X a mapping for which we
know that fn(x0) → z as n → ∞, where z ∈ X. If we are allowed to treat the
predicate A ⊆ N× N given by

A(k, n) :≡ d(fn(x0), z) < 2−k

as c.e., either because of the way we are able to represent the space (X, d), the
mapping f and the real number d(fn(x0), z), or because of some oracle, then
we get a computable (respectively computable in the oracle) rate of proximity:
Namely, since A is c.e. (in an oracle) there is a predicate C ⊆ N×N×N which
is decidable (in the oracle) such that A(k, n) holds for k, n ∈ N if and only if
∃u ∈ NC(u, k, n) holds. And since fn(x0)→ z we have in particular

∀k ∈ N∃n ∈ N(d(fn(x0), z) < 2−k),

so given k ∈ N we can search for the least m ∈ N which via the primitive
recursive Cantor pairing function j : N × N → N (for a definition see e.g.
Definition 3.30 in [101]) codes a pair (u, n) such that C(u, k, n) holds, which
gives that

d(fn(x0), z) < 2−k

holds. And from this m = j(u, n) we can get n via the second of the primitive
recursive projections associated with the Cantor pairing function. On the other
hand, it follows easily from the undecidability of the halting problem that there
exist a metric space (X, d), an x0 ∈ X, and a mapping f : X → X such that
(fn(x0))n∈N converges to the unique fixed point z ∈ X of f , such that the
predicate A ⊆ N× N given by

A(k, n) :≡ d(fn(x0), z) < 2−k

is decidable, and such that there exists no computable rate of convergence for
(fn(x0))n∈N to z. The following is a modification of an example in [10].

Example 1.13. Let (Mn)n∈N be a computable enumeration of Turing machines,
and let (jn)n∈N be a computable enumeration of the natural numbers with the
property that every natural number appears infinitely often in the enumeration.
Let now (xn)n∈N be a sequence of distinct points, and let z 6= xn for all n ∈ N.
Let X = {z} ∪ {xn : n ∈ N}, and define a metric on X such that

d(xn, z) = 2−jn

if the following condition holds:
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(i) Turing machine Mjn , when started with input 0, halts in less than or equal
to n steps, but not in less than or equal to n′ steps for any n′ < n such
that jn′ = jn,

and
d(xn, z) = 2−n

if (i) does not hold, and such that

d(xn, xm) = d(xn, z) + d(xm, z)

for n 6= m. Let finally f : X → X be given by letting f(xn) = xn+1 and
f(z) = z. Then (fn(x0))n∈N converges to the unique fixed point z. For if k ∈ N,
then we can let N > k be so large that all the machines among M1, . . . ,Mk that
eventually halt have done so in less than N steps, and then for n > N we get
d(xn, z) ≤ 2−k. And given k, n ∈ N we can decide whether d(fn(x0), z) < 2−k

by first deciding whether (i) holds for n, and if yes, checking whether jn > k,
and if no, checking whether n > k. But any computable rate of convergence
Φ would give us a number Φ(n+ 1) such that if Mn halts, then it halts in less
than Φ(n+ 1) steps, and this would allow us to solve the halting problem.

Notice that in this example the convergence to the fixed point is not mono-
tone, in the sense that it could be that d(fm(x0), z) > d(fn(x0), z) for m > n.
This can evidently not happen if the mapping is nonexpansive and the limit is
a fixed point:

Definition 1.14. Let (X, d) be a metric space and let f : X → X. We say that
f is nonexpansive if

∀x, y ∈ X (d(f(x), f(y)) ≤ d(x, y)) .

Since for a nonexpansive mapping a rate of proximity to a fixed point for
a Picard iteration sequence (fn(x0))n∈N is already a rate of convergence, it
follows that if f : X → X is nonexpansive and (fn(x0))n∈N converges to a fixed
point z, then there always exists a rate of convergence which is computable
in an oracle relative to which A(k, n) with A(k, n) ≡ d(fn(x0), z) < 2−k is
c.e.. This is in marked contrast to the negative result for the general case
which we saw in Example 1.131. In the case where (fn(x0))n∈N converges to

1Notice that instead of requiring that f is nonexpansive, it is enough that ∀x ∈
X(d(f(x), z) ≤ d(x, z)). Then if it holds that fn(x0)→ z there would exist a rate of conver-
gence which is computable in an oracle relative to which d(fn(x0), z) < 2−k (as a predicate
dependent on k, n ∈ N) is c.e.. Mappings which satisfy ∃z∀x ∈ X(d(f(x), z) ≤ d(x, z)) are
called weakly quasi-nonexpansive. Weakly quasi-nonexpansive mappings were introduced (im-
plicitly) by Kohlenbach and Lambov in [104], and a related notion was introduced by Dotson
in [41]. The notion of weakly quasi-nonexpansive mappings was considered (independently)
under the name J-type mappings by Garćıa-Falset et al. in [48], where numerous fixed point
results which hold for this class of mappings are given, thus establishing the importance of
the notion.
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a fixed point z ∈ X and where the mapping is nonexpansive the sequence of
real numbers (d(fn(x0), z))n∈N is monotone decreasing and converges to 0. If
on the other hand (d(fn(x0), z))n∈N converges, but not to 0, then it is possible
that there exists no computable rate of convergence for (d(fn(x0), z))n∈N to
c := limn→∞ d(fn(x0), z) even if (d(fn(x0), z))n∈N is a monotone decreasing and
computable sequence in Q∩ [0, 1]. Monotone and bounded sequences (an)n∈N in
Q which are computable but which have no computable rate of convergence are
called Specker sequences, and their existence was proved by E. Specker in [165].
As we saw above this cannot happen if the limit of the sequence is 0, and indeed,
the limit of a Specker sequence has to be a noncomputable real number. Thus
since we are here primarily concerned with selfmaps f : X → X of metric
spaces for which we can prove that (fn(x0))n∈N converges to some z ∈ X, so
that (d(fn(x0), z))n∈N converges to 0, the existence of Specker sequences is not
a concern. This is in contrast to other cases in metric fixed point theory where
one e.g. can prove for some sequence (xn)n∈N that

lim
n→∞

d(xn, xn+1) = c

for some unknown c ≥ 0. Then because of Specker’s result it might be that
there is no computable rate of convergence for (d(xn, xn+1))n∈N to c even if
(d(xn, xn+1))n∈N is monotone decreasing and computable.

The study of classes of mappings for which we are able to construct effec-
tive and highly uniform rates of convergence to the unique fixed point is the
main focus of this thesis, with emphasis both on concrete examples, in partic-
ular Kirk’s asymptotic contractions, and also on developing a general method
– based on methods from proof mining – to find such rates of convergence in
various cases from ineffective proofs of convergence to a unique fixed point.
Whether this is possible will depend among other things on what formal system
we can formalize the proof in, and on certain uniformity features of the moduli
and bounds introduced when developing this formal system for the class of self-
mappings considered. These moduli will typically be number theoretic functions
φ : N→ N (but will sometimes be functionals of higher type, like φ : NN → N).
When it is possible to extract rates of convergence we will typically end up with
computable functionals of types of degree 2 which in addition to the desired
accuracy n (i.e., 2−n) take only majorants of the moduli and bounds introduced
when formalizing the class of selfmaps in question as arguments. The precise
meaning of this will be explained in Chapter 2. Here we will only point out that
this is what makes the rates of convergence uniform; they do not depend on the
mapping, the space or any point in the space except through dependence on
majorants of the mentioned moduli and bounds. This uniformity means that
we can talk in a meaningful way about the rates of convergence being effective
for arbitrary metric spaces; since there is no direct dependence on the points of
the space we do not need to first fix a representation for a particular (separable)
space and investigate the induced computability concept. Representing various
spaces and mappings on these using essentially NN or {0, 1}N and mappings
Ψ : NN → NN is a central element in the theory of computability on structures
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other than the natural numbers (see [14, 89, 101, 171]).
The uniformity of the rates of convergence can also lead to new mathemat-

ical results: As a byproduct of our treatment of asymptotic contractions in
the sense of Kirk we show that in the setting of bounded metric spaces these
mappings are in some sense the most general which still exhibit convergence of
the Picard iteration sequences of “Banach type” – to the same point and with
strong uniformity with respect to the starting point.

For general information on metric fixed point theory one may consult the
books [61, 63, 80, 85], and for a survey and comprehensive bibliography of
iterative approximations of fixed points, see [18].

1.2.2 Nonexpansive mappings

In the previous section we saw that the fixed point theory for contractions is
extremely nice, even from a computational point of view. There exist a large
number of results which in some sense extend the contraction mapping principle,
and in this section as well as the next ones we will consider some relevant topics.

One of the most natural ways to try to extend the contraction mapping
principle is to consider the limiting case when the Lipschitz constant is allowed
to be 1, in which case we end up with the nonexpansive mappings from Defini-
tion 1.14.

The fixed point theory of nonexpansive mappings is very different from that
of contractions, and the study of these mappings has been one of the main
research areas of nonlinear functional analysis since the 1950s. Nonexpansive
selfmappings of nonempty complete metric spaces do not in general have fixed
points – consider e.g. f : R→ R with f(x) = x+1, and one consequently consid-
ers various geometric conditions on the space in order to ensure the existence of
a fixed point. And when fixed points exist, they are in general not unique, since
e.g. the identity mapping is nonexpansive. We will not here study the fixed
point theory of nonexpansive mappings as such, basically because of the lack of
uniqueness of the fixed point. We will here nonetheless include some remarks
about this theory – and we will cite negative results concerning the possibility
of finding computable rates of convergence in this setting. Instead we will study
very general kinds of contractive type mappings – where the requirements on
the mappings do guarantee the uniqueness of any fixed points, and where we
can find computable and highly uniform rates of convergence via proof mining.
It is worth noting that these classes of functions will include mappings which
are not nonexpansive.

The most famous result in the theory of nonexpansive mappings is proba-
bly the following theorem, which was proved independently by Browder [30],
Göhde [65] and Kirk2 [82]:

Theorem 1.15 (Browder,Göhde,Kirk). If C is a nonempty, bounded, closed
and convex subset of a uniformly convex Banach space (X, ‖·‖), and if f : C → C
is nonexpansive, then f has a fixed point.

2Kirk actually proved a more general result, which involved the concept of normal structure.
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Even in the cases where fixed points of nonexpansive mappings exist – as for
example given by the previous theorem – the Picard iteration scheme can not
in general be used to approximate a fixed point. And this is the case even when
the fixed point is unique, as can be seen by considering e.g. X := R, C := [0, 1],
f(x) = 1−x and x0 = 0. Then the Picard iteration sequence alternates between
0 and 1, while the unique fixed point is 1/2. In the setting of Banach spaces (or
hyperbolic spaces) one can then approximate a fixed point via other iteration
schemes, such as the Krasnoselski–Mann iteration ([132]), which for a given
sequence (λn)n∈N in [0, 1] and starting point x0 is defined as follows:

xn+1 := (1− λn)xn + λnf(xn).

(The special case λn = 1/2 was introduced by Krasnoselski in [112].) A cen-
tral result in this direction is the following theorem by Ishikawa [74], which
generalizes a theorem of Krasnoselski:

Theorem 1.16 (Ishikawa). Let C be a compact convex subset of a Banach space
(X, ‖·‖), and let f : C → C be nonexpansive. Let (λn)n∈N be a sequence in [0, b]
for some b < 1 such that

∑∞
n=0 λn = ∞. Then for any starting point x0 ∈ C

the Krasnoselski–Mann iteration sequence (xn)n∈N converges to a fixed point of
f .

Thus in this setting there is an effective iteration converging towards a fixed
point, but Kohlenbach [98] has shown that (essentially due to lack of uniqueness
of the fixed point) there exists no uniform effective rate of convergence:

Theorem 1.17 (Kohlenbach). There exists a (primitive recursively) computable
sequence (fl)l∈N of nonexpansive functions fl : [0, 1]→ [0, 1] such that for λn :=
1/2 and xl0 := 0 and the corresponding Krasnoselski–Mann iterations (xln)n∈N
there is no computable function φ : N→ N such that

∀m ≥ φ(l)
(
|xlm − xlφ(l)| ≤ 1/2

)
.

Here (fl)l∈N is a computable sequence in the sense of computability theory,
see e.g. [151, 171]. For the iteration sequence in Theorem 1.16 one can still
find an effective rate of convergence for ‖xn − f(xn)‖ → 0, and also effective
bounds for the Herbrand normal form of the Cauchy property of (xn)n∈N, i.e.,
an effective bound on ∃n ∈ N in

∀k ∈ N∀g : N→ N∃n ∈ N∀i, j ∈ [n;n+ g(n)](‖xi − xj‖ ≤ 2−k),

where [n;m] denotes the subset {n, n + 1, . . . ,m − 1,m} of N for m ≥ n. (For
details, see [95, 98].)

Notice a crucial difference between the relevance of Theorem 1.17 and Exam-
ple 1.13: Since we can conclude by Ishikawa’s theorem that for all the mappings
fl appearing in Theorem 1.17 the corresponding Krasnoselski–Mann iterations
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converge we cannot hope to “unwind” a proof of Theorem 1.16 to get a com-
putable functional which given e.g. a bound on the diameter of the space, a
modulus governing how quickly

∑∞
n=0 λn diverges, or even a representation3 of

a nonexpansive mapping f on the compact set C as a functional Ψf : NN → NN,
gives a rate of convergence for f . In Example 1.13, on the other hand, we do
not conclude that the iteration sequence converges by referring to a general the-
orem on some class of selfmaps of metric spaces whose proof we would like to
“unwind”. Thus despite of Example 1.13 it could very well be that the theo-
rems we consider as candidates for proof mining involve extra conditions on the
mappings which allow us to obtain effective rates of convergence.

1.2.3 Contractive mappings

In contrast to the case of nonexpansive functions there are other ways of ex-
tending the contraction mapping principle which do retain the uniqueness of
the fixed point: This is a salient property of various kinds of “mappings of con-
tractive type”. We will first mention some results concerning mappings which
are contractive, i.e., which satisfy

∀x, y ∈ X (x 6= y → d(f(x), f(y)) < d(x, y))) .

When we later consider asymptotic contractions and mappings of contractive
type we will not require that they are contractive, or even nonexpansive. One of
the first extensions of Banach’s contraction mapping principle to become widely
known is the following theorem due to Rakotch [152]:

Theorem 1.18 (Rakotch). Let (X, d) be a nonempty, complete metric space,
and suppose f : X → X satisfies

∀x, y ∈ X (d (f(x), f(y)) ≤ α (d(x, y)) d(x, y)) ,

where α : [0,∞)→ [0, 1) is monotonically decreasing. Then f has a unique fixed
point z, and for all x0 ∈ X we have fn(x0)→ z as n→∞.

Rakotch’s theorem is related to the following theorem by Edelstein [42]:

Theorem 1.19 (Edelstein). Let (X, d) be a nonempty, compact metric space,
and suppose f : X → X is contractive, i.e., satisfies

∀x, y ∈ X (d (f(x), f(y)) < d(x, y)) .

Then f has a unique fixed point z, and for all x0 ∈ X we have fn(x0) → z as
n→∞.

3For information on representation of complete separable metric spaces, in particular
compact metric spaces, and mappings on such spaces, using essentially NN and mappings
Ψ : NN → NN, see [14, 89, 101, 171].
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For a simple proof of this theorem, see e.g. [64]. (Edelstein actually proved a
version where X is only assumed to be complete, and where the conclusion states
that there exists a unique fixed point z in case there exists an iteration sequence
(fn(x0))n∈N with a convergent subsequence, and that in this case fn(x0) → z
as n → ∞.) To illustrate the use of the proof mining techniques in question
Kohlenbach and Oliva [109] extracted a full rate of convergence for the Picard
iteration sequences from a proof of Edelstein’s theorem, and in [55] Gerhardy
and Kohlenbach extracted a full rate of convergence in the case of Rakotch’s
theorem.

A subsequent generalization of Rakotch’s result was obtained by Boyd and
Wong [21]:

Theorem 1.20 (Boyd,Wong). Let (X, d) be a nonempty, complete metric space,
and suppose f : X → X satisfies

∀x, y ∈ X (d (f(x), f(y)) ≤ φ (d(x, y))) ,

where φ : [0,∞) → [0,∞) is upper semicontinuous from the right and satisfies
0 ≤ φ(t) < t for t > 0. Then f has a unique fixed point z, and for all x0 ∈ X
we have fn(x0)→ z as n→∞.

A quantitative variant of the Boyd–Wong theorem was proved by Brow-
der [31]:

Theorem 1.21 (Browder). Let (X, d) be a nonempty, bounded, complete metric
space, and suppose f : X → X satisfies

∀x, y ∈ X (d (f(x), f(y)) ≤ φ (d(x, y))) ,

where φ : [0,∞) → [0,∞) is monotone nondecreasing and continuous from the
right, such that φ(t) < t for t > 0. Then there exists a unique z ∈ X such that
for all x0 ∈ X we have fn(x0)→ z as n→∞. Moreover, if d0 is the diameter
of X, then

d(fn(x0), z) ≤ φn(d0),

and φn(d0)→ 0 as n→∞.

In [133] Meir and Keeler generalize the Boyd–Wong theorem:

Theorem 1.22 (Meir,Keeler). Let (X, d) be a nonempty, complete metric space,
and suppose f : X → X satisfies

∀ε > 0∃δ > 0∀x, y ∈ X (ε ≤ d(x, y) ≤ ε+ δ → d (f(x), f(y)) < ε) . (1.2)

Then f has a unique fixed point z, and for all x0 ∈ X we have fn(x0) → z as
n→∞.

A mapping f : X → X on a metric space (X, d) which satisfies the condi-
tion (1.2) in the theorem of Meir–Keeler is called a Meir–Keeler contraction.
In order to better compare the Boyd–Wong condition with the Meir–Keeler
condition, the latter has been characterized by T.C. Lim [125] as follows:
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Theorem 1.23 (Lim). Let (X, d) be a metric space, and let f : X → X be
a mapping. Then f is a Meir–Keeler contraction if and only if there exists a
(nondecreasing and right continuous) function φ : [0,∞)→ [0,∞) with φ(0) = 0
and φ(s) > 0 for s > 0, such that

∀x, y ∈ X
(
x 6= y → d

(
f(x), f(y)

)
< φ

(
d(x, y)

))
,

and such that for every s > 0 there exists δ > 0 such that φ(t) ≤ s for all
t ∈ [s, s+ δ].

The mappings in the theorems directly above are all contractive. But there is
also a very large amount of literature on various kinds of generalized contractions
– where the mappings are no longer contractive. The hope when considering
such generalizations is then to obtain corresponding generalizations of the fixed
point theorems one has for contractive mappings. We will first consider asymp-
totic contractions, which were introduced by Kirk in 2003, and afterwards we
will discuss how this approach in some sense subsumes much earlier work on
contractive type mappings.

1.2.4 Asymptotic contractions

Asymptotic contractions were introduced by Kirk in [83], but asymptotic fixed
point theory, where one considers conditions which involve iterates of the map-
ping, has a long history in nonlinear functional analysis, see for example [32].
Indeed, one of the first variants of Banach’s contraction mapping principle con-
sidered was the following theorem by Caccioppoli [34], which includes a kind of
“asymptotic contraction”:

Theorem 1.24 (Caccioppoli). Let (X, d) be a nonempty, complete metric space,
and let f : X → X be such that for each n ≥ 1 there exists a constant cn such
that

∀x, y ∈ X (d (fn(x), fn(y)) ≤ cnd(x, y)) ,

with
∑∞
n=1 cn < ∞. Then f has a unique fixed point z, and for all x0 ∈ X we

have fn(x0)→ z as n→∞.

In [83] Kirk introduces a wider class of mappings in order to obtain an
asymptotic version of the Boyd–Wong theorem.

Definition 1.25 (Kirk). Let (X, d) be a metric space. A mapping f : X → X
is said to be an asymptotic contraction if there exists a sequence of functions
φn : [0,∞)→ [0,∞) such that

∀n ∈ N∀x, y ∈ X
(
d (fn(x), fn(y)) ≤ φn (d(x, y))

)
,

and such that φn → φ uniformly on the range of d, where φ : [0,∞)→ [0,∞) is
continuous and satisfies φ(s) < s for all s > 0.
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However, in the main theorem of [83] the mappings φn in the above definition
are also assumed to be continuous, and it has been convenient to single out the
resulting concept (this was done by e.g. Gerhardy [54]):

Definition 1.26 (Kirk). A function f : X → X on a metric space (X, d)
is called an asymptotic contraction in the sense of Kirk with moduli φ, φn :
[0,∞)→ [0,∞) if φ, φn are continuous, φ(s) < s for all s > 0 and for all n ∈ N
and x, y ∈ X,

d (fn(x), fn(y)) ≤ φn (d(x, y)) ,

and moreover φn → φ uniformly on the range of d.

Note that in the previous two definitions it is irrelevant whether we include
0 in N or not, since φ0 in any case could be taken to be the identity. Here we
use the opportunity to remark on a notational infelicity: In Chapter 3 we will
among other things prove results concerning so-called generalized asymptotic
contractions, which are meant to generalize the concept in Definition 1.26, not
the one in Definition 1.25. Asymptotic contractions and various modifications
have been widely studied in recent years, see [2, 3, 4, 5, 6, 36, 54, 73, 75, 76, 86,
154, 156, 167, 168, 172, 173, 174, 175, 176, 177], and also [24, 25, 26, 28], which
contain material included in this thesis.

We include for reference Kirk’s original theorem, as well as its proof, which
is a nice application of Banach space ultrapowers. (Note that, as remarked in
e.g. [2, 76], in the statement of the theorem in [83] the assumption that the
mapping must be continuous was inadvertently left out.)

Theorem 1.27 (Kirk). Let (X, d) be a complete metric space, and let f : X →
X be a continuous asymptotic contraction in the sense of Kirk. If for some
x ∈ X the Picard iteration sequence (fn(x))n∈N is bounded, then f has a unique
fixed point z ∈ X and for every starting point x ∈ X the iteration sequence
(fn(x)))n∈N converges to z.

Proof. The proof proceeds by first establishing three preliminary steps. For
general information on the use of nonstandard methods in fixed point theory
one might consult [1, 68] and the chapter on ultra-methods in metric fixed point
theory by Khamsi and Sims in [85].

Step 1: We start by isometrically embedding X as a closed subset of a
Banach space Y and identifying X with its image in Y . (For example by taking
Y to be the space of all real-valued bounded continuous functions on X, for a
proof see e.g. [141].)

Step 2: Let now Ỹ be a Banach space ultrapower of Y over some nontrivial
ultrafilter U , and let X̃ denote the image of X in Ỹ , i.e., let

X̃ =
{
x̃ = [(xn)] ∈ Ỹ : xn ∈ X for each n

}
.

Let d̃ be the metric on X̃ inherited from the ultrapower norm ‖ · ‖U on Ỹ . Then
(X̃, d̃) is a complete metric space, since it is a closed subset of the Banach space
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Ỹ . In particular, for x̃ = [(xn)], ỹ = [(yn)] ∈ X̃ it follows that (xn) and (yn) are
bounded sequences, so that

lim
U
d(xn, yn) = d̃(x̃, ỹ)

always exists.

Step 3: Define f̃ , f̂ : X̃ → X̃ by for x̃ = [(xn)] ∈ X̃ letting

f̃(x̃) = [(f(xn))]

and
f̂(x̃) = [(fn(xn))] .

Then f̃ is well-defined since φ1 is continuous, and f̂ is well-defined since the
orbits of f are bounded.

We can now use that f̂ and f̃ ◦ f̂ are commuting contractive mappings on
X̃. Since φn → φ uniformly it follows that

d̃
(
f̂(x̃), f̂(ỹ)

)
= ‖f̂(x̃)− f̂(ỹ)‖U = lim

U
‖fn(xn)− fn(yn)‖

= lim
U
d (fn(xn), fn(yn)) ≤ lim

U
φn (d(xn, yn))

= φ
(

lim
U
d(xn, yn)

)
= φ

(
d̃(x̃, ỹ)

)
.

Since φ is continuous and satisfies φ(s) < s for all s > 0 it follows by the
Boyd–Wong theorem that f̂ has a unique fixed point z̃ ∈ X̃. On the other
hand,

d̃
(
f̃ ◦ f̂(x̃), f̃ ◦ f̂(ỹ)

)
= ‖f̃ ◦ f̂(x̃)− f̃ ◦ f̂(ỹ)‖U = lim

U
‖fn+1(xn)− fn+1(yn)‖

= lim
U
d
(
fn+1(xn), fn+1(yn)

)
≤ lim
U
φn+1 (d(xn, yn))

= φ
(

lim
U
d(xn, yn)

)
= φ

(
d̃(x̃, ỹ)

)
.

So also f̃ ◦ f̂ has a unique fixed point, and since f̂ and f̃ ◦ f̂ commute it follows
that

f̂◦f̃(z̃) = f̂◦f̃(f̂(z̃)) = f̂◦(f̃◦f̂)(z̃) = (f̃◦f̂)◦f̂(z̃) = (f̃◦f̂)(z̃) = f̃(f̂(z̃)) = f̃(z̃),

so since the fixed point of f̂ is unique it follows that f̃(z̃) = z̃. From this we
conclude that

lim
U
d(zn, f(zn)) = 0.

One can now extract from the sequence (zn) a sequence (xn) such that

lim
n→∞

d(xn, f(xn)) = 0.
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Suppose now that (yn) is a sequence in X for which limn→∞ d(yn, f(yn)) = 0.
Then ỹ = [(yn)] is also a fixed point of f̃ , and so for k ∈ N we have

d̃(z̃, ỹ) = d̃
(
f̃k(z̃), f̃k(ỹ)

)
= lim
U
d
(
fk(zn), fk(yn)

)
≤ lim

U
φk (d (zn, yn)) = φk

(
d̃(z̃, ỹ)

)
,

since the moduli φk are continuous. By letting k →∞ we obtain

d̃(z̃, ỹ) ≤ φ
(
d̃(z̃, ỹ)

)
,

and since φ(s) < s for s > 0 we conclude that d̃(z̃, ỹ) = 0. Thus

lim
U
d(zn, yn) = 0

for any approximate fixed point sequence (yn) of f . Now suppose that

lim
n→∞

d(xn, f(xn)) = 0

and
lim
n→∞

d(yn, f(yn)) = 0,

but limn→∞ d(xn, yn) 6= 0. By if necessary considering subsequences we can
assume that limn→∞ d(xn, yn) =: ε > 0. This implies

ε = lim
U
d(xn, yn) ≤ lim

U
d(xn, zn) + lim

U
d(yn, zn) = 0,

which is a contradiction. Thus limn→∞ d(xn, yn) = 0 for any pair of approximate
fixed point sequences for f .

Now for n ≥ 1 let

Fn := {x ∈ X : d(x, f(x)) ≤ 1/n}.

Since there exists a sequence (xn) such that limn→∞ d(xn, f(xn)) = 0 we have
that Fn 6= ∅ for all n ≥ 1, and since f is continuous each set Fn is closed.
Furthermore, Fn+1 ⊆ Fn. Suppose that we do not have limn→∞ diam (Fn) = 0.
Then there exists a ρ > 0 such that for any n ≥ 1 one can find xn, yn ∈ Fn
with d(xn, yn) ≥ ρ/2. Since (xn) and (yn) are fixed point sequences for f this
contradicts limn→∞ d(xn, yn) = 0. Thus

lim
n→∞

diam (Fn) = 0,

and sinceX is complete it follows by Cantor’s intersection theorem that
⋂∞
n=1 Fn

is a singleton {z}, and z is necessarily the unique fixed point of f .
Finally we show that the Picard iteration sequences converge to z. Let

x ∈ X, and let i ∈ N. Then

lim sup
n→∞

d
(
fn(x), fn+1(x)

)
= lim sup

n→∞
d
(
fn+i(x), fn+i+1(x)

)
≤ lim

n→∞
φn
(
d
(
f i(x), f i+1(x)

))
= φ

(
d
(
f i(x), f i+1(x)

))
,
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and letting i→∞ we get

lim sup
n→∞

d
(
fn(x), fn+1(x)

)
≤ φ

(
lim sup
n→∞

d
(
fn(x), fn+1(x)

))
,

from which limn→∞ d
(
fn(x), fn+1(x)

)
= lim supn→∞ d

(
fn(x), fn+1(x)

)
= 0.

Thus given any k ≥ 1 the sequence (fn(x))∞n=1 is eventually in Fk, and since
the diameters of the sets Fk tend to 0 as k →∞, we get limn→∞ fn(x) = z.

2

In [54] P. Gerhardy develops a quantitative version of Kirk’s theorem by
making use of techniques and insights from proof mining in order to analyze the
concepts involved. This involves modifying the definition of an asymptotic con-
traction, subsuming the old definition under the new one, and giving a bound,
expressed in the relevant (new) moduli and a bound on the Picard iteration
sequence, on how far one must go in the Picard iteration sequence to at least
once get close to the fixed point. That is, he constructs a uniform and effective
rate of proximity for the Picard iteration sequences to the unique fixed point,
and in the process gives a completely elementary proof of Kirk’s theorem4. This
theorem does not, however, give a rate of convergence to the fixed point in the
general case. The convergence needs not be monotone, and so for m > n it is
not the case that fm(x) needs to be close to the fixed point if fn(x) is. For an
example of such a function, see Example 2 in [76]. In contrast to this, the results
in [54] do give a rate of convergence when the convergence to the fixed point
is monotone, and this is the case for a very large class of functions, including
the nonexpansive ones. (For further discussion of the logical analysis, see also
Chapter 4 in [53].)

In Chapter 3 we give an effective rate of convergence for the Picard iteration
sequences, expressed in the relevant moduli and a bound on the sequence, alter-
natively in the relevant moduli and strictly positive upper and lower bounds on
the initial displacement d(x0, f(x0)), i.e., b, c > 0 such that c ≤ d(x0, f(x0)) ≤ b.
Thus the rate of convergence is uniform in the space, the mapping and the start-
ing point except through dependence on the mentioned moduli and such b, c > 0.
If the mapping f is not continuous we get the same rates of convergence to the
common limit z of all Picard iteration sequences (which needs not be a fixed
point), and if the space is not complete we likewise get explicit Cauchy rates for
the iteration sequences.

Additionally we prove that there exists a rate of convergence (which we do
not give explicitly) which depends on nothing but moduli φ, φn : [0,∞)→ [0,∞)
as given in Definition 1.26 such that φn → φ uniformly on [0,∞), and an upper

4Previously I.D. Arandelović had published an elementary proof of a slight generalization
of Kirk’s theorem in [2]. However, that proof turned out to contain an error, and the theorem
as stated is false – see J. Jachymski’s note [75], where he also gives conditions which serve to
repair the proof in such a way that the resulting theorem still covers Kirk’s theorem. Around
the same time as Gerhardy’s result H.-K. Xu [177] and T. Suzuki [167] developed versions
of the theorem with proofs which do not rely on ultrapower techniques. J. Jachymski and
I. Jóźwik had earlier given an elementary proof under the additional assumption that the
mapping is uniformly continuous, see [76].
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bound b ≥ d(x0, f(x0)) for the initial displacement. Thus the convergence does
not depend on a lower bound c > 0 on the initial displacement.

As a byproduct of the analysis we furthermore give a characterization of
asymptotic contractions in the sense of Kirk on bounded, complete metric
spaces, showing that they are exactly the mappings for which all Picard it-
eration sequence converge to the same point with a rate of convergence which is
uniform in the starting point. As already mentioned this characterization gives
an indication why asymptotic contractions in the sense of Kirk are of interest:
In the setting where the space is bounded they are in a sense the most general
mappings for which the Picard iteration sequences have convergence of “Banach
type”, i.e., to the same point and uniformly with respect to the starting point.
We also prove that the assumption in Theorem 1.27 that one iteration sequence
is bounded is superfluous – since any sequence (fn(x0))n∈N is bounded in any
case5.

The fact that we for asymptotic contractions in the sense of Kirk could ob-
tain a full rate of convergence for the Picard iteration sequences instead of only
a rate of proximity can be explained in logical terms (thus far only when we
restrict to the setting where the space is bounded) via the work which appears
in Chapter 2, where we establish general conditions, under which we can extract
such explicit and highly uniform full rates of convergence for the Picard itera-
tion sequences for selfmaps on bounded metric spaces from ineffective proofs of
convergence to a unique fixed point. This is done by extending the use of one
of Kohlenbach’s metatheorems, which concerns the theory Aω[X, d], a formal
theory for analysis with an abstract metric space added as new ground type.
This metatheorem allows us to extract (via negative translation and monotone
functional interpretation) uniform bounds for certain ∀∃-sentences provable in
the theory. We will give conditions for when we can transform a ∀∃∀-sentence
expressing that a Picard iteration sequence is Cauchy into a certain ∀∃-sentence
via a product space argument. This will allow us to extract full rates of conver-
gence for the iteration sequences in these cases, and by considering Gerhardy’s
proof of Kirk’s theorem on asymptotic contractions we will see that the condi-
tions are satisfied in that particular case.

Similarly we will be able to explain that we in another case study were able
to obtain a full rate of convergence for the Picard iteration sequences – namely
for the so-called uniformly continuous uniformly generalized p-contractive map-
pings. This is a particularly general kind of mapping of contractive type. We
will in the following briefly discuss the background for this.

1.2.5 Mappings of contractive type

One of the earliest definitions of a condition of “contractive type” where the
mappings satisfying the condition need not be contractive is due to Kannan
(see [78, 79]), who showed that if (X, d) is a nonempty complete metric space

5After having published [26], where among other things this is proved, the author became
aware that T. Suzuki had already proved that this assumption is superfluous, see [167] and [24].
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and f : X → X a selfmap such that there exists an a ∈ (0, 1/2) for which

∀x, y ∈ X (d(f(x), f(y)) ≤ a[d(x, f(x)) + d(y, f(y))]) ,

then there exists a unique fixed point to which all Picard iteration sequences
converge. It is noteworthy that here the mapping f does not need to be contin-
uous. In [157], B.E. Rhoades compared 25 contraction conditions, most of them
previously considered in the literature, and also considered generalizations of
the 25 basic conditions to the cases where the condition holds for various iter-
ates of the function. The basic conditions are numbered (1)–(25), and of these
Kannan’s is number (4). The comparison of the 25 conditions was completed by
P. Collaço and J. Carvalho e Silva in [38]. That is, the implications that hold
between the different conditions are completely determined. In particular, it is
known that condition (25),

∀x, y ∈ X(x 6= y → d(f(x), f(y)) < diam {x, y, f(x), f(y)}),

is the most general. So if f satisfies one of the conditions (1)–(24), then it also
satisfies condition (25), and a fixed point theorem for functions satisfying (25)
would entail as corollaries corresponding fixed point theorems for conditions
(1)–(24). However, a function on a nonempty complete metric space satisfying
(25) need not have a fixed point. If on the other hand f is continuous and X
compact and nonempty, then f has a unique fixed point, and for any x0 ∈ X
the Picard iteration sequences (fn(x0))n∈N converges to this fixed point, and
moreover this also extends to the case where (25) holds for an iterate of the
function, i.e., if there exists p ∈ N such that

∀x, y ∈ X(x 6= y → d(fp(x), fp(y)) < diam {x, y, fp(x), fp(y)}).

This was proved by Rhoades6 in [158], and also by Hicks and Sharma7 in [69]
and Kincses and Totik in [81]. The conditions on f obtained by requiring
that for some p ∈ N the function fp should satisfy respectively (1)–(25) are
numbered respectively (26)–(50). Given p ∈ N we will call a function generalized
p-contractive if it satisfies (25) for fp, and we will single this out as a definition
for ease of reference:

Definition 1.28. Let (X, d) be a metric space, let f : X → X and let p ∈ N.
We say that f is generalized p-contractive if

∀x, y ∈ X(x 6= y → d(fp(x), fp(y)) < diam {x, y, fp(x), fp(y)}). (1.3)

6In [158] Rhoades proved a more general theorem: Instead of compactness of the space it
is enough if the mapping f : X → X is a compact map. We will say more about this later.
Rhoades also claimed to have proved the theorem for a more general contractive definition, but
in his review of his own paper in Zentralblatt MATH this was modified. The results in [158]
are proved by noting that the proofs of some theorems by Janos [77] for another contractive
definition go through for the new contractive definition.

7Without considering the case of iterates fp.
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Notation 1.29. We will also say that f is generalized p-contractive if there
exists some k ∈ N such that

∀x, y ∈ X(x 6= y → d(fk(x), fk(y)) < diam {x, y, fk(x), fk(y)}), (1.4)

that is, if f satisfies (50). When we say that a mapping f is generalized p-
contractive it will be clear from the context whether “p” refers to some given
number or whether we mean that there exists k satisfying (1.4).

Theorem 1.30 (Rhoades,Hicks,Sharma,Kincses,Totik). Let (X, d) be a non-
empty compact metric space, and let p ∈ N. Let f : X → X be continuous
and generalized p-contractive. Then f has a unique fixed point z, and for every
x0 ∈ X we have

lim
n→∞

fn(x0) = z.

One of our case studies in proof mining concerns this theorem: In Chap-
ter 4 we construct an effective and highly uniform Cauchy rate for the Picard
iteration sequences. And by using the uniformities of this Cauchy rate we give
an improved version of the theorem – where we by isolating the requirements
on the mapping, specifically on the contractivity condition, extend the theorem
from the compact case to the setting of arbitrary metric spaces, without re-
quiring the map to be compact. The extension from compact metric spaces to
arbitrary metric spaces is accomplished by considering a uniform variant of the
contractive condition (50), which we are naturally lead to by applying mono-
tone functional interpretation to the condition. In the case of Theorem 1.30 the
compactness of the space means that condition (50) is upgraded to this uniform
version, much as continuity is upgraded to uniform continuity. And it turns
out that we can prove the theorem assuming only that we have such uniform
versions of the contractive condition and continuity, along with a bound on the
iteration sequence. Here it is essential that the proof does not use completeness
or separability of the space in an essential way8. For a fuller discussion of the
general issues involved – how monotone functional interpretation in a sense sys-
tematically transforms certain statements into their “right” uniform versions –
and in the process makes it explicit what quantitative information one has to
take as input, and how this can be used to remove compactness assumptions,
see [55, 101]; and for the use of a certain nonstandard principle of uniform
boundedness in this connection, see [93, 100].

In order to tie our results together we then note that by the uniformity of the
Cauchy rate given it follows as a special case that all continuous selfmappings
on a compact metric space satisfying one of the conditions (1)–(50) are in fact
asymptotic contractions in the sense of Kirk. But note that the uniformity of
the convergence with respect to the starting point in the cases where one of
the conditions (1)–(50) are satisfied and where the space is compact and the
mappings continuous was already present in [158].

8Except that completeness is used to ensure the actual existence of the common limit of
all Picard iteration sequences.



1.2 Some aspects of metric fixed point theory 27

Analogously to the case of the asymptotic contractions in the sense of Kirk
the fact that we could obtain a full rate of convergence instead of a rate of
proximity can now be explained in logical terms by the results in Chapter 2.

However, Theorem 1.30 is by no means the most general of its kind. We will
discuss some other general contractive conditions here, and refer to some rele-
vant literature. The relationships between several general theorems for contrac-
tive type mappings which exist in the literature and the version of Theorem 1.30
extended to general metric spaces which we obtained in the course of our case
study remain unclear, but to the extent that one is interested in explicit and
effective rates of convergence this is not too relevant. For a mapping f : X → X
on a metric space (X, d), and an x ∈ X, we denote by O(x) the orbit of x, i.e.,

O(x) = {fn(x) : n ∈ N}.

Given x, y ∈ X we let O(x, y) = O(x) ∪O(y). We say that x ∈ X is regular if

diam
(
O(x)

)
<∞,

i.e., if the Picard iteration sequence with starting point x is bounded. One of
the comparatively few results which do provide quantitative information is the
following theorem by Hegedüs [66].

Theorem 1.31. Let c ∈ [0, 1), and let f : X → X be a selfmap of a nonempty
complete metric space (X, d) such that all x ∈ X are regular, and such that

d
(
f(x), f(y)

)
< c · diam

(
O(x, y)

)
for all x, y ∈ X. Then f has a unique fixed point z ∈ X, and all Picard iteration
sequences converge to z. Furthermore, we have the following error estimates.
For all n ∈ N and all x ∈ X we have

d(z, fn(x)) ≤ cn · d(x, f(x))
1− c

,

and if n 6= 0 we also have

d(z, fn(x)) ≤ c · d(fn−1(x), fn(x))
1− c

.

Notice that the existence of such a c ∈ [0, 1) means that this theorem is in
some sense more closely related to Banach’s contraction mapping principle than
to Edelstein’s theorem or Theorem 1.30 above, and indeed, the theorem shows
that such f have a very nice and simple rate of convergence. In [149] Park
proves the following theorem, which does not give quantitative information:

Theorem 1.32. Let f : X → X be a continuous compact selfmap of a nonempty
metric space (X, d) satisfying

∀x, y ∈ X
(
x 6= y → d

(
f(x), f(y)

)
< diam

(
O(x, y)

))
.

Then f has a unique fixed point z ∈ X, and all Picard iteration sequences
converge to z, uniformly in the starting point.
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An extension of this to the case where the contractive condition holds for an
iterate fp gives a generalization of Theorem 1.30. To prove this theorem also
Park uses the approach of Janos [77]. That the convergence in Theorem 1.32
is uniform in the starting point follows from the proof – the statement of the
theorem is the weaker claim that for any c ∈ (0, 1) there is a metric ρ on X which
is topologically equivalent to d, such that f is a contraction with contraction
constant c relative to ρ. This is related to a result by Meyers [135], which is used
by both Janos, Rhoades, and Park, and which provides a converse to Banach’s
contraction mapping principle. (See also [136].) We state this in the form given
by Leader in [119], where he essentially rediscovered Meyers’ theorem:

Theorem 1.33. Let (X, d) be a metric space, let z ∈ X, and let f : X → X be
continuous. Then there exists a metric ρ on X which is topologically equivalent
to d and relative to which f is a contraction mapping with fixed point z if and
only if

1. limn→∞ fn(x0) = z for each x0 ∈ X.

2. There exists a neighborhood U of z such that fn(x0) → z uniformly for
all x0 ∈ U .

Notice that a consequence of this theorem is that if we are interested in the
rate of convergence to z ∈ X for a Picard iteration sequence (fn(x0))n∈N for a
selfmap f : X → X on a metric space (X, d), then knowing that there exists
some metric ρ on X which is topologically equivalent to d and relative to which
f is a contraction is no big help. In order to draw any conclusions we would
at least have to know that x0 ∈ U , where U is the neighborhood appearing
in Theorem 1.33. This is not too surprising, given that e.g., even if (X, d) is
unbounded there always exists a topologically equivalent metric on X relative
to which X is bounded by 1.

For further information on contractive type mappings see e.g. [18, 66, 67,
126, 134, 148, 149, 150, 159] and the references found there.



Chapter 2

Logical aspects of rates of
convergence in metric
spaces

This chapter contains material which appears in [22], but the material has been
revised, some things have been left out, and additional comments and corollaries
have been added. Likewise certain definitions etc. taken from other sources
which were only referred to in [22] have now been included.

2.1 Introduction

We will in this chapter develop further the uses of proof mining in metric fixed
point theory. Much of the work in proof mining has been centered around ap-
plications in (nonlinear) functional analysis, and strong logical metatheorems
for functional analysis based on Gödel’s functional interpretation and certain
notions of majorizability are provided in [99] and [56]. A special case of one
of these theorems can be used to get information on the convergence of the
Picard iteration sequences (fn(x))n∈N to a unique fixed point z ∈ X of a self-
mapping f : X → X on a bounded metric space (X, d). Before explaining this
in more detail we will include the following definitions, which in addition to
Definitions 1.5, 1.6, 1.7, and 1.14 will be relevant for our discussion:

Definition 2.1. Let (X, d) be a metric space and let f : X → X. We say that
f is asymptotically regular if

∀x0 ∈ X∀n ∈ N∃m ∈ N∀k ≥ m
(
d
(
fk(x0), fk+1(x0)

)
< 2−n

)
.

Definition 2.2. Let (X, d) be a metric space and let f : X → X. We say that
Φ : N→ N is a modulus of uniform asymptotic regularity for f if

∀x0 ∈ X∀n ∈ N∀m ≥ Φ(n)
(
d(fm(x0), fm+1(x0)) < 2−n

)
.

29
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Definition 2.3. Let (X, d) be a metric space and let f : X → X. We say that
Φ : N→ N is a modulus of uniform almost asymptotic regularity for f if

∀x0 ∈ X∀n ∈ N∃m ≤ Φ(n)
(
d(fm(x0), fm+1(x0)) < 2−n

)
.

The word “uniform” in the previous two definitions refers to the fact that Φ
does not depend on x0.

Definition 2.4. Let (X, d) be a metric space and let f : X → X. We say that
Φ : N→ N is a modulus of uniqueness for f if

∀x1, x2 ∈ X∀n ∈ N

(
2∧
i=1

d (xi, f(xi)) < 2−Φ(n) → d(x1, x2) < 2−n
)
.

The notion of a modulus of uniqueness was defined in full generality by
Kohlenbach in [89]. Moduli of uniqueness show up in e.g. approximation theory
under the name of strong unicity or rate of strong uniqueness, see [138] for the
first investigation of this in the case of Chebysheff approximation, and see [12]
for a general discussion of the relevance of the concept.

Now, if one can prove in a suitable1 formal system for classical analysis with
a new ground type for elements of an abstract bounded metric space (X, d) that
all f : X → X from a suitable class of functions are asymptotically regular
and that any fixed point of such an f must be unique, then the metatheorem
assures that there exists2 a (not necessarily fixed) point z ∈ X to which all
Picard iteration sequences converge, and we can extract a rate of proximity (cf.
Definition 1.7) for all Picard iteration sequences to this point z which is uniform
in the starting point (see [99] and [109]3). Namely, in this case the metatheorem
provides an algorithm for extracting such a rate of proximity from given formal
(ineffective) proofs of uniqueness and asymptotic regularity. Note that we do not
require the space to be compact. In practice one does not deal with completely
formalized proofs, but the algorithm can then be used as a guideline for actually
extracting a uniform and explicit rate of proximity.

Here we develop a general method for finding uniform and explicit full rates
of convergence for Picard iteration sequences of selfmaps on (complete) bounded
metric spaces (cf. Definition 1.5), as opposed to rates of proximity. Loosely

1What is meant by “suitable” will be made clear later.
2For convenience we assume here that the space is complete.
3[109] is older work, and in that paper the setting involves (i) a formal system which

does not include a ground type for an abstract bounded metric space, and (ii) a concrete
Polish space which can be represented in the formal system. In that setting one requires
compactness to ensure uniformity of the rate of proximity. However, much of the general
information in [109] on how logical metatheorems can provide quantitative information which
can give us e.g. a rate of proximity is relevant also in the new setting of [99].
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speaking our approach will be based on requiring certain uniformity features of
the majorants of the moduli introduced when axiomatizing the class of mappings
to which f belongs. This will in a sense reduce the ∀∃∀-sentence expressing that
the iteration sequence is Cauchy to a ∀∃-sentence. The metatheorem will then
guarantee the existence of a uniform full rate of convergence. Earlier one could
only get a full rate of convergence from a rate of proximity in the special case
where f is required to be nonexpansive. In two case studies we have found
such explicit and uniform rates of convergence for Picard iteration sequences for
certain classes of (not necessarily nonexpansive) selfmappings of metric spaces,
namely for asymptotic contractions in the sense of Kirk and also for so-called
uniformly continuous uniformly generalized p-contractive mappings. The results
of these case studies are included in Chapters 3 and 4. The results of this chapter
provide an explanation for these findings (when restricted to bounded spaces)
in logical terms4. But it is by no means necessary to acquaint oneself with the
material in this chapter in order to appreciate or understand the material in
Chapter 3 and Chapter 4. The concrete theorems and the proofs there do not
in any way depend on the results in this chapter. Rather, the results here allow
us to explain (to the extent noted above) that we could prove the results in
Chapters 3 and 4, and it gives us a recipe for proving similar results in other
concrete cases.

The general organization of the chapter is as follows: in the next section
we will present the formal setting for the metatheorems, in Section 2.3 we will
discuss how these theorems relate to questions concerning the convergence of
iteration sequences for selfmaps of metric spaces, while in Section 2.4 we will
present the main results. The mentioned applications are given in Section 2.5.

2.2 Formal framework and Kohlenbach’s meta-
theorem for bounded metric spaces

We will here present Kohlenbach’s metatheorem for bounded metric spaces
from [99]. (The metatheorems have been extended in [56], replacing the condi-
tion that the space be bounded with some weak local boundedness criteria. We
will remark further on this below.) The starting point for the metatheorems
in [99] is the formal system Aω := WE-PAω + QF-AC + DC, basically Peano
arithmetic in all finite types with quantifier free axiom of choice, dependent
choice and countable choice, but with only a certain quantifier-free rule of ex-
tensionality instead of the full axiom of extensionality. We will for reference
present this system below. For more information, see [99, 101, 127, 169].

2.2.1 The system Aω

We will begin with a series of definitions.

4However, we cannot yet properly explain that we in the concrete cases were able to find
rates of convergence also in the setting of unbounded metric spaces.
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Definition 2.5. The set T of all finite types is defined inductively by

0 ∈ T, and if ρ, τ ∈ T, then (ρ→ τ) ∈ T.

The set P of pure types is generated inductively by

0 ∈ P, and if ρ ∈ P, then (ρ→ 0) ∈ P.

Pure types are often denoted by natural numbers by letting n+1 denote (n→ 0),
so that e.g. 1 denotes (0→ 0).

Remark 2.6. Any type ρ 6= 0 can be written in the normal form

ρ = (ρ1 → (ρ2 → . . . (ρk → 0) . . .)),

which we usually write as

ρ1 → ρ2 → . . .→ ρk → 0.

Notation 2.7. We usually do not write the outermost brackets for types, and
we will often drop other brackets which are uniquely determined.

The intended interpretation of the base type 0 is the set of natural numbers
N = {0, 1, 2, . . .}, and so we will sometimes blur the distinction and use “N”
instead of “0”. Likewise we will sometimes write “natural numbers” instead
of “objects of type 0”. We present first the system WE-HAω, called weakly
extensional Heyting arithmetic in all finite types.

Definition 2.8. The language L(WE-HAω) of WE-HAω includes the language
of a many-sorted version ILω−= of first order intuitionistic predicate logic IL−=

without equality, with variables xρn and quantifiers ∀xρ, ∃xρ for every finite
type ρ. Furthermore L(WE-HAω) includes constants 00, S0→0 (successor), and
for all finite types δ, ρ, τ a projector Πρ→τ→ρ

ρ,τ and combinator Σδ,ρ,τ (of type
(δ → ρ → τ) → (δ → ρ) → δ → τ), and also recursor constants Rρ for
simultaneous primitive recursion in all finite types. L(WE-HAω) also contains a
binary predicate constant =0 (equality between objects of type 0).

Definition 2.9. The terms of WE-HAω are determined by:

1. Constants and variables of type ρ are terms of type ρ.

2. If tρ→τ is a term of type ρ → τ and sρ is a term of type ρ, then (ts) is a
term of type τ .

We will also when specifying terms sometimes omit uniquely determined
brackets. In expressions such as tsw, association is assumed to be to the left. If
tδ→ρ→τ , sδ, wρ are terms, we will sometimes write t(s, w) for ((ts)w).

Definition 2.10. The formulas of WE-HAω are determined by:
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1. Prime formulas (also called “atomic formulas”) s0 =0 t0 are formulas.
Also ⊥ is a prime formula.

2. If A,B are formulas, then (A∧B), (A∨B) and (A→ B) are also formulas.

3. If A(xρ) is a formula, then also (∀xρA(x)) and (∃xρA(x)) are formulas.

We will write ¬A for A → ⊥, and A ↔ B for (A → B) ∧ (B → A). We
will furthermore write x 6=0 y for ¬(x =0 y). We will let A(x), B(x), C(x) and
so on denote formulas in L(WE-HAω) with x1, . . . , xn free, where x is the tuple
x1, . . . , xn. We will let A0(x), B0(x), C0(x) and so on denote quantifier-free
formulas in L(WE-HAω).

We note that the only primitive predicate in the language is =0, so that in
particular equality between higher type objects is not primitive. In fact, higher
type equality is defined extensionally:

Definition 2.11. Higher type equality =ρ is defined by

sρ =ρ t
ρ :≡ ∀yρ11 , . . . , yρkk (s(y1, . . . , yk) =0 t(y1, . . . , yk)),

where ρ = ρ1 → ρ2 → . . .→ ρk → 0.

Definition 2.12. The axioms and rules of WE-HAω are as follows.

1. The axioms and rules of ILω−=. We axiomatize first order intuitionistic
predicate logic IL−= without equality using Gödel’s system (introduced in
[60], see also [101, 169]).

2. Equality axioms for =0:

(a) x =0 x,

(b) x =0 y → y =0 x,

(c) x =0 y ∧ y =0 z → x =0 z.

3. Successor axioms:

(a) Sx 6=0 0,

(b) Sx =0 Sy → x =0 y.

4. Induction schema:

(IA) : A(0) ∧ ∀x0(A(x)→ A(Sx))→ ∀x0A(x),

where A(x0) is an arbitrary formula of WE-HAω.

5. Axioms for Πρ,τ , Σδ,ρ,τ and Rρ:

(Π) : Πρ,τx
ρyτ =ρ x

ρ,

(Σ) : Σδ,ρ,τxδ→ρ→τyδ→ρzδ =τ xz(yz),

(R) : Rρ0yz =ρ y and Rρ(Sx
0)yz =ρ z(Rρxyz)x,
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where ρ = ρ1, . . . , ρk, yi is of type ρi and zi of type

ρ1 → . . .→ ρk → 0→ ρi.

6. The following quantifier-free rule of extensionality:

QF-ER :
A0 → s =ρ t

A0 → r[s] =τ r[t]

where ρ, τ are arbitrary types and sρ, tρ, r[xρ]τ are terms of WE-HAω.

No effort has been made to eliminate redundancies in this system.

Definition 2.13. We obtain the system E-HAω, called extensional Heyting
arithmetic in all finite types (with the same language, terms and formulas as
WE-HAω) by replacing the rule QF-ER with the following axioms for higher type
extensionality:

Eρ :≡ ∀zρ, xρ11 , y
ρ1
1 , . . . , xρkk , y

ρk
k (

k∧
i=1

(xi =ρi yi)→ zx =0 zy),

where ρ = ρ1 → . . .→ ρk → 0.

The systems we will use will only have the restricted form of extensionality
QF-ER, because one uses Gödel’s functional interpretation to extract compu-
tational witnesses from proofs as a step in the metatheorems, and this is not
possible if we have full extensionality (see [72]). However, the need to restrict
to weak extensionality also has a natural mathematical interpretation, see the
discussion on extensionality in [99].

Definition 2.14. By adding the law of excluded middle, that is, the schema

LEM : A ∨ ¬A,

we obtain WE-PAω (respectively E-PAω) from WE-HAω (respectively E-HAω).
E-PAω and WE-PAω are called respectively extensional and weakly extensional
Peano arithmetic in all finite types.

Remark 2.15. The fragments ̂(W)E-PA
ω
�, ̂(W)E-HA

ω
� of respectively (W)E-PAω,

(W)E-HAω are obtained by excluding all the recursors Rρ except the recursor
R0 for type-0-recursion, and by restricting the induction schema to the schema
of quantifier-free induction

QF-IA: A0(0) ∧ ∀x0
(
A0(x)→ A0(S(x))

)
→ ∀x0A0(x),

where A0 is quantifier-free and may contain parameters of arbitrary types. The
set-theoretic functionals which are denoted by closed terms of Ê-PA

ω
� are called

the primitive recursive functionals of finite type in the sense of Kleene, and were
first introduced (for pure types) in [87], where they are called S1–S8 computable
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functionals. It turns out that the Kleene primitive recursive functionals of type
1 are exactly the ordinary primitive recursive functions. This is in contrast to
the primitive recursive functionals in the sense of Gödel, i.e., the set-theoretic
functionals denoted by closed terms of E-PAω, where the functionals of type
1 form a wider class. The systems ̂(W)E-HA

ω
� were introduced by Feferman

in [43].

Definition 2.16. The schema QF-AC of quantifier-free choice in all finite types
is given by

QF-AC : ∀x∃yA0(x, y)→ ∃Y ∀xA0(x, Y x),

where A0 is quantifier-free and x, y are tuples of variables of arbitrary type. The
quantifier-free axiom of choice in types ρ, τ is the schema

QF-ACρ,τ : ∀xρ∃yτA0(x, y)→ ∃Y ρ→τ∀xρA0(x, Y x),

where xρ and yτ are single variables of the indicated types.

Definition 2.17. The schema of dependent choice5 DC is defined by DC:=⋃
ρ∈T{DCρ}, where DCρ is

∀x0, yρ∃zρA(x, y, z)→ ∃f0→ρ∀x0A(x, f(x), f(S(x))),

for A an arbitrary formula.

Definition 2.18. The system Aω is defined by

Aω := WE-PAω + QF-AC + DC.

In Aω one can handle rational numbers and real numbers via an appropriate
representation. Rational numbers are represented as pairs (n,m) of natural
numbers coded into a single natural number j(n,m) via the Cantor pairing
function j. This is done in a way so that each natural number codes a unique
rational number. Namely, j(n,m) denotes the rational number

n
2

m+1 if n is even,

and the negative rational number −
n+1

2
m+1 otherwise. For a rational number of

the form 2−n we write 〈2−n〉 for the (canonical) representative j(2, 2n− 1), and
for a natural number n we write 〈n〉 or nQ for the (canonical) representative
j(2n, 0). An equality relation =Q on the representatives of the rational numbers,
together with operators +Q, −Q, ·Q, etc. and also predicates <Q and ≤Q are
defined primitive recursively in the natural way. Real numbers are represented
by type 1 objects f : N→ N such that

∀n
(
|f(n)−Q f(n+ 1)|Q <Q 〈2−n−1〉

)
.

One ensures that each functional f of type 1 represents a unique real number
via the following construction, which can be carried out in Aω:

f̂(n) :=
{
f(n) if ∀k < n

(
|f(k)−Q f(k + 1)|Q <Q 〈2−k−1〉

)
f(k) for min k < n with |f(k)−Q f(k + 1)|Q ≥Q 〈2−k−1〉 else.

5This formulation combines the usual formulation of dependent choice and countable
choice, see [101].
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Then f represents the real number represented by f̂ . Real numbers are thus
represented by functionals representing Cauchy sequences of rational numbers
with a fixed Cauchy modulus n 7→ 2−n. For natural numbers b ∈ N we write bR
for the functional λn.bQ representing the real number b. For a rational number
of the form 2−n for n ∈ N we write (2−n)R for the functional λk.j(2, 2n − 1)
representing the real number 2−n. One defines relations =R, <R and ≤R on
representatives of real numbers as follows:

f1 =R f2 :≡ ∀n
(
|f̂1(n+ 1)−Q f̂2(n+ 1)|Q <Q 〈2−n〉

)
f1 <R f2 :≡ ∃n

(
f̂2(n+ 1)−Q f̂1(n+ 1) ≥Q 〈2−n〉

)
f1 ≤R f2 :≡ ¬(f2 <R f1).

Thus =R and ≤R are Π0
1-predicates, while <R is a Σ0

1-predicate. One can now
define operators +R, −R, ·R etc. on representatives of real numbers by primitive
recursive functionals (see [99] for details). We include also the following lemma,
which appears in [99]:

Lemma 2.19. Aω ` ∀k0
(
|f −R λn

0.f̂(k)|R <R (2−k)R

)
.

2.2.2 The formal system Aω[X, d ] for abstract bounded
metric spaces

The theory Aω[X, d ] for which the relevant metatheorem is proved is now ob-
tained from Aω by “adding” an abstract metric space (X, d). Aω[X, d ] results
by (see [99]):

(i) Extending Aω to the set TX of all finite types over the two ground types
0 and X, i.e.

0, X ∈ TX , and if ρ, τ ∈ TX , then (ρ→ τ) ∈ TX

(in particular, the constants Πρ,τ , Σδ,ρ,τ , Rρ for λ-abstraction and simul-
taneous primitive recursion (in the extended sense of Gödel [60]) and their
defining axioms, and the schemes IA, QF-AC, DC and the weak extension-
ality rule QF-ER are now taken over the extended set of types (and the
extended language)).

(ii) Adding a constant 0X of type X and a constant bX of type 0.

(iii) Adding a constant dX of type X → X → 1 together with the axioms

(1) ∀xX (dX(x, x) =R 0R),

(2) ∀xX , yX (dX(x, y) =R dX(y, x)),

(3) ∀xX , yX , zX (dX(x, z) ≤R dX(x, y) +R dX(y, z)),

(4) ∀xX , yX (dX(x, y) ≤R (bX)R)
(
with (bX)R := λk0.j(2bX , 0)

)
.
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Still only equality at type 0 is a primitive predicate. One defines xX =X yX as
dX(x, y) =R 0R and equality for complex types as extensional equality using =0

and =X for the ground types.
To state the metatheorem in the next section we will need some notions and

some more terminology. We first recall the definition of the full set-theoretic
type structure over N. All of the rest is taken from [99].

Definition 2.20. The full set-theoretic type structure

Sω := 〈Sρ〉ρ∈T

over N is defined by S0 := N and Sτ→ρ := SSτρ . Here SSτρ is the set of all
set-theoretic functions Sτ → Sρ.

Definition 2.21. Let X be a nonempty set. The full set-theoretic type struc-
ture

Sω,X := 〈Sρ〉ρ∈TX

over N and X is defined by S0 := N, SX := X and Sτ→ρ := SSτρ . Here SSτρ is
the set of all set-theoretic functions Sτ → Sρ.

We note that if ρ ∈ T, then ρ ∈ TX for any nonempty X, and Sρ is the
same whether thought of as belonging to Sω or Sω,X .

Definition 2.22. For x ∈ [0,∞) define (x)◦ ∈ NN by

(x)◦(n) := j
(
2k0, 2n+1 − 1

)
,

where

k0 := max
{

k

2n+1
≤ x : k ∈ N

}
.

The following lemma, which lists some of the important properties of the
function (·)◦ : [0,∞)→ NN, is a part of Lemma 2.10 in [99].

Lemma 2.23.

(1) If x ∈ [0,∞), then (x)◦ is a representation of x in the sense of our repre-
sentation of real numbers indicated above.

(2) If x, y ∈ [0,∞) and x ≤ y (in the sense of the usual order on R), then
(x)◦ ≤R (y)◦ and (x)◦ ≤1 (y)◦.

Definition 2.24. We will say that a sentence of the language L(Aω[X, d ]) of
Aω[X, d ] holds in a bounded metric space (X, d) if it holds in the models of
Aω[X, d ] obtained by letting the variables range over the appropriate universes
of the full set-theoretic type structure Sω,X with the set X as the universe
for the base type X, letting 0X be interpreted by an arbitrary element of X,
letting bX be interpreted as some integer upper bound (also denoted “b”) for
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d, and by letting dX be interpreted by λx, y.(d(x, y))◦, where (·)◦ refers to
the construction in Definition 2.22. We will sometimes denote a model of (an
extension of) Aω[X, d ] with domain Sω,X by Sω,X , and similarly we will denote
a model with domain Mω,X (to be defined below) by Mω,X .

Definition 2.25. A type ρ ∈ TX has degree 1 if

ρ = τ1 → . . .→ τk → 0

(including ρ = 0), with τi = 0 for 1 ≤ i ≤ k. The type ρ has degree 2 if

ρ = τ1 → . . .→ τk → 0

(including ρ = 0), with τi of degree 1 for 1 ≤ i ≤ k. A type ρ ∈ TX has degree
(0, X) if

ρ = τ1 → . . .→ τk → X

(including ρ = X), with τi = 0 for 1 ≤ i ≤ k. The type ρ has degree (1, X) if

ρ = τ1 → . . .→ τk → X

(including ρ = X), where τi has degree 1 or (0, X) for 1 ≤ i ≤ k.

Definition 2.26. A formula F is called a ∀-formula (resp. ∃-formula) if it has
the form F ≡ ∀aσF0(a) (resp. F ≡ ∃aσF0(a)), where F0 does not contain any
quantifier and the types in σ are of degree 1 or (1, X).

Note that when we elsewhere somewhat informally refer to “∀∃∀-sentences”
or “∃∀-sentences” then this indicates only the logical complexity of the prefix6,
with no restriction on the degrees of the types.

Definition 2.27. Between functionals xρ, yρ of type ρ ∈ T we define a relation
≤ρ by induction on ρ as follows:

x ≤0 y :≡ x ≤ y for the usual (prim. rec.) order on N,
x ≤σ→τ y :≡ ∀zσ (x(z) ≤τ y(z)) .

Definition 2.28. The extensional type structure Mω,X := 〈Mρ〉ρ∈TX of all

hereditarily strongly majorizable set-theoretical functionals of type ρ ∈ TX over
N and a set X, together with the relation x∗ s-majρ x (“strong majorizability”)
between functionals x∗, x of type ρ ∈ TX , is defined as follows:
M0 := N, x∗ s-maj0 x :≡ x∗ ≥ x ∧ x∗, x ∈ N,
MX := X, x∗ s-majX x :≡ x∗, x ∈MX ,
x∗ s-majσ→τx

:≡ x∗, x ∈MMσ
τ ∧ ∀y∗, y ∈Mσ (y∗ s-majσ y → x∗(y∗) s-majτ x∗(y), x(y)) ,

Mσ→τ :=
{
x ∈MMσ

τ : ∃x∗ ∈MMσ
τ (x∗ s-majσ→τ x)

}
(σ, τ ∈ TX).

Here MMσ
τ denotes the set of all total set-theoretical mappings from Mσ to Mτ .

6With “∃∃∀” counted as “∃∀”, etc.
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There is a syntactic counterpart of s-maj formulated in L(Aω[X, d ]), which
we also denote by “s-maj”. For xρ, yρ we define s-majρ as follows:

x∗ s-maj0 x :≡ x ≤0 x
∗,

x∗ s-majX x :≡ 0 =0 0,

x∗ s-majσ→τ x :≡ ∀y∗, y(y∗ s-majσ y → x∗y∗ s-majτ x∗y, xy).

The notion of majorizability was originally introduced by Howard ([72]), and
subsequently modified by Bezem ([19]). The version in Definition 2.28, where
majorizability is extended to the new types in TX , is due to Kohlenbach. (We
will often write “majorizable” or “majorant” instead of “strongly majorizable”
and “strong majorant”.)

Remark 2.29. The reason why we can define the majorization relation for
objects of type X in this trivial way is that the space (X, d) is bounded, so
that we have a common upper bound b for the distance between any two points.
Already for normed spaces (which are also treated in [99]) the relation becomes

x∗s-majXx :≡ x∗, x ∈MX ∧ ‖x∗‖ ≥ ‖x‖.

In [56] the approach which we are following here is extended to unbounded
metric spaces, with associated generalizations of the theorems, and then the
majorizability notion used is more involved; roughly speaking it becomes x∗ ≥
d(a, x), where now x∗ is a natural number and a ∈ X is a reference point. For
reasons given later we will not here consider these formal systems where the
space is allowed to be unbounded (see Remark 2.44).

The following definition is a special case of a more general construction used
in the proofs of the theorems in [99].

Definition 2.30. Define φ1→1 by recursion (using R0) such that

φ(x1, 0) =0 x(0), and φ(x1, z + 1) =0 max
0

(φ(x, z), x(z + 1)) ,

where max0 is the usual (primitive recursively definable) maximum between
natural numbers. We write xM := λz0.φ(x, z).

2.2.3 A metatheorem for bounded metric spaces

The theorem we state below is a part of Theorem 3.7 in [99].

Theorem 2.31 (Kohlenbach). Let σ, ρ be types of degree 1 and let τ be a type of
degree (1, X). Let sσ→ρ be a closed term of Aω[X, d ] and let B∀(xσ, yρ, zτ , u0)
be a ∀-formula containing only x, y, z, u free. Let also C∃(xσ, yρ, zτ , v0) be an
∃-formula containing only x, y, z, v free. If

∀xσ∀y ≤ρ s(x)∀zτ
(
∀u0B∀(x, y, z, u)→ ∃v0C∃(x, y, z, v)

)
(2.1)
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is provable in Aω[X, d ], then one can extract a computable functional Φ : Sσ ×
N→ N such that for all x ∈ Sσ and all b ∈ N

∀y ≤ρ s(x)∀zτ [∀u ≤ Φ(x, b)B∀(x, y, z, u)→ ∃v ≤ Φ(x, b)C∃(x, y, z, v)] (2.2)

holds in any (nonempty) metric space (X, d) whose metric is bounded by b ∈ N
(with bX interpreted by b).

Some additional comments on Theorem 2.31:

(i) The computational complexity of the functional Φ can be estimated in
terms of the strength of the Aω-principle instances actually used in the
proof. Φ can always be defined in the calculus T+(BR) of so-called bar
recursive functionals, i.e. as a closed term of WE-PAω+(BR). (For the
definition of the schema (BR) of bar recursion we refer to e.g. Chapter 11
of [101]. Bar recursion was introduced by Spector in [166].) In particular,
if DC is not used in the proof then Φ can be given as a closed term of
WE-PAω, and so it is primitive recursive in the sense of Gödel.

The proof of Theorem 2.31 provides an extraction algorithm for Φ.

(ii) Instead of single variables x, y, z, u, v we may also have finite tuples of
variables x, y, z, u, v as long as the elements of the respective tuples satisfy
the same type restrictions as x, y, z, u, v. Moreover, instead of a single
premise of the form ∀u0B∀(x, y, z, u) we may have a finite conjunction of
such premises.

The proof of this theorem is based on an extension of Spector’s [166] interpre-
tation of classical analysis by bar recursive functionals to the system Aω[X, d ],
and we will say more about the proof below. But first we will comment on pos-
sible extensions of the theorem which will be of relevance to us. Such extensions
were implicit in [99], and explicitly commented on in [56].

An extension of Kohlenbach’s metatheorem

LetAω[X, d ]+∆ be the theoryAω[X, d ] extended with new constants c1, . . . , cm
of types of degree 2 and new constants cm+1, . . . , cn of types of degree (1, X) and
with purely universal closed axioms with the types of all quantifiers of degree 2
or (1, X). Assume that there exist closed terms c∗1, . . . , c

∗
m of Aω[X, d ]+∆ with

the constants interpreted such that

Sω,X |= c∗i s-majσi ci for 1 ≤ i ≤ m, (2.3)

where σi is the type of ci. Then the theorem still holds in the sense that if
Aω[X, d ] + ∆ proves (2.1) (where B∀ and C∃ are now formulas of Aω[X, d ] + ∆
and where s is a closed term of Aω[X, d ] + ∆) then from a proof of (2.1) we can
extract a partial functional

Φ : Sσ × Sσ1 × · · · × Sσm × N ⇀ N,
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which can be defined in T+BR, and whose restriction to

Mσ ×Mσ1 × · · · ×Mσm × N

is a total (bar recursively) computable functional7, such that

∀y ≤ρ s(x)∀zτ [∀u ≤ Φ(x, [c∗1]Sω,X , . . . , [c∗m]Sω,X , b)B∀(x, y, z, u)→
∃v ≤ Φ(x, [c∗1]Sω,X , . . . , [c∗m]Sω,X , b)C∃(x, y, z, v)]

holds in any (nonempty) metric space (X, d) bounded by b ∈ N which satisfies
the new purely universal axioms (with bX interpreted by b and with the new
constants interpreted by functionals from the appropriate universes of Sω,X such
that (2.3) holds). Here [c∗i ]Sω,X denotes the interpretation of c∗i in Sω,X . All of
this follows from the proof of Theorem 3.7 in [99], and in the setting of [56] such
extensions were explicitly commented on in Remark 4.13 in [56]. In relation to
the proof we note that the restriction on the types of the new constants ensures
that these can be interpreted by the same functionals in Sω,X and in Mω,X ,
and that

Sω,X |= c∗i s-majσi ci

implies
Mω,X |= c∗i s-majσi ci

when all constants are interpreted in the same way in Sω,X and in Mω,X . The
restriction on the types of the quantifiers in the new axioms ensures that truth of
the axioms in Sω,X implies truth of the axioms inMω,X . Φ does not depend on
interpretations of majorants of cm+1, . . . , cn, since we can take these majorants
to be λxρ.0X for suitable types ρ. And dependence on the interpretations of
these terms can be eliminated by an easy extension of the method on page 121
of [99] used to eliminate the dependence on the interpretation of 0X .

We could be more liberal in our type restrictions for cm+1, . . . , cn, but types
of degree (1, X) are more than enough for our applications. We note also that if
c1, . . . , cm are of types of degree 1 then c∗1, . . . , c

∗
m as required here always exist,

by a construction analogous to the one in Definition 2.30. And in this case Φ is
total, since then Sσi = Mσi for 1 ≤ i ≤ m (and since Sσ = Mσ).

Remarks on the proof of the metatheorem

We will not present the proof of Theorem 2.31; for full details we refer to [99]
and the references cited therein, and also to [101]. The proof is based on an
extension of Spector’s [166] and Howard’s [71] interpretation of the system Aω
by Spector’s bar recursive functionals (T+BR) to the new formal system. One
then interprets these functionals in Mω,X , makes use of the restricted logical
form of the sentences and the low degrees of the types involved to prove that
the conclusion holds in Mω,X , and uses the logical form of the sentences and
the low degrees of the types involved to conclude that it holds also in Sω,X .

7In the sense of [87] relativized to the typestructure Mω .
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Spector’s interpretation of classical analysis is an extension of Gödel’s inter-
pretation of classical arithmetic by primitive recursive functionals of all finite
types, which Gödel accomplished by combining his negative translation, which
interprets classical arithmetic in intuitionistic arithmetic, with the functional
(“Dialectica”) interpretation which he developed in [60]. We will give the def-
inition of a variant of the negative translation due to Kuroda [118], and also
the definition of the functional interpretation, both times in the specific setting
where the system under consideration is Aω[X, d ].

Definition 2.32. Let A be a formula in the language of Aω[X, d ]. The negative
translation A′ of A is defined as follows. We let A′ :≡ ¬¬A∗, where A∗ is defined
by induction on the logical structure of A:

(i) A∗ :≡ A, if A is a prime formula,

(ii) (A2B)∗ :≡ (A∗2B∗), where 2 ∈ {∧,∨,→},

(iii) (∃xρA(x))∗ :≡ ∃xρ(A(x))∗,

(iv) (∀xρA(x))∗ :≡ ∀xρ¬¬(A(x))∗.

Definition 2.33 (Functional interpretation of Aω[X, d ]). To every formula A
in the language of Aω[X, d ] we assign a translation

AD ≡ ∃x∀yAD(x, y)

in the same language. The free variables of AD are the same as those of A. The
types and length of x, y depend only on the logical structure of A, and AD is a
quantifier-free formula. For prime formulas A we let AD :≡ AD :≡ A. Assuming
that AD ≡ ∃x∀yAD(x, y) and BD ≡ ∃u∀vBD(u, v), we define:

(i) (A ∧B)D :≡ ∃x, u∀y, v[AD(x, y) ∧BD(u, v)],

(ii) (A ∨B)D :≡ ∃z0, x, u∀y, v[(z = 0→ AD(x, y)) ∧ (z 6= 0→ BD(u, v))],

(iii) (∃zρA(z))D :≡ ∃z, x∀yAD(x, y, z),

(iv) (∀zρA(z))D :≡ ∃X∀z, yAD(Xz, y, z),

(v) (A→ B)D :≡ ∃U, Y ∀x, v(AD(x, Y x v)→ BD(U x, v)).

One can then combine negative translation and functional interpretation, so
that given a formula A the functional interpretation of the negative translation
A′ of A is (A′)D ≡ ∃x∀y(A′)D(x, y). In order to state the next lemma we ought
to introduce the extension Aω[X, d ]+(BR) of Aω[X, d ], which results by for all
tuples ρ = ρ1, . . . , ρm and τ = τ1, . . . , τk of types in TX adding new constants
Bρ,τ to the language – called bar recursors – and new axioms (BRρ,τ ) for these
constants. In the setting of Aω these were introduced by Spector in [166].
However, we will not give the definition of bar recursion, but rather refer to
Chapter 11 (and Chapter 17) in [101] for full details. The following lemma,
which is crucial in [99], is a simple extension of Spector’s deep result for Aω to
Aω[X, d ].
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Lemma 2.34. Let A be a sentence in the language of Aω[X, d ]. If

Aω[X, d ] ` A,

then one can construct a tuple of closed terms t of Aω[X, d ]+(BR) such that

Aω[X, d ]− QF-AC + (BR) ` ∀y(A′)D(t, y).

Here Aω[X, d ]−QF-AC+(BR) is the system Aω[X, d ]+(BR) without QF-AC.
The construction of these t by recursion on a proof of A is a fundamental
part of the algorithm for the extraction of bounds mentioned in Theorem 2.31,
together with subsequent majorization. For a full proof of Lemma 2.34 we refer
to Kohlenbach’s book [101].

2.3 Some proof mining in metric fixed point the-
ory

In this section we will explain how one in certain cases can extract rates of
proximity for the Picard iteration sequences (fn(x0))n∈N for selfmaps f : X →
X on bounded metric spaces (X, d) from ineffective proofs of convergence to a
unique fixed point.

2.3.1 Extracting rates of proximity

Let Aω[X, d ] + ∆ be an extension of Aω[X, d ] as in the discussion after The-
orem 2.31 above, with a distinguished constant cf of type X → X. Then
Aω[X, d ] + ∆ determines a certain class of selfmappings on a class of nonempty
bounded metric spaces in the sense that a selfmapping f : X → X on a
nonempty bounded metric space (X, d) is a member of this class if one can
obtain a model of Aω[X, d ] + ∆ by letting the variables range over the appro-
priate universes of the full set-theoretic type structure Sω,X with the set X
as the universe for the base type X, letting 0X , bX and dX be interpreted as
in Definition 2.24, letting cf be interpreted by f and by letting the other new
constants be interpreted such that (2.3) holds.

Let (X, d) be a nonempty bounded metric space, and let f : X → X be a
selfmapping in the class of selfmappings determined by Aω[X, d ] + ∆. Suppose
we can prove that any fixed point of f is unique if it exists, i.e., that

∀x, y ∈ X (f(x) = x ∧ f(y) = y → x = y) ,

and furthermore that f is asymptotically regular, i.e., that

∀x ∈ X∀k ∈ N∃m ∈ N∀n ≥ m
(
d
(
fn(x), fn+1(x)

)
< 2−k

)
. (2.4)

Suppose further that this can be proved in Aω[X, d ] + ∆, i.e., that

Aω[X, d ] + ∆ ` ∀xX∀yX (cf (x) =X x ∧ cf (y) =X y → x =X y) (2.5)
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and

Aω[X, d ] + ∆ ` ∀xX0 ∀k0∃m0∀n0
(
n ≥0 m→ dX(xn, xn+1) <R (2−k)R

)
, (2.6)

where xn is the n-th member of the Picard iteration sequence starting with x0,
which is definable in the theory8. We will hold these assumptions fixed for the
remainder of the section.

We can write (2.5) as

Aω[X, d ] + ∆ ` ∀xX , yX∀k0
(
∀m0A0(x, y,m)→ | ̂dX(x, y)(k + 1)|Q <Q 〈2−k〉

)
,

where

A0(x, y,m) :≡ | ̂dX(x, cfx)(m+ 1)|Q <Q 〈2−m〉 (2.7)

∧ | ̂dX(y, cfy)(m+ 1)|Q <Q 〈2−m〉

is quantifier-free. So Kohlenbach’s metatheorem implies that we can extract
(from the corresponding formal proof) a partial functional

Φ : N× N× Sσ1 × · · · × Sσm ⇀ N

such that

∀x1, x2 ∈ X∀k ∈ N

(
2∧
i=1

d(xi, f(xi)) < 2−Φ(k,b, ~F ) → d(x1, x2) < 2−k
)

(2.8)

holds, where Fi denotes the interpretation of c∗i and where we use the notation
Φ(k, b, ~F ) for Φ(k, b, F1, . . . , Fm). (In (2.8) x1 and x2 do not denote members of
a Picard iteration sequence but rather arbitrary elements of X). Thus f has a
modulus of uniqueness λk.Φ(k, b, ~F ). And (2.8) holds in fact for all b-bounded
metric spaces (X, d) and mappings f satisfying Aω[X, d ]+∆ with the constants
suitably interpreted. Note that from (2.4) and (2.8) it follows that all Picard
iteration sequences are Cauchy and that

∀x0, y0 ∈ X∀k ∈ N∃m ∈ N∀n ≥ m
(
d(xn, yn) < 2−k

)
.

Thus if the space is complete then there exists z ∈ X such that all Picard
iteration sequences (xn)n∈N converge to z, and if in addition f is continuous
then we can conclude that z is a fixed point.

To treat (2.6) we first notice that (since we have (2.6)) we in particular have

Aω[X, d ] + ∆ ` ∀xX0 ∀k0∃m0
(
dX(xm, xm+1) <R (2−k)R

)
. (2.9)

Similarly to the above we can now extract a partial functional

Ψ : N× N× Sσ1 × · · · × Sσm ⇀ N
8Formally we can for example let xn := P (x0, n), where P := λxX , n0. RXn

0xXz, with
z := λxX ,m0. cfx. Using λ-abstraction is allowed since we in Aω [X, d ] + ∆ have closure
under functional abstraction by a trivial extension of Lemma 2.4 in [99].
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such that

∀x0 ∈ X∀n ∈ N∃m ≤ Ψ(n, b, ~F )
(
d(xm, xm+1) < 2−n

)
, (2.10)

with (xn)n∈N the Picard iteration sequence with starting point x0 ∈ X. Thus
λn.Ψ(n, b, ~F ) is a modulus of uniform almost asymptotic regularity for f . We
can combine the functional Ψ in (2.10) with a modulus of uniqueness for f as
follows. Suppose that f has a fixed point z ∈ X. Then for each n ∈ N we have
d(z, f(z)) < 2−n, and so from (2.8) and (2.10) it follows that

∀x0 ∈ X∀n ∈ N∃m ≤ Ψ
(
Φ(n, b, ~F ), b, ~F

) (
d(xm, z) < 2−n

)
. (2.11)

That is, the function λn.Ψ
(
Φ(n, b, ~F ), b, ~F

)
is a rate of proximity for all Picard

iteration sequences (xn)n∈N to z. Assume now that X is complete, and let
z ∈ X be the point to which all Picard iteration sequences converge. If z is not
a fixed point, then we get

∀x0 ∈ X∀n ∈ N∃m ≤ Ψ
(
Φ(n, b, ~F ), b, ~F

) (
d(xm, z) ≤ 2−n

)
.

Namely, let x0 ∈ X and n ∈ N. Then given ε > 0 we can let k ∈ N be such that
d(xk, z) < ε and

d(xk, xk+1) < 2−Φ(n,b, ~F ).

There exists
m ≤ Ψ

(
Φ(n, b, ~F ), b, ~F

)
such that

d(xm, xm+1) < 2−Φ(n,b, ~F ),

and so by (2.8) we have

d(xm, z) ≤ d(xm, xk) + d(xk, z) < 2−n + ε.

Since Ψ
(
Φ(n, b, ~F ), b, ~F

)
does not depend on ε we get d(xm, z) ≤ 2−n for some

m ≤ Ψ
(
Φ(n, b, ~F ), b, ~F

)
.

If f is nonexpansive and if we assume that f has a fixed point then (2.11)
yields a uniform rate of convergence to the fixed point:

∀x0 ∈ X∀n ∈ N∀m ≥ Ψ
(
Φ(n, b, ~F ), b, ~F

) (
d(xm, z) < 2−n

)
. (2.12)

So in this case a rate of proximity gives a rate of convergence. Note that if f
is nonexpansive but if we do not assume that f has a fixed point then we get
from (2.10) that

∀x0 ∈ X∀n ∈ N∀m ≥ Ψ(n, b, ~F )
(
d(xm, xm+1) < 2−n

)
. (2.13)

From this and from (2.8) it follows that

∀x0, y0 ∈ X∀n ∈ N∀m ≥ Ψ
(
Φ(n, b, ~F ), b, ~F

) (
d(xm, ym) < 2−n

)
. (2.14)
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Hence if the space is complete then in this case there exists a unique fixed point z
such that all Picard iteration sequences converge to z with a rate of convergence
which is uniform in the starting point.

The account thus far is based on the discussion in [109]. For the sake of
illustrating the concepts in question this approach was used there to obtain a
constructive version of Edelstein’s theorem for contractive mappings. In [54] this
general approach was used to obtain a quantitative version of Kirk’s theorem on
asymptotic contractions. This involved finding a rate of proximity to the unique
fixed point for all Picard iteration sequences. This rate of proximity is then a
rate of convergence if we restrict ourselves to nonexpansive mappings. However,
asymptotic contractions in the sense of Kirk need not be nonexpansive. We have
been able to build on Gerhardy’s work to obtain a full rate of convergence for
asymptotic contractions in the sense of Kirk without assuming the mappings
to be nonexpansive: this work appears in Chapter 3. We have also used the
approach outlined here to find a rate of proximity for uniformly continuous
uniformly generalized p-contractive mappings, and also in this case we found
that we could extend our results so as to get a full rate of convergence without
assuming the mappings to be nonexpansive: this work appears in Chapter 4.

These results prompted the investigations in this chapter into the role of
uniqueness of the fixed point and the existence of uniform rates of convergence
in the general case.

However, before proving our theorem we will comment on a variation of the
method above which often works in practice and which amounts to a numerical
improvement.

2.3.2 Eliminating the modulus of uniqueness

The rate of proximity above was obtained as a combination of a modulus of
uniqueness Φ with the functional Ψ extracted from a proof of (2.9). In fact, in
many cases the proof that for any k ∈ N and for any x0 ∈ X and x1 := f(x0)
there exists an m ∈ N such that d(fm(x0), fm(x1)) < 2−k does not use that
x1 = f(x0), i.e., it is exactly the same as a proof that for any x0 ∈ X and
y0 ∈ X there exists an m ∈ N such that d(fm(x0), fm(y0)) < 2−k, just with
the variables x1 and y0 interchanged. Then from the proof of the formalized
statement we get that

∀x0, y0 ∈ X∀n ∈ N∃m ≤ Ψ(n, b, ~F )
(
d(xm, ym) < 2−n

)
. (2.15)

Now, if the space is complete then we know that there is a point z ∈ X to which
all Picard iteration sequences converge (by the discussion after (2.8) above, since
we still assume that we have (2.5) and (2.6)), and it is easy to see that

∀x0 ∈ X∀n ∈ N∃m ≤ Ψ(n, b, ~F )
(
d(xm, z) ≤ 2−n

)
. (2.16)

Namely, let x0 ∈ X and n ∈ N. Then given ε > 0 we can let y0 in (2.15) be
such that d(yk, z) < ε for all k ∈ N. This we can do by e.g. letting y0 = xl for
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large enough l ∈ N. Then by the triangle inequality and (2.15) we have that
there exists m ≤ Ψ(n, b, ~F ) with

d(xm, z) < 2−n + ε.

Since Ψ(n, b, ~F ) does not depend on ε we get d(xm, z) ≤ 2−n for some m ≤
Ψ(n, b, ~F ). In contrast to this, if z is a fixed point then we get directly from (2.15)
that

∀x0 ∈ X∀n ∈ N∃m ≤ Ψ(n, b, ~F )
(
d(xm, z) < 2−n

)
. (2.17)

That is, λn.Ψ(n, b, ~F ) is a rate of proximity to z for all Picard iteration se-
quences. Compared to the previously obtained rate of proximity

λn.Ψ
(
Φ(n, b, ~F ), b, ~F

)
this is in most cases a significant quantitative improvement, since moduli of
uniqueness λn.Φ(n, b, ~F ) in practice tend to satisfy Φ(n, b, ~F ) > n. We say that
we have “eliminated the modulus of uniqueness”. For the quantitative version
of Edelstein’s theorem on contractive mappings mentioned above, and also for
the quantitative result on generalized p-contractive mappings, one could numer-
ically improve the convergence rates obtained in exactly this way (see [23] and
Chapter 4). Also in the case of the rate of proximity for asymptotic contrac-
tions in the sense of Kirk obtained in [54] we could numerically improve the
results by eliminating what in that context functions more or less as a modulus
of uniqueness (see Chapter 3).

2.4 Main results

We will exploit the fact that the bounds which the metatheorem guarantees are
uniform in the space (X, d) and the mapping f : X → X except through a
bound b ∈ N on the space and majorants for the new constants one introduces
when developing a formal theory for the class of mappings under consideration
by adding purely universal axioms to Aω[X, d ].

2.4.1 A combinatorial lemma concerning finite product
spaces

We will need a lemma which in itself has nothing to do with logic or proof
mining, and which might deserve some independent interest.

Definition 2.35. Let (X, d) be a metric space, let f : X → X and let m ≥ 1
be a natural number. We define a metric space (Xm, dm) by supplying the
Cartesian product Xm with a metric dm defined by

dm(~x, ~y) = max
{
d(x1, y1), . . . , d(xm, ym)

}
,
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where ~x = (x1, . . . , xm) and ~y = (y1, . . . , ym). (We here use superscripts instead
of subscripts to indicate the i-th coordinate, in order to avoid confusion with
members of iteration sequences.) We define the mapping fm : Xm → Xm by

fm(~x) =
(
f(x1), . . . , f(xm)

)
.

We note that if (X, d) is bounded by b > 0 then for all m ≥ 1 we have that
also (Xm, dm) is bounded by b.

Lemma 2.36 (Main combinatorial lemma). Let (X, d) be a metric space and
let f : X → X be a mapping. Assume that there exists a function Φ : N → N
such that

∀k ∈ N∀~x, ~y ∈ Xm∃n ≤ Φ(k)
(
dm (fnm(~x), fnm(~y)) < 2−k−3

)
(2.18)

holds for infinitely many natural numbers m ≥ 1, where (Xm, dm) and fm are
respectively the product space and the product mapping introduced in Defini-
tion 2.35. Then

∀k ∈ N∀x, y ∈ X∀l, n ≥ Φ(k)
(
d
(
f l(x), fn(y)

)
< 2−k

)
.

And so if the space is complete then there exists z ∈ X such that all Picard
iteration sequences (fn(x))n∈N converge to z with a rate of convergence which is
uniform in the starting point, and if f is continuous then z is the unique fixed
point of f .

Proof. Let x, y ∈ X and let k ∈ N. Let M be the set of natural numbers m ≥ 1
such that (2.18) holds. Assume for the moment that 1 ∈M . Then taking m = 1
and x, f(x) ∈ X in (2.18) (where we identify (X1, d1) with (X, d)) we get that
for some n ≤ Φ(k) we have

d
(
fn(x), fn+1(x)

)
< 2−k−3.

Likewise, if 2 ∈ M , then taking m = 2 and (x, x),
(
f(x), f2(x)

)
∈ X2 in (2.18)

we get that for some n ≤ Φ(k) we have

d
(
fn(x), fn+1(x)

)
< 2−k−3 ∧ d

(
fn(x), fn+2(x)

)
< 2−k−3.

In general, for any m ∈M we take (x, . . . , x), (f(x), . . . , fm(x)) ∈ Xm in (2.18).
Then for some n ≤ Φ(k) we have

m∧
i=1

(
d
(
fn(x), fn+i(x)

)
< 2−k−3

)
.

Since there are only finitely many n ≤ Φ(k) and since Φ(k) is independent from
m it follows that there is some n1 ≤ Φ(k) such that

m∧
i=1

(
d
(
fn1(x), fn1+i(x)

)
< 2−k−3

)
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holds for infinitely many m ≥ 1, i.e., such that

d
(
fn1(x), fn1+i(x)

)
< 2−k−3

holds for all i ∈ N. Then in particular

d
(
fn1(x), fΦ(k)(x)

)
< 2−k−3,

and so by the triangle inequality we have that

d
(
fΦ(k)(x), fn(x)

)
< 2−k−3 + 2−k−3 = 2−k−2

holds for all n ≥ Φ(k). Analogously we get that

d
(
fΦ(k)(y), fn(y)

)
< 2−k−2

holds for all n ≥ Φ(k). Let m1 ∈ M . By (2.18) we know that for any
ε > 0 there exists i ∈ N such that for ~x′ =

(
fΦ(k)(x), . . . , fΦ(k)(x)

)
and

~y′ =
(
fΦ(k)(y), . . . , fΦ(k)(y)

)
we have

dm1

(
f im1

(
~x′
)
, f im1

(
~y′
))
< ε,

and thus
d
(
fΦ(k)+i(x), fΦ(k)+i(y)

)
< ε.

Hence

d
(
fΦ(k)(x), fΦ(k)(y)

)
≤ d

(
fΦ(k)(x), fΦ(k)+i(x)

)
+

d
(
fΦ(k)+i(x), fΦ(k)+i(y)

)
+ d
(
fΦ(k)+i(y), fΦ(k)(y)

)
< 2−k−2 + ε+ 2−k−2,

and since ε > 0 was arbitrary we have

d
(
fΦ(k)(x), fΦ(k)(y)

)
≤ 2−k−1.

So for l, n ≥ Φ(k) we have

d
(
f l(x), fn(y)

)
≤ d

(
f l(x), fΦ(k)(x)

)
+

d
(
fΦ(k)(x), fΦ(k)(y)

)
+ d
(
fΦ(k)(y), fn(y)

)
< 2−k−2 + 2−k−1 + 2−k−2

= 2−k.

2

We note that it is easy to see that if (2.18) in the lemma above holds for some
m then it holds for all positive integers m′ < m. Thus under the assumptions
of the lemma we have that (2.18) holds for all m ≥ 1.
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2.4.2 Uniform product space models

The following definition is meant to capture a certain relationship between a
formal theory Aω[X, d ] + ∆ for some class of selfmappings on bounded metric
spaces and a bounded metric space (X, d) together with a mapping f : X → X.
Loosely speaking this involves that not only should (X, d) and f : X → X
give rise to a model of Aω[X, d ] + ∆, but so should every finite product space
(Xm, dm) and product mapping fm, and this should happen in a certain uniform
way for all m > 0. We will in the last section of this chapter see two concrete
examples from metric fixed point theory of classes of mappings on bounded
metric spaces such that one can find theories Aω[X, d ] + ∆ for which every
mapping of the kind considered together with the bounded metric space on
which it is defined provide a uniform product space model.

Definition 2.37. Let Aω[X, d ] + ∆ be the theory Aω[X, d ] extended with a
new constant cf of type X → X and with new constants c1, . . . , cn1 of types
of degree 2 and new constants cn1+1, . . . , cn2 of types of degree (1, X), and also
with purely universal closed axioms with the types of all quantifiers of degree 2
or (1, X). We say that a nonempty bounded metric space (X, d) and a selfmap
f : X → X together provide a uniform product space model for Aω[X, d ] + ∆
if:

(∗) There exist closed terms c∗1, . . . , c
∗
n1

of Aω[X, d ] + ∆ such that for all m in
an infinite set M ⊆ N \ {0} one can obtain a model of Aω[X, d ] + ∆ by:

(i) letting the variables range over the appropriate universes of the full
set-theoretic type structure Sω,Xm with the set Xm as the universe
for the base type X,

(ii) letting 0X be interpreted by an arbitrary element of Xm and letting
cn1+1, . . . , cn2 be interpreted by functionals from the appropriate uni-
verses of Sω,Xm ,

(iii) letting bX be interpreted by an integer upper bound b for dm and
letting dX be interpreted by λx, y. (dm(x, y))◦,

(iv) letting cf be interpreted by fm,

(v) and finally by letting c1, . . . , cn1 be interpreted such that

Sω,X
m

|= c∗i s-majσi ci for 1 ≤ i ≤ n1,

where σi is the type of ci.

And furthermore for all m ∈ M the terms c∗1, . . . , c
∗
n1

are interpreted by
the same functionals F1, . . . , Fn1 in the models above.

The concept in this definition will be crucial in our theorems below.
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2.4.3 A theorem guaranteeing the extractability of uni-
form and effective rates of convergence

The following theorem is our main result in this chapter. It uses the notion of
a metric space (X, d) and a mapping f : X → X providing a uniform prod-
uct space model for a theory (which is meant to capture the class of mappings
to which f belongs) to give conditions guaranteeing the extractability of com-
putable and uniform rates of convergence. However, we do not need the full
strength of Theorem 2.38 to explain the results of our case studies, and so we
include some corollaries which do suffice in many cases.

Theorem 2.38. Let Aω[X, d ] + ∆ be as in Definition 2.37. Suppose that
Aω[X, d ] + ∆ proves

∀xX∀yX (cf (x) =X x ∧ cf (y) =X y → x =X y) (2.19)

and

∀xX0 , yX0 ∀k0∃n0
(
dX(xn, xn+1) <R (2−k)R ∧ dX(yn, yn+1) <R (2−k)R

)
, (2.20)

where xn and yn are the n-th members of the defined Picard iteration sequences9

starting with respectively x0 and y0. Then from the proofs in Aω[X, d ] + ∆
of (2.19) and (2.20) one can extract a partial functional

Φ : N× N× Sσ1 × · · · × Sσn1
⇀ N,

which can be given as a closed term of WE-PAω+(BR), and whose restriction to
N×N×Mσ1×· · ·×Mσn1

is a total (bar recursively) computable functional, such
that whenever we have a nonempty metric space (X, d) bounded by b ∈ N and a
mapping f : X → X, which together provide a uniform product space model for
Aω[X, d ] + ∆, then

∀k ∈ N∀x, y ∈ X∀l, n ≥ Φ(k, b, ~F )
(
d
(
f l(x), fn(y)

)
< 2−k

)
holds in (X, d), where ~F is as in condition (∗) in Definition 2.37.

Proof. As commented on after Theorem 2.31 above it follows from the proof of
Theorem 3.7 in [99] that Theorem 2.31 can be extended to cover Aω[X, d ]+∆, in
the sense that if a sentence of the form (2.1) (where B∀ and C∃ are now formulas
of Aω[X, d ]+∆ and where s is a closed term of Aω[X, d ]+∆) from Theorem 2.31
is provable in Aω[X, d ] + ∆, then we can extract a partial functional (which is
total when restricted to the majorizable elements)

Ψ : Sσ × Sσ1 × · · · × Sσn1
× N ⇀ N,

which can be defined by a closed term of WE-PAω+(BR), such that

∀y ≤ρ s(x)∀zτ [∀u ≤ Ψ(x, ~F , b)B∀(x, y, z, u)→
∃v ≤ Ψ(x, ~F , b)C∃(x, y, z, v)]

9That is, we write xn for P (x0, n), where P := λxX , n0. RXn
0xXz, with z :=

λxX ,m0. cfx.
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holds in any nonempty metric space (X, d) bounded by b ∈ N which satisfies
the new purely universal axioms with bX interpreted by b and with the new
constants interpreted by functionals from the appropriate universes of Sω,X
such that there are closed terms c∗1, . . . , c

∗
n1

interpreted by F1, . . . , Fn1 such that

Sω,X |= c∗i s-majσi ci for 1 ≤ i ≤ n1. (2.21)

Since (2.19) and (2.20) are of the appropriate logical form (when we treat (2.19)
as in the discussion at the beginning of Section 2.3) we can extract functionals Ψ1

and Ψ2 such that for any nonempty bounded metric space (X, d) and mapping
f : X → X which provide a uniform product space model for Aω[X, d ] + ∆ we
have for all m in an infinite set M ⊆ N \ {0} that

∀~x1, ~x2 ∈ Xm∀k ∈ N

(
2∧
i=1

dm (~xi, fm(~xi)) < 2−Ψ1(k,b, ~F ) → dm(~x1, ~x2) < 2−k
)

and

∀~x1, ~x2 ∈ Xm∀k ∈ N∃n ≤ Ψ2(k, b, ~F )

(
2∧
i=1

dm
(
fnm(~xi), fn+1

m (~xi)
)
< 2−k

)
,

where b ∈ N is a bound on d and where F1, . . . , Fn1 are as in (∗) in Defini-
tion 2.37. It is here essential that for each m ∈M the product space (Xm, dm)
gives rise to a model of Aω[X, d ] + ∆ as specified in (∗) in Definition 2.37, and
that the majorants ~F are uniform in m. Hence with Φ defined by

Φ(k, b, ~F ) := Ψ2

(
Ψ1(k + 3, b, ~F ), b, ~F

)
we have

∀k ∈ N∀~x, ~y ∈ Xm∃n ≤ Φ(k, b, ~F )
(
dm (fnm(~x), fnm(~y)) < 2−k−3

)
(2.22)

for all m ∈M . Thus by Lemma 2.36 we have

∀k ∈ N∀x, y ∈ X∀l, n ≥ Φ(k, b, ~F )
(
d
(
f l(x), fn(y)

)
< 2−k

)
.

2

We will include some corollaries. The first one is directly a special case of
Theorem 2.38.

Corollary 2.39. Let Aω[X, d ] + ∆ be as in Definition 2.37, but such that the
new constants c1, . . . , cn1 are of types of degree 1. Suppose that Aω[X, d ] + ∆
proves (2.19) and (2.20) from Theorem 2.38. Then from the proofs in Aω[X, d ]+
∆ of (2.19) and (2.20) one can extract a computable functional

Φ : N× N× Sσ1 × · · · × Sσn1
→ N,
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which can be defined by a closed term of WE-PAω+(BR), such that whenever we
have a nonempty metric space (X, d) bounded by b ∈ N and a mapping f : X →
X, which together provide a uniform product space model for Aω[X, d ]+∆, then

∀k ∈ N∀x, y ∈ X∀l, n ≥ Φ(k, b, ~F )
(
d
(
f l(x), fn(y)

)
< 2−k

)
holds in (X, d), where ~F is as in condition (∗) in Definition 2.37.

Proof. That Φ is total follows from Theorem 2.38, since Sσi = Mσi for types
σi of degree 1.

2

Notice that in the case of Corollary 2.39 the new constants can always be
majorized – the question is whether these majorants are the same for all product
spaces and product mappings.

Corollary 2.40. Let Aω[X, d ] + ∆−DC be as Aω[X, d ] + ∆ in Definition 2.37,
but without DC, and such that the new constants c1, . . . , cn1 are allowed to be
of arbitrary types σi ∈ T, and the new purely universal axioms are allowed to
have quantifiers of arbitrary types σ ∈ T instead of only types σ ∈ T which
are of degree 2. Suppose that Aω[X, d ] + ∆−DC proves (2.19) and (2.20) from
Theorem 2.38. Then from the proofs in Aω[X, d ] + ∆−DC of (2.19) and (2.20)
one can extract a functional

Φ : N× N× Sσ1 × · · · × Sσn1
→ N,

(which can be defined in T, i.e. as a closed term of WE-PAω) such that when-
ever we have a nonempty metric space (X, d) bounded by b ∈ N and a map-
ping f : X → X, which together provide a uniform product space model for
Aω[X, d ] + ∆−DC in the sense of fulfilling the variant of Definition 2.37 one
gets by replacing Aω[X, d ] + ∆ by Aω[X, d ] + ∆−DC, then

∀k ∈ N∀x, y ∈ X∀l, n ≥ Φ(k, b, ~F )
(
d
(
f l(x), fn(y)

)
< 2−k

)
holds in (X, d), where ~F is as in condition (∗) in Definition 2.37.

Proof. This follows from the proof of Theorem 3.7 in [99] (which we included as
Theorem 2.31), since if the theory does not include DC then we do not need the
bar recursive functionals to interpret it, and so we do not need to take the detour
viaMω,X . And the reason for the restriction on the types of the new constants
c1, . . . , cn1 was that we wanted to ensure that these could be interpreted by the
same functionals in Sω,X and in Mω,X , and that

Sω,X |= c∗i s-majσi ci

would imply
Mω,X |= c∗i s-majσi ci

if all constants were interpreted in the same way in Sω,X and in Mω,X . The
restriction on the types σ ∈ T of the quantifiers in the new axioms was there
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to ensure that truth of the axioms in Sω,X would imply truth of the axioms in
Mω,X .

2

In the following corollaries we will give alternatives to the formal statements
which we in Theorem 2.38 required that the theory should prove.

Corollary 2.41. If we in Theorem 2.38, Corollary 2.39, or Corollary 2.40
remove condition (2.20) but instead require that Aω[X, d ] + ∆ proves

∀xX0 ∀k0∃m0∀n0
(
n ≥0 m→ dX(xn, xn+1) <R (2−k)R

)
,

where xn is the n-th member of the defined Picard iteration sequence starting
with x0, then the conclusion of the theorem (respectively the relevant corollary)
still holds.

Proof. The condition in the corollary amounts to requiring asymptotic regu-
larity of any interpretation f : X → X of cf . This obviously implies

∀x1, x2 ∈ X∀k ∈ N∃n ∈ N

(
2∧
i=1

d
(
fn(xi), fn+1(xi)

)
< 2−k

)
, (2.23)

and it is easy to see that the required argument can be formalized in Aω[X, d ]+
∆. Thus we have that Aω[X, d ] + ∆ proves (2.20). (In (2.23) x1 and x2 do not
denote respectively the first and second member of a Picard iteration sequence,
but rather arbitrary elements of X.)

2

Corollary 2.42. If we in Theorem 2.38, Corollary 2.39, or Corollary 2.40
replace the condition that Aω[X, d ] + ∆ should prove (2.19) and (2.20) by the
condition that Aω[X, d ] + ∆ should prove

∀xX0 , yX0 ∀k0∃n0
(
dX(xn, yn) <R (2−k)R

)
, (2.24)

then the conclusion of the theorem (respectively the relevant corollary) still holds.

Proof. We notice that (2.24) has the appropriate logical form, so that we can
extract a functional Φ such that

∀k ∈ N∀x, y ∈ X∃n ≤ Φ(k, b, ~F )
(
d
(
fn(x), fn(y)

)
< 2−k

)
holds in any nonempty metric space (X, d) bounded by b ∈ N which satisfies
the new purely universal axioms with bX interpreted by b and with the new
constants interpreted by functionals from the appropriate universes of Sω,X
such that there are closed terms c∗1, . . . , c

∗
n1

interpreted by F1, . . . , Fn1 such that

Sω,X |= c∗i s-majσi ci for 1 ≤ i ≤ n1. (2.25)

Since this Φ is independent of the space and the mapping f it follows that for
any nonempty bounded metric space (X, d) and mapping f : X → X which
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provide a uniform product space model for Aω[X, d ] + ∆ we have for all m in
an infinite set M ⊆ N \ {0} that

∀k ∈ N∀~x, ~y ∈ Xm∃n ≤ Φ(k, b, ~F )
(
dm (fnm(~x), fnm(~y)) < 2−k

)
, (2.26)

where b ∈ N is a bound on d and where F1, . . . , Fn1 are as in (∗) in Defini-
tion 2.37. Now we can use Lemma 2.36 as in the proof of Theorem 2.38.

2

Corollary 2.43. If we in Theorem 2.38, Corollary 2.39, or Corollary 2.40
replace the condition that Aω[X, d ] + ∆ should prove (2.19) and (2.20) by the
condition that there exists an integer N > 1 such that Aω[X, d ] + ∆ proves

∀xX0 ∀yX0 (xN =X x0 ∧ yN =X y0 → x0 =X y0)

and

∀xX0 , yX0 ∀k0∃n0
(
dX(xn, xn+N ) <R (2−k)R ∧ dX(yn, yn+N ) <R (2−k)R

)
,

then the conclusion of the theorem (respectively the relevant corollary) still holds.

Proof. Analogous to the proof of Theorem 2.38.
2

The importance of Theorem 2.38 comes from the fact that it has been possi-
ble to find such theories Aω[X, d ] + ∆ and uniform majorants ~F of the moduli
introduced (i.e. of the interpretations of the new constants of relevant type)
such that conditions (2.19) and (2.20) (or the similar conditions in the corol-
laries above) are provable and such that all members of certain classes of self-
mappings of metric spaces considered in the literature satisfy condition (∗) in
Definition 2.37. By recasting the definitions of the relevant classes of selfmaps
by introducing certain moduli and purely universal axioms (to get a suitable
formalization Aω[X, d ] + ∆) such that if (X, d) and f fulfill the definition then
for infinitely many m also (Xm, dm) and fm fulfill the definition, and such that
there exist majorants for the moduli introduced which are uniform in m, we
reduce the question whether all Picard iteration sequences are convergent to
the same point10 (that they are Cauchy is expressed by a ∀∃∀-sentence) to the
question whether certain ∀∃-sentences are provable in a suitable formal theory
Aω[X, d ]+∆. This reduction in logical complexity allows us to extract uniform
bounds as described in Theorem 2.38.

We will in Section 2.5 below present two such classes of selfmaps on bounded
metric spaces. In both of these cases we had already constructed explicit and
uniform rates of convergence independently of Theorem 2.38 – these results
are contained in Chapter 3 and Chapter 4. However, Theorem 2.38 provides
an explanation for why we were able to construct such rates of convergence.
And that the conditions in Theorem 2.38 are fulfilled in these cases provides

10The existence of the limit of the iteration sequences is not guaranteed unless the space is
complete.
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a justification for the conditions concerning product spaces and existence of
uniform majorants for moduli which we require in the theorem. However, before
considering the applications of Theorem 2.38 we include two remarks.

Remark 2.44. The logical metatheorems in [99] (Theorem 2.38 above depends
on Theorem 3.7 in [99]) have been extended in [56] so as to no longer require
the relevant spaces to be bounded. Instead, some local boundedness criteria
are required, and a more involved majorizability relation is used. Our results
here hinge on a combinatorial argument (Lemma 2.36) involving a condition
which for selfmappings on unbounded metric spaces seems restrictive and some-
what peculiar, but we would not be surprised if the results here could, suitably
adapted and restricted, be transfered to the setting in [56].

Remark 2.45. Let Aω[X, d ] + ∆ be as in Theorem 2.38. Let ρ1, ρ2 be types
of degree 1 and let τ1, τ2 be types of degree (1, X). Let s0→ρ1

1 and s0→ρ2
2 be

closed terms of Aω[X, d ] + ∆. Let

B∀(xX , yX , k0, u0, zρ11 , wτ11 )

and
C∀(xX0 , y

X
0 , k

0, u0, zρ22 , wτ22 )

be ∀-formulas in L(Aω[X, d ] + ∆) with free variables among those indicated.
Suppose we in Theorem 2.38 replace the condition that Aω[X, d ] + ∆ should
prove (2.19) and (2.20) by the condition that Aω[X, d ] + ∆ should prove

∀k0∀z1 ≤ρ1 s1(k)∀wτ11 , x
X , yX

(
(∀u0B∀(x, y, k, u, z1, w1)

∧∀m0A0(x, y,m))→ | ̂dX(x, y)(k + 1)|Q <Q 〈2−k〉
)
,

where A0(x, y,m) is as in (2.7), and also

∀k0∀z2 ≤ρ2 s2(k)∀wτ22 ,∀xX0 , yX0
(
∀u0C∀(x0, y0, k, u, z2, w2)

→ ∃n0
(
dX(xn, xn+1) <R (2−k)R ∧ dX(yn, yn+1) <R (2−k)R

))
.

These formulas are of the logical form required by (an extension to Aω[X, d ]+∆
of) Theorem 2.31, and similarly to in the proof of Theorem 2.38 we can construct
functionals Ψ1 and Ψ2 such that for any nonempty bounded metric space (X, d)
and mapping f : X → X which provide a uniform product space model for
Aω[X, d ] + ∆ we have for all m ∈ M (where the infinite set M ⊆ N \ {0} is as
in the definition of a uniform product space model) that

∀k ∈ N∀z1 ≤ρ1 [s1]Sω,Xm (k)∀w1 ∈ Sτ1∀~x1, ~x2 ∈ Xm((
∀u ≤ Ψ1(k, b, ~F )B∀(~x1, ~x2, k, u, z1, w1) ∧

∧2
i=1 dm (~xi, fm(~xi)) < 2−Ψ1(k,b, ~F )

)
→ dm(~x1, ~x2) < 2−k

)
and

∀k ∈ N∀z2 ≤ρ2 [s2]Sω,Xm (k)∀w2 ∈ Sτ2∀~x1, ~x2 ∈ Xm(
∀u ≤ Ψ2(k, b, ~F )C∀(~x1, ~x2, k, u, z2, w2)

→ ∃n ≤ Ψ2(k, b, ~F )
(∧2

i=1 dm
(
fnm(~xi), fn+1

m (~xi)
)
< 2−k

))
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hold in (Xm, dm), where b ∈ N is a bound on d and where F1, . . . , Fn1 are as in
(∗) in Definition 2.37. Thus if for all m ∈M

∀k ∈ N∀z1 ≤ρ1 [s1]Sω,Xm (k)∀w1 ∈ Sτ1∀~x1, ~x2 ∈ Xm

∀u ≤ Ψ1(k, b, ~F )B∀(~x1, ~x2, k, u, z1, w1)

and

∀k ∈ N∀z2 ≤ρ2 [s2]Sω,Xm (k)∀w2 ∈ Sτ2∀~x1, ~x2 ∈ Xm

∀u ≤ Ψ2(k, b, ~F )C∀(~x1, ~x2, k, u, z2, w2)

hold in (Xm, dm), then as in the proof of Theorem 2.38 we get a Φ such that

∀k ∈ N∀~x, ~y ∈ Xm∃n ≤ Φ(k, b, ~F )
(
dm (fnm(~x), fnm(~y)) < 2−k−3

)
for all m ∈M , and thus such that

∀k ∈ N∀x, y ∈ X∀l, n ≥ Φ(k, b, ~F )
(
d
(
f l(x), fn(y)

)
< 2−k

)
.

This amounts to an improvement of Theorem 2.38, and the significance of this
treatment is that we do not for all m ∈M require

∀k ∈ N∀z1 ≤ρ1 [s1]Sω,Xm (k)∀w1 ∈ Sτ1∀~x1, ~x2 ∈ Xm

∀u ∈ NB∀(~x1, ~x2, k, u, z1, w1)

and

∀k ∈ N∀z2 ≤ρ2 [s2]Sω,Xm (k)∀w2 ∈ Sτ2∀~x1, ~x2 ∈ Xm

∀u ∈ NC∀(~x1, ~x2, k, u, z2, w2).

2.5 Applications

We will see that in neither of the two concrete cases considered is it entirely
straightforward to give an alternative definition of the class of mappings under
consideration which is stable under finite product spaces – in the sense that
the definition involves suitable purely universal axioms and moduli such that if
(X, d) and f fulfill the definition then for m ≥ 1 also (Xm, dm) and fm fulfill
the definition – and moreover such that the moduli are majorizable, uniformly
in m. However, this approach allows us to split our goal of obtaining an explicit
and uniform rate of convergence into subgoals which might be easier to achieve
also in other concrete cases.

It is also worth noting that neither of the two case studies use Theorem 2.38
in its full generality; in neither case is it necessary to include DC in the system,
and in the first concrete case all the new constants of types ρ ∈ T have types of
degree 1. In fact, also in the second case we could have formulated things such
that the new constants of types ρ ∈ T would have had types of degree 1. We
will comment more on this below.
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2.5.1 A theorem on contractive type mappings

In Chapter 1 we included a brief discussion of some types of contractive map-
pings. Much work on extensions of the contraction mapping principle has dealt
with a kind of contraction condition which involves a more or less complex
relationship between the six distances

d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x)), d(f(x), f(y)),

and in the survey [157] B.E. Rhoades compares 25 such contraction conditions
for selfmappings of metric spaces, and also considers generalizations of the 25
basic conditions to cases where the condition holds for various iterates of the
function. The basic conditions are numbered (1)–(25), and of these condition
(25),

∀x, y ∈ X (x 6= y → d (f(x), f(y)) < diam {x, y, f(x), f(y)}) ,

is the most general, so that if f satisfies one of the conditions (1)–(24) from [157],
then it also satisfies condition (25) from [157]. In Definition 1.28 we called
mappings which satisfy condition (25) for some given iterate p ∈ N generalized
p-contractive. If (X, d) is compact and f : X → X continuous and generalized
p-contractive, then f has a unique fixed point z, and for every x0 ∈ X we have

lim
n→∞

fn(x0) = z,

(cf. Theorem 1.30). In Chapter 4 we develop a quantitative version of this theo-
rem, which involves the following notion11: Given p ∈ N we say that a function
f : X → X on a metric space (X, d) is uniformly generalized p-contractive if
there exists η : N→ N such that

∀k ∈ N∀x, y ∈ X
(
d(x, y) > 2−k → (2.27)

d (fp(x), fp(y)) + 2−η(k) ≤ diam {x, y, fp(x), fp(y)}
)
.

We call η a modulus of uniform generalized p-contractivity for f . When (X, d)
is a compact metric space then f is continuous and generalized p-contractive if
and only if it is uniformly continuous and uniformly generalized p-contractive.
Uniform continuity involves having a modulus ω : N→ N of uniform continuity:

∀x, y ∈ X∀k ∈ N
(
d(x, y) < 2−ω(k) → d (f(x), f(y)) ≤ 2−k

)
. (2.28)

Restricted to bounded spaces the quantitative version of Theorem 1.30 then
states that for a uniformly continuous uniformly generalized p-contractive map-
ping f : X → X on a bounded metric space (X, d) all Picard iteration sequences
are Cauchy with a Cauchy rate Φ which is uniform in the starting point, and
further that for all x0, y0 ∈ X we have limn→∞ d(xn, yn) = 0. Φ is explicitly
constructed and depends only on p, ω, η and a bound b on the space.

11In Chapter 4 we use an η mapping positive reals to positive reals, and we have < instead
of ≤ in the conclusion, but this is unimportant. Similar for ω below.
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We now let Aω[X, d ] + ∆ be Aω[X, d ] extended with constants cX→Xf , c1ω
and c1η, meant to be interpreted by respectively f , ω and η, together with the
obvious formalizations of (2.27) and (2.28) (for some fixed p) as purely universal
axioms, where the only point requiring some care is the use of diam {. . .}: We
notice that we can use

max{d(x, y), d(x, fp(x)), d(x, fp(y)), d(y, fp(y)), d(y, fp(x)), d(fp(x), fp(y))}

instead of diam {x, y, fp(x), fp(y)}. There is a primitive recursive operator
maxQ( · , · , · , · , · , · ) defined on the representatives of rational numbers which
among six natural numbers picks out the one representing the largest rational
number, so there is a closed term of Aω[X, d ] which takes six representatives
of real numbers as arguments and gives a representative of the largest of the
corresponding real numbers. We use this when formalizing (2.27). Then condi-
tions (2.19) and (2.20) from Theorem 2.38 are provable in Aω[X, d ] + ∆, since
the proof of Theorem 4.6 in Chapter 4 can clearly be formalized in Aω[X, d ]+∆,
along with the trivial argument that the fixed point is unique if it exists. (In
fact, as is clear from the proofs, only a fragment of Aω[X, d ] is used – in par-
ticular, DC is not needed.) Furthermore, let (X, d) be a bounded metric space,
and let f , η and ω satisfy (2.27) and (2.28) above (for some fixed p). Let m ≥ 1,
and consider (Xm, dm) and fm. Since ω is a modulus of uniform continuity for
f we have

∀~x, ~y ∈ Xm∀k ∈ N

(
m∧
i=1

d(xi, yi) < 2−ω(k) →
m∧
i=1

d
(
f(xi), f(yi)

)
≤ 2−k

)
,

and therefore

∀~x, ~y ∈ Xm∀k ∈ N
(
dm(~x, ~y) < 2−ω(k) → dm (fm(~x), fm(~y)) ≤ 2−k

)
.

And so ω is also a modulus of uniform continuity for fm. Let ω̃ : N → N be
given by ω̃(k) = ω(k + 1). We will show that the function η′ : N → N defined
by

η′(k) := max {k + 1, η (ω̃p(k + 1) + 1)}
is a modulus of uniform generalized p-contractivity for fm. Notice that η′ does
not depend on m. Let now k ∈ N and let ~x, ~y ∈ Xm be such that

dm(~x, ~y) > 2−k.

Now let 1 ≤ j ≤ m. We have two cases:

(i) If d(xj , yj) < 2−ω̃
p(k+1), then

d
(
fp(xj), fp(yj)

)
≤ 2−k−1

< dm(~x, ~y)− 2−k−1

≤ diam {~x, ~y, fpm(~x), fpm(~y)} − 2−k−1,

so that

d
(
fp(xj), fp(yj)

)
+ 2−k−1 ≤ diam {~x, ~y, fpm(~x), fpm(~y)}.
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(ii) If d(xj , yj) > 2−ω̃
p(k+1)−1, then

d
(
fp(xj), fp(yj)

)
+ 2−η(ω̃p(k+1)+1) ≤ diam {xj , yj , fp(xj), fp(yj)}

≤ diam {~x, ~y, fpm(~x), fpm(~y)}.

Thus with
η′(k) = max {k + 1, η (ω̃p(k + 1) + 1)}

we have

d
(
fp(xj), fp(yj)

)
+ 2−η

′(k) ≤ diam {~x, ~y, fpm(~x), fpm(~y)}

for all 1 ≤ j ≤ m, and so

dm (fpm(~x), fpm(~y)) + 2−η
′(k) ≤ diam {~x, ~y, fpm(~x), fpm(~y)}.

So for each m ≥ 1 one can obtain a model of Aω[X, d ] + ∆ with the set Xm

as the universe for the base type X and with cf interpreted by fm and cω and
cη interpreted by ω and η′. Since cω and cη are of type 1 they are majorized
by the closed terms12 cMω and cMη of Aω[X, d ] + ∆. And the interpretations ω∗

and η′∗ of these terms given by

ω∗(n) := max
i≤n

(ω(i))

and
η′∗(n) := max

i≤n
(η′(i))

are the same for all m, so all the conditions of Theorem 2.38 are fulfilled.
In this case we actually have more than we require; also the moduli ω and

η′ are the same for all m > 0, whereas Theorem 2.38 only requires that there
should be majorants of the moduli which are the same for all m, in the sense
made precise in the definition of a uniform product space model.

We note that in this specific case the mathematical proof we inspect to de-
termine that (2.19) and (2.20) from Theorem 2.38 hold for Aω[X, d ] + ∆ in
fact already directly supplies the conclusion of Theorem 2.38: We had already
constructed an explicit and uniform Cauchy rate. We are thus here using The-
orem 2.38 as an a posteriori explanation for the fact that this was possible13.

2.5.2 Asymptotic contractions

Our second application concerns asymptotic contractions in the sense of Kirk,
as given in Definition 1.26, and Kirk’s theorem on asymptotic contractions 1.27.
For more information on various extensions and modifications of this theorem,

12see Definition 2.30.
13More information on the analysis of different proofs of Theorem 1.30 appears in [23].

See [100] for an adaption to the metatheorems dealing with abstract metric spaces of a non-
standard uniform boundedness principle (due to Kohlenbach) which is used in the analysis.
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as well as the rates of convergence reported on in this section, and related results,
see Chapter 3. To give an equivalent definition of asymptotic contractions in
the sense of Kirk (on bounded spaces) involving moduli and universal axioms
as required by Theorem 2.38 we will need the following lemma.

Lemma 2.46. A function f : X → X on a metric space (X, d) bounded by
b > 0 is an asymptotic contraction in the sense of Kirk if and only if there exist
continuous and increasing moduli φ′, φ′n : [0, b] → [0, b] such that φ′(s) < s for
all s > 0, such that for all x, y ∈ X

d (fn(x), fn(y)) ≤ φ′n(d(x, y)),

and moreover such that φ′n → φ′ uniformly.

Proof. Let (X, d) be a metric space and let f : X → X. First we notice that if
the conditions in Lemma 2.46 are satisfied then f is an asymptotic contraction
in the sense of Kirk since we can get the moduli φ, φn : [0,∞)→ [0,∞) required
by Definition 1.26 by letting

φ(s) := φ′
(

min{s, b}
)
,

and similarly for φn. Assume now that f : X → X is an asymptotic contraction
in the sense of Kirk with moduli φ, φn : [0,∞) → [0,∞). It is not hard to see
that in Definition 1.26 we can equivalently assume that φn → φ uniformly on
[0,∞). (A proof is included after Proposition 3.2 in Chapter 3.) Define now
φ̃n : [0, b]→ [0,∞) by

φ̃n(s) := min{b, φn(s)}.

Then the φ̃n are continuous, φ̃n(s) ≤ b for s ≤ b, φ̃n → φ uniformly on [0, b],
and we have

d (fn(x), fn(y)) ≤ φ̃n(d(x, y))

for all x, y ∈ X, since the space is bounded by b. Define φ′, φ′n : [0, b]→ [0, b] by

φ′(s) := sup{φ(δ) : δ ≤ s}

and
φ′n(s) := sup{φ̃n(δ) : δ ≤ s}.

Then φ′, φ′n are continuous and increasing, φ′n → φ′ uniformly on [0, b], and we
have

d (fn(x), fn(y)) ≤ φ′n(d(x, y))

for all x, y ∈ X. And since φ(s) < s for all s > 0 and φ is continuous we can
conclude that φ′(s) < s for all s > 0.

2

From Lemma 2.46 we get the following:

Lemma 2.47. Let b be a positive integer. A function f : X → X on a b-
bounded metric space (X, d) is an asymptotic contraction in the sense of Kirk
if and only if there exist moduli α : N → N, ρ : N → N, φ : [0, b] → [0, b],
Φ : N× [0, b]→ [0, b], ω : N→ N and Ω : N× N→ N such that:
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(i) ∀n ∈ N∀x, y ∈ X (d (fn(x), fn(y)) ≤ Φ(n, d(x, y))),

(ii) ∀n ∈ N∀s, s′ ∈ [0, b] (s′ > s→ Φ(n, s′) ≥ Φ(n, s)),

(iii) ∀s, s′ ∈ [0, b] (s′ > s→ φ(s′) ≥ φ(s)),

(iv) ∀k ∈ N∀m ≥ ρ(k)∀s ∈ [0, b]
(
|Φ(m, s)− φ(s)| ≤ 2−k

)
,

(v) ∀n ∈ N∀s ∈ [0, b]
(
s > 2−n → φ(s) + 2−α(n) ≤ s

)
,

(vi) ∀k ∈ N∀s, s′ ∈ [0, b]
(
|s− s′| < 2−ω(k) → |φ(s)− φ(s′)| ≤ 2−k

)
,

(vii) ∀k, n ∈ N∀s, s′ ∈ [0, b]
(
|s− s′| < 2−Ω(n,k) → |Φ(n, s)− Φ(n, s′)| ≤ 2−k

)
.

Proof. If f : X → X is a mapping on a metric space bounded by b ∈ N, b > 0,
with moduli α, ρ, φ, Φ, ω and Ω as in this lemma, then obviously f has moduli
φ′, φ′n as required in Lemma 2.46. And thus f is an asymptotic contraction in
the sense of Kirk.

Assume now that f : X → X is an asymptotic contraction in the sense
of Kirk on a metric space bounded by b ∈ N, b > 0. Then f has continuous
and increasing moduli φ′, φ′n : [0, b] → [0, b] as in Lemma 2.46. It is then easy
to see that f has moduli ρ, φ, Φ, ω and Ω fulfilling (i)–(iv) and (vi)–(vii) in
Lemma 2.47, since a continuous function on a compact interval is uniformly
continuous. We let φ = φ′, Φ = λn.φ′n, and let ω and Ω(n, ·) be moduli of
uniform continuity for respectively φ′, φ′n. The existence of a suitable ρ follows
since φ′n → φ′ uniformly. We must show that there also exists α : N → N as
required in Lemma 2.47 such that (v) is satisfied. Since φ′(s) < s for all s > 0
we get

inf{s− φ′(s) : s ∈ [ε, b]} > 0

for each ε > 0 with ε < b. Thus we can define α : N→ N as required by letting

α(n) := min
k∈N

[
2−k ≤ inf

{
s− φ′(s) : s ∈ [2−n, b]

}]
.

2

Proposition 2.48. There exists an extension Aω[X, d ] + ∆ of Aω[X, d ] as
required in Theorem 2.38 which proves (2.24) from Corollary 2.42 and further-
more has the property that whenever (X, d) is a nonempty metric space bounded
by b ∈ N and f : X → X is an asymptotic contraction in the sense of Kirk, then
(X, d) and f provide a uniform product space model for Aω[X, d ] + ∆.

Proof. We first notice that if (X, d) is a metric space bounded by b ∈ N and
f : X → X is an asymptotic contraction with moduli α, ρ, φ, Φ, ω and Ω as
required in Lemma 2.47, then for each m ≥ 1 we have that fm : Xm → Xm is
an asymptotic contraction on (Xm, dm) with identical moduli: Let n ∈ N and
x, y ∈ X. Then there exists i ≤ m such that

dm
(
fnm(~x), fnm(~y)

)
= d

(
fn(xi), fn(yi)

)
≤ Φ

(
n, d(xi, yi)

)
,
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and since λs.Φ(n, s) is increasing we have

Φ
(
n, d(xi, yi)

)
≤ Φ (n, dm(~x, ~y)) ,

and thus
dm
(
fnm(~x), fnm(~y)

)
≤ Φ (n, dm(~x, ~y)) .

Regarding the theory Aω[X, d ] + ∆: One can via an effective operation
represent the elements in the interval [0, b] by type 1 objects in such a way as to
reduce quantification over [0, b] to quantification over type 1 objects (without
introducing further quantifiers)14: We let

x̃bX (n) := j(2k0, 2n+2 − 1),

where

k0 = max
k≤0bX ·2n+2

[
k

2n+2
≤Q x̂(n+ 2)

]
(and k0 = 0 if there is no such k), and note that λx.x̃bX can easily be given by
a closed term in Aω[X, d ]. Recall that we write (bX)R := λk0.j(2bX , 00). Then,
provably in Aω[X, d ], for all x of type 1:

0R ≤R x ≤R (bX)R → x̃bX =R x,

0R ≤R x̃bX ≤R (bX)R , x̃bX =R (̃x̃bX )bX ,
x̃bX ≤1 NbX := λn.j(bX · 2n+3, 2n+2 − 1).

We can thus extend Aω[X, d ] with constants cX→Xf , c1α, c1ρ, c
1→1
φ , c0→1→1

Φ , c1ω,
c0→0→0
Ω , together with purely universal axioms which are the obvious formal-

izations of (i)–(vii) in Lemma 2.47, where we treat quantification over [0, b] as
indicated above. This involves adding also the axioms:

(a) ∀x1 (cφ(x) =R cφ(x̃bX )),

(b) ∀n0∀x1 (cΦ(n, x) =R cΦ(n, x̃bX )),

(c) ∀x1 (0R ≤R cφ(x) ∧ cφ(x) ≤R (bX)R),

(d) ∀n0∀x1 (0R ≤R cΦ(n, x) ∧ cΦ(n, x) ≤R (bX)R).

The constants cf , cα, cρ, cω and cΩ are majorizable since their types are of
appropriate degree. To make sure that the constants cφ and cΦ are majorizable
as well we additionally add as axioms

(e) ∀x1(cφ(x) ≤1 NbX )

(f) ∀n0∀x1(cΦ(n, x) ≤1 NbX ).

14See [99] for the case [0, 1], and [89, 101] for general information on representation of
(compact) Polish spaces.
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Thus λx1. NM
bX

will majorize cφ and λm0, x1. NM
bX

will majorize cΦ. We will call
the resulting theory Aω[X, d ] + ∆.

That we have included new constants whose types are of degree 2 is not
strictly necessary. For the moduli φ and Φ(n, ·) from Lemma 2.47 come equipped
with moduli of uniform continuity ω and Ω(n, ·), and so they are uniquely de-
termined by their restrictions to Q ∩ [0, b]. Thus we could have made do with
new constants c0→1

φ̃
and c0→0→1

Φ̃
instead. We would then in the new axiom cor-

responding to (i) in Lemma 2.47 not use simply c0→0→1
Φ̃

, but a more involved
construction involving also the modulus of uniform continuity, i.e., cΩ. (For
details on how to represent continuous real valued functions on compact inter-
vals as number theoretic functions using a modulus of uniform continuity, see
e.g. [92].)

We must now indicate how the new constants should be interpreted in order
to ensure that given a nonempty metric space (X, d) bounded by b ∈ N and a
mapping f : X → X which is an asymptotic contraction in the sense of Kirk
with moduli α, ρ, φ, Φ, ω and Ω as in Lemma 2.47, then (X, d) and f provide a
uniform product space model for Aω[X, d ] + ∆. We will treat the cases cφ and
cΦ. For x ∈ NN we let r(x) be the unique real number represented by x. Then
cφ and cΦ will be interpreted by for x ∈ NN and n ∈ N letting

[cφ]Sω,X (x) =
(
φ
(
r(x̃bX )

))
◦

and
[cΦ]Sω,X (n, x) =

(
Φ
(
n, r(x̃bX )

))
◦
,

where
(
·
)
◦ is as in Definition 2.22 (and where we have written bX also for

the interpretation of the term bX). When verifying that the new axioms are
satisfied we then use the properties of (·)◦ given in Lemma 2.23. Crucially also
the axioms (e) and (f) are satisfied, since indeed

(x)◦ ≤1 [NbX ]Sω,X

for any x ∈ [0, b].
Finally, we treat the question whether (2.24) from Corollary 2.42 is provable

in Aω[X, d ] + ∆: We note first that we do not have an axiom stating (the
formalized version of the statement) that f is a function:

∀x, y ∈ X (x = y → f(x) = f(y)) .

Stating this would amount to requiring that we should have a modulus of uni-
form continuity for f ; and we do not want to require that f is uniformly con-
tinuous or even continuous. For a detailed discussion, see [99]. Thus we need
to be aware of this restriction when considering whether certain arguments are
formalizable in Aω[X, d ] + ∆.

Let now (X, d) be a b-bounded metric space. We assume b > 0, since oth-
erwise things are trivial. Let f : X → X be an asymptotic contraction with α,
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ρ, φ, Φ, ω and Ω as required in Lemma 2.47. Similarly to the treatment in [54]
we define

φ∗(s) :=
φ(s)
s

for s ∈ (0, b],

φ∗n(s) :=
Φ(n, s)
s

for s ∈ (0, b],

φb(2−m) := sup
t∈[2−m,b]

φ∗(t) for m ∈ N such that 2−m ≤ b,

φbn(2−m) := sup
t∈[2−m,b]

φ∗n(t) for m ∈ N such that 2−m ≤ b,

and also ηb : N→ N and βb : N× N→ N by

ηb(n) := min
k∈N

[
2−k ≤ 2−α(n+1)

b

]
(2.29)

and
βb(m,n) := ρ(n+ 1 +m). (2.30)

Then:

(i) For all x, y ∈ X, for all n ∈ N and for all k ∈ N we have that

d(x, y) ≥ 2−n gives d
(
fk(x), fk(y)

)
≤ φbk(2−n) · d(x, y).

(ii) For each m ∈ N the function λn.βb(m,n) is a modulus of uniform con-
vergence for (φbn)n∈N on the 2−m

′
such that 2−m ≤ 2−m

′ ≤ b, i.e., for all
n ∈ N and for all m′ such that

2−m ≤ 2−m
′
≤ b

we have

∀k, l ≥ βb(m,n)
(
|φbk(2−m

′
)− φbl (2−m

′
)| ≤ 2−n

)
.

(iii) For each m ∈ N we have

φb(2−m
′
) + 2−η

b(m) ≤ 1

for each m′ ∈ N such that 2−m ≤ 2−m
′ ≤ b.

It is easy to see that the constructions of ηb and βb can be carried out in
Aω[X, d ]+∆ and that (corresponding formal versions of) (i)–(iii) can be proved
in Aω[X, d ]+∆. And in fact, we do not need full comprehension for numbers, as
we have in Aω[X, d ]+∆, since weak König’s lemma WKL would suffice (see [96]).
This will hold also for the rest of the proof, and thus one can predict in advance
that the uniform bounds which one can extract will be definable in T rather
than T+(BR), i.e., without the use of bar recursion. And so the functional
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Φ of type of degree 2 which one can extract, and which will give the rate of
convergence, will be a total functional which is primitive recursive in the sense
of Gödel. For elimination results concerning WKL from proofs in the fragment
WE-PAω+QF-AC ofAω of sentences of the form ∀x1∀y ≤ρ sx∃zτA0(x, y, z), with
τ of degree 2 and s a closed term, see [88]; and for a discussion of this related
to Aω[X, d ], see Chapter 17 of [101]. (We make here no attempt to determine
exactly what fragment of Aω[X, d ]+∆ is needed in the proof, which would give
more a priori information on the complexity of the rate of convergence.)

Before proceeding with the proof we note that (i)–(iii) above mimic closely
Definition 2 in [54], which also appears as Definition 3.1 in Chapter 3. We
will now prove analogues of Proposition 4 in [54] (which we include as Proposi-
tion 3.3) and Lemma 3.25 in Chapter 3. For n ∈ N we let

K(n) := βb(n, ηb(n) + 1).

Then for all k ≥ K(n) we have for all x, y ∈ X that d(x, y) ≥ 2−n implies

d
(
fk(x), fk(y)

)
≤
(

1− 2−η
b(n)−1

)
· d(x, y), (2.31)

since we have
d
(
fk(x), fk(y)

)
≤ φbk(2−n) · d(x, y)

and
φb(2−n) + 2−η

b(n) ≤ 1,

and since
|φbk(2−n)− φb(2−n)| ≤ 2−η

b(n)−1

holds by the definition of K. Let now x, y ∈ X, and let k ∈ N. Then there
exists an n ∈ N such that d (fn(x), fn(y)) ≤ 2−k: Assume that M is such that
for all m ≤M we have

d
(
fm·K(k)(x), fm·K(k)(y)

)
≥ 2−k.

Then repeatedly using (2.31) we get

d
(
fM ·K(k)(x), fM ·K(k)(y)

)
≤

(
1− 2−η

b(k)−1
)M
· d(x, y)

≤
(

1− 2−η
b(k)−1

)M
· b.

Solving the inequality (
1− 2−η

b(k)−1
)M
· b ≤ 2−k

with respect to M gives an upper bound on an n such that

d (fn(x), fn(y)) ≤ 2−k.
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This argument can clearly be carried out in Aω[X, d ] + ∆. This ends the proof.
2

Thus there exists a functional Ψ such that whenever (X, d) is a metric space
bounded by b ∈ N and f : X → X is an asymptotic contraction with moduli α,
ρ, φ, Φ, ω and Ω as required in Lemma 2.47, then

∀k ∈ N∀x, y ∈ X∀m,n ≥ Ψ(k, b, α∗, ρ∗, ω∗,Ω∗)
(
d (fm(x), fn(y)) < 2−k

)
,

where α∗, ρ∗, ω∗ and Ω∗ majorize the respective moduli. (We do not need to
indicate dependence on majorants of φ and Φ – since [λx1. NM

bX
]Sω,X majorizes

φ and [λm0, x1. NM
bX

]Sω,X majorizes Φ.) In particular we can conclude that if
f : X → X is an asymptotic contraction in the sense of Kirk on a (nonempty)
complete, bounded metric space (X, d), then there exists a point z ∈ X such
that all Picard iteration sequences (fn(x0))n∈N converge to z with a rate of
convergence which is uniform in the starting point. In Theorem 3.16 we will
give an explicit functional which – specialized to the case where the space is
bounded – gives such a uniform rate of convergence for all Picard iteration
sequences to the common limit z ∈ X. This functional will take as arguments
some moduli for the mapping which are closer to the ηb, βb appearing in (2.29)
and (2.30) in the proof of Proposition 2.48 than to Kirk’s original moduli.

Remark 2.49. On bounded metric spaces (X, d) we in fact have the follow-
ing characterization of asymptotic contractions in the sense of Kirk (See The-
orem 3.21 and Remark 3.22 in Chapter 3): A mapping f : X → X is an
asymptotic contraction in the sense of Kirk if and only if there exists a function
Φ : N→ N such that

∀x, y ∈ X∀k ∈ N∀n ≥ Φ(k)
(
d (fn(x), fn(y)) < 2−k

)
. (2.32)

Condition (2.32) implies that all Picard iteration sequences (xn)n∈N are Cauchy,
since all members of (xn)n≥Φ(k) have to lie within a distance of 2−k from xΦ(k),
so if the space is complete then there exists z ∈ X such that all Picard iteration
sequences converge to z with a rate of convergence which is uniform in the
starting point. And so we have the following easy observation:

Proposition 2.50. Let f : X → X be a selfmapping on a nonempty bounded
metric space (X, d). Then the following are equivalent:

(i) The mapping f is an asymptotic contraction in the sense of Kirk.

(ii) There exists a function Φ : N→ N such that

∀x, y ∈ X∀k ∈ N∀n ≥ Φ(k)
(
d (fn(x), fn(y)) < 2−k

)
.

(iii) There exists an extension Aω[X, d ] + ∆ of Aω[X, d ] as required in Theo-
rem 2.38, which proves (2.24) from Corollary 2.42, and such that (X, d)
and f provide a uniform product space model for Aω[X, d ] + ∆.
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Proof. That (i) and (ii) are equivalent was remarked above, and that (iii)
implies (ii) follows from Corollary 2.42. Thus the only thing we have to prove
is that (ii) implies (iii). So let f : X → X be a selfmapping on a nonempty
bounded metric space (X, d), and let Φ be as in (ii). We can then extend
Aω[X, d ] with constants cf and cΦ of type X → X and 1, and with the purely
universal axiom

∀xX0 , yX0 ∀k0, n0
(
n ≥0 cΦ(k)→ dX(xn, yn) ≤R (2−k)R

)
,

where xn again indicates the nth term of the Picard iteration sequence with
starting point x0. Thus (iii) holds.

2

This also means that if we use Theorem 2.38 to prove that a certain class of
selfmappings on bounded metric spaces has the property that all Picard iteration
sequences (xn)n∈N are Cauchy with a uniform Cauchy rate and that furthermore
d(xn, yn) → 0 for all x0, y0 ∈ X, then we in fact establish that these mappings
are asymptotic contractions in the sense of Kirk.

In the following chapters we will present the concrete results in metric fixed
point theory which we have discussed in Section 2.5, as well as further results
concerning these classes of mappings which grew out of the work on rates of
convergence. We will end this chapter with a very open-ended remark: Given
that we in this chapter have established general conditions for when it is possible
to extract a full rate of convergence, rather than only a rate of proximity, it is
an interesting question to what extent these methods can be lifted out of the
special case of Picard iteration sequences in metric spaces; whether we can use
this approach to gain insight into cases when a Π0

3-sentence proved in a suitable
formal system behaves like a Π0

2-sentence, e.g., in number theory.



Chapter 3

Asymptotic contractions

In this chapter we will build on Gerhardy’s analysis from [54] of Kirk’s theo-
rem on asymptotic contractions to give an effective and highly uniform rate of
convergence for asymptotic contractions in the sense of Kirk, and as a corollary
to the analysis we will show among other things that on bounded, complete
metric spaces asymptotic contractions in the sense of Kirk are exactly the map-
pings for which all Picard iteration sequence converge to the same point with a
rate of convergence which is uniform in the starting point. Gerhardy modified
Kirk’s definition in order to get a form suitable for using proof mining to extract
quantitative information, and constructed variants of a modulus of uniqueness
(see Definition 2.4) and a modulus of uniform almost asymptotic regularity (see
Definition 2.3), which he could combine to get an effective and highly uniform
rate of proximity (see Definition 1.7) for any Picard iteration sequence to the
unique fixed point in the manner outlined in Section 2.3 of Chapter 2.

In the last section of the previous chapter it was shown that it is possi-
ble to obtain an effective and highly uniform full rate of convergence, instead
of a rate of proximity, by following the approach outlined there. In practice
our approach in constructing such a rate of convergence has been somewhat
more ad hoc, since we obtained the general method involving product spaces
and uniformly majorizable moduli from Chapter 2 by investigating the underly-
ing combinatorial pattern of the arguments used in our concrete investigations
presented in this chapter and the next.

The results in this chapter have for the most part appeared in [25, 26, 28]
(see also [24]), but the material has been revised, and some discussion has been
added. Theorem 3.13 also appeared in the author’s Master thesis [23].

3.1 Introduction

Asymptotic contractions were introduced by W.A. Kirk in [83], and we gave the
definition and stated Kirk’s theorem (Theorem 1.27) in Chapter 1. As we saw,
Kirk’s proof of this theorem uses methods from nonstandard analysis – in par-

69
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ticular Banach space ultrapowers. In [54] P. Gerhardy gave an elementary proof
of Kirk’s theorem on asymptotic contractions, and at the same time developed
a quantitative version of the theorem. Here Gerhardy made use of techniques
from the program of proof mining, and Gerhardy’s paper will be the starting
point for our investigations.

Previously J. Jachymski and I. Jóźwik had given an elementary proof of
Kirk’s theorem on asymptotic contractions – additionally assuming that the
mapping is uniformly continuous, see [76]. (“Elementary” is here used in the
informal sense that no heavy handed machinery is involved – in particular ultra-
products are not needed.) And in [2] I.D. Arandelović published an elementary
proof of a slight generalization of Kirk’s theorem. (However, that proof turned
out to contain an error, and the theorem as stated is false – see J. Jachymski’s
note [75], where he also gives conditions which serve to repair the proof so that
the resulting theorem still covers Kirk’s theorem.) Around the same time as Ger-
hardy’s result also H.-K. Xu [177] and T. Suzuki [167] developed versions of the
theorem, whose proofs do not rely on ultraproduct methods. (Both Gerhardy,
Xu and Suzuki accomplished this by subsuming Kirk’s definition under a more
general definition.) Several other versions of asymptotic contractions have also
been studied, e.g., by Y.-Z. Chen [36] and Suzuki [168]. We will comment more
thoroughly on this later. However, in contrast to Gerhardy’s theorem, none of
the above mentioned treatments give explicit numerical information concerning
the convergence to the fixed point.

We mentioned that Gerhardy used techniques and insights from proof min-
ing. However, strictly speaking, for the relevant metatheorems from [56, 99] to
be applicable and to guarantee that effective bounds can be extracted one would
need a proof which does not use ultrapower techniques, since it is problematic to
formalize these in the formal systems to which the metatheorems apply. In this
particular case it turned out that analyzing the mathematical concepts involved
(by proof-theoretic means) provided enough insight to produce the mentioned
quantitative version of Kirk’s theorem. There are also proof interpretations
which are specifically developed for nonstandard theories (see [8]), and in gen-
eral one may consider these when trying to “unwind” a nonstandard analytical
proof. The question to what extent these methods might be combined with or
incorporated into the approach of the metatheorems in [56, 99], where one can
handle theories for abstract metric spaces etc., and whether this would allow
one to systematically unwind proofs based on techniques involving Banach space
ultraproducts, is a subject for further research.

An essential part of Gerhardy’s analysis consists of giving a modified def-
inition of an asymptotic contraction, so as to make explicit the realizers and
bounds which the functional interpretation would ask for – this involves in-
troducing relevant moduli and (essentially) purely universal axioms governing
their behavior. Thus the new definition involves other moduli than the φ, φn
appearing in Kirk’s definition, but the new definition covers the old definition
of an asymptotic contraction in the sense of Kirk. The quantitative version
of the theorem proved by Gerhardy then involves an explicit rate of proximity
to the fixed point which depends on these moduli and a bound on the itera-
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tion sequence, i.e., an explicit bound – expressed by the mentioned moduli and
a bound on the iteration sequence – on how far one must go in the iteration
sequence to at least once get within a specified distance of the fixed point.

However, as already mentioned this theorem does not give a rate of con-
vergence to the fixed point in the general case. The convergence needs not be
monotone, and so for m > n it is not the case that fm(x0) needs to be close
to the fixed point if fn(x0) is. For an example of such a function, see Example
2 in [76]. In contrast to this, the results in [54] do give a rate of convergence
when the convergence to the fixed point is monotone, and this is the case for a
very large class of functions, including the nonexpansive ones.

We will here give for the general case an explicit rate of convergence to the
unique fixed point for Picard iteration sequences (fn(x0))n∈N. The assump-
tions are in general the same as in [54]. We will, however, consider a slightly
more general definition of asymptotic contractions than the one considered by
Gerhardy.

In fact, we will provide two explicit rates of convergence: One which depends
on the starting point, the space and the function only through a bound on
the iteration sequence and the moduli mentioned above, and another which
depends on the starting point, the space and the function only through strictly
positive upper and lower bounds b, c > 0 on the initial displacement d(x0, f(x0)),
in addition to the mentioned moduli. That is, the latter rate of convergence
depends not only on a b > 0 such that

b ≥ d(x0, f(x0)),

but also on a c > 0 such that

c ≤ d(x0, f(x0)).

We note that if the space is not complete or the mapping not continuous, then
we have the same rates – the difference is only that the common limit of all
Picard iteration sequences might not exist except in the completion, or it might
not be a fixed point.

We will also show that for asymptotic contractions in the sense of Kirk there
exists a rate of convergence which is uniform in the starting point, the space
and the mapping except through an upper bound b on the initial displacement
d(x0, f(x0)) and moduli φ, φn as in Kirk’s definition (Definition 1.26) such that
φn → φ uniformly on [0,∞). In contrast to the rate of convergence referred to
above we do not here need a lower bound c > 0 on the initial displacement.
This uniformity will be used to show a result which, specialized to nonempty
complete spaces and continuous mappings, says that an asymptotic contraction
in the sense of Kirk moves all points which are far from the fixed point by a
large distance.
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3.2 Preliminaries

In this chapter we will – unless explicitly stated otherwise – by a sequence
(xn)n∈N mean a Picard iteration sequence (fn(x0))n∈N in a metric space (X, d),
for a selfmap f : X → X and a starting point x0 ∈ X.

3.2.1 Gerhardy’s rate of proximity

We give for reference the alternative definition of an asymptotic contraction
from [54], as well as several results from [54], which we will use repeatedly. We
will also repeat the proofs of some of these results. We will call mappings which
satisfy Gerhardy’s modified definition asymptotic contractions in the sense of
Gerhardy.

Definition 3.1 (Gerhardy). A function f : X → X on a metric space (X, d) is
called an asymptotic contraction in the sense of Gerhardy if for each b > 0 there
exist moduli ηb : (0, b] → (0, 1) and βb : (0, b] × (0,∞) → N and a sequence of
functions φbn : (0,∞)→ (0,∞) such that the following holds:

(1) For each 0 < l ≤ b the function βbl := βb(l, ·) is a modulus of uniform
convergence for (φbn)n∈N on [l, b], i.e.

∀ε > 0∀s ∈ [l, b]∀m,n ≥ βbl (ε)
(∣∣φbm(s)− φbn(s)

∣∣ ≤ ε) .
(2) For all x, y ∈ X, for all ε > 0 and for all n ∈ N we have that

b ≥ d(x, y) ≥ ε gives d
(
fn(x), fn(y)

)
≤ φbn(ε)d(x, y).

(3) Define φb : (0,∞) → (0,∞) by φb(s) := limn→∞ φbn(s). Then for each
0 < ε ≤ b we have

φb(s) + ηb(ε) ≤ 1

for each s ∈ [ε, b].

When there is no risk of ambiguity we will often drop the superscripts from
ηb and βb.

Proposition 3.2 (Gerhardy). If a function f : X → X on a metric space
(X, d) is an asymptotic contraction in the sense of Kirk with moduli φ, φn, then
f is an asymptotic contraction in the sense of Gerhardy with suitable moduli
ηb, βb for all b > 0.

The proof of this proposition in [54] assumes tacitly that Definition 1.26 is
equivalent to a version where the sequence of moduli φn is required to converge
to φ uniformly on [0,∞) rather than only on the range of d. It is indeed
straightforward to see that given a mapping f on a nonempty metric space
(X, d) satisfying Definition 1.26 with moduli φn, φ, one may modify the moduli
as follows to get uniform convergence on [0,∞). Denote by ran(d) the closure
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of the range of d. For x ∈ [0,∞) define a(x) := sup{y ∈ ran(d) : x > y} and
b(x) := inf{y ∈ ran(d) : x < y} when possible. Define φ′n : [0,∞)→ [0,∞) by

φ′n(x) :=



φn(x) if x ∈ ran(d),
φn(a(x)) +

( x−a(x)
b(x)−a(x)

)
(φn(b(x))− φn(a(x))) if x 6∈ ran(d) and

b(x) exists,
φn(a(x)) if x 6∈ ran(d) and

b(x) does not exist.

Define likewise φ′ from φ. Since φn, φ are continuous, and φn → φ uniformly
on ran(d), it follows that φ′n, φ

′ are continuous and that φ′n → φ′ uniformly on
[0,∞).

Now the proof of Proposition 3.2 involves taking moduli φn, φ : [0,∞) →
[0,∞) as in Definition 1.26 such that φn → φ uniformly on [0,∞), letting b > 0,
and defining ψn, ψ : (0,∞)→ [0,∞) and ψbn, ψ

b : (0, b]→ [0,∞) by

ψn(s) :=
φn(s)
s

, ψ(s) :=
φ(s)
s
, (3.1)

and
ψbn(s) := sup

t∈[s,b]

ψn(t), ψb(s) := sup
t∈[s,b]

ψ(t). (3.2)

One then notes that:

1. ψ and ψn are continuous on (0,∞), ψ(s) < 1 for s > 0, and the sequence
(ψn)n∈N converges uniformly to ψ on [l,∞) for each l > 0;

2. ψb and ψbn are continuous on (0, b], ψb(s) < 1 for all s ∈ (0, b], and the
sequence (ψbn)n∈N converges uniformly to ψb on [l, b] for each l ∈ (0, b].

The following proposition will be used repeatedly throughout our work on
asymptotic contractions:

Proposition 3.3 (Gerhardy). Let (X, d) be a metric space, let f be an asymp-
totic contraction in the sense of Gerhardy and let b > 0 and ηb, βb be given.
Then for every ε ∈ (0, b] there is a K(ηb, βb, ε) such that for all k ≥ K, where
K = βbε(

ηb(ε)
2 ),

b ≥ d(x, y) ≥ ε → d(fk(x), fk(y)) ≤
(

1− ηb(ε)
2

)
· d(x, y).

Proof. Let K = βbε(
ηb(ε)

2 ), let a suitable sequence φbn be given and let φb :=
limn→∞ φbn. By the definition of ηb we have that

φb(s) + ηb(ε) ≤ 1

for s ∈ [ε, b]. By the definition of βb the function φbk is at least ηb(ε)
2 -close to φb

for all k ≥ K and all s ∈ [ε, b], and hence we also have φbk(s) ≤ 1− ηb(ε)
2 .

2
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Lemma 3.4 (Gerhardy). Let (X, d) be a metric space, let f be an asymptotic
contraction in the sense of Gerhardy and let b > 0 and ηb, βb be given. Then
for every b ≥ ε > 0, for all n ≥ N and all x, y ∈ X with d(x, y) ≤ b

d(x, fn(x)), d(y, fn(y)) ≤ δ → d(x, y) ≤ ε,

where δ(ηb, ε) = ε·ηb(ε)
4 and N(ηb, βb, ε) = βbε(

ηb(ε)
2 ).

Lemma 3.4 provides a kind of “modulus of uniqueness”.

Lemma 3.5 (Gerhardy). Let (X, d) be a metric space, let f be an asymptotic
contraction in the sense of Gerhardy and let b > 0 and ηb, βb be given. Then
for every δ ∈ (0, b], for every x0 ∈ X such that (fn(x0))n∈N is bounded by b and
for every N there exists an m ≤M , such that

d(xm, fN (xm)) ≤ δ,

where

M(ηb, βb, δ, b) = k

⌈
lg(δ)− lg(b)

lg(1− ηb(δ)
2 )

⌉
,

with k = βbδ(
ηb(δ)

2 ).

Proof. Let k = βbδ(
ηb(δ)

2 ). Assume that for some M0 and all m < M0 we have
d(xmk, fN (xmk)) ≥ δ, then repeatedly using Proposition 3.3

d(xM0k, f
N (xM0k)) ≤

(
1− ηb(δ)

2

)M0

d(x0, f
N (x0)) ≤ b

(
1− ηb(δ)

2

)M0

since by assumption d(x0, f
N (x0)) ≤ b. Solving the inequality b(1− ηb(δ)

2 )M0 ≤ δ
with respect to M0 yields the described upper bound M = kM0 on an m such
that d(xm, fN (xm)) ≤ δ.

2

We remark that in [54] the lemma above was stated with d(xm, fN (xm)) < δ
in the conclusion, for which we would have to modify the functional M slightly.
This has no further consequences, since Lemma 3.5 is only used in contexts
where the modified conclusion d(xm, fN (xm)) ≤ δ works just as well.

Lemma 3.5 will in the elementary proof of Kirk’s theorem on asymptotic
contractions function somewhat like a modulus of uniform almost asymptotic
regularity (see Definition 2.3), but notice that this modulus is the same for all
iterations fN of the mapping f .

Lemma 3.6 (Gerhardy). Let (X, d) be a metric space, let f be an asymptotic
contraction in the sense of Gerhardy and let b > 0 and ηb, βb be given. Assume
that f has a (unique) fixed point z. Then for every ε ∈ (0, b], for every x0 ∈ X
such that (xn)n∈N is bounded by b and d(xn, z) ≤ b for all n there exists an
m ≤M such that

d(xm, z) ≤ ε,
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where

M(ηb, βb, ε, b) = k

⌈
lg(δ)− lg(b)

lg(1− ηb(δ)
2 )

⌉
,

with k = βbδ(
ηb(δ)

2 ), δ = ε·ηb(ε)
4 .

Proof. By Lemma 3.4 we have that for every ε > 0 there exist δ and N as
described in that lemma such that if d(x, y) ≤ b and

d(x, fN (x)) ≤ δ

and
d(y, fN (y)) ≤ δ

then d(x, y) ≤ ε. Now, by Lemma 3.5 for every δ and every N we can find
an m ≤ M as described above such that d(xm, fN (xm)) ≤ δ and hence xm is
ε-close to the fixed point z.

2

Lemma 3.7 (Gerhardy). Let (X, d) be a metric space, let f be an asymptotic
contraction in the sense of Gerhardy and let b > 0 and ηb, βb be given. Then
for every δ > 0, for every x0 ∈ X such that (xn)n∈N is bounded by b and for
every N there exists an M such that for all m ≥M

d(xm, fN (xm)) < δ.

Proof. By Lemma 3.5 there exists an m such that d(xm, fN (xm)) < δ. Either
d(xm, fN (xm)) = 0, then we are done, or d(xm, fN (xm)) > ε0 for some ε0 > 0.
Let K = βbε0(η

b(ε0)
2 ), then by Proposition 3.3 it follows that for all k ≥ K

d(xm+k, f
N (xm+k)) ≤

(
1− ηb(ε0)

2

)
d(xm, fN (xm)) < δ.

Let M = m+K and the result follows.
2

Lemma 3.8 (Gerhardy). Let (X, d) be a metric space, let f be an asymptotic
contraction in the sense of Gerhardy and let b > 0 and ηb, βb be given. If
(xn)n∈N is bounded by b then (xn)n∈N is a Cauchy sequence.

Proof. Let ε ∈ (0, b]. By Lemma 3.4 there exist δ > 0 and N such that if
d(x, fN (x)) ≤ δ and d(y, fN (y)) ≤ δ, then d(x, y) ≤ ε. And by Lemma 3.7 there
exists an M such that d(xm, fN (xm)) < δ for all m ≥ M . Then d(xm, xn) ≤ ε
for all m,n ≥M .

2
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Theorem 3.9 (Gerhardy). Let (X, d) be a complete metric space, let f be a
continuous asymptotic contraction in the sense of Gerhardy and let b > 0 and
ηb, βb be given. If for some x0 ∈ X the sequence (xn)n∈N is bounded by b then f
has a unique fixed point z, (xn)n∈N converges to z and for every ε ∈ (0, b] there
exists an m ≤M1 such that

d(xm, z) ≤ ε,
where

M1(ηb, βb, ε, b) = k

⌈
lg(δ)− lg(b)

lg(1− ηb(δ)
2 )

⌉
,

with k = βbδ(
ηb(δ)

2 ), δ = ε·ηb(ε)
4 .

Proof. By Lemma 3.8 every iteration sequence which is bounded is a Cauchy
sequence. Since (X, d) is complete the limit z of (xn)n∈N exists and using the
continuity of f one then easily shows that f(z) = z, i.e. that z is a fixed point
of f . It is trivial that z is the unique fixed point of f . The bound M1 follows
by Lemma 3.6.

2

3.2.2 Generalized asymptotic contractions

We will in fact work with a slightly generalized definition of asymptotic contrac-
tions compared to the one of Gerhardy. This is no wide-ranging generalization,
but simply a consequence of the fact that the relevant proofs go through also
with a definition where we are allowed to disregard how the mapping behaves
for the first few iterates in a Picard iteration sequence. In the definition below
we only require

b ≥ d(x, y) ≥ ε → d
(
fn(x), fn(y)

)
≤ φbn(ε)d(x, y)

to hold for large enough n ∈ N, namely for n ≥ βbε(1). And as a consequence of
the technical way in which we require that n is large we also require that ε < ε′

gives βbl (ε) ≥ βbl (ε′). In detail we modify Gerhardy’s definition as follows:

Definition 3.10. A function f : X → X on a metric space (X, d) is called
a generalized asymptotic contraction if for each b > 0 there exist moduli ηb :
(0, b] → (0, 1) and βb : (0, b] × (0,∞) → N and a sequence of functions φbn :
(0,∞)→ (0,∞) such that the following holds:

(1) For each 0 < l ≤ b the function βbl := βb(l, ·) is a modulus of uniform
convergence for (φbn)n∈N on [l, b], i.e.,

∀ε > 0∀s ∈ [l, b]∀m,n ≥ βbl (ε)
(∣∣φbm(s)− φbn(s)

∣∣ ≤ ε) .
Furthermore, if ε < ε′ then βbl (ε) ≥ βbl (ε′).

(2) For all x, y ∈ X, for all b ≥ ε > 0 and for all n ∈ N such that βbε(1) ≤ n,
we have:

b ≥ d(x, y) ≥ ε → d
(
fn(x), fn(y)

)
≤ φbn(ε)d(x, y).
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(3) Define φb : (0,∞) → (0,∞) by φb(s) := limn→∞ φbn(s). Then for each
0 < ε ≤ b we have

φb(s) + ηb(ε) ≤ 1

for each s ∈ [ε, b].

If f is an asymptotic contraction in the sense of Gerhardy, then it is also
an asymptotic contraction in our sense. However, one might have to modify
the moduli βbl . The above definition is in fact, as the following simple example
shows, strictly more general than Definition 3.1, and therefore also strictly more
general than Definition 1.26.

Lemma 3.11. There exists a complete metric space (X, d) and a continuous
mapping f : X → X which is an asymptotic contraction in the sense of Defini-
tion 3.10, but not an asymptotic contraction in the sense of Gerhardy.

Proof. Consider X ⊆ R2 given by

X := {(0, n) : n ∈ N} ∪ {(1, n) : n ∈ N},

and let (X, d) be X equipped with the metric inherited from R2 equipped with
the Euclidean metric. Let f : X → X be given by letting f(1, n) = (0, n) and
f(0, n) = (0, 0) for n ∈ N. Then f is an asymptotic contraction in our extended
sense, with for all b > 0 φbn(t) := 1/2, φb(t) := 1/2 and βbl (t) := 2 for t ∈ (0,∞)
and 0 < l ≤ b, and with ηb(s) := 1/2 for s ∈ (0, b]. But f is not an asymptotic
contraction in the sense of Gerhardy. For since 1 ≥ d((1, n), (0, n)) ≥ 1 for
n ∈ N we should then have

d(f(1, n), f(0, n)) ≤ φ1
1(1) · d((1, n), (0, n)) = φ1

1(1)

for all n ∈ N, where φ1
1 is a function as required in Definition 3.1. But if n > 0,

then d(f(1, n), f(0, n)) = n, so

{d(f(1, n), f(0, n)) : n ∈ N}

is unbounded.
2

Many of the results for asymptotic contractions in the sense of Gerhardy go
through for asymptotic contractions in the sense of Definition 3.10:

Lemma 3.12. Proposition 3.3 as well as Lemmas 3.4, 3.5, 3.6, 3.7, 3.8 and The-
orem 3.9 hold also for generalized asymptotic contractions instead of asymptotic
contractions in the sense of Gerhardy.

Proof. This can be verified easily by inspection of the proofs, and by in so
doing noting that η(ε)/2 < 1.

2

Because of Lemma 3.12 we will freely refer to Proposition 3.3, Lemmas 3.4,
3.5, 3.6, 3.7, 3.8, and Theorem 3.9 also when the mapping f : X → X under
consideration is an asymptotic contraction in the sense of Definition 3.10.
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3.2.3 A discussion of issues concerning computability

As pointed out in Remark 8 in [54], we could have given the moduli ηb, βb as
functions η̃b : N → N and β̃b : N × N → N, with real numbers approximated
from below by rationals 2−n, and η̃, β̃ parametrized by b ∈ N, b 6= 0, rather
than real numbers b > 0. Then a mapping having moduli ηb, βb would also have
corresponding moduli η̃, β̃. This is the case for the moduli in Definition 3.10 as
well as for the moduli in Definition 3.1. In detail we have that a function f : X →
X on a metric space (X, d) which is a generalized asymptotic contraction in the
sense of Definition 3.10 satisfies that for each b ∈ N, b 6= 0, there exist moduli
η̃b : N→ N and β̃b : N×N→ N and a sequence of functions φbn : (0,∞)→ (0,∞)
such that the following hold:

(1) For all l ∈ N, the function β̃bl := β̃b(l, ·) is a modulus of uniform conver-
gence for (φbn)n∈N on [2−l, b], i.e.,

∀k ∈ N∀s ∈ [2−l, b]∀m,n ≥ β̃bl (k)
(∣∣φbm(s)− φbn(s)

∣∣ ≤ 2−k
)
.

Furthermore, if k > k′ then β̃bl (k) ≥ β̃bl (k′).

(2) For all x, y ∈ X, for all l ∈ N and for all n ∈ N such that β̃bl (0) ≤ n, we
have:

b ≥ d(x, y) ≥ 2−l → d
(
fn(x), fn(y)

)
≤ φbn(2−l)d(x, y).

(3) Define φb := limn→∞ φbn. Then for each l ∈ N we have

φb(s) + 2−η̃
b(l) ≤ 1

for each s ∈ [2−l, b].

Similarly, an asymptotic contraction f : X → X in the sense of Gerhardy has for
each b ∈ N \ {0} moduli η̃′

b
: N→ N and β̃′

b
: N×N→ N such that there exists

a sequence of functions φbn : (0,∞)→ (0,∞) such that conditions (1)–(3) above
hold, except that in (1) we do not require that if k > k′ then β̃′

b

l (k) ≥ β̃′
b

l (k
′),

and in (2) we do not require that β̃′
b

l (0) ≤ n. Then β̃b corresponding to βb in
the sense of Definition 3.10 is effectively computable in β̃′

b
corresponding to βb

in the sense of Definition 3.1; we simply take

β̃bl (k) = max
{
β̃′
b

l (k
′) : k′ ∈ N, k′ ≤ k

}
.

Using the approach with η̃b, β̃b as functions η̃b : N→ N and β̃b : N×N→ N
one would then get a computable functional Φ : NN × NN×N × N × N → N
corresponding to M1 in Theorem 3.9 such that λk.Φ(η̃b, β̃b, b, k) is a rate of
proximity for (fn(x0))n∈N to the fixed point z ∈ X, provided f : X → X is
an asymptotic contraction with moduli η̃b, β̃b, and b ∈ N, b 6= 0, is a bound on
the iteration sequence. This follows easily from inspection of the proofs of the
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results leading up to Theorem 3.9, whereby one notes that the (from the point
of view of computability theory) problematic function d · e in the expression⌈

lg(δ)− lg(b)

lg(1− ηb(δ)
2 )

⌉

in Theorem 3.9 only appears because one needs an upper bound on an M ∈ N
such that (

1− ηb(δ)
2

)M
· b < δ. (3.3)

And in the setting where we use rationals of the form 2−n and where we have
a number theoretic function η̃b : N → N we would only need to find an upper
bound on an M ∈ N such that(

1− 2−η̃
b(k)−1

)M
· b < 2−k, (3.4)

for some suitable k ∈ N such that 2−k takes the place of δ in the proof. Strictly
speaking we would have to formulate things in this way to get computable
rates of convergence or rates of proximity. However, for the sake of ease of
notation we will follow Gerhardy in working with moduli ηb : (0, b] → (0, 1)
and βb : (0, b]× (0,∞) → N (parametrized by real numbers b > 0) rather than
number theoretic functions. It will be clear how to reformulate the proofs and
the statements of the theorems so as to obtain computable functionals of type
2 which give computable rates of convergence or proximity.

We have yet to comment on Kirk’s original moduli φ, φn : [0,∞) → [0,∞)
from Definition 1.26, and on to what extent one can compute moduli as in
Definition 3.1 or Definition 3.10 from these. The discussion here will be very
brief, as the issues involved are standard concerns in the theory of computability
on the reals or constructively representable complete separable metric spaces.
We use a suitable standard representation (see e.g. Chapter 4 in [101]) of the
complete separable metric space [0,∞) as NN, and for each b ∈ N, b > 0,
a representation of the compact (i.e. complete and totally bounded) metric
space [0, b] as CNb = {f ∈ NN : f ≤ Nb}, for some fixed primitive recursive Nb.
Functions g : [0, b]→ [0,∞) are represented by functionals G : CNb → NN which
respect the representation, and – via an operation which primitive recursively
in f ∈ NN gives a gf ≤ Nb – by functionals G : NN → NN. If for each b ∈ N,
b > 0, we have moduli φb, φbn : [0, b] → [0,∞) such that φbn → φb uniformly on
[0, b], but which otherwise are as in Definition 1.26, and these are represented
as functionals Fφ,b, Fφn,b : NN → NN, then we have the following relationship

with moduli η̃′
b

: N → N and β̃′
b

: N × N → N corresponding to the moduli in
the definition of an asymptotic contraction in the sense of Gerhardy:

(1) We can, effectively in Fφ,b together with a modulus of uniform continuity
ωφ,b of Fφ,b on CNb and a modulus γ : N→ N for the uniform convergence

of φbn to φb on [0, b], compute moduli η̃′
b

: N → N and β̃′
b

: N × N → N.
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We use the modulus of uniform continuity to compute the maximum value
taken by ψ on [s, b] – see (3.1) and (3.2) in the discussion concerning the
proof of Proposition 3.2 – and to compute the maximum value taken by
ψb on [2−l, b].

(2) Without a modulus of uniform continuity for Fφ,b the procedure we re-
ferred to in (1), which involves computing the maximum value of a con-
tinuous function on a compact interval, is not effective. We could then
compute moduli η̃′

b
: N → N and β̃′

b
: N × N → N in the fan functional,

by using this to compute a modulus of uniform continuity. For more in-
formation on the fan functional and related matters, see [139, 169].

(3) If Fφ,b and a modulus γ : N→ N for the uniform convergence of φbn to φb

on [0, b] are computable, then the moduli η̃′
b

: N→ N and β̃′
b

: N×N→ N
are computable. This is because we via an encoding of NN ×N as NN can
regard Fφ,b as a computable type 2 functional, and any computable type
2 functional has a computable associate α : N → N. Which means that
there also exists a computable modulus of uniform continuity ωφ,b of Fφ,b
on CNb .

3.2.4 Eliminating the “modulus of uniqueness”

Our first result here on asymptotic contractions is an improvement of the bound
in Theorem 3.9. The following theorem is identical to Theorem 3.9, except that
it involves asymptotic contractions in our sense, and that η(ε) · ε/4 is replaced
by ε in the definition of Mε. So the “modulus of uniqueness” from Lemma 3.4
no longer plays any part in the bound. This will in most cases, depending
on η, constitute a significant numerical improvement. This is in line with the
discussion of elimination of moduli of uniqueness at the end of Section 2.3 in
Chapter 2. This result appeared in the paper [25].

Theorem 3.13. Let (X, d) be a complete metric space, let f : X → X be a
continuous generalized asymptotic contraction and let b > 0 and η, β be given.
If for some x0 ∈ X the sequence (xn)n∈N is bounded by b then f has a unique
fixed point z, (xn)n∈N converges to z and for every ε > 0 such that b ≥ ε there
exists m ≤Mε such that

d(xm, z) ≤ ε,
where

Mε(η, β, b) := k

⌈
lg(ε)− lg(b)

lg
(
1− η(ε)

2

)⌉ ,
with k := βε(

η(ε)
2 ).

Proof. Suppose (xn)n∈N is bounded by b. Let b ≥ ε > 0. Let

Mε := k

⌈
lg(ε)− lg(b)

lg
(
1− η(ε)

2

)⌉ ,
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where k := βε(
η(ε)

2 ). By Theorem 3.9 (and Lemma 3.12) we have that (xn)n∈N
converges to the unique fixed point z of f . Let l ∈ N be arbitrary and let N be
such that d(xn, z) < 2−l for all n ≥ N . By Lemma 3.5 there exists an m ≤Mε

such that
d
(
xm, f

N (xm)
)
≤ ε.

Note that Mε does not depend on N . Since fN (xm) = xm+N and m+N ≥ N ,
we have d(fN (xm), z) < 2−l. Therefore

d(z, xm) ≤ d
(
xm, f

N (xm)
)

+ d
(
fN (xm), z

)
< ε+ 2−l.

Since there are only finitely many m ≤Mε there must exist m1 ≤Mε such that

d(z, xm1) < ε+ 2−l

holds for infinitely many l. Hence

d(z, xm1) ≤ ε.

2

3.3 Main results

3.3.1 A rate of convergence dependent on a bound on the
iteration sequence

Our first main result is an explicit rate of convergence for generalized asymptotic
contractions – and therefore also for asymptotic contractions in the senses of
Kirk and Gerhardy – which in addition to the required accuracy ε > 0 takes
only a bound b on the iteration sequence and the moduli η, β as arguments. We
begin with the case where we assume that the mapping is continuous and the
space complete. This section corresponds to a part of the paper [25], and the
results have appeared there.

Theorem 3.14. Let (X, d) be a complete metric space, let b > 0 be given, and
let f : X → X be a continuous generalized asymptotic contraction with moduli η
and β. If for some x0 ∈ X the sequence (xn)n∈N is bounded by b, then (xn)n∈N
has the following rate of convergence. Let z be the unique fixed point of f . For
b > ε > 0 we put Φ(b, ηb, βb, ε) := max{U, V }, where

U := k ·
(
2Mγ + βb( ε2 )(δ) +Kγ − 1

)
,

V := (k − 1) ·
(
2Mγ + βb( ε2 )(δ) +Kγ − 1

)
+Mγ + 1,

k :=

⌈
lg(ε)− lg(b)

lg
(
1− ηb(γ)

2

)⌉ ,
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Mγ := Kγ ·

⌈
lg(γ)− lg(b)

lg
(
1− ηb(γ)

2

)⌉ ,
Kγ := βγ

(
ηb(γ)

2

)
,

and δ := min
{
ε/2, ηb(ε/2)/2

}
, γ := min {δ, δε/4}. For ε ≥ b we can put

Φ(b, ηb, βb, ε) := 0.

Then for all n ≥ Φ(b, ηb, βb, ε) we have

d(xn, z) ≤ ε.

Proof. Let b > ε > 0. Let δ := min{ ε2 ,
η( ε2 )

2 } and γ := min{δ, δε4 }. Let x0 ∈ X
be such that (xn)n∈N is bounded by b. For a > 0 let

Ba := {x ∈ X : d(x, z) ≤ a}.

By Theorem 3.13 there exists m′ ≤ Mγ such that xm′ ∈ Bγ . Suppose there
exists m > m′ such that xm 6∈ Bε. In the first part of the proof we will use this
to establish an upper bound on an n ∈ N such that

d(xn, z) > γ,

which is what we need in our further argument. Let now

m := min{n : n > m′ and xn 6∈ Bε}.

Then for xn ∈ Bγ we get d(xn, xm) > ε
2 since

d(xn, xm) ≥ d(xm, z)− d(xn, z) > ε− ε

2
=
ε

2
.

Assume m− n ≥ β( ε2 )(δ). Note that δ < 1. Then for all k ≥ m− n we have∣∣φbk(ε/2)− φbm−n(ε/2)
∣∣ ≤ δ,

and hence
|φb(ε/2)− φbm−n(ε/2)| ≤ δ.

The definition of an asymptotic contraction gives

φb
(ε

2

)
+ η

(ε
2

)
≤ 1,

and so
φb
(ε

2

)
≤ 1− η

(ε
2

)
,

and
φbm−n

(ε
2

)
≤ 1− η

(ε
2

)
+
∣∣∣φb (ε

2

)
− φbm−n

(ε
2

)∣∣∣ .
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We therefore have
φbm−n

(ε
2

)
≤ 1− 2δ + δ = 1− δ.

Since we by definition have

d(xm, x2m−n) = d(fm−n(xn), fm−n(xm)) ≤ φbm−n
(ε

2

)
· d(xn, xm),

we get
d(xm, x2m−n) ≤ (1− δ) · d(xn, xm).

So in this case

d(x2m−n, xn) ≥ d(xn, xm)− d(xm, x2m−n)

gives

d(x2m−n, xn) ≥ d(xn, xm)− (1− δ) · d(xn, xm) = δ · d(xn, xm) >
δε

2
.

If x2m−n ∈ Bγ then we would have

d(x2m−n, xn) ≤ d(x2m−n, z) + d(z, xn) ≤ 2γ ≤ δε

2
.

So x2m−n 6∈ Bγ . Let

m′′ := min{n : n > m′ and xn 6∈ Bγ}.

If
m′′ −m′ = M ′ + β( ε2 )(δ)

for some M ′ ≥ 0, then since m ≥ m′′ we have

m−m′,m− (m′ + 1), . . . ,m− (m′ +M ′) ≥ β( ε2 )(δ),

and xm′ , xm′+1, . . . , xm′+M ′ ∈ Bγ . By the above argument this gives that re-
spectively x2m−m′ , x2m−m′−1 . . . , x2m−m′−M ′+1 and x2m−m′−M ′ are not in Bγ .
By arranging the indices in increasing order, we have

x2m−m′−M ′ , x2m−m′−M ′+1, . . . , x2m−m′ 6∈ Bγ .

By taking x2m−m′−M ′ as the starting point of a b-bounded Picard iteration
sequence defined by xn+1 := f(xn), we get by Theorem 3.13 that there exists
m′′′ ≤Mγ such that x2m−m′−M ′+m′′′ ∈ Bγ . So M ′ < Mγ . (And so in this case
0 < Mγ .) So the existence of m > m′ such that xm 6∈ Bε implies that

m′′ −m′ < Mγ + β( ε2 )(δ),

and thus that

m′′ < m′ +Mγ + β( ε2 )(δ) ≤ 2Mγ + β( ε2 )(δ).
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Thus in total, if there exists m > m′ such that xm 6∈ Bε, then we get that for
some

n < 2Mγ + β( ε2 )(δ)

we have
γ < d(xn, z).

Since (xn)n∈N converges to z, we have

d(xn, z) ≤ b.

So in this case by Proposition 3.3, for n ∈ N such that

n ≥ 2Mγ + β( ε2 )(δ) +Kγ − 1

we have

d(xn, z) ≤
(

1− η(γ)
2

)
· b.

Likewise, by then treating x2Mγ+β( ε2 )(δ)+Kγ−1 as the starting point y0 of a Picard
iteration sequence (yn)n∈N bounded by b with the property that

d(yn, z) ≤
(

1− η(γ)
2

)
· b

for all n ≥ 0, either there exists no n ∈ N with

n > 3Mγ + β( ε2 )(δ) +Kγ − 1

such that xn 6∈ Bε, or else for n ∈ N such that

n ≥ 2 ·
(
2Mγ + β( ε2 )(δ) +Kγ − 1

)
we have

d(xn, z) ≤
(

1− η(γ)
2

)2

· b.

We get that we for n ∈ N such that

n ≥ max
{
k·
(
2Mγ+β( ε2 )(δ)+Kγ−1

)
, (k−1)·

(
2Mγ+β( ε2 )(δ)+Kγ−1

)
+Mγ+1

}
,

where k ≥ 1, have
xn ∈ Bε

or
xn ∈ B(

1− η(γ)2

)k
·b
.

By letting

k :=

⌈
lg(ε)− lg(b)

lg(1− η(γ)
2 )

⌉
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we get for n ∈ N such that

n ≥ max
{
k·
(
2Mγ+β( ε2 )(δ)+Kγ−1

)
, (k−1)·

(
2Mγ+β( ε2 )(δ)+Kγ−1

)
+Mγ+1

}
,

that
xn ∈ Bε.

2

Completeness and continuity in the above theorem is only needed to show
the existence of a fixed point z. If a fixed point exists, then by Proposition 3.3
every Picard iteration sequence is bounded, irrespectively of completeness and
continuity, and hence by Lemma 3.8 it is Cauchy. By Lemma 3.4 it converges
to the fixed point z, and by inspection we see that the proof of Theorem 3.14
goes through. Then Theorem 3.14 gives a rate of convergence for a b-bounded
Picard iteration sequence. Hence we have the following theorem.

Theorem 3.15. Let (X, d) be a metric space, let b > 0 be given, and let
f : X → X be a generalized asymptotic contraction with moduli η and β. As-
sume that f has a fixed point z. Then every Picard iteration sequence is bounded,
and if for x0 ∈ X the sequence (xn)n∈N is bounded by b then (xn)n∈N converges
to z with the rate of convergence specified in Theorem 3.14.

Proof. Follows by the above remarks.
2

If in the metric space (X, d) some iteration sequence (fn(x0))n∈N is bounded,
where f is a generalized asymptotic contraction with moduli ηb, βb for b > 0,
then by Proposition 3.3 and Lemmas 3.8 and 3.4 all iteration sequences are
Cauchy even if none of them converges, and if some z ∈ X is the limit of
one sequence, then z is the limit of all the iteration sequences. Namely, by
Lemma 3.8 (fn(x0))n∈N is Cauchy, and if we let n ∈ N be such that m ≥ n
gives d(fn(x0), fm(x0)) < 1, then taking fn(x0) as x in Proposition 3.3 gives
that any (fn(y))n∈N is bounded. Then (fn(y))n∈N is Cauchy by Lemma 3.8 and
limn→∞ d(fn(x0), fn(y)) = 0 by Lemma 3.4. If (fn(x0))n∈N does not converge
then we consider the completion X of X, in which the limit z exists. We can
then extend f to be defined on X ∪ {z} by letting f(z) = z. It is then easy
to see that f is a generalized asymptotic contraction with moduli ηb1 : (0, b] →
(0, 1) and βb1 : (0, b] × (0,∞) → N defined by for example ηb1(ε) := η2b(ε/2),
βb1(l, ε) := β2b(l/2, ε).

If the b-bounded iteration sequence (fn(x0))n∈N converges in X to z, and
z is not a fixed point, then we can use the following theorem to conclude that
the convergence is uniform. At this point one might refer back to the discus-
sion after the proof of Proposition 2.48, where we noted that we had shown
the possibility of obtaining an explicit and uniform rate of convergence for an
asymptotic contraction in the sense of Kirk on a bounded metric space.

Theorem 3.16. Let (X, d) be a metric space, and let f : X → X be a general-
ized asymptotic contraction with moduli ηb and βb for each b > 0. Let x0 ∈ X
be such that the Picard iteration sequence (fn(x0))n∈N is bounded. Then all
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Picard iteration sequences are Cauchy. Assume that z := limn→∞ fn(x0) ex-
ists. Then for any x0 ∈ X the iteration sequence (fn(x0))n∈N converges to z,
irrespective of whether z is a fixed point or not. If (fn(x0))n∈N is bounded by
b > 0 then (fn(x0))n∈N converges to z with the rate of convergence specified in
Theorem 3.14.

Proof. Proposition 3.3 and Lemmas 3.8 and 3.4 still imply that all iteration
sequences converge to z. The rate of proximity in Theorem 3.13 only depends on
Lemma 3.5 and the fact that the Picard iteration sequence (xn)n∈N converges to
z, all of which is independent of whether z is a fixed point or not. However, in the
proof of Theorem 3.14 we use that z is a fixed point when we use Proposition 3.3
to infer

d(xn, z) ≤
(

1− η(γ)
2

)
· b

for n ≥ 2Mγ + β( ε2 )(δ) + Kγ − 1 from the fact that γ < d(xn, z) ≤ b for some
n < 2Mγ + β( ε2 )(δ). In this manner we in the proof repeatedly make use of
the fact that z is a fixed point. When z is not a fixed point we can proceed
as follows. Assuming that there exists n > Mγ such that xn 6∈ Bε, we have
γ < d(xn, z) ≤ b for some n < 2Mγ + β( ε2 )(δ). Choose such n ∈ N, and choose
a real number a > 0. Choose then K ′ ∈ N such that for this n we have

d(xk, z) < min
{
a,
(
d(xn, z)− γ

)}
for all k ≥ K ′. We can find such K ′ since (xn) converges to z. Then γ <
d(xn, xK′) ≤ b, so Proposition 3.3 gives

d
(
fk(xn), fk(xK′)

)
≤
(

1− η(γ)
2

)
· b

for k ≥ Kγ . Now the triangle inequality gives

d(xn, z) ≤
(

1− η(γ)
2

)
· b+ a

for n ≥ 2Mγ + β( ε2 )(δ) +Kγ − 1. Since a > 0 was arbitrary we get

d(xn, z) ≤
(

1− η(γ)
2

)
· b

for n ≥ 2Mγ + β( ε2 )(δ) +Kγ − 1. Then, following the proof of Theorem 3.14 we
get that either there does not exist n ∈ N with n > 3Mγ +β( ε2 )(δ) +Kγ − 1 and
xn 6∈ Bε, or else we have

γ < d(xn, z) ≤
(

1− η(γ)
2

)
· b

for some n < 2Mγ + β( ε2 )(δ) + Kγ − 1 + (2Mγ + β( ε2 )(δ)). Choose such n ∈ N,
and choose a real number a > 0. Then we can choose K ′ ∈ N as above and get

γ < d(xn, xK′) ≤
(

1− η(γ)
2

)
· b+ a.
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We can assume (1− η(γ)
2 ) · b+ a < b, so

d
(
fk(xn), fk(xK′)

)
≤
(

1− η(γ)
2

)2

· b+
(

1− η(γ)
2

)
· a

for k ≥ Kγ . And so

d(xn, z) ≤
(

1− η(γ)
2

)2

· b+
(

1− η(γ)
2

)
· a+ a

for n ≥ 2 · (2Mγ + β( ε2 )(δ) + Kγ − 1). Since this holds for all sufficiently small
a > 0 we get for such n that

d(xn, z) ≤
(

1− η(γ)
2

)2

· b.

We can now obviously employ the same strategy each time we have that for a
given k ∈ N either there does not exist n ∈ N with n > k · (2Mγ + β( ε2 )(δ) +
Kγ − 1) +Mγ and xn 6∈ Bε, or else we have

γ < d(xn, z) ≤
(

1− η(γ)
2

)k
· b

for some n < k · (2Mγ + β( ε2 )(δ) +Kγ − 1) + (2Mγ + β( ε2 )(δ)). We get that for
n ∈ N such that

n ≥ max
{
k·
(
2Mγ+β( ε2 )(δ)+Kγ−1

)
, (k−1)·

(
2Mγ+β( ε2 )(δ)+Kγ−1

)
+Mγ+1

}
,

where k ≥ 1, we have
xn ∈ Bε

or
xn ∈ B(1− η(γ)2 )k·b.

Thus we have the same rate of convergence as in Theorem 3.14.
2

Corollary 3.17. Under the assumptions in Theorem 3.16 we can conclude that
the common limit z ∈ X of all Picard iteration sequences (fn(x0))n∈N is a fixed
point if f has a closed graph.

Proof. Let x0 ∈ X, and let (xn)n∈N be the Picard iteration sequence with
respect to f and x0. Then xn → z, and also f(xn)→ z, and so if f has a closed
graph we get f(z) = z.

2
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3.3.2 A characterization of asymptotic contractions in the
setting of bounded spaces

We will use the rate of convergence given above as well as the following proposi-
tion to give a characterization of several variants of asymptotic contractions on
nonempty, bounded, complete metric spaces. For this the uniformity features
of the rate of convergence will be essential. This section corresponds to a part
of [25].

Proposition 3.18. Let (X, d) be a metric space, and let f : X → X. Let now
Ψ : R∗+ × R∗+ → N satisfy

∀ε ∈ R∗+∀x, y ∈ X∀b ≥ d(x, y)∀n ≥ Ψ(ε, b)
(
d
(
fn(x), fn(y)

)
≤ ε
)
.

Assume further that ε < ε′ implies Ψ(ε, b) ≥ Ψ(ε′, b). Then f is a generalized
asymptotic contraction.

Proof. For b > 0 and n ∈ N define φbn : (0,∞) → (0,∞) by φbn(ε) := 1/2.
Define further ηb : (0, b] → (0, 1) by ηb(ε) := 1/2 and βbl : (0,∞) → N by
βbl (ε) := Ψ(l/2, b). These moduli satisfy Definition 3.10.

2

Corollary 3.19. Let (X, d) be a metric space, and let f : X → X. Let z ∈ X
and assume that for each x0 ∈ X the Picard iteration sequence converges to the
point z ∈ X with a rate of convergence which is uniform in the starting point
x0. Then f is a generalized asymptotic contraction.

Proof. By assumption there exists Ψ : R∗+ → N such that

∀ε ∈ R∗+∀x, y ∈ X∀n ≥ Ψ(ε)
(
d
(
fn(x), fn(y)

)
≤ ε
)
.

We can furthermore assume that ε < ε′ implies Ψ(ε) ≥ Ψ(ε′). Thus Proposi-
tion 3.18 applies.

2

The above corollary also follows from Proposition 3 in [76], which implies
that f in this case is an asymptotic contraction in the sense of Kirk.

Corollary 3.20. Let (X, d) be a nonempty, bounded, complete metric space,
and let f : X → X. Then f is a generalized asymptotic contraction if and only
if there exists z ∈ X such that for each x0 ∈ X the Picard iteration sequence
converges to z with a rate of convergence which is uniform in the starting point.

Proof. That f is a generalized asymptotic contraction if such a z ∈ X exists
follows from Corollary 3.19. The other implication follows from Theorem 3.16,
since we assume that the space is bounded.

2

Theorem 3.21. Let (X, d) be a nonempty, bounded, complete metric space,
and let f : X → X. Then the following are equivalent:
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(1) The function f is a generalized asymptotic contraction.

(2) The function f is an asymptotic contraction in the sense of Gerhardy.

(3) The function f is an asymptotic contraction in the sense of Kirk.

(4) There exists z ∈ X such that for each x0 ∈ X the Picard iteration sequence
converges to z with a rate of convergence which is uniform in the starting
point.

(5) There exists α : (0,∞)→ N such that

∀x, y ∈ X∀ε > 0∀n ≥ α(ε)
(
d(x, y) ≥ ε→ d

(
fn(x), fn(y)

)
≤ 1

2
d(x, y)

)
.

Proof. Assume first (1). Then by the previous corollary, (4) holds. Further-
more, by Theorem 3.16 and the proofs of Corollary 3.19 and Proposition 3.18,
(5) holds. Now assume that (4) holds. Then diam

(
fn(X)

)
→ 0. Follow-

ing the proof of Proposition 3 in [76], we define φ, φn : [0,∞) → [0,∞) by
φn(t) := diam

(
fn(X)

)
and φ(t) := 0. These moduli satisfy Definition 1.26,

so f is an asymptotic contraction in the sense of Kirk, i.e., (3) holds. Thus
(1)-(4) are equivalent. Now assume that (5) holds. For b > 0 and n ∈ N de-
fine φbn : (0,∞) → (0,∞) by φbn(ε) := 1/2. Define further ηb : (0, b] → (0, 1)
by ηb(ε) := 1/2 and βbl : (0,∞) → N by βbl (ε) := α(l). These moduli satisfy
Definition 3.10, so (5) is equivalent to (1).

2

Theorem 3 in [76] gives a characterization of continuous asymptotic con-
tractions in the sense of Kirk on compact metric spaces, showing among other
things that they are exactly the continuous functions such that the core Y :=⋂
n∈N f

n(X) is a singleton (assuming the space is nonempty). If we in Theo-
rem 3.21 require that f be continuous, then we get a generalization of this fact
from the compact case to the case where the space is bounded and complete.
Namely, we get by Theorem 3.14 that if a continuous f is an asymptotic con-
traction (in one of the three senses considered), then there exists a fixed point
z, and Y = {z}. If on the other hand the core Y is a singleton {z}, then
Theorem 3.21 implies that f is an asymptotic contraction (in all three senses
considered).

Remark 3.22. In Theorem 3.21 completeness is only needed to establish the
existence of the common limit of all Picard iteration sequences. If the space
(X, d) is bounded and nonempty, and if f is a generalized asymptotic contraction
such that no Picard iteration sequence is convergent, then we “add” the limit
point z, define f(z) = z, and get that f is again a generalized asymptotic
contraction as in the discussion preceeding Theorem 3.16. Thus the convergence
to z is uniform in the starting point, and there exists a function Φ : N→ N such
that

∀x, y ∈ X∀k ∈ N∀n ≥ Φ(k)
(
d (fn(x), fn(y)) < 2−k

)
. (3.5)
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Hence diam
(
fn(X)

)
→ 0, and as in the proof of Theorem 3.21 it follows that

f is an asymptotic contraction in the sense of Kirk . And so in the setting
of bounded metric spaces the three versions of asymptotic contraction we have
considered are all equivalent, and all equivalent to the existence of a function Φ
satisfying 3.5.

The above theorem also has consequences for the relationship between asymp-
totic contractions in the sense of Kirk and other kinds of contractive type map-
pings on bounded, complete metric spaces – in particular in relation to the 25
basic definitions of various contractive type mappings systematized by Rhoades
in [157], and to some of the standard generalizations of these. In Chapter 4 we
treat so-called uniformly generalized p-contractive mappings, and we now get
the following result regarding these mappings.

Corollary 3.23. Let (X, d) be a bounded, complete metric space, let p ∈ N, and
let f : X → X be uniformly generalized p-contractive and uniformly continuous.
Then f is an asymptotic contraction in the sense of Kirk.

Proof. Let b be a bound on the space. Then for each x0 ∈ X we have that b is a
bound on the Picard iteration sequence (xn)n∈N. We can assume X nonempty,
for otherwise the proof is trivial. Thus Theorem 4.6 in Chapter 4 (and the
comments directly following it) assures the existence of a fixed point z ∈ X and
a rate of convergence for Picard iteration sequences (xn)n∈N to z, and this rate
is moreover uniform in the starting point x0. Then by Theorem 3.21 we have
that f is an asymptotic contraction in the sense of Kirk.

2

We state also another corollary, although the uniformity of the convergence
of the Picard iteration sequences (fn(x0))n∈N with respect to the starting point
x0 ∈ X, which is the essence of the following corollary, was already present in
Rhoades’ paper [158].

Corollary 3.24. Let (X, d) be a compact metric space. Let f : X → X be
continuous and such that it satisfies one of the conditions (1)–(50) from [157].
Then f is an asymptotic contraction in the sense of Kirk.

Proof. Since f satisfies one of the requirements (1)–(50) we know from [157]
and [38] that there exists p ∈ N such that fp satisfies (25). Then in the ter-
minology of Chapter 4 f is generalized p-contractive. Since X is compact we
know that f is uniformly continuous, and by Proposition 4.3 in Chapter 4 f is
uniformly generalized p-contractive. Thus by the previous corollary it follows
that f is an asymptotic contraction in the sense of Kirk.

2

3.3.3 A rate of convergence dependent on strictly positive
upper and lower bounds on the initial displacement

This section corresponds to the paper [26], and the results have appeared there.
Given the complete characterization of asymptotic contractions in the sense of
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Kirk in the bounded setting it is natural to investigate what happens when the
underlying space is allowed to be unbounded. In this section we will prove that
the requirement in Kirk’s theorem on asymptotic contractions that one Picard
iteration sequence is bounded is redundant, since any Picard iteration sequence
is bounded in any case.

That this assumption is superfluous was already proved by T. Suzuki in [167]
(and see also the interesting results in [168]), but the present author only became
aware of Suzuki’s result after having published [26], where the result mentioned
above appears. The ways in which this is proved in the two cases are not
very similar, and we will comment further on Suzuki’s work below. (In [36]
and [76] conditions are given which allow one to remove the requirement that
some iteration sequence is bounded from the corresponding theorems on variants
of asymptotic contractions, but this is done only by introducing further limit
requirements on the relevant moduli. We need here no such extra conditions.)

We will also construct an explicit rate of convergence for the Picard iteration
sequences (fn(x0))n∈N, for a generalized asymptotic contraction, which does not
depend on a bound on the iteration sequence, but which instead depends on
(strictly positive) upper and lower bounds b, c > 0 on the initial displacement
d(x0, f(x0)). This is thus in a sense an improvement of Theorem 3.14 (and The-
orem 3.16), where the rate of convergence depends on a bound on the iteration
sequence. In both cases the rate of convergence also depends on the moduli
η, β for the mapping1 (which appear as parameters), but is again in both cases
otherwise fully uniform.

We will later show that for asymptotic contractions in the sense of Kirk there
exists a rate of convergence which depends on the starting point only through
an upper bound b ≥ 0 on the initial displacement d(x0, f(x0)), but we do not
construct that rate of convergence explicitly, and it is not clear whether that
result extends to generalized asymptotic contractions.

We will need the following lemma, which draws heavily on Lemma 3.5.

Lemma 3.25. Let (X, d) be a metric space, let f : X → X be a generalized
asymptotic contraction and let b > 0 and η, β be given. For b ≥ δ > 0 let
Kδ := βδ(η(δ)/2) and

Mδ := Kδ ·

⌈
lg(δ)− lg(b)

lg(1− η(δ)
2 )

⌉
.

Then for all x0, y0 ∈ X such that for all n ≥ 0 we have d(xn, yn) ≤ b there
exists an m ≤Mδ such that

d(xm, ym) ≤ δ.

Proof. Let Kδ := βδ(η(δ)/2). Assume that for some M and all m < M we have
d(xmKδ , ymKδ) ≥ δ. Then repeatedly using Proposition 3.3 (and Lemma 3.12)

1More precisely, the rates of convergence are dependent on ηb, βb for some values of b > 0
(but not for all).
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we have

d(xMKδ , yMKδ) ≤
(

1− η(δ)
2

)M
· d(x0, y0) ≤

(
1− η(δ)

2

)M
· b.

Solving the inequality (1−η(δ)/2)M ·b ≤ δ with respect to M gives the described
upper bound Mδ = Kδ ·M on an m such that d(xm, ym) ≤ δ.

2

Now we can prove that any Picard iteration sequence is bounded.

Theorem 3.26. Let (X, d) be a metric space and let f : X → X be a gener-
alized asymptotic contraction. Let x0 ∈ X. Then the Picard iteration sequence
(xn)n∈N is bounded.

Proof. Assume d(x0, f(x0)) > 0, for else there is nothing to prove. Let b :=
d(x0, f(x0)), and let η, β be the associated moduli of f from Definition 3.10.
We first prove that limn→∞ d(xn, f(xn)) = 0. Since b ≥ d(x0, f(x0)) ≥ b we can
conclude by Proposition 3.3 that

d(xn, f(xn)) ≤
(

1− ηb(b)
2

)
· b

for n ≥ Kb, where Kb = βbb(η
b(b)/2). Now let b ≥ ε > 0. Then by considering

xKb and xKb+1 as the starting points x′0 and y′0 of two Picard iteration sequences
(x′n)n∈N and (y′n)n∈N with the property that d(x′n, y

′
n) < b for n ≥ 0, we know

by Lemma 3.25 that there exists m ≤ Kb + Mε such that d(xm, f(xm)) ≤ ε.
Here Mε is as in Lemma 3.25. Let c := d(xm, f(xm)) for some particular such
m. If c = 0, then xm is a fixed point, and (xn)n∈N is bounded. So assume c > 0.
Then Proposition 3.3 gives that

d(xn, f(xn)) ≤
(

1− ηb(c)
2

)
· c ≤

(
1− ηb(c)

2

)
· ε < ε,

for n ≥ Kb +Mε +Kc, with Kc = βbc(η
b(c)/2). So limn→∞ d(xn, f(xn)) = 0.

Let now N := β1
1/2(η1(1/2)/2) and δ := η1(1/2) · 1/8. Since (xn)n∈N is the

Picard iteration sequence (fn(x0))n∈N we can now let M be so large that for
n ≥M we have

d(xn, f(xn)) < 1/2

and
d(xn, fN (xn)) ≤ δ.

Then Lemma 3.4 yields that for m,n ≥M we have

d(xm, xn) > 1

or
d(xm, xn) ≤ 1/2.
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So in particular, for n ≥M we have d(xM , xn) > 1 or d(xM , xn) ≤ 1/2. If for all
n ≥ M we have d(xM , xn) ≤ 1/2, then (xn)n∈N is bounded. So suppose there
exists n ≥ M such that d(xM , xn) > 1. Let n′ > M be the first such n ∈ N.
Then

d(xn′−1, xn′) + d(xn′−1, xM ) ≥ d(xn′ , xM ) > 1,

so d(xn′−1, xM ) ≤ 1/2 gives d(xn′−1, xn′) > 1/2. But

d(xn′−1, xn′) = d(xn′−1, f(xn′−1)) < 1/2,

which thus contradicts our choice of M and n′. Thus d(xM , xn) ≤ 1/2 for all
n ≥M , and hence (xn)n∈N is bounded.

2

Corollary 3.27. Let (X, d) be a nonempty, complete metric space, and let
f : X → X be a continuous asymptotic contraction in the sense of Kirk. Then
f has a unique fixed point z ∈ X, and for every starting point x ∈ X the
iteration sequence (fn(x))n∈N converges to z.

Proof. Since f : X → X is an asymptotic contraction in the sense of Kirk
it is also an asymptotic contraction in the sense of Definition 3.10. Hence
Theorem 3.26 yields that all Picard iteration sequences are bounded. The rest
follows from Theorem 1.27.

2

Similarly we can improve the results we gave earlier in this chapter. As an
instance of this we give the following improvement of Theorem 3.16.

Corollary 3.28. Let (X, d) be a metric space, and let f : X → X be a gener-
alized asymptotic contraction with moduli ηb and βb for each b > 0. Then all
Picard iteration sequences are Cauchy. Assume that for some x0 ∈ X the limit
z := limn→∞ xn exists. Then for any x0 ∈ X the iteration sequence (xn)n∈N
converges to z, irrespective of whether z is a fixed point or not. If (xn)n∈N
is bounded by b > 0 then (xn)n∈N converges to z with the rate of convergence
specified in Theorem 3.14.

Proof. Immediate from Theorem 3.26 and from Theorem 3.16.
2

The rate of convergence in Theorem 3.14 which is referred to in Corol-
lary 3.28 depends on a bound b on the iteration sequence in question, and also
on the moduli ηb, βb. We recall that we in Theorem 3.14 denote the functional
giving this rate of convergence by Φ, so that given a metric space (X, d), an
asymptotic contraction f : X → X with moduli η and β, an x0 ∈ X such that
limn→∞ xn = z and such that (xn)n∈N is bounded by b > 0, and also a real
number b ≥ ε > 0, then n ≥ Φ(b, ηb, βb, ε) gives d(xn, z) ≤ ε.

We now give the details of the promised rate of convergence which does
not depend on a bound on the iteration sequence, but which instead depends
on (strictly positive) upper and lower bounds on d(x0, f(x0)), and also on the
moduli ηb

′
, βb

′
for some specific values b′. Specifically, we have the following2.

2The definition of N in Proposition 3.29 is slightly changed compared to in Proposition 2.6
in [26], since we here let 0 ∈ N.
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Proposition 3.29. Let (X, d) be a metric space, and let f : X → X be a gen-
eralized asymptotic contraction with moduli ηb and βb for each b > 0. Assume
that for some x0 ∈ X the limit z := limn→∞ xn exists. Let b ≥ c > 0 and let
x0 ∈ X be such that b ≥ d(x0, f(x0)) ≥ c. Then (xn)n∈N has the following rate
of convergence. Let ε > 0. Let Φ be as in Theorem 3.14, and let

Kc := βbc(η
b(c)/2),

N := max{βbb/2(ηb(b/2)/2), 1},

α := ηb(b/2) · b/8,

K ′ :=
⌈

lg(α/N)− lg(b)
lg(1− ηb(α/N)/2)

⌉
,

Kα/N := βbα/N (ηb(α/N)/2),

b′ := max{ε,K ′ · (5b/2 + b ·Kα/N ) + b}.

Let n ∈ N satisfy n ≥ Φ(b′, ηb
′
, βb

′
, ε) +Kc. Then

d(xn, z) ≤ ε.

Proof. Let ε > 0. Let x0 ∈ X, and let b, c > 0 be such that b ≥ d(x0, f(x0)) ≥ c.
(If d(x0, f(x0)) = 0 then x0 = z.) Let Kc := βbc(η

b(c)/2). Then Proposition 3.3
gives that

d(xn, f(xn)) ≤ (1− ηb(c)/2) · d(x0, f(x0)) ≤ (1− ηb(c)/2) · b < b (3.6)

for n ≥ Kc. Let now

N := max{βbb/2(ηb(b/2)/2), 1},

α := ηb(b/2) · b/8.

Notice that α/N < b/(2N), since 0 < ηb(b/2) < 1. Assume that for some
integer M ≥ 0 we have d(xn, f(xn)) ≤ α/N for all Kc ≤ n ≤ Kc + M . Let
M = k · N + m, with k ≥ 0 and with m ≥ 0 an integer strictly smaller than
N . If k < 2 then it follows by the triangle inequality that d(xn, xn′) < b for
Kc ≤ n, n′ ≤ Kc +M + 1, since α/N < b/(2N). If k = 2 then likewise

d(xn, xn′) <
3b
2

for Kc ≤ n, n′ ≤ Kc +M + 1. Assume k > 2, and assume that for some integer
k′ > 0 such that k ≥ k′ + 2 we have

d(xKc , xKc+k′N ) ≤ b

2
.
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(Notice that this holds for k′ = 1.) Then

d(xKc+k′N , xKc+(k′+1)N ) ≤ b

2
,

and so
d(xKc , xKc+(k′+1)N ) ≤ b.

We also have
d(xKc , xKc+N ) ≤ α

and
d(xKc+(k′+1)N , xKc+(k′+2)N ) ≤ α,

and thus Lemma 3.4 gives that

d(xKc , xKc+(k′+1)N ) ≤ b

2
.

Thus we have d(xn, xn′) ≤ 3b/2 for Kc ≤ n, n′ ≤ Kc + (k − 1)N , and hence
d(xn, xn′) < 5b/2 for Kc ≤ n, n′ ≤ Kc + M + 1. If d(xn, f(xn)) ≤ α/N for
all n ≥ Kc, then we get that d(xn, xn′) ≤ b for all n, n′ ≥ Kc. Namely, if we
assume

d(xKc , xKc+kN ) ≤ b

2
for some k ∈ N with k ≥ 1 (notice that this holds for k = 1), then

d(xKc , xKc+(k+1)N ) ≤ b,

and also
d(xKc , xKc+N ) ≤ α

and
d(xKc+(k+1)N , xKc+(k+2)N ) ≤ α.

So by Lemma 3.4 we have

d(xKc , xKc+(k+1)N ) ≤ b

2
,

and hence d(xn, xn′) ≤ b for all n, n′ ≥ Kc. (Then d(xn, xn+N ) ≤ α and
d(xn′ , xn′+N ) ≤ α in fact imply that d(xn, xn′) ≤ b/2 for all n, n′ ≥ Kc.)

Thus by letting x′0 := xKc we can conclude that either (x′n)n∈N is bounded
by b or else we have

α/N ≤ d(x′m, f(x′m)) ≤ (1− ηb(c)/2) · b (3.7)

for an m such that (x′n)n≤m is bounded by 5b/2. So by Proposition 3.3 we get
an N1 ∈ N such that

d(x′n, f(x′n)) ≤ (1− ηb(α/N)/2) · (1− ηb(c)/2) · b < (1− ηb(α/N)/2) · b



96 3 Asymptotic contractions

for n ≥ N1 and such that (x′n)n≤N1 is bounded by 5b/2 + b · Kα/N . (Where
Kα/N = βbα/N (ηb(α/N)/2). If we are in the case where there exists m ∈ N such
that (3.7) holds and such that (x′n)n≤m is bounded by 5b/2, then we can take
N1 := m+Kα/N . Note that for n ∈ N we have d(x′n, f(x′n)) < b, since we took
x′0 = xKc and because of the property of Kc given in 3.6.) By considering x′N1

as the starting point of a Picard iteration sequence (x′′n)n∈N with the property
that

d(x′′m, f(x′′m)) < (1− ηb(α/N)/2) · b

for all m ≥ 0, we get by the above argument that either (x′′n)n∈N is bounded by
b or else we get an N2 ∈ N such that

d(x′′m, f(x′′m)) < (1− ηb(α/N)/2)2 · b

for m ≥ N2 and such that (x′′n)n≤N2 is bounded by 5b/2 + b ·Kα/N . Thus either
(x′n)n∈N is bounded by 5b/2 + b ·Kα/N + b or else we have that

d(x′m, f(x′m)) < (1− ηb(α/N)/2)2 · b

for m ≥ N1 +N2, and furthermore that (x′n)n≤N1+N2 is bounded by 2 · (5b/2 +
b ·Kα/N ). Solving the inequality

(1− ηb(α/N)/2)k · b ≤ α/N

with respect to k leads us to consider

K ′ :=
⌈

lg(α/N)− lg(b)
lg(1− ηb(α/N)/2)

⌉
.

We get that either (x′n)n∈N is bounded by (K ′ − 1) · (5b/2 + b ·Kα/N ) + b, or
else we get an N ′ ∈ N such that

d(x′m, f(x′m)) < (1− ηb(α/N)/2)K
′
· b ≤ α/N

for m ≥ N ′, and furthermore such that (x′n)n≤N ′ is bounded by K ′ · (5b/2 + b ·
Kα/N ). Hence (x′n)n∈N is bounded by K ′ · (5b/2 + b ·Kα/N ) + b. Let

b′ := max{ε,K ′ · (5b/2 + b ·Kα/N ) + b}.

Then Corollary 3.28 gives that d(x′n, z) ≤ ε for n ≥ Φ(b′, ηb
′
, βb

′
, ε), so

d(xn, z) ≤ ε

for n ≥ Φ(b′, ηb
′
, βb

′
, ε) +Kc. (Here Φ is as in Theorem 3.14.)

2

We remark that in the above proposition there is room for some numeri-
cal improvement. And we can also easily adapt the proposition to cover the
case where limn→∞ xn does not exist, as explained in the remarks following
Theorem 3.15.
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3.3.4 A further uniformity for asymptotic contractions in
the sense of Kirk

This section corresponds more or less to the paper [28], and most of the results
have appeared there.

In this section we will prove a result concerning asymptotic contractions
in the sense of Kirk which, specialized to the case where the space (X, d) is
complete (and nonempty) and the mapping f : X → X continuous, says that
all Picard iteration sequences (fn(x0))n∈N converge to the unique fixed point
z with a rate of convergence which only depends on an upper bound b on the
initial displacement d(x0, f(x0)) and some moduli for the mapping appearing
as parameters. That is, if we fix the moduli for the mapping then there exists
Ψ : N×N→ N such that for all (X, d), all asymptotic contractions f : X → X (in
the sense of Kirk) with these moduli, all b ∈ N, all x, y ∈ X with d(x, f(x)) ≤ b
and d(y, f(y)) ≤ b, all k ∈ N and all m,n ≥ Ψ(b, k) we have d(fm(x), fn(y)) <
2−k.

This gives a new uniformity of the convergence as n→∞ compared to the
rates of convergence we saw in previous sections, since these were dependent
on respectively a bound on the iteration sequence and strictly positive upper
and lower bounds on the initial displacement d(x0, f(x0)). However, the results
here do not make the previous rates of convergence irrelevant, both because the
results here concern asymptotic contractions in the sense of Kirk rather than the
more general mappings from Definition 3.10, and because we do not construct
an explicit and effective rate of convergence - we only show that the convergence
is uniform in the mentioned way.

As a corollary we prove a result which (specialized to nonempty complete
spaces and continuous mappings) says that far from the fixed point an asymp-
totic contraction in the sense of Kirk moves all points by a large distance.
Specifically, we prove that for an asymptotic contraction in the sense of Kirk all
points x such that d(x, f(x)) ≤ k lie in a set whose diameter is bounded by an
integer b(k) which depends only on k ∈ N and some moduli for the mapping.

Our result here that the rate of convergence only depends on (some moduli
for the mapping and) an upper bound on d(x0, f(x0)) also gives a new uniformity
compared to a previous result by M. Arav, F.E. Castillo Santos, S. Reich and
A.J. Zaslavski. They have shown that for a continuous asymptotic contraction
in the sense of Kirk on a complete metric space the convergence to the fixed
point z is uniform on every bounded set Bn(z) = {x ∈ X : d(x, z) ≤ n} of
the space (see [5])3. Proposition 3.31 will show that our result here subsumes
this result. Our result is an improvement (when it comes to calculating the

3 This follows from Theorem 1.2 in [5] (combined with the fact that any continuous asymp-
totic contraction in the sense of Kirk on a complete (nonempty) metric space has a fixed point).
The main theorem in [5] is a similar result for a variant of asymptotic contractions considered
by Chen, where some assumptions on the mappings are weakened and others strengthened.
(We will comment more on Chen’s work later.) Some of the authors have since extended this
by further weakening assumptions on the mappings, see [6] and [156]. But the convergence to
z is in all these cases shown to be uniform in the starting point except through dependence
on an upper bound on d(x0, z), not an upper bound on d(x0, f(x0)).
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fixed point) in the sense that for unbounded spaces it seems easier in general to
calculate a bound on d(x0, f(x0)) rather than a bound on d(x0, z).

We have earlier remarked that the characterization of asymptotic contrac-
tions in the sense of Kirk on complete, bounded metric spaces shows that they
“behave similarly” to Banach contractions on such spaces - all Picard iteration
sequences converge to the same point, and the rate of convergence is uniform
in the starting point. Our results in this section show that also on unbounded,
complete metric spaces these maps have much in common with ordinary contrac-
tions - the rate of convergence is uniform in the starting point except through
dependence on an upper bound on d(x0, f(x0)), and far away from the common
limit of all Picard iteration sequences any point is moved by a large distance by
the mapping.

A natural further question which we do not answer here is how to suitably
extend the characterization theorem mentioned above for asymptotic contrac-
tions in the sense of Kirk from the bounded setting to the case of unbounded
spaces - in the sense of giving a decent characterization, in terms of a kind
of asymptotic contractions, of the mappings f : X → X on nonempty, com-
plete (possibly unbounded) metric spaces (X, d) such that all Picard iteration
sequences (fn(x0))n∈N converge to the same point with a rate of convergence
which is uniform in the starting point except through dependence on an upper
bound b on the initial displacement d(x0, f(x0)).

A technical lemma

We need a lemma which is reminiscent of Lemma 2.46.

Lemma 3.30. Let φ, φn : [0,∞) → [0,∞) be moduli as in Definition 1.26 for
an asymptotic contraction f : X → X in the sense of Kirk on a metric space
(X, d), such that φn → φ uniformly on [0,∞). Then for each b ∈ N there exist
continuous and increasing moduli φ′b, φ

′
n,b : [0, b]→ [0,∞) such that

(i) φ′b(s) < s for all s > 0,

(ii) the function h : [0, b]→ [0,∞) defined by h(s) = s− φ′b(s) is increasing,

(iii) φ′n,b → φ′b uniformly,

and such that for all metric spaces (X, d) and all asymptotic contractions f :
X → X (in the sense of Kirk) having φ, φn : [0,∞)→ [0,∞) as moduli we have:

∀n ∈ N∀x, y ∈ X
(
d(x, y) ≤ b→ d (fn(x), fn(y)) ≤ φ′n,b(d(x, y))

)
. (3.8)

Proof. The statement and proof of this lemma are somewhat similar to the
statement and proof of Lemma 2.46. Let (X, d) be a metric space and let
f : X → X be an asymptotic contraction in the sense of Kirk with moduli
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φ, φn : [0,∞) → [0,∞) such that φn → φ uniformly on [0,∞). Define now
φ′′b , φ

′′
n,b : [0, b]→ [0,∞) by

φ′′b (s) := sup{φ(δ) : δ ≤ s}

and
φ′′n,b(s) := sup{φn(δ) : δ ≤ s}.

Then φ′′b , φ
′′
n,b are continuous and increasing, φ′′n,b → φ′′b uniformly on [0, b], and

we have
d (fn(x), fn(y)) ≤ φ′′n,b(d(x, y)) (3.9)

for all x, y ∈ X with d(x, y) ≤ b. And since φ(s) < s for all s > 0 and φ is
continuous we can conclude that φ′′b (s) < s for all s > 0. Furthermore, for each
b ≥ ε > 0 the continuous function h′′ : [0, b]→ [0,∞) given by

h′′(s) := s− φ′′b (s)

assumes its infimum on the compact interval [ε, b]. And since we have φ′′b (s) < s
for all b ≥ s > 0 we get

inf {s− φ′′b (s) : s ∈ [ε, b]} > 0.

Define φ′b, φ
′
n,b : [0, b]→ [0,∞) by

φ′b(ε) :=
{

0 if ε = 0,
ε− inf {s− φ′′b (s) : s ∈ [ε, b]} if ε > 0

and
φ′n,b(ε) := max

{
φ′′n,b(ε), φ

′
b(ε)

}
.

We will prove that φ′b, φ
′
n,b fulfill the requirements in Lemma 3.30. It is easy to

see that φ′b, φ
′
n,b are continuous, and the function h : [0, b] → [0,∞) defined by

h(s) = s − φ′b(s) is increasing by the definition of φ′b. And since we saw that
inf {s− φ′′b (s) : s ∈ [ε, b]} > 0 for all b ≥ ε > 0 it follows that φ′b(s) < s for all
b ≥ s > 0. Now for all x, y ∈ X with d(x, y) ≤ b we have

d (fn(x), fn(y)) ≤ φ′n,b(d(x, y)).

This follows since we for all x, y ∈ X with d(x, y) ≤ b have

d (fn(x), fn(y)) ≤ φ′′n,b(d(x, y))

and
φ′′n,b(d(x, y)) ≤ φ′n,b(d(x, y)).

Since φ′b(ε) ≥ φ′′b (ε) for all ε ∈ [0, b] and since φ′′n,b → φ′′b uniformly on [0, b]
we have that φ′n,b → φ′b uniformly on [0, b]. Finally we prove that φ′b, φ

′
n,b are

increasing. Let ε, ε′ ∈ [0, b] with ε′ > ε. Assume that φ′b(ε) > φ′b(ε
′), i.e., that

φ′b(ε)− φ′b(ε′) > 0. Then

(ε− ε′)− (inf h′′ ([ε, b])− inf h′′ ([ε′, b])) > 0,
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so
inf h′′ ([ε′, b])− inf h′′ ([ε, b]) > ε′ − ε. (3.10)

If the restriction of h′′ to [ε, b] takes its infimum for an s ∈ [ε, b] such that
s ∈ [ε′, b], then

inf h′′ ([ε, b]) = inf h′′ ([ε′, b]) ,

contradicting (3.10). If on the other hand the restriction of h′′ to [ε, b] takes its
infimum for an s1 ∈ [ε, b] such that s1 ∈ [ε, ε′], then since φ′′b is increasing we
have

(ε′ − φ′′b (ε′))− (s1 − φ′′b (s1)) ≤ ε′ − s1 ≤ ε′ − ε.

And since
inf h′′ ([ε, b]) = s1 − φ′′b (s1)

and
inf h′′ ([ε′, b]) ≤ ε′ − φ′′b (ε′)

we get
inf h′′ ([ε′, b])− inf h′′ ([ε, b]) ≤ ε′ − ε,

again contradicting (3.10). Thus φ′b is increasing, and since φ′′n,b is increasing
for each n it follows that also φ′n,b is increasing.

2

As an application of Lemma 3.30 we include an observation to the effect that
our main theorem (Theorem 3.32) below covers the already mentioned result of
M. Arav, F.E. Castillo Santos, S. Reich and A.J. Zaslavski in [5].

Proposition 3.31. Let (X, d) be a nonempty, complete metric space, let f :
X → X be a continuous asymptotic contraction in the sense of Kirk, and let
k ∈ N. Then there exists b(k) > 0 such that for all

x ∈ Bk(z) = {y ∈ X : d(y, z) ≤ k},

where z ∈ X is the unique fixed point of f , we have

d(x, f(x)) ≤ b(k).

Moreover, the bound b(k) does not depend on the space (X, d) or the mapping f :
X → X except through moduli φ, φn : [0,∞)→ [0,∞) for f as in Definition 1.26
such that φn → φ uniformly on [0,∞).

Proof. Let z ∈ X be the unique fixed point of f , let k ∈ N and let x ∈ Bk(z).
Let φ′k, φ

′
n,k : [0, k]→ [0,∞) be moduli as given in Lemma 3.30. Then

d(f(x), z) = d(f(x), f(z)) ≤ φ′1,k(d(x, z)) ≤ φ′1,k(k).

Thus d(x, f(x)) ≤ k+φ′1,k(k). We note that the moduli φ′k, φ
′
n,k do not depend

on (X, d) and f except through the moduli φ, φn.
2
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The convergence is uniform in x0 except through dependence on an
upper bound b ≥ d(x0, x1)

Theorem 3.32 and the following corollaries will show that asymptotic contrac-
tions in the sense of Kirk share some important properties with ordinary con-
tractions, even in the setting of unbounded metric spaces.

Theorem 3.32. Let (X, d) be a metric space and let f : X → X be an asymp-
totic contraction in the sense of Kirk. Then all Picard iteration sequences are
Cauchy, and there exists Ψ : N × N → N such that for all k, b ∈ N and all
x, y ∈ X, if

d(x, f(x)) ≤ b

and
d(y, f(y)) ≤ b,

then for all m,n ≥ Ψ(b, k) we have

d(fm(x), fn(y)) < 2−k.

Moreover, this Ψ does not depend on the space (X, d) or the mapping f except
through moduli φ, φn : [0,∞) → [0,∞) for f as in Definition 1.26 such that
φn → φ uniformly on [0,∞).

Proof. Let (X, d) be a metric space and let f : X → X be an asymptotic
contraction in the sense of Kirk with moduli φ, φn : [0,∞)→ [0,∞) for f (as in
Definition 1.26) such that φn → φ uniformly on [0,∞). For the case b = 0 we
can let Ψ(0, k) = 0 for all k ∈ N, since any fixed point of f is necessarily unique.
So we can concentrate on the case b > 0.

We will show first that for all b ∈ N with b > 0 and for all b > ε > 0 there
exists a natural number M(b, ε) such that for all x ∈ X with d(x, f(x)) ≤ b we
have

d(fn(x), fn+1(x)) < ε

for n ≥M(b, ε). And moreover, this M(b, ε) will depend on (X, d) and f : X →
X only through the moduli φ, φn.

Let b ∈ N with b > 0, and let x0 ∈ X satisfy d(x0, f(x0)) ≤ b. Let φ′b, φ
′
n,b :

[0, b] → [0,∞) be moduli as provided by Lemma 3.30. We note that these
moduli do not depend on (X, d) and f except through the moduli φ, φn. Given
ε > 0 with b > ε we let

δ =
ε− φ′b(ε)

2
,

and we let N ∈ N be so large that n ≥ N gives

|φ′n,b(s)− φ′b(s)| < δ

for all s ∈ [0, b]. We note that δ ≤ (s− φ′b(s))/2 for all ε ≤ s ≤ b, and conclude
that for n ≥ N we have

d(fn(x0), fn+1(x0)) ≤ φ′n,b(d(x0, f(x0))) ≤ φ′n,b(b) < φ′b(b) + δ ≤ b− δ.
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Similarly, if b− δ ≥ ε, then for n ≥ 2N we have

d(fn(x0), fn+1(x0)) ≤ φ′n−N,b(d(fN (x0), fN+1(x0)))
≤ φ′n−N,b(b− δ)
< φ′b(b− δ) + δ

≤ b− 2δ.

Let k1 = min{n ∈ N : 0 ≤ b − nδ < ε}. Notice that such k1 exists, since
0 < δ < ε/2. By induction we conclude that for 1 ≤ k′ ≤ k1 and for n ≥ k′N
we have

d(fn(x0), fn+1(x0)) ≤ φ′n−(k′−1)N,b

(
d(f (k′−1)N (x0), f (k′−1)N+1(x0))

)
≤ φ′n−(k′−1)N,b (b− (k′ − 1)δ)

< φ′b (b− (k′ − 1)δ) + δ

≤ b− k′δ.

Thus for M(b, ε) = k1N and n ≥ M(b, ε) we have d(fn(x0), fn+1(x0)) < ε.
We note that M(b, ε) does not depend on x0 except through the bound b on
d(x0, f(x0)), i.e., for all x ∈ X with d(x, f(x)) ≤ b we have

d(fn(x), fn+1(x)) < ε (3.11)

for n ≥ M(b, ε). And furthermore, this M(b, ε) depends on (X, d) and f only
through the moduli φ′b, φ

′
n,b, and thus only through the moduli φ, φn.

We can now recycle a part of the proof of Theorem 3.26. Let η, β be moduli
for f as given in Definition 3.10. We remark that Proposition 7 in [54] shows
that we can assume η, β to be independent of (X, d) and f except through
moduli φ, φn : [0,∞) → [0,∞) for f as in Definition 1.26 such that φn → φ
uniformly on [0,∞). Let furthermore

N ′ := β1
1/2(η1(1/2)/2),

δ′ := η1(1/2) · 1/8,

and
M = M(b, δ′/(N ′ + 1)). (3.12)

Note that δ′/(N ′ + 1) < 1/2. Now for all x ∈ X with d(x, f(x)) ≤ b and for all
n ≥M we have

d(fn(x), fn+1(x)) < 1/2 (3.13)

and
d(fn(x), fn+N ′(x)) < δ′. (3.14)

So Lemma 3.4 yields that for all x ∈ X with d(x, f(x)) ≤ b and for all m,n ≥M
we have

d(fm(x), fn(x)) > 1 (3.15)
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or
d(fm(x), fn(x)) ≤ 1/2. (3.16)

Let x0 ∈ X with d(x0, f(x0)) ≤ b. Then, in particular, for n ≥ M we have
d(fM (x0), fn(x0)) > 1 or d(fM (x0), fn(x0)) ≤ 1/2. Let y0 = fM (x0). If for all
n ≥M we have

d(y0, f
n(x0)) ≤ 1/2,

then (fn(y0))n∈N is bounded by 1. Suppose now that there exists n ≥ M such
that d(y0, f

n(x0)) > 1. Let n′ > M be the first such n ∈ N. Then

d(fn
′−1(x0), fn

′
(x0)) + d(fn

′−1(x0), y0) ≥ d(fn
′
(x0), y0) > 1,

so
d(fn

′−1(x0), y0) ≤ 1/2

gives
d(fn

′−1(x0), fn
′
(x0)) > 1/2.

But by (3.13) we have

d(fn
′−1(x0), fn

′
(x0)) = d(fn

′−1(x0), f(fn
′−1(x0))) < 1/2,

which thus contradicts our choice of M and n′. Thus d(y0, f
n(x0)) ≤ 1/2 for

all n ≥M , and hence (fn(y0))n∈N is bounded by 1. By Corollary 3.28 we know
that all Picard iteration sequences are Cauchy, and if for some x ∈ X we have
that z := limn→∞ fn(x) exists, then all Picard iteration sequences converge to
z. Furthermore, all Picard iteration sequences bounded by 1 converge to z with
a common rate of convergence, i.e. there exists Φ : N → N such that for all
k ∈ N and for all x ∈ X such that (fn(x))n∈N is bounded by 1 we have that
n ≥ Φ(k) gives

d(fn(x), z) < 2−k.

And Φ depends on (X, d) and f only through the moduli η, β, and thus only
through the moduli φ, φn.

If (fn(x))n∈N does not converge for any x ∈ X then we consider the com-
pletion X of X, in which the limit z exists. We can then extend f to be defined
on X ∪ {z} by letting f(z) = z. As previously noted it is then easy to see that
f is a generalized asymptotic contraction with moduli η̃b : (0, b] → (0, 1) and
β̃b : (0, b] × (0,∞) → N defined by for example η̃b(ε) := η2b(ε/2), β̃b(l, ε) :=
β2b(l/2, ε) for each b > 0. Thus also in this case there exists a common rate of
convergence (to the same point) Φ : N → N for all Picard iteration sequences
bounded by 1. (We note that even if the limit z ∈ X existed to begin with we
could have used the modified moduli η̃b and β̃b instead of ηb and βb to determine
a rate of convergence Φ.)

Hence for all x ∈ X with d(x, f(x)) ≤ b, for all k ∈ N and for all n ≥M+Φ(k)
(where M is as in (3.12)) we have

d(fn(x), z) < 2−k.
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And so for all x, y ∈ X with d(x, f(x)) ≤ b and d(y, f(y)) ≤ b, for all k ∈ N,
and for all m,n ≥M + Φ(k + 1) we have

d(fm(x), fn(y)) < 2−k.

And the number M + Φ(k + 1) depends only on the moduli of the mapping f ,
on b and on k. Hence we can define Ψ : N× N→ N as desired by letting

Ψ(b, k) = M + Φ(k + 1)

if b > 0 and by letting Ψ(0, k) = 0.
2

Corollary 3.33. Let (X, d) be a (nonempty) complete metric space and let
f : X → X be an asymptotic contraction in the sense of Kirk. Then all Picard
iteration sequences (fn(x))n∈N converge to the same point z with a rate of con-
vergence which is uniform in the starting point except through dependence on an
upper bound on the initial displacement, i.e., there exists Ψ : N × N → N such
that for all k, b ∈ N and all x ∈ X, if

d(x, f(x)) ≤ b

then for all n ≥ Ψ(b, k) we have

d(fn(x), z) < 2−k.

Proof. Immediate from Theorem 3.32.
2

We include also a result concerning a rate of asymptotic regularity. This is
a corollary to the proof of Theorem 3.32.

Corollary 3.34. Let (X, d) be a metric space, and let f : X → X be an
asymptotic contraction in the sense of Kirk, which for each b ∈ N has moduli
φ′b, φ

′
n,b : [0, b] → [0,∞) as provided by Lemma 3.30. Let γ : N × (0,∞) → N

give for each b ∈ N a rate of convergence for φ′n,b to φ′b on [0, b], i.e.,

∀b ∈ N∀ε > 0∀n ≥ γ(b, ε)∀s ∈ [0, b]
(
|φ′n,b(s)− φ′b(s)| < ε

)
.

Let b ∈ N, b > 0, and let x0 ∈ X be such that d(x0, f(x0)) ≤ b. Define (xn)n∈N
by letting xn+1 := f(xn). Then (xn)n∈N has a rate of asymptotic regularity as
follows: Let ε ∈ (0, b), and let

δ :=
ε− φ′b(ε)

2
,

N := γ(b, δ),

k1 :=
⌈
b− ε
δ

⌉
+ 1,

and M(b, ε, γ, φ′b) = k1N . Then n ≥M(b, ε, γ, φ′b) gives

d(xn, f(xn)) < ε.
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Proof. This follows by considering the proof of Theorem 3.32 up to (3.11).
2

The following corollary is a counterpart to Proposition 3.31. Loosely speak-
ing it implies that far from the fixed point an asymptotic contraction in the
sense of Kirk moves all points by a large distance.

Corollary 3.35. Let (X, d) be a metric space, let f : X → X be an asymptotic
contraction in the sense of Kirk, and let k ∈ N. Then there exists b(k) > 0 such
that for all x, y ∈ X with

d(x, f(x)) ≤ k and d(y, f(y)) ≤ k

we have
d(x, y) ≤ b(k).

Moreover, the bound b(k) does not depend on the space (X, d) or the mapping
f : X → X except through moduli φ, φn : [0,∞) → [0,∞) for f (as in Defini-
tion 1.26) such that φn → φ uniformly on [0,∞).

Proof. Assume k > 0, for otherwise the claim is trivial. Let Ψ be the common
Cauchy rate from Theorem 3.32, and for each b > 0 let φ′b, φ

′
n,b be moduli as

given in Lemma 3.30. Then for all x ∈ X with

d(x, f(x)) ≤ k

we have
d(fm(x), fΨ(k,1)(x)) < 1/2

for all m ≥ Ψ(k, 1). Hence we have

d(fm(x), x) ≤ k +
Ψ(k,1)−1∑
i=1

φ′i,k(k) + 1/2

for all x ∈ X with d(x, f(x)) ≤ k and for all m ≥ Ψ(k, 1). So let x, y ∈ X be
such that d(x, f(x)) ≤ k and d(y, f(y)) ≤ k, let ε > 0 and let m ≥ Ψ(k, 1) be
such that

d(fm(x), fm(y)) < ε.

Then

d(x, y) ≤ d(x, fm(x)) + d(fm(x), fm(y)) + d(fm(y), y)
< d(x, fm(x)) + d(y, fm(y)) + ε,

and so

d(x, y) < 2k + 2 ·
Ψ(k,1)−1∑
i=1

φ′i,k(k) + 1 + ε.

And since ε > 0 was arbitrary we get

d(x, y) ≤ 2k + 2 ·
Ψ(k,1)−1∑
i=1

φ′i,k(k) + 1.



106 3 Asymptotic contractions

So we let

b(k) = 2k + 2 ·
Ψ(k,1)−1∑
i=1

φ′i,k(k) + 1.

And this bound does not depend on the space, the mapping or the points x, y
except through moduli φ, φn : [0,∞) → [0,∞) for the mapping (as in Defini-
tion 1.26) such that φn → φ uniformly on [0,∞).

2

Corollary 3.36. Let (X, d) be a nonempty, complete metric space, let f : X →
X be a continuous asymptotic contraction in the sense of Kirk, and let k ∈ N.
Then there exists b(k) > 0 such that for all x ∈ X with

d(x, f(x)) ≤ k

we have
x ∈ Bb(k)(z),

where z is the unique fixed point of f . Moreover, the bound b(k) does not depend
on the space (X, d) or the mapping f : X → X except through moduli φ, φn :
[0,∞) → [0,∞) for f (as in Definition 1.26) such that φn → φ uniformly on
[0,∞).

Proof. Immediate from Corollary 3.35 since (X, d) nonempty and complete
and f continuous ensures the existence of a unique fixed point.

2

3.4 Other results

In this section we will briefly survey some of the results which have been proved
by others concerning various versions of asymptotic contractions, and we will
comment on the relationship between this work and the results we have pre-
sented earlier in the chapter.

3.4.1 A condition by Chen giving the existence of a fixed
point without assuming continuity

In [36], Y.-Z. Chen proves a theorem on asymptotic contractions which is sim-
ilar to Kirk’s. Several of the conditions are weaker than the ones in [83]. In
particular, it is no longer assumed that f is continuous, and it is enough that φ
and one particular φn∗ are upper semicontinuous (here φ, φn∗ are as in Kirk’s
definition). It is furthermore enough that limn→∞ φn = φ uniformly on any
bounded interval [0, b]. (A condition which allows one to drop the requirement
that one iteration sequence is bounded is also specified.) It is, however, assumed
that φn∗(0) = 0. We give for reference the theorem.
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Theorem 3.37 (Chen). Let (X, d) be a complete metric space, and let f : X →
X be such that

∀n ∈ N∀x, y ∈ X
(
d
(
fn(x), fn(y)

)
≤ φn

(
d(x, y)

))
, (3.17)

where φn : [0,∞) → [0,∞) and limn→∞ φn = φ, uniformly on any bounded
interval [0, b]. Suppose that φ is upper semicontinuous and that φ(t) < t for all
t > 0. Furthermore, suppose that there exists a positive integer n∗ such that φn∗
is upper semicontinuous and

φn∗(0) = 0.

If there exists x0 ∈ X such that the Picard iteration sequence (fn(x0))n∈N is
bounded, then f has a unique fixed point z, and limn→∞ fn(x) = z for all x ∈ X.

We will sometimes call a function f : X → X on a metric space satisfying
the conditions in Theorem 3.37 asymptotic contractions in the sense of Chen,
more precisely:

Definition 3.38. A function f : X → X on a metric space (X, d) is called an
asymptotic contraction in the sense of Chen with moduli φ, φn : [0,∞)→ [0,∞)
if there exists n∗ ≥ 1 such that φn∗(0) = 0, such that φ and φn∗ are upper
semicontinuous, φ(t) < t for all t > 0 and for all n ∈ N and x, y ∈ X,

d (fn(x), fn(y)) ≤ φn (d(x, y)) ,

and moreover limn→∞ φn = φ, uniformly on any bounded interval [0, b].

We note in connection with this theorem that the arguments in [54] which
allow us to subsume Definition 1.26 under Definition 3.1 would work just as well
if we assume that the moduli φ, φn in Definition 1.26 are upper semicontinuous
instead of continuous and that the φn converge uniformly on bounded intervals
[0, b] instead of on the range of d, since upper semicontinuous functions φ, φn :
[0,∞) → [0,∞) are bounded on bounded closed intervals [s, b]. Definition 6
in [54] would be unchanged, in Proposition 7 one would have to say that the
sequence4 (φ̃n)n∈N converges uniformly to φ̃ on [l, b] for all b > l > 0 instead of
saying that it converges uniformly on [l,∞) for all l > 0, but the second part of
Proposition 7 and also Proposition 9 would remain unchanged, except that one
would change every instance of “continuous” to “upper semicontinuous”. This
does not, of course, show that Definition 3.38 is subsumed by Definition 3.1.

However, in [5], M. Arav, F.E. Castillo Santos, S. Reich and A.J. Zaslavski
have shown that for an asymptotic contraction f : X → X in the sense of Chen
(with a bounded Picard iteration sequence) on a nonempty complete metric
space (X, d) the convergence to the fixed point z is uniform on every bounded set
Bn(z) = {x ∈ X : d(x, z) ≤ n} of the space, i.e., there is a rate of convergence for
the Picard iteration sequences (fn(x0))n∈N which only depends on the starting
point x0 through an upper bound on d(x0, z). Thus if the space is required to
be bounded and complete we have the following.

4We included the construction appearing in Definition 6 in [54] in (3.1) and (3.2) in our
discussion after Proposition 3.2, but called the resulting functions ψn, ψ rather than φ̃n, φ̃.



108 3 Asymptotic contractions

Proposition 3.39. Let (X, d) be a bounded, complete metric space, and let
f : X → X be an asymptotic contraction in the sense of Chen. Then f is an
asymptotic contraction in the sense of Kirk.

Proof. Since the space is bounded this follows by the mentioned result of Arav
et al. together with Theorem 3.21. (If the space is empty this is trivial.)

2

The condition φn∗(0) = 0 in the definition of an asymptotic contraction in
the sense of Chen is a real restriction, as the following example shows.

Example 3.40. This example will show that there exist a bounded, complete
metric space (X, d) and a continuous mapping f : X → X which is an asymp-
totic contraction in the sense of Kirk, so that Theorem 1.27 applies, but which
is not an asymptotic contraction in the sense of Chen. Let

A := {xn0 : n ∈ N},

where the xn0 are distinct points, i.e., such that xn0 6= xm0 for m 6= n, and let

B :=
{
xmn : n ∈ N, m ∈ {1, 2}

}
,

where xmn 6= xm
′

n′ if n 6= n′ or m 6= m′, and where A∩B = ∅. Let z be such that
z 6∈ A ∪B, and let

X := {z} ∪A ∪B.

Define a metric d on X such that

d(z, xn0 ) = 2−n for n ∈ N,
d(xn0 , x

m
0 ) = 2−n − 2−m for m,n ∈ N, m 6= n,

d(x1
n, x

2
n) = 2−n−1 for n > 0,

d(x2
n, x

m
0 ) = 1 + (1− 2−m) for n > 0 and m ∈ N,

d(x2
n, z) = 2 for n > 0,

d(x1
n, x

m
0 ) = d(x2

n, x
m
0 ) + d(x1

n, x
2
n) for n > 0 and m ∈ N,

d(x1
n, z) = d(x2

n, z) + d(x1
n, x

2
n) for n > 0,

d(xmn , x
m′

n′ ) = d(xmn , x
0
0) + d(x0

0, x
m′

n′ ) for n, n′ > 0 and n 6= n′.

Then (X, d) is a bounded, complete metric space. Let now f : X → X be given
by

f(x) :=


z if x = z,
xm+1

0 if x = xm0 , m ∈ N,
x2
n if x = x1

n, n > 0,
x0

0 if x = x2
n, n > 0.

Then all Picard iteration sequences converge to the unique fixed point z with a
rate of convergence which is uniform in the starting point, so f is an asymptotic
contraction in the sense of Kirk. We note also that f is continuous. But f is
not an asymptotic contraction in the sense of Chen. To see this we assume for
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a contradiction that there exists a positive integer n∗ such that φn∗ : [0,∞)→
[0,∞) is upper semicontinuous and satisfies φn∗(0) = 0 and

∀x, y ∈ X
(
d
(
fn∗(x), fn∗(y)

)
≤ φn∗

(
d(x, y)

))
.

Let ε := 2−n∗+1. Since φn∗ is upper semicontinuous and φn∗(0) = 0 there exists
a δ > 0 such that for all t > 0 with t < δ we have φn∗(t) < ε. This implies that
if d(x, y) < δ then

d
(
fn∗(x), fn∗(y)

)
≤ φn∗

(
d(x, y)

)
< ε = 2−n∗+1.

Let m > 0 be so large that 2−m−1 < δ. Then for x := x1
m, y := x2

m we have

d(x, y) = 2−m−1 < δ

and
d
(
fn∗(x), fn∗(y)

)
= 2−n∗+1 = ε,

which is a contradiction.

Thus requiring that φn∗(0) = 0 puts a restriction on what mappings are
covered, but it also allows one to obtain the existence of a fixed point without
requiring that f is continuous. We can adapt a part of Chen’s argument in [36]
to get a similar result for asymptotic contractions in the sense of Gerhardy. In
the following proposition we develop a criterion which allows us to infer the
existence of a fixed point without the assumption of continuity. This will in a
sense work like the condition φn∗(0) = 0 in [36].

Proposition 3.41. Let (X, d) be a complete metric space, and let f : X → X
be an asymptotic contraction in the sense of Gerhardy with moduli ηb and βb for
each b > 0. For each b > 0 let (φbn)n∈N be a sequence of functions which satisfy
Definition 3.1. Let b′ > 0 and let x0 ∈ X be such that the Picard iteration
sequence (xn)n∈N is b′-bounded. Let z := limn→∞ xn. Let m ∈ N be such that
lim supt→0 φ

b′

m(t) <∞. Then f(z) = z.

Proof. We have for each n ∈ N that

d
(
fn+m(x0), fm(z)

)
≤ φb

′

m

(
d
(
fn(x0), z

))
· d
(
fn(x0), z

)
.

Since limn→∞ d(fn(x0), z) = 0 and lim supt→0 φ
b′

m(t) <∞, we get

lim
n→∞

d
(
fn+m(x0), fm(z)

)
= 0,

i.e., limn→∞ fn+m(x0) = fm(z). Thus fm(z) = z. We know by Lemma 3.8
that (fn(z))n∈N is a Cauchy sequence, hence f(z) = z.

2

We note that in the case covered by Proposition 3.41 each iteration sequence
converges to z, and the rate of convergence from Theorem 3.14 applies. This
follows from Theorem 3.15 or Theorem 3.16.
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Several authors have taken the paper by Chen as a starting point for fur-
ther studies. I.D. Arandelović and D.S. Petković have developed versions of
Corollary 2.4 in [36], where a condition is given which allows one to remove
the assumption that one Picard iteration sequence is bounded from the theo-
rem on asymptotic contractions in the sense of Chen. We give here first Chen’s
corollary:

Corollary 3.42 (Chen). Let (X, d) be a (nonempty) complete metric space,
and let f : X → X be an asymptotic contraction in the sense of Chen with
moduli φ, φn : [0,∞)→ [0,∞). Assume that

lim sup
t→∞

φ(t)
t

< 1.

Then f has a unique fixed point z, and limn→∞ fn(x0) = z for each x0 ∈ X.

Arandelović and Petković weaken some assumptions in this setting - for more
information on this we refer to [3] and [4]. The main theorem in [4] has very
weak requirements on the sequence of moduli (φn)n∈N, but requires of the limit
φ that lim inft→∞ φ(t)/t < 1. In detail the result reads as follows:

Theorem 3.43 (Arandelović,Petković). Let (X, d) be a (nonempty) complete
metric space, let f : X → X be continuous, and let (φn)n∈N be a sequence of
functions φn : [0,∞)→ [0,∞) such that

∀n ∈ N∀x, y ∈ X
(
d
(
fn(x), fn(y)

)
≤ φn

(
d(x, y)

))
, (3.18)

and such that there exists an upper semicontinuous function φ : [0,∞)→ [0,∞)
such that φ(t) < t for any t > 0, φ(0) = 0, and φn → φ, uniformly on any
bounded interval. If

lim inf
t→∞

φ(t)
t

< 1,

then f has a unique fixed point z ∈ X, and all Picard iteration sequences
(fn(x0))n∈N converge to z, uniformly on each bounded subset of X.

Remark 3.44. In the statement of Theorem 3.43 the sequence (φn)n∈N is only
required to converge uniformly on each bounded interval [0, b], but in the proof
of this theorem given in [4] it is explicitly stated, and seemingly used, that
(φn)n∈N converges uniformly on the range of d. Whether this is essential is
unclear.

Corollary 3.45. Let (X, d) be a bounded, complete metric space, and let f :
X → X satisfy the conditions in Theorem 3.43. Then f is an asymptotic
contraction in the sense of Kirk.

Proof. Immediate from Theorem 3.43 and Theorem 3.21.
2

Here we wish to remark on an oversight: In [3] and [4] it is claimed that
continuity of the mapping f : X → X is necessary in the proof of Theorem 2.1
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in [36] (i.e. Theorem 3.37). And in line with this it is claimed that Theorem 1
in [3] and Theorem 1 in [4] (i.e. Theorem 3.43) generalize Corollary 2.4 in [36]
(i.e. Corollary 3.42), even though continuity of f : X → X is assumed in
the theorems of Arandelović and Petković. The argument that continuity of f
should be necessary in Theorem 3.37 is based on the following example, which
was used by Jachymski and Jóźwik in [76] to show that continuity of f : X → X
is necessary in Kirk’s original theorem: Consider X = [0, 1] with the natural
metric and f : [0, 1→ [0, 1] defined by

f(x) :=
{

1 if x = 0,
x/2 if x 6= 0,

and also the sequence of moduli φn : [0,∞)→ [0,∞) defined by φn(t) = 2−n+1.
In [3] and [4] it is claimed that this mapping with these moduli satisfy all the
conditions in Theorem 3.37. However, this is not the case, since there exists no
positive integer n∗ such that φn∗(0) = 0. And the existence of such an n∗ is one
of the conditions in Theorem 3.37.

3.4.2 Some theorems giving uniformity of the convergence
on bounded subsets

We have already mentioned the theorem by Arav et al. [5], which says that for an
asymptotic contraction f : X → X in the sense of Chen (with a bounded Picard
iteration sequence) on a nonempty complete metric space (X, d) the convergence
to the fixed point z is uniform on every bounded set Bn(z) = {x ∈ X : d(x, z) ≤
n}. Some of the authors of [5] have continued this line of investigation in [6]
and [156]. In [6] conditions are given which ensures that all Picard iteration
sequences converge to the unique fixed point z with a rate of convergence which
only depends on the starting point x0 through an upper bound on d(x0, z), in a
setting where one already assumes that there exists a fixed point of the mapping
f : X → X.

Theorem 3.46 (Arav,Reich,Zaslavski). Let (X, d) be a complete metric space,
and let f : X → X. Let z ∈ X be a fixed point of f . Assume that

∀x0 ∈ X
(
d
(
fn(x0), z

)
≤ φn(d(x0, z))

)
for all natural numbers n, where the functions φn : [0,∞) → [0,∞) satisfy the
following conditions:

1. For each b > 0 there is a natural number nb such that

sup{φn(t) : t ∈ [0, b] and n ≥ nb} <∞,

2. there exists an upper semicontinuous function φ : [0,∞) → [0,∞) satis-
fying φ(t) < t for all t > 0 and a strictly increasing sequence of natural
numbers (mk)k∈N such that limk→∞ φmk = φ, uniformly on any bounded
interval [0, b].
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Then fn(x0)→ z for all x0 ∈ X, uniformly on each bounded subset of X.

They also show that this theorem has a converse in the following sense: if
f : X → X and z ∈ X is such that fn(x0) → z for all x0 ∈ X, uniformly on
each bounded subset of X, and if in addition f(C) is bounded for any bounded
subset C ⊆ X, then f satisfies all the conditions of Theorem 3.46 for suitable
(φn)n∈N.

In [156] the following theorem concerning asymptotic contractions is proved.

Theorem 3.47 (Reich,Zaslavski). Let (X, d) be a complete metric space, and
let f : X → X. Assume that

∀x, y ∈ X
(
d
(
fn(x), fn(y)

)
≤ φn(d(x, y))

)
for all natural numbers n, where φn : [0,∞)→ [0,∞), n ∈ N. Suppose that:

1. For each b > 0 there is a natural number nb such that

sup{φn(t) : t ∈ [0, b] and n ≥ nb} <∞.

2. There exists an upper semicontinuous function φ : [0,∞) → [0,∞) satis-
fying φ(t) < t for all t > 0 and a strictly increasing sequence of natural
numbers (mk)k∈N such that limk→∞ φmk = φ, uniformly on any bounded
interval [0, b].

3. There exists x0 ∈ X such that (fn(x0))n∈N is bounded.

Then there exists a unique point z ∈ X such that fn(x0) → z for all x0 ∈ X,
uniformly on each bounded subset of X. And if there exists a natural number
n∗ > 0 such that fn∗ is continuous at z, then z is a fixed point.

Similarly to the case for Theorem 3.43 we get as a corollary that for bounded
spaces the mappings satisfying the conditions in this theorem are asymptotic
contractions in the sense of Kirk5.

Corollary 3.48. Let (X, d) be a bounded, complete metric space, and let f :
X → X satisfy the conditions in Theorem 3.47. Then f is an asymptotic
contraction in the sense of Kirk.

Proof. Immediate from Theorem 3.47 and Theorem 3.21.
2

3.4.3 Suzuki’s asymptotic contractions of the final type

When first discussing Kirk’s asymptotic contractions in Chapter 1 we mentioned
that the purpose was to provide an asymptotic version of the Boyd–Wong the-
orem (Theorem 1.20). Thus it is a natural question whether one also can prove

5Both of the above theorems were originally formulated in a context where 0 6∈ N, but this
is inessential.
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an asymptotic version of the Meir–Keeler theorem, which generalizes the theo-
rem of Boyd and Wong. This was in fact mentioned as an open problem in [83].
In [167] T. Suzuki showed that it is indeed the case that one can obtain an
asymptotic version of the Meir–Keeler theorem. He introduced asymptotic con-
tractions of Meir–Keeler type, and showed that these mappings include both
the asymptotic contractions from Definition 1.25 (which include the asymptotic
contractions in the sense of Kirk) and the Meir–Keeler contractions, i.e., the
mappings f : X → X on a metric space (X, d) which satisfy (1.2) from Theo-
rem 1.22. For the latter he made use of Lim’s characterization from [125], which
we repeated as Theorem 1.23. Suzuki’s definition and main theorem from [167]
are as follows.

Definition 3.49 (Suzuki). Let (X, d) be a metric space and let f : X → X.
The mapping f is called an asymptotic contraction of Meir–Keeler type (ACMK,
for short) if there exists a sequence (φn)n∈N of functions φn : [0,∞) → [0,∞)
such that

1. lim supn→∞ φ(ε) ≤ ε for all ε ≥ 0.

2. ∀ε > 0∃δ > 0∃ν ∈ N∀t ∈ [ε, ε+ δ]
(
φν(t) ≤ ε

)
.

3. ∀n ∈ N∀x, y ∈ X
(
x 6= y → d

(
fn(x), fn(y)

)
< φn(d(x, y))

)
.

Theorem 3.50 (Suzuki). Let (X, d) be a complete metric space and let f :
X → X be an ACMK on X. Assume that there exists a natural number m > 0
such that fm is continuous. Then f has a unique fixed point z, and fn(x0)→ z
for all x0 ∈ X.

Since every asymptotic contraction in the sense of Kirk is an ACMK it
follows from this theorem that one can drop the assumption in Kirk’s original
theorem that one iteration sequence is bounded6. It is unclear to what extent
the convergence in Theorem 3.50 is uniform. However, for a subsequent further
generalization of the asymptotic contractions of Meir–Keeler type this is settled.
In [168] Suzuki introduced the so-called asymptotic contractions of the final
type, and proved that this notion is strictly more general than the notion of an
asymptotic contraction of Meir–Keeler type.

Definition 3.51 (Suzuki). Let (X, d) be a metric space and let f : X → X.
The mapping f is called an asymptotic contraction of the final type (ACF, for
short) if

1. lim sup
δ→+0

{
lim sup
n→∞

d
(
fn(x), fn(y)

)
: d(x, y) < δ

}
= 0.

2. For all ε > 0 there exists δ > 0 such that for all x, y ∈ X with

ε < d(x, y) < ε+ δ

there exists ν ∈ N such that d
(
fν(x), fν(y)

)
≤ ε.

6This is our Corollary 3.27, but it was proved first in [167].
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3. For all x, y ∈ X with x 6= y there exists ν ∈ N such that

d
(
fν(x), fν(y)

)
< d(x, y).

4. For all x ∈ X and ε > 0 there exist δ > 0 and ν ∈ N, ν > 0, such that

ε < d
(
f i(x), f j(x)

)
< ε+ δ implies d

(
f i+ν(x), f j+ν(x)

)
≤ ε

for all i, j ∈ N with i > 0 and j > 0.

A main result in [168] is a characterization of the ACF s on a metric space
(X, d) as exactly the mappings f : X → X such that all Picard iteration se-
quences (fn(x0))n∈N are Cauchy, and such that limn→∞ d(fn(x), fn(y)) = 0
for all x, y ∈ X. Thus on a nonempty complete metric space the ACF s are
the mappings such that all Picard iteration sequences converge to the same
point. Hence even in the setting of bounded metric spaces the concept of an
ACF is strictly more general than the concept of an asymptotic contraction
in the sense of Kirk, since e.g., the mapping in Example 1.10 is an ACF, but
not an asymptotic contraction in the sense of Kirk. And because of this char-
acterization the ACF s are indeed in some sense the most general asymptotic
contractions possible. But this also means that in general it is not possible to
find a rate of convergence for ACF s as such which has uniformity properties
with respect to the starting point. The convergence of (fn(x0))n∈N will in the
general case depend essentially on x0. This sets Suzuki’s theorem in [168] apart
from the results presented earlier in this chapter, where we could prove that the
convergence is highly uniform, and also calculate explicit and uniform rates of
convergence.

3.4.4 Other variants

Other work on variants of asymptotic contractions includes considering asymp-
totic pointwise contractions, where the moduli take a point x ∈ X as an ar-
gument. These were first considered in the setting of Banach spaces, and a
fixed point theorem for asymptotic pointwise contractions defined on a bounded,
closed, convex subset of a superreflexive Banach space was announced by Kirk
in [84]. This was proved via ultrapower techniques, but an elementary proof (in
the sense that ultrapower methods are not needed) was given by Kirk and Xu
in [86]. Asymptotic pointwise contractions in the setting of metric spaces are
studied in [73], and it is proved that a so-called strongly asymptotic pointwise
contraction f : X → X on a bounded metric space (X, d) for which the convex-
ity structure A(X) of admissible subsets is compact, has a fixed point to which
all Picard iteration sequences converge. Since dependence on x ∈ X is built in
in the definition of an asymptotic pointwise contraction it seems unlikely that
the convergence should be uniform.

Lastly we mention that K. Wlodarczyk and various coauthors have studied
asymptotic contractions in the context of set-valued dynamic systems in uniform
spaces, see [172, 173, 174, 175, 176], and Razani et al. have studied asymptotic
contractions in the modular space, see [154].



Chapter 4

Generalized contractive
mappings

In this chapter we will present the results of a case study in proof mining con-
cerned with a general class of mappings of contractive type. These results
have appeared in [27], but the material has here been somewhat revised1 and
some comments have been added. Proposition 4.3, Theorem 4.6, and Lem-
mas 4.12, 4.13, and 4.16 have also (essentially) appeared in the author’s Master
thesis [23].

Our starting point is a theorem which was proved by Rhoades [158], by
Kincses and Totik [81], and in a less general form by Hicks and Sharma [69],
concerning fixed points of a very general class of mappings of contractive type.
By isolating the requirements on the mapping, specifically on the contractivity
condition in question, we develop an extension of the theorem from the compact
case to the setting of arbitrary metric spaces. This is accomplished by using
(negative translation and) monotone functional interpretation to study the con-
cepts in question (along with the theorem and one of its proofs), and below we
will include some remarks on how the extension from the case where the space
is compact to the case of arbitrary metric spaces can be viewed as an instance
of a general phenomenon.

We also supply numerical information concerning the convergence of the
Picard iteration sequence to the fixed point, in the form of a rate of convergence2

for the Picard iteration sequences to the fixed point. That we could obtain a full
rate of convergence is in line with what we proved in Chapter 2 (when we restrict
to bounded metric spaces), and a discussion of how the methods from Chapter 2
are relevant for the mappings we consider here was included in Section 2.5.

The uniformity features of the rate of convergence exhibited means that we
can relate the results in this chapter to the material in Chapter 3. This was
already included in Chapter 3, but the proofs there made reference to results in

1Notably because we here let 0 ∈ N.
2If the space is not complete we have a Cauchy rate instead.
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this chapter.

4.1 Introduction

If a function f : X → X on a nonempty compact metric space (X, d) is con-
tractive, i.e., satisfies

∀x, y ∈ X(x 6= y → d(f(x), f(y)) < d(x, y)),

then it has a unique fixed point, and for every starting point x0 ∈ X the it-
eration sequence (fn(x0))n∈N converges to this fixed point. This well-known
theorem due to Edelstein has led to the study of many generalizations of the
notion of contractivity. (For a simple proof of Edelstein’s theorem, see e.g. [64].)
The hope when considering such generalizations is then to obtain corresponding
generalizations of the fixed point theorem. These generalized contraction prop-
erties are also considered as conditions on functions f : X → X on complete
metric spaces, or on metric spaces in general. In [157], B.E. Rhoades compares
25 contraction conditions, most of them previously considered in the literature,
and also considers generalizations of the 25 basic conditions to the cases where
the condition holds for various iterates of the function. The basic conditions are
numbered (1)–(25). P. Collaço and J. Carvalho e Silva completes the compari-
son of the 25 conditions in [38], so that the implications that hold between the
different conditions are completely determined. Specifically, it is known that
condition (25),

∀x, y ∈ X(x 6= y → d(f(x), f(y)) < diam {x, y, f(x), f(y)}),

is the most general. So if f satisfies one of the conditions (1)–(24), then it also
satisfies condition (25). Hence a fixed point theorem for functions satisfying (25)
would give as corollaries corresponding fixed point theorems for conditions (1)–
(24). However, a function on a complete metric space satisfying (25) need not
have a fixed point, consider for example f : R→ R, f(x) := x+ 1. But if one in
addition assumes that f is continuous and X compact, then f has a unique fixed
point, and for any x0 ∈ X the Picard iteration sequence (fn(x0))n∈N converges
to this fixed point. This result also extends to the case where (25) holds for an
iterate of the function, i.e., if there exists p ∈ N such that

∀x, y ∈ X(x 6= y → d(fp(x), fp(y)) < diam {x, y, fp(x), fp(y)}).

These conditions, where we require that for some p ∈ N we should have that
fp satisfies respectively (1)–(25), are numbered respectively (26)–(50). This
theorem – which we stated as Theorem 1.30 in Chapter 1 – was proved by
Rhoades3 in [158], and also by Hicks and Sharma (without considering the case
of iterates p 6= 1) in [69] and Kincses and Totik in [81].

3As already mentioned Rhoades claimed in [158] to have proved the theorem for a more
general contractive condition, but in his review of his own paper in Zentralblatt MATH this
was modified.
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Rhoades actually proved a more general theorem; instead of requiring the
space (X, d) to be compact it is enough if the mapping f : X → X is a compact
map (and the space nonempty). In [158] it is also proved that if f : X → X
is a generalized p-contractive condensing self-mapping of a complete, bounded
(nonempty) metric space (X, d), then f has a unique fixed point z ∈ X, and
fn(x0)→ z for each x0 ∈ X. Both of these theorems are proved by noting that
the proofs of two theorems proved by Janos in [77] work just as well with the
contractive condition under consideration in place of the less general condition
considered by Janos. Our extension of Theorem 1.30 from the setting of a com-
pact space to arbitrary metric spaces will not be covered by these theorems. It
should be noted that there are theorems for mappings of contractive type more
general than Theorem 1.30 – we included a discussion of this at the end of the
subsection on mappings of contractive type in Chapter 1, and in particular one
of Park’s theorems in [149] (which we included as Theorem 1.32) provides a
generalization. There are also variants of Theorem 1.32 where neither the space
nor the mapping are assumed to be compact, but with various other restrictions
on the contractive condition and/or e.g. conditions concerning the existence of
regular cluster points – see the references given in the discussion in Chapter 1.
The relationships between several of these theorems and the extension of The-
orem 1.30 which we obtain in the course of our case study (as a consequence of
the uniformity properties of the explicit Cauchy rate constructed) are unclear.
However, to the extent that our focus is on explicit rates of convergence this
is not too relevant. Several of these theorems might be candidates for proof
mining – with the goal of extracting quantitative information.

Theorem 1.30 does not hold if the contractive condition is replaced by the
other standard generalizations treated in [157]. For example, a continuous func-
tion on a compact space satisfying the condition that there exists p : X ×X → N
such that for all x, y ∈ X with x 6= y we have

d(fp(x,y)(x), fp(x,y)(y)) < diam {x, y, fp(x,y)(x), fp(x,y)(y)},

or satisfying the condition that there exists p, q ∈ N such that

∀x, y ∈ X(x 6= y → d(fp(x), fq(y)) < diam {x, y, fp(x), fq(y)}),

does not necessarily have a fixed point. The second of these cases involves two
iterates, the first involves one iterate which is not uniform in x and y. Given p ∈
N we will call a function generalized p-contractive if it satisfies (25) for an iterate
fp. With an abuse of notation we will also sometimes say that f is generalized
p-contractive to mean that there exists some p ∈ N for which fp satisfies (25),
without having specified any p ∈ N in advance. (See Definition 1.28 and the
remark on notation following the definition.)

With the help of techniques and insights from proof mining we develop a
quantitative version of the fixed point theorem discussed above. This involves
finding a rate of convergence for the Picard iteration sequences to the unique
fixed point4, and compared to the theorem of Rhoades and Kincses–Totik we

4Assuming the space is complete.
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also obtain new qualitative information, insofar as we show that the convergence
of the iteration sequence (fn(x0))n∈N depends on conditions which are satisfied
if the space is compact, but conditions which we can also single out and see
satisfied in other cases. Namely, we require uniform continuity and a uniform
version of generalized p-contractivity, and also the existence of a bounded iter-
ation sequence for some starting point. Furthermore, we show that the rate of
convergence is highly uniform in the sense that it only depends on the starting
point x0, the space (X, d), and the function f through suitable moduli express-
ing uniform continuity and uniform generalized p-contractivity and a bound on
the iteration sequence (fn(x0))n∈N. If the space is not complete we still get a
Cauchy rate for the iteration sequence.

As indicated above, some of the results in this chapter are taken from the
author’s Master thesis [23], which also contain a fuller account of the logical
analysis of Theorem 1.30 together with (variants of) its proof as given by Kinc-
ses and Totik. The main tool is (negative translation) combined with monotone
functional interpretation, and by applying monotone functional interpretation
to the contractive condition in the theorem one is lead to consider a uniform ver-
sion of this condition – which we will call uniform generalized p-contractivity
(see Definition 4.4). Similarly, the continuity of the mapping is upgraded by
monotone functional interpretation to uniform continuity, and monotone func-
tional interpretation also makes it explicit what quantitative information one
requires as input in place of the conditions of continuity and generalized p-
contractivity, namely a modulus of uniform continuity (see Definition 4.1) and
a modulus of uniform generalized p-contractivity (see Definition 4.2). In the
case of Theorem 1.30 the compactness of the space means that the condition of
generalized p-contractivity is upgraded to this uniform version, much as the con-
tinuity of the mapping is turned into uniform continuity – see Proposition 4.3. It
then turns out that we can prove that all Picard iteration sequences are Cauchy
(with a Cauchy rate which only depends on the starting point x0 through a
bound on (fn(x0))n∈N), and that limn→∞ d(fn(x), fn(y)) = 0 for any x and
y in the space, by assuming only that we have such uniform versions of the
contractive condition and continuity, along with the existence of one bounded
iteration sequence. This corresponds loosely speaking to the fact that the proof
of the theorem does not use the separability or the completeness of the space
(as supplied by the compactness) in any essential way5 – but that compact-
ness essentially is used to ensure that continuity and generalized p-contractivity
imply uniform continuity and uniform generalized p-contractivity – and more
precisely, to the fact that the proof can be formalized in the system Aω[X, d]
extended with a uniform boundedness principle ∃-UBX for abstract bounded
metric spaces. The principle ∃-UBX systematically transforms certain kinds of
statements into their uniform variants; and even though the principle implies
numerous results which are true only for compact metric spaces and continuous
functions one can show that for a large class of consequences the conclusion A
is true in arbitrary bounded metric spaces even when ∃-UBX has been used in

5Except to ensure the existence of the common limit of the Picard iteration sequences.
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the proof of A. And for a more restricted class of consequences one can also
extract effective bounds from proofs involving ∃-UBX via negative translation
and monotone functional interpretation. This then gives us a systematic way
of removing compactness assumptions from certain kinds of theorems where
the compactness is used to obtain uniform versions of the notions involved.
The principle ∃-UBX was introduced by Kohlenbach in [100] as an extension to
theories like Aω[X, d], which involve abstract bounded metric spaces, of his prin-
ciple Σ0

1-UB of Σ0
1-boundedness, treated e.g. in [93]6. For further discussion of

the role of compactness assumptions in upgrading e.g. contractivity conditions
to their uniform variants, and how monotone functional interpretation handles
this, see e.g. [55] and Chapter 17 in [101].

So far we have discussed a treatment which allows one to extract rates of
proximity for the Picard iteration sequences. For the explanation why we could
instead obtain a full rate of convergence we refer to the discussion in Chapter 2.

We have mentioned that the explicit Cauchy rate which we have constructed
depends on a bound on the iteration sequence. However, if the space satisfies a
certain further structural condition we get a Cauchy rate for (fn(x0))n∈N which
does not depend on a bound on the iteration sequence, but rather depends on
an upper bound b > 0 on d(x0, y), where y ∈ X is a point which is moved
a sufficiently short distance by the mapping. This class of spaces will include
many spaces commonly used in analysis, such as spaces of hyperbolic type in
the sense of [62], hyperbolic spaces in the sense of [155] and also hyperbolic
spaces in the sense of [99] – and therefore e.g., normed linear spaces, Hadamard
manifolds and CAT(0)-spaces.

4.2 Preliminaries

For the definition of a generalized p-contractive mapping we refer to Defini-
tion 1.28. Notice that a generalized p-contractive function is not necessarily
nonexpansive; take for instance f : (0,∞) → (0,∞) defined by f(x) := 2x.
Then f is generalized 1-contractive. For a statement of the theorem of Rhoades
and Kincses–Totik we refer to Theorem 1.30. To give a quantitative version of
this theorem, we express the requirements on f by the following moduli.

Definition 4.1. Let (X, d) be a metric space, and let f : X → X. We say that
ω : (0,∞)→ (0,∞) is a modulus of uniform continuity for f if for all ε ∈ (0,∞)
and for all x, y ∈ X with d(x, y) < ω(ε) we have d(f(x), f(y)) < ε.

Definition 4.2. Let (X, d) be a metric space, let p ∈ N, and let f : X → X. We
say that η : (0,∞)→ (0,∞) is a modulus of uniform generalized p-contractivity
for f if for all ε ∈ (0,∞) and for all x, y ∈ X with d(x, y) > ε we have

d(fp(x), fp(y)) + η(ε) < diam {x, y, fp(x), fp(y)}.

6In the analysis in [23] we did not use the principle ∃-UBX , but rather Σ0
1-UB, together with

an approach which does not involve abstract metric spaces, but rather complete, separable
metric spaces representable in the formal system.
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When X is a compact metric space, f having such moduli coincides with f
being continuous and generalized p-contractive.

Proposition 4.3. Let (X, d) be a compact metric space, let p ∈ N, and let
f : X → X be continuous and generalized p-contractive. Then f has moduli ω
and η of uniform continuity and uniform generalized p-contractivity.

Proof. We can without loss of generality assume that diam (X) > 0, since
otherwise everything is trivial. Existence of a modulus of uniform continuity
follows since f is uniformly continuous. For the other modulus, consider for
ε > 0 such that diam (X) > ε the set

Aε := {(x, y) ∈ X ×X : d(x, y) ≥ ε}.

Then Aε is closed and therefore compact, and the continuous function g : X ×
X → R defined by

g(x, y) := diam {x, y, fp(x), fp(y)} − d(fp(x), fp(y))

assumes its infimum on Aε. That is, there exists (x, y) ∈ Aε such that g(x, y) =
inf g(Aε). Therefore inf g(Aε) 6= 0, since we otherwise would have

diam {x, y, fp(x), fp(y)} = d(fp(x), fp(y)),

contradicting the fact that f is generalized p-contractive and d(x, y) ≥ ε. So we
can define a modulus of uniform generalized p-contractivity η by for 0 < ε <
diam (X) letting η(ε) be some positive real number smaller than inf g(Aε) and
for ε ≥ diam (X) letting η(ε) be e.g. 1.

2

The following is just a way of rephrasing the statement that f has a modulus
of uniform generalized p-contractivity.

Definition 4.4. Let (X, d) be a metric space, let p ∈ N and let f : X → X.
We say that f is uniformly generalized p-contractive if for all real ε > 0 there
exists δ > 0 such that for all x, y ∈ X with d(x, y) > ε we have

diam {x, y, fp(x), fp(y)} − d(fp(x), fp(y)) > δ.

We note that for a metric space (X, d) examples of uniformly generalized
p-contractive mappings f : X → X are e.g. the mappings f such that fp fulfills
condition (24) from [157], i.e., the condition that there should exist 0 ≤ h < 1
such that

d(f(x), f(y)) ≤ h · diam {x, y, f(x), f(y)}
holds for all x, y ∈ X. This condition was introduced by L.B. Ćirić in [37], and
a mapping on a complete metric space satisfying this condition is there called a
quasi-contraction. Likewise mappings satisfying one of those conditions (1)–(23)
which in [38] are listed as stronger than condition (24) are uniformly generalized
p-contractive for p = 1. Ćirić proved the following theorem concerning mappings
satisfying condition (24).
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Theorem 4.5 (Ćirić). Let (X, d) be a nonempty complete metric space, and let
f : X → X and h ∈ [0, 1) be such that

d(f(x), f(y)) ≤ h · diam {x, y, f(x), f(y)}

holds for all x, y ∈ X. Then f has a unique fixed point z, and fn(x0) → z for
every x0 ∈ X.

This theorem is different from Theorem 1.30 in much the same way that
Banach’s contraction mapping principle is different from Edelstein’s theorem
on contractive mappings.

4.3 Main results

4.3.1 A Cauchy rate for uniformly continuous uniformly
generalized p-contractive mappings

Our theorem will concern arbitrary metric spaces instead of compact ones. We
will later improve this theorem by showing that if one Picard iteration sequence
(fn(x0))n∈N is bounded, then any Picard iteration sequence is bounded (see
Theorem 4.18), and we will construct rates of convergence which do not depend
on a bound on the iteration sequence, but rather on various more local bounds
(see Corollary 4.19, 4.20, 4.21, 4.27, 4.28, and 4.29).

Theorem 4.6. Let (X, d) be a nonempty metric space, and let p ∈ N. Let
f : X → X have a modulus ω of uniform continuity, and a modulus η of uniform
generalized p-contractivity. Let x0 ∈ X be the starting point of a sequence
(xn)n∈N defined by xn+1 := f(xn). Suppose (xn)n∈N is bounded by b. Let
ρ : (0,∞)→ (0,∞) be defined by

ρ(ε) := min {η(ε), ε/2, η(1/2 · ωp(ε/2))} .

Let φ : (0,∞)→ N be defined by

φ(ε) :=
{
p d(b− ε)/ρ(ε)e if b > ε,
1 otherwise.

Then φ is a Cauchy rate for (xn)n∈N. Given p, ω, η and b we will denote this
Cauchy rate also by Φ(p, ω, η, b, ·), so that given ε > 0 we get that

m,n ≥ Φ(p, ω, η, b, ε)

gives d(xn, xm) ≤ ε.

Thus the appropriate moduli, together with the existence of a bounded it-
eration sequence, guarantee the existence of a Cauchy sequence which is an
approximate fixed point sequence. If the space is complete, then (xn)n∈N con-
verges to a fixed point z, and φ is a rate of convergence for the sequence. The
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fixed point is unique if it exists, for if x and y were fixed points with x 6= y, we
would have

d(x, y) = d(fp(x), fp(y))

and
d(fp(x), fp(y)) = diam {x, y, fp(x), fp(y)},

contradicting the fact that f is generalized p-contractive. The rate φ only de-
pends on the function f and the starting point x0 ∈ X through p and the moduli
ω and η, and also through a bound b on (xn)n∈N. If b is a bound on the whole
space then the rate does not depend on x0, and gives if the fixed point exists a
rate of convergence for f , or else a Cauchy rate for f .

We note in passing that the moduli in Definition 4.1 and Definition 4.2 might
be equivalently given as functions ω : N→ N and η : N→ N with conditions of
the form that e.g. d(x, y) < 2−ω(k) should give d(f(x), f(y)) < 2−k. Likewise
the Cauchy rate in Theorem 4.6 can be given as a function Φ : N→ N. In this
case we have that with b an integer and with ω and η computable, then Φ is
computable. In fact, it is clear that a Cauchy rate as in Theorem 4.6 could be
given as an effectively computable functional Φ : N × NN × NN × N × N → N
taking ω and η as two of its arguments. The functional Φ could be taken to
be primitive recursive in the sense of Kleene, and for fixed p it could even be
taken to be of a low level in the Grzegorczyk hierarchy (as a functional in the
remaining variables). (See also the comments in Section 2.5.)

Before proving this theorem we give some corollaries and a definition, and
we also prove some lemmas.

Corollary 4.7. Let (X, d) be a nonempty, bounded, complete metric space, and
let p ∈ N. Let f : X → X be uniformly continuous and uniformly generalized
p-contractive. Then f has a unique fixed point z, and for every x0 ∈ X we have

lim
n→∞

fn(x0) = z.

Together with Proposition 4.3, this corollary implies Theorem 1.30 as a
special case.

Corollary 4.8 (Theorem of Rhoades and Kincses–Totik). Let (X, d) be a non-
empty compact metric space, and let p ∈ N. Let f : X → X be continuous and
generalized p-contractive. Then f has a unique fixed point z, and for every
x0 ∈ X we have

lim
n→∞

fn(x0) = z.

Notice that if (X, d) is a nonempty compact metric space and f : X → X
is continuous and satisfies one of the conditions (1)–(24) from [157], then f
has moduli of uniform continuity and uniform generalized 1-contractivity, and
hence also a rate of convergence as given in Theorem 4.6. As an application
of Theorem 4.6 we note also the following relationship with asymptotic con-
tractions in the sense of Kirk. The following two corollaries already appeared
as Corollary 3.23 and Corollary 3.24 in Chapter 3, but the proofs there made
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reference to and were dependent on Theorem 4.6 and Proposition 4.3 in the
present chapter. The uniformity of the convergence of the Picard iteration se-
quences (fn(x0))n∈N with respect to the starting point x0 ∈ X in the case where
(X, d) is compact and f : X → X satisfies one of the conditions (1)–(50) from
Rhoades’ paper [157] was already present in [158].

Corollary 4.9. Let (X, d) be a bounded, complete metric space, let p ∈ N, and
let f : X → X be uniformly generalized p-contractive and uniformly continuous.
Then f is an asymptotic contraction in the sense of Kirk.

Proof. See the proof of Corollary 3.23.
2

Corollary 4.10. Let (X, d) be a compact metric space. Let f : X → X be
continuous and such that it satisfies one of the conditions (1)–(50) from [157].
Then f is an asymptotic contraction in the sense of Kirk.

Proof. See the proof of Corollary 3.24.
2

We will in the following let X, b, f , p, ω and η be as in Theorem 4.6.

Definition 4.11. We say that ρ : (0,∞) → (0,∞) is a modulus of modified
uniform generalized p-contractivity for f if for all ε > 0 and for all x, y ∈ X
with

diam {x, y, fp(x), fp(y)} > ε

we have
d(fp(x), fp(y)) + ρ(ε) < diam {x, y, fp(x), fp(y)}.

Lemma 4.12. Define ρ : (0,∞)→ (0,∞) by

ρ(ε) := min
{
η(ε),

ε

2
, η (1/2 · ωp(ε/2))

}
.

Then ρ is a modulus of modified uniform generalized p-contractivity for f .

Proof. We consider the different cases.

1. If d(x, y) > ε then

d(fp(x), fp(y)) + ρ(ε) < diam {x, y, fp(x), fp(y)}, (4.1)

since ρ(ε) ≤ η(ε).

2. If d(fp(x), x) > ε we again look at the different cases.

(a) If d(x, y) < ωp(ε/2), then

d(fp(x), fp(y)) < ε/2,

and (4.1) holds since ρ(ε) ≤ ε/2 and

diam {x, y, fp(x), fp(y)} > ε.
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(b) If d(x, y) ≥ ωp(ε/2), then by definition of η we have

d(fp(x), fp(y)) + η(1/2 · ωp(ε/2)) < diam {x, y, fp(x), fp(y)}.

Then (4.1) holds since ρ(ε) ≤ η(1/2 · ωp(ε/2)). (This holds in fact
whether d(fp(x), x) > ε or not.)

The cases where d(fp(y), y) > ε, d(fp(x), y) > ε or d(fp(y), x) > ε are treated
in exactly the same way as the case d(fp(x), x) > ε.

2

Lemma 4.13. Let (X, d) be a nonempty metric space, and let x0 ∈ X be such
that b is a bound on the Picard iteration sequence (xn)n∈N. Let p ∈ N, and
let ρ be a modulus of modified uniform generalized p-contractivity for f . Let
φ : (0,∞)→ N be defined by

φ(ε) :=
{
p d(b− ε)/ρ(ε)e if b > ε,
1 otherwise.

Then φ satisfies
∀ε > 0∀m,n ≥ φ(ε)(d(xm, xn) ≤ ε).

Proof. The proof of this lemma comes essentially from the proof of the first
theorem in [81]. If ε ≥ b, then

∀m,n ≥ φ(ε)(d(xm, xn) ≤ ε).

So let ε < b. Let x0 ∈ X, and let n, k, l ∈ N. Let n0 := np + k, m0 := np + l.
For 0 ≤ i < n we define ni+1 and mi+1 inductively so that

ni+1,mi+1 ∈ {ni, ni − p,mi,mi − p},
d(xni+1 , xmi+1) = diam {xni , xni−p, xmi , xmi−p}.

We write di for diam {xni , xni−p, xmi , xmi−p} for i < n. If for some i we have
di = 0, then

d(xnp+k, xnp+l) = 0.

So suppose not. Since ρ is a modulus of modified uniform generalized p-
contractivity we have

d(xn0 , xm0) + ρ(ε0) < d0

for all ε0 > 0 with ε0 < d0. Furthermore, we have

d0 + ρ(ε1) < d1

for all ε1 > 0 with ε1 < d1. And in general

di + ρ(εi+1) < di+1
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for all εi+1 > 0 with εi+1 < di+1. Therefore, for 0 ≤ i < n,

d(xn0 , xm0) < di −
i∑

j=0

ρ(εj),

for εj > 0 with εj < dj for j ≤ i. If for some 0 ≤ i < n we have di ≤ ε, then

d(xnp+k, xnp+l) = d(xn0 , xm0) < ε.

If on the other hand we have di > ε for all 0 ≤ i < n, then we get

d(xn0 , xm0) < di −
i∑

j=0

ρ(ε).

Thus
d(xnp+k, xnp+l) < b− nρ(ε).

Now let
n := d(b− ε)/ρ(ε)e .

Then d(xnp+k, xnp+l) < ε. And this n does not depend on x0, except through
the bound b. By letting

m := p d(b− ε)/ρ(ε)e ,
we get d(xm+k, xm+l) < ε. And since ε < b we have

φ(ε) = p d(b− ε)/ρ(ε)e .
Since k and l were arbitrary, we get

∀ε > 0∀m,n ≥ φ(ε)(d(xm, xn) < ε).

2

Proof of Theorem 4.6. The lemmas give directly that φ as defined in the
theorem is a Cauchy rate for (xn)n∈N.

2

Below we include an example which helps to set Theorem 4.6 apart from
other results. This example is rather artificial and messy – since it tries to do
many things at the same time. In short: Example 4.14 provides us with an
unbounded complete metric space (X, d) and a selfmapping f : X → X where
the conditions in Theorem 4.6 are satisfied, so that there exists a fixed point
z ∈ X, where

{x ∈ X : d(z, x) ≤ 1}
is not compact, and where we cannot remove either d(x, y), d(y, f(x)), d(x, f(y)),
d(x, f(x)) or d(y, f(y)) in the formulation of the condition that for all real ε > 0
there should exist δ > 0 such that for all x, y ∈ X with d(x, y) > ε we have

max{d(x, y), d(x, f(y)), d(y, f(x)), d(x, f(x)), d(y, f(y))} − d(fp(x), fp(y)) > δ,

and where in addition the mapping f does not satisfy the condition (24) from [157],
so that theorem 4.5 does not apply.
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Example 4.14. Let a, b, c, d 6∈ R be pairwise distinct. Let Y = {0, a, b, c, d}
and

Y ′ = {3k+1 : k ≥ 0}∪{−3k−1 : k ≥ 0}∪{2−k : k ≥ 0}∪{−2−k : k ≥ 0}∪{0}.

Equip Y ′ with the natural metric, and define a metric dY on Y such that
dY (0, a) = 3, dY (0, b) = 3, dY (0, c) = 1, dY (0, d) = 1, dY (c, d) = 2, dY (a, c) = 2,
dY (b, c) = 2, dY (a, d) = 2, dY (b, d) = 2 and dY (a, b) = 3. Let X be the set of
sequences (xn)n∈N with x0 ∈ Y and with xn ∈ Y ′ for n ≥ 1 such that {|xn| :
n ≥ 1} is bounded. Define a metric on X by for x, y ∈ X with x = (xn)n∈N,
y = (yn)n∈N letting

d(x, y) = max
{
dY (x0, y0), sup{|xn − yn| : n ≥ 1}

}
.

Given x = (xn)n∈N ∈ X and xn with n ≥ 1, consider the condition:

There is m ≥ 1 with xm > xn. (4.2)

Define f : X → X by for x = (xn)n∈N ∈ X letting f(x) = (yn)n∈N be given by

yn =



0 if xn = 0, xn = c or xn = d,
3k − 2 if xn = 3k + 1, k > 0 an integer,
−3k + 2 if xn = −3k − 1, k > 0 an integer,
−2−k−1 if xn = −2−k, k ≥ 0 an integer,
2−k if xn = 2−k for an integer k ≥ 0 and (4.2) holds,
−2−k if xn = 2−2k for an integer k ≥ 0 and (4.2) does not hold,
−2−k if xn = 2−2k−1 for an integer k ≥ 0 and (4.2) does not hold,
c if xn = a,
d if xn = b.

Then {x ∈ X : d(x, 0) ≤ 1} is not compact, where 0 denotes the sequence which
is constant 0, and it is easy to see that f is uniformly continuous. We leave
out the verification that f is uniformly generalized 1-contractive. We have the
following.

1. For x = (xn)n∈N and y = (yn)n∈N with x0 = 0, y0 = 0 and with xn = 1
and yn = 0 for all n ≥ 1 we have

d(f(x), f(y)) < d(x, f(x)),

but
d(f(x), f(y)) ≥ d(x, y), d(y, f(y)), d(x, f(y)), d(y, f(x)).

2. For x = (xn)n∈N and y = (yn)n∈N with x0 = 0, y0 = 0 and with xn = 4
and yn = 7 for all n ≥ 1 we have

d(f(x), f(y)) < d(y, f(x)),

but
d(f(x), f(y)) ≥ d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)).
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3. For x = (xn)n∈N and y = (yn)n∈N with x0 = a, y0 = b and with xn = 0
and yn = 0 for all n ≥ 1 we have

d(f(x), f(y)) < d(x, y),

but

d(f(x), f(y)) ≥ d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x)).

Furthermore, f does not satisfy the condition (24) from [157], i.e. there does
not exist 0 ≤ h < 1 such that

d(f(x), f(y)) ≤ h · diam {x, y, f(x), f(y)}

holds for all x, y ∈ X. For given 0 ≤ h < 1 we can let m ∈ N and consider
x = (xn)n∈N and y = (yn)n∈N with x0 = 0, y0 = 0 and with xn = 2−2m and
yn = 0 for all n ≥ 1. Then d(f(x), f(y)) = 2−m and

diam {x, y, f(x), f(y)} = 2−m + 2−2m.

So for m ∈ N large enough we have

d(f(x), f(y)) > h · diam {x, y, f(x), f(y)}.

And since the closure of f(X) is not compact it follows that f is not a compact
map and thus that the strengthened version of Theorem 1.30 proved by Rhoades
in [158], where the map is assumed to be compact instead of the space, does
not apply. (We note that this means that also Theorem 1.32 does not apply.)
Finally, since the space is unbounded also the other variant of Theorem 1.30
proved in [158], where the mapping is assumed to be condensing and the space
bounded and complete, does not apply.

Some comments on the Cauchy rate

We note that contrary to the case where f is contractive and we are given a
modulus of uniform contractivity (see [55]), we cannot in Theorem 4.6 replace
the bound b on (xn)n∈N by a bound on d(x0, x1). Even if we have a b which for
all x ∈ X bounds d(x, f(x)), we are not guaranteed to have a fixed point. Take
for instance X = R, p = 1 and f(x) := x + 1. Then the identity is a modulus
of uniform continuity for f , and the function η : (0,∞) → (0,∞) defined by
η(ε) := 1/2 is a modulus of uniform generalized 1-contractivity for f . Now
d(x, f(x)) is bounded by 1, but the function has no fixed point, and no Picard
iteration is a Cauchy sequence. It is also easy to see that given a uniformly
continuous and uniformly generalized p-contractive f and bounded iteration
sequences, we cannot in general construct a common Cauchy rate involving only
p and the moduli of uniform continuity and uniform generalized p-contractivity.
Consider e.g. f : R→ R given by f(x) := x

2 .
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Furthermore, as the following example shows, we cannot do without the
modulus of uniform generalized p-contractivity. Let X := N \ {0} and define a
metric on X by

d(i, j) = 1 +
1
i · j

for i 6= j. Let f : X → X be defined by f(i) := i + 1. Then (X, d) is
bounded (complete, separable) and f is uniformly continuous and generalized
1-contractive, but no Picard iteration sequence is Cauchy. This example is taken
from [81], where it is used to show that a function satisfying condition (25) need
not have a fixed point. Notice that f in this case is not uniformly generalized
1-contractive. Now consider uniformly continuous and uniformly generalized p-
contractive functions with the same modulus of uniform continuity, and bounded
Picard iteration sequences (xn)n∈N with a common bound. In this case we
cannot in general construct a common Cauchy rate for all the (xn)n∈N involving
only p, the bound b, and the modulus of uniform continuity ω, as shown by the
following example. Define for each k ∈ N\{0} a metric space (Xk, dk) by letting
Xk := {n ∈ N : 1 ≤ n ≤ k} and by letting

dk(i, j) := 1 +
1
i · j

for i 6= j. Let fk : Xk → Xk be defined by

fk(i) :=
{
i+ 1 for i < k,
k for i = k.

It is easy to see that all the mappings fk are uniformly generalized 1-contractive.
And for all k we have the same bound b on (fnk (1))n∈N, and we can moreover
find a modulus of uniform continuity which is the same for all fk. But there
exists no common Cauchy rate for all the sequences (fnk (1))n∈N.

Also, as we show in the following proposition, the modulus of uniform con-
tinuity contributes in an essential way to the Cauchy rate.

Proposition 4.15. There exists a bounded metric space (X, d), a family of
uniformly continuous functions fi : X → X, i ∈ N, and an η : (0,∞)→ (0,∞)
which is a modulus of uniform generalized 1-contractivity for all the fi, such
that for some x0 ∈ X the Picard iterations with starting point x0 do not have a
common Cauchy rate.

Proof. Consider X := {( 1
2 )n : n ≥ 0}

⋃
{−( 1

2 )n : n ≥ 0} with the natural
metric, and define fi : X → X by

fi(x) :=

 −( 1
2 )n+1 if x = −( 1

2 )n,
( 1

2 )n+1 if x = ( 1
2 )n and n 6= i,

−1 if x = ( 1
2 )n and n = i.

Then each fi is uniformly continuous. And η : (0,∞) → (0,∞) defined by
η(ε) := ε

2 is a modulus of uniform generalized 1-contractivity for each fi. To see
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this, we fix i and consider different cases. If x, y ∈ X are such that d(x, y) > ε,
and if x 6= ( 1

2 )i and y 6= ( 1
2 )i, then

d(fi(x), fi(y)) =
d(x, y)

2
.

Therefore

diam {x, y, fi(x), fi(y)} − d(fi(x), fi(y)) >
ε

2
.

If x, y ∈ X are such that d(x, y) > ε, and if x = ( 1
2 )i, then we have one of the

following.

1. If y = −( 1
2 )n, then

d(fi(x), x)− d(fi(x), fi(y)) =
(

1
2

)i
+
(

1
2

)n+1

>

(
1
2

)i+1

+
(

1
2

)n+1

>
ε

2
.

2. If y = ( 1
2 )n and n < i, then

d(fi(x), y)− d(fi(x), fi(y)) =
(

1
2

)n+1

>
( 1

2 )n − ( 1
2 )i

2
>
ε

2
.

3. If y = ( 1
2 )n and n > i, then

d(fi(x), x)− d(fi(x), fi(y)) =
(

1
2

)i
−
(

1
2

)n+1

>

(
1
2

)i+1

−
(

1
2

)n+1

>
ε

2
.

So in all cases we have

diam {x, y, fi(x), fi(y)} − d(fi(x), fi(y)) >
ε

2
,

and η is a modulus of uniform generalized 1-contractivity. Let x0 := 1. Then
there does not exist a Cauchy rate valid for all the sequences (fni (x0))n∈N.

2
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A modulus of uniqueness

As the following lemma shows, if f : X → X is a mapping with a modulus of
uniform generalized p-contractivity, then fp has what has been called a modulus
of uniqueness. This notion was defined in full generality by U. Kohlenbach
in [89].

Lemma 4.16. Let (X, d) be a metric space, and let p ∈ N. Let f : X → X have
a modulus η of uniform generalized p-contractivity. Define ψ : (0,∞)→ (0,∞)
by ψ(ε) := η(ε)/2. Then for all ε ∈ (0,∞) and for all x, y ∈ X, if

d(x, fp(x)) ≤ ψ(ε)

and
d(y, fp(y)) ≤ ψ(ε),

then d(x, y) ≤ ε.

Proof. Since η is a modulus of uniform generalized p-contractivity, it follows
that if d(x, y) > ε then we have one of the following:

d(fp(x), fp(y)) + η(ε) < d(x, y), (4.3)
d(fp(x), fp(y)) + η(ε) < d(fp(x), y), (4.4)
d(fp(x), fp(y)) + η(ε) < d(fp(y), x), (4.5)
d(fp(x), fp(y)) + η(ε) < d(fp(x), x), (4.6)
d(fp(x), fp(y)) + η(ε) < d(fp(y), y). (4.7)

We show that if
d(x, fp(x)) ≤ η(ε)/2

and
d(y, fp(y)) ≤ η(ε)/2,

then d(x, y) ≤ ε. So let d(x, fp(x)) ≤ η(ε)/2 and d(y, fp(y)) ≤ η(ε)/2. Then it
is obvious that (4.6) and (4.7) do not hold. Furthermore, we have

d(x, y) ≤ d(fp(x), fp(y)) + d(fp(x), x) + d(fp(y), y) ≤ d(fp(x), fp(y)) + η(ε),

so (4.3) does not hold. In the same way it follows by the triangle inequality that
(4.4) and (4.5) do not hold. It follows that we have d(x, y) ≤ ε.

2

Corollary 4.17. Let (X, d) be a nonempty metric space, and let p ∈ N. Let
f : X → X have a modulus η of uniform generalized p-contractivity. If the
sequences (xn)n∈N and (yn)n∈N (which are not necessarily Picard iteration se-
quences) satisfy

∀ε > 0∃n∀m ≥ n(d(xm, fp(xm)) < ε) (4.8)

and
∀ε > 0∃n∀m ≥ n(d(ym, fp(ym)) < ε), (4.9)

then the sequence (d(xn, yn))n∈N converges to 0, and in addition the sequences
(xn)n∈N and (yn)n∈N are in fact Cauchy sequences.
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Proof. Suppose the sequences (xn)n∈N and (yn)n∈N satisfy (4.8) and (4.9). Let
ε > 0. Let n ∈ N be such that for all m ≥ n we have

d(xm, fp(xm)) < η(ε)/2.

Letm1,m2 ≥ n. Then d(xm1 , f
p(xm1)) < η(ε)/2 and d(xm2 , f

p(xm2)) < η(ε)/2.
And so by Lemma 4.16 it follows that d(xm1 , xm2) ≤ ε. Thus we have that
(xn)n∈N is a Cauchy sequence. In the same way it follows that (yn)n∈N is a
Cauchy sequence. Let n′ ∈ N be such that for all m ≥ n′ we have

d(ym, fp(ym)) < η(ε)/2.

Then for m ≥ max{n, n′} we have d(xm, fp(xm)) < η(ε)/2 and d(ym, fp(ym)) <
η(ε)/2. So by Lemma 4.16 it follows that d(xm, ym) ≤ ε. Hence the sequence
(d(xn, yn))n∈N converges to 0.

2

4.3.2 One iteration sequence bounded implies all iteration
sequences bounded

We now prove that if the iteration sequence (fn(x0))n∈N is bounded for one
x0 ∈ X, then it is bounded for any x0 ∈ X.

Theorem 4.18. Let (X, d) be a nonempty metric space, let p ∈ N, and let
f : X → X be uniformly generalized p-contractive and uniformly continuous.
For x0 ∈ X define the iteration sequence (xn)n∈N by xn+1 := f(xn). Suppose
for some x0 ∈ X the iteration sequence is bounded. Then for every choice of
x0 ∈ X the Picard iteration sequence (xn)n∈N is bounded, and in fact Cauchy.
Also, for all x0, y0 ∈ X we have limn→∞ d(xn, yn) = 0. If (X, d) is complete all
Picard iteration sequences converge to the unique fixed point of f .

Proof. We prove first the special case where p = 1 and the space is complete.
We know from Lemma 4.12 that f has a modulus of modified uniform generalized
1-contractivity. Call this modulus ρ. Likewise from Theorem 4.6 we know that
f has a unique fixed point z. Let now x0 ∈ X be arbitrary. We want to prove
that (xn)n∈N is bounded. Let n > 0 and consider diam {x0, . . . , xn}. Assume
xn 6= z, for else (xn)n∈N is bounded. Of course xn 6= z also implies z 6= xi for
i < n. Similarly, we can assume that xi 6= xj for any i 6= j, for otherwise xi = z.
Thus

d(xi, xj) > 0

for any 0 ≤ i, j ≤ n with i 6= j. For some 0 ≤ i ≤ n we have

diam {x0, . . . , xn} = d(x0, xi),

for if we for 0 < i, j ≤ n had diam {x0, . . . , xn} = d(xi, xj), then we would have

diam {xi, xj , xi−1, xj−1} > d(xi, xj) = diam {x0, . . . , xn}.



132 4 Generalized contractive mappings

In the same way, for i > 0 we have

diam {z, x0, . . . , xn} 6= d(z, xi),

for we have for such i

d(z, xi) < max{d(z, xi−1), d(xi, xi−1)}.

Assume
diam {z, x0, . . . , xn, xn+1} > diam {z, x0, . . . , xn}.

By the above we have

diam {z, x0, . . . , xn+1} = d(x0, xn+1).

Assume d(x0, xn+1) > 2d(x0, z). Since

d(z, xn+1) + d(x0, z) ≥ d(x0, xn+1),

we have
d(z, xn+1) > d(x0, z).

Let ε > 0 satisfy ε ≤ d(x0, z). Since ρ is a modulus of modified uniform
generalized 1-contractivity, we have either

d(z, xn) > d(z, xn+1) + ρ(ε)

or
d(xn+1, xn) > d(z, xn+1) + ρ(ε).

Let m0 := n + 1 and m′0 := −1. We will let x−1 denote z. For 0 ≤ i < n we
define mi+1 and m′i+1 inductively such that the following holds.

1. If m′i = −1, then m′i+1 ∈ {mi,mi − 1,m′i} and mi+1 ∈ {mi,mi − 1} such
that

d(xmi+1 , xm′i+1
) = diam {xmi , xmi−1, z}.

2. If m′i 6= −1, then m′i+1,mi+1 ∈ {mi,mi − 1,m′i,m
′
i − 1} such that

d(xmi+1 , xm′i+1
) = diam {xmi , xmi−1, xm′i , xm′i−1}.

Then since d(xm0 , xm′0) > ε we can prove by induction on i that

d(xmi+1 , xm′i+1
) > d(xmi , xm′i) + ρ(ε)

and d(xmi , xm′i) > ε for all 0 ≤ i < n. And so

d(xmi , xm′i) > d(xm0 , xm′0) + iρ(ε)

for 0 < i < n. Hence, if n satisfies nρ(ε) > d(x0, z) then we get

d(xmn , xm′n) > d(xn+1, z) + d(x0, z) ≥ d(xn+1, x0) = diam {z, x0, . . . , xn+1}.
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Specifically, we may take

n :=
⌈

b

ρ(ε)

⌉
,

for any b > d(x0, z). But we have

d(xmn , xm′n) ≤ diam {z, x0, . . . , xn+1},

and hence for large enough n we have d(x0, xn+1) ≤ 2d(x0, z) or

diam {z, x0, . . . , xn, xn+1} ≤ diam {z, x0, . . . , xn}.

Thus for the special case where the space is complete and p = 1 we have proved
that if one Picard iteration sequence is bounded, then any Picard iteration
sequence is bounded. And so in this case it follows by Theorem 4.6 that all
Picard iteration sequences converge to the unique fixed point z.

Now let p 6= 1, but assume still that the space is complete. Then by the
above fp has a unique fixed point z′ and moreover for any x0 ∈ X we have

lim
n→∞

fnp(x0) = z′.

Let x0 ∈ X and let N ∈ N be such that for m ≥ N we have

d(z′, fmp(x0)) < min{1, ω(1), ω2(1), . . . , ωp(1)}.

Then d(z′, fk(x0)) < 1 for k ≥ Np, and so the sequence (fn(x0))n∈N is bounded.
Thus (fn(x0))n∈N converges to the unique fixed point z ∈ X of f (and hence it
follows that z′ = z).

Next suppose the space X is not complete. We consider the completion of X
and the canonical extension of the uniformly continuous function f . Then the
extension of f still has moduli of uniform continuity and uniform generalized p-
contractivity, and the bounded Picard iteration sequence we presupposed stays
the same. So by the above every Picard iteration sequence in the completion
of X converges to the unique fixed point z of f . And so for all x0, y0 ∈ X
we have that (xn)n∈N and (yn)n∈N are Cauchy and in particular bounded, and
furthermore that limn→∞ d(xn, yn) = 0. This ends the proof.

2

4.3.3 Rates of convergence not dependent on a bound on
the iteration sequence

In this section we will use the proof of Theorem 4.18 to construct rates of
convergence or Cauchy rates for uniformly continuous uniformly generalized p-
contractive mappings which do not depend on a bound on the iteration sequence,
but rather on bounds of a more local nature. The three first corollaries will
concern (complete) metric spaces in general, but the rates of convergence given
will depend essentially on the mapping f : X → X. The last three corollaries,
on the other hand, will only concern spaces with more structure. But the rates
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of convergence constructed in these cases will have uniformity properties with
respect to the mapping f : X → X in the sense that they only depend on certain
bounds and certain moduli for the mapping and the space.

Corollary 4.19. Let (X, d) be a nonempty complete metric space, and let p ∈ N,
p ≥ 1. Let f : X → X have a modulus η of uniform generalized p-contractivity
and a modulus ω of uniform continuity. Suppose for some starting point the
Picard iteration sequence is bounded. Let z be the unique fixed point of f . Let
x0 ∈ X and for 0 ≤ i < p let bi > 0 and δi > 0 satisfy δi ≤ d(xi, z) < bi. Let
ε > 0. Let Φ be as in Theorem 4.6 and let

Ni =
⌈

bi
ρ(δi)

⌉
,

where ρ : (0,∞)→ (0,∞) is defined by

ρ(γ) = min
{
η(γ),

γ

2
, η(1/2 · ωp(γ/2))

}
.

Let
Mi = max

{
2bi,diam {z, xi, fp(xi), f2p(xi), . . . , fNip(xi)}

}
,

and let
M = max{M0, . . . ,Mp−1}.

Then for all m,n ∈ N we have that

m,n ≥ Φ(p, ω, η, 2M, ε)

gives
d(xn, xm) ≤ ε

and so
d(xn, z) ≤ ε.

Proof. We first note that since fp has moduli η and ωp of uniform generalized
1-contractivity and uniform continuity, we have by Lemma 4.12 that ρ is a
modulus of modified uniform generalized 1-contractivity for fp. Then by the
proof of Theorem 4.18 we can infer that for 0 ≤ i < p the iteration sequence
(fpn(xi))n∈N is bounded by Mi. Namely, we proved that

diam {z, xi, fp(xi), f2p(xi), . . . , f (n+1)p(xi)} =
diam {z, xi, fp(xi), f2p(xi), . . . , fnp(xi)}

if
diam {z, xi, fp(xi), f2p(xi), . . . , f (n+1)p(xi)} > 2d(xi, z)

and n ≥ Ni. Thus (fn(x0))n∈N is bounded by 2M . Now the claim follows by
Theorem 4.6.

2
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Corollary 4.20. Let (X, d) be a nonempty complete metric space, and let p ∈ N,
p ≥ 1. Let f : X → X have a modulus η of uniform generalized p-contractivity
and a modulus ω of uniform continuity. Suppose for some starting point the
Picard iteration sequence is bounded. Let z be the unique fixed point of f . Let
x0 ∈ X and let δ, b > 0 be such that δ ≤ d(x0, z) < b. Let ε > 0. Let Φ be as in
Theorem 4.6. Let

N =
⌈

b

ρ(δ)

⌉
,

where ρ is as in Corollary 4.19. Let

M = max{2b,diam {z, x0, f
p(x0), f2p(x0), . . . , fNp(x0)}},

and let

K = Φ(1, ωp, η,M, 1/2 ·min{1, ω(1), ω2(1), . . . , ωp−1(1)}).

Let
M ′ = diam {xn : 0 ≤ n ≤ Kp}+ 2.

Then for all m,n ∈ N we have that

m,n ≥ Φ(p, ω, η,M ′, ε)

gives
d(xn, xm) ≤ ε

and so
d(xn, z) ≤ ε.

Proof. As in the proof of Corollary 4.19 we note that fp has moduli η of uniform
generalized 1-contractivity, ωp of uniform continuity and ρ of modified uniform
generalized 1-contractivity. Furthermore, as in the proof of Corollary 4.19 we
get that (fpn(x0))n∈N is bounded by M . Then for m,n ≥ K we have

d(xmp, xnp) ≤ 1/2 ·min{1, ω(1), ω2(1), . . . , ωp−1(1)}

and
d(z, xnp) ≤ 1/2 ·min{1, ω(1), ω2(1), . . . , ωp−1(1)}.

Since ω is a modulus of uniform continuity for f we have in particular that

d(xnp, z) < 1,
d(xnp+1, z) < 1,
d(xnp+2, z) < 1,

...
d(xnp+(p−1), z) < 1,

for n ≥ K. And so for n ≥ Kp we have in fact d(xn, z) < 1. Let now m,n be
nonnegative integers. We distinguish three cases:
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1. If m,n ≤ Kp, then

d(xn, xm) ≤ diam {xk : 0 ≤ k ≤ Kp} < M ′.

2. If m,n ≥ Kp, then

d(xn, xm) ≤ d(xn, z) + d(xm, z) < 2 ≤M ′.

3. If m < Kp and n > Kp, then

d(xn, xm) ≤ d(xm, xKp)+d(xn, xKp) < diam {xk : 0 ≤ k ≤ Kp}+2 = M ′.

It follows that M ′ is a bound on (xn)n∈N. Now Theorem 4.6 gives the conclusion.
2

In the previous two corollaries we gave rates of convergence which were
dependent on strictly positive upper and lower bounds on d(z, xi) for some i
(and on the diameter of a set consisting of some of the initial members of the
Picard iteration sequence). We will now improve this as detailed in the following
corollary. Essentially we will here instead require a lower bound δ > 0 on the
initial displacement d(x0, x1) and an upper bound b > 0 on the distance to a
point which is an approximate fixed point. Additionally we require an upper
bound on the diameter of a set consisting of some of the initial members of the
Picard iteration sequence.

Corollary 4.21. Let (X, d) be a nonempty complete metric space, and let p ∈ N,
p ≥ 1. Let f : X → X have a modulus η of uniform generalized p-contractivity
and a modulus ω of uniform continuity. Suppose for some starting point the
Picard iteration sequence is bounded. Let x0 ∈ X and let δ > 0 be such that
δ ≤ d(x0, x1). Let b, c, ε > 0. Let Φ be as in Theorem 4.6. Assume that there is
y ∈ X such that d(x0, y) < b and d(x1, y) < b, and such that either

d(y, fp(y)) <
η(c)

2

or (fn(y))n∈N is bounded by c. Let

N =
⌈
b+ c

ρ(δ/2)

⌉
,

where ρ is as in Corollary 4.19. Let

M0 = max
{

2(b+ c),diam
{
x0, f

p(x0), f2p(x0), . . . , fNp(x0)
}

+ b+ c
}
,

M1 = max
{

2(b+ c),diam
{
x1, f

p(x1), f2p(x1), . . . , fNp(x1)
}

+ b+ c
}
,

and let

K = Φ
(

1, ωp, η,max
{
M0,M1

}
, 1/2 ·min

{
1, ω(1), ω2(1), . . . , ωp−1(1)

})
.
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Let
M ′ = diam

{
xn : 0 ≤ n ≤ Kp+ 1

}
+ 2.

Then for all m,n ∈ N we have that

m,n ≥ Φ(p, ω, η,M ′, ε)

gives
d(xn, xm) ≤ ε.

And so
d(xn, z) ≤ ε,

where z is the unique fixed point.

Proof. By Lemma 4.16 it follows that d(y, z) ≤ c, where z is the unique fixed
point. Thus by the triangle inequality

d(x0, z) < b+ c

and
d(x1, z) < b+ c.

Furthermore, either δ/2 ≤ d(x0, z) or δ/2 ≤ d(x1, z). As in the proof of Corol-
lary 4.19 we get that either (fpn(x0))n∈N is bounded by M0 or (fpn(x1))n∈N is
bounded by M1. So we have that

d(fn(x0), z) < 1

for all n ≥ Kp or
d(fn(x1), z) < 1

for all n ≥ Kp, and so we have d(fn(x0), z) < 1 for all n ≥ Kp+ 1. Hence, M ′

is a bound on (xn)n∈N, and the conclusion follows by Theorem 4.6.
2

The Cauchy rates appearing in the last three corollaries depend heavily on
f . If the space satisfies a further structural condition we may find Cauchy rates
with uniformity properties with respect to f . This will include for instance
spaces of hyperbolic type in the sense of [62], as well as hyperbolic spaces in
the sense of [155] and hyperbolic spaces in the sense of [99], and therefore e.g.,
normed linear spaces, Hadamard manifolds and CAT(0)-spaces.

Definition 4.22. Let (X, d) be a metric space. Let ε > 0 and x, y ∈ X. We
say that x is ε-step-equivalent to y if there exist points x0 = x, x1, . . . , xn = y,
belonging to X, with

d(xi, xi+1) ≤ ε

for i < n. This defines for each ε > 0 an equivalence relation on X. We call the
equivalence classes ε-step-territories.
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The notions in Definition 4.22 are taken from [144]. The condition on a
metric space which in the terminology of Definition 4.22 amounts to requiring
that the space should be an ε-step-territory was already treated by M. Edelstein.
We will employ a uniform version of ε-step-territories.

Definition 4.23. Let (X, d) be a metric space, and let ε > 0. A subset Tε of X
is a uniform ε-step-territory if there exists αε : N→ N such that for all x, y ∈ Tε
and all n ∈ N, if d(x, y) < nε, then there exist x0 = x, x1, . . . , xαε(n) = y ∈ Tε
with

d(xi, xi+1) < ε

for i < αε(n).

Definition 4.24. Let (X, d) be a metric space. A subset T of X is called a
territory if it is an ε-step-territory for each ε > 0. A subset T of X is called a
uniform territory if it is a uniform ε-step-territory for each ε > 0.

Definition 4.25. Let (X, d) be a metric space, and let T be a subset of X. A
function α : (0,∞) × N → N is called a uniform territory modulus for T if for
each ε > 0 and for all x, y ∈ T and n ∈ N such that

d(x, y) < nε,

there exist x0 = x, x1, . . . , xα(ε,n) = y ∈ T with d(xi, xi+1) < ε for i < α(ε, n).

We note that if T has a uniform territory modulus then T is a uniform
territory.

Remark 4.26. If (X, d) is a geodesic space, then X is a uniform territory with
a uniform territory modulus α given by α(ε, n) = n.

Corollary 4.27. Let (X, d) be a nonempty complete metric space which is a
uniform territory with a uniform territory modulus α. Let p ∈ N, p ≥ 1, and
let f : X → X have a modulus η of uniform generalized p-contractivity and
a modulus ω of uniform continuity. Suppose that for some starting point the
Picard iteration sequence is bounded. Let z be the unique fixed point of f . Let
x0 ∈ X and let b > 0 satisfy d(x0, z) < b. Then for all n ∈ N,

d(z, fn(x0)) < Kp−1(b+KNp(b)),

where K : (0,∞)→ (0,∞) is defined by

K(γ) := max
{
α

(
ω(1),

⌈
γ

ω(1)

⌉)
, γ

}
,

N :=
⌈

b

ρ(δ)

⌉
,

ρ : (0,∞)→ (0,∞) is defined by

ρ(γ) := min
{
η(γ),

γ

2
, η

(
1
2
ωp
(γ

2

))}
,
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and δ := min{b, ω(b)}. Let ε > 0 and let Φ be as in Theorem 4.6. Then

m,n ≥ Φ(p, ω, η, 2Kp−1(b+KNp(b)), ε)

gives d(xn, xm) ≤ ε.

Proof. Since fp has moduli η and ωp of uniform generalized 1-contractivity and
uniform continuity, we have that ρ is a modulus of modified uniform generalized
1-contractivity for fp. Now, if d(x0, z) < δ, then if we do not for all n ∈ N have

d(fn(x0), z) < δ,

it follows from the definition of δ that we for some m ∈ N have

δ ≤ d(fm(x0), z) < b.

For if fm(x0) is the first member of the sequence which is not an element of
the set {x ∈ X : d(x, z) < δ}, then d(fm−1(x0), z) < δ ≤ ω(b). So since ω is a
modulus of uniform continuity for f we have d(fm(x0), z) < b. So in total

δ ≤ d(fm(x0), z) < b.

We can take fm(x0) as the starting point x′0 of a new Picard iteration sequence.
If we can establish the bound on d(fn(x′0), z) for this sequence, then it is also
proved for our original sequence, since

d(f i(x0), z) < δ < Kp−1(b+KNp(b))

for i < m. The last inequality follows since K(γ) ≥ γ for γ > 0. Hence, we may
assume

δ ≤ d(x0, z) < b.

Then as in the proof of Corollary 4.19 we can infer that the iteration sequence
(fpn(x0))n∈N is bounded by

M := max{2d(x0, z),diam {z, x0, f
p(x0), f2p(x0), . . . , fNp(x0)}}.

From the proof of Theorem 4.18 it follows that if z 6= fkp(x0) for all 0 ≤ k ≤ N ,
then

diam {z, x0, f
p(x0), f2p(x0), . . . , fNp(x0)} = d(x0, z)

or
diam {z, x0, f

p(x0), f2p(x0), . . . , fNp(x0)} = d(x0, f
ip(x0)),

for some i ≤ N . And thus we in fact have

diam {z, x0, f
p(x0), f2p(x0), . . . , fNp(x0)} = d(x0, z)

or
diam {z, x0, f

p(x0), f2p(x0), . . . , fNp(x0)} = d(x0, f
ip(x0)),
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for some i ≤ N , for if z = fkp(x0) for some 0 ≤ k ≤ N , then either x0 = z or
else for k = min{n ∈ N : z = fnp(x0)} we have

diam {z, x0, f
p(x0), f2p(x0), . . . , fNp(x0)} =

diam {z, x0, f
p(x0), f2p(x0), . . . , f (k−1)p(x0)} = d(x0, z)

or

diam {z, x0, f
p(x0), f2p(x0), . . . , fNp(x0)} =

diam {z, x0, f
p(x0), f2p(x0), . . . , f (k−1)p(x0)} = d(x0, f

ip(x0)),

for some i ≤ k − 1. Therefore

diam {z, x0, f
p(x0), f2p(x0), . . . , fNp(x0)} ≤ d(x0, z) + d(z, f ip(x0)), (4.10)

for some i ≤ N . Since

d(z, x0) <
⌈

b

ω(1)

⌉
· ω(1),

we have by definition of K and by the assumed property of the space that

d(z, f(x0)) < K(b).

This follows since with

m := α

(
ω(1),

⌈
b

ω(1)

⌉)
,

we have that there exist x′0 = x0, x
′
1, . . . , x

′
m = z ∈ X with

d(x′i, x
′
i+1) < ω(1)

for i < m. And so d(f(x0), z) < K(b). Furthermore,

d(z, f(x0)), d(z, f2(x0)) < K2(b),

since K(γ) ≥ γ. And in general,

d(z, f(x0)), d(z, f2(x0)), . . . , d(z, fk(x0)) < Kk(b).

So by (4.10) we have

diam {z, x0, f
p(x0), f2p(x0), . . . , fNp(x0)} < b+KNp(b).

Thus M < b+KNp(b). Hence for any n ∈ N we have

d(z, fnp(x0)) < b+KNp(b),

and so
d(z, fnp(x0)), d(z, fnp+1(x0)) < K(b+KNp(b)).
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For all n ∈ N we have

d(z, fnp(x0)), d(z, fnp+1(x0)), . . . , d(z, fnp+p−1(x0)) < Kp−1(b+KNp(b)).

That is, for all n ∈ N we have

d(z, fn(x0)) < Kp−1(b+KNp(b)).

Hence, 2Kp−1(b + KNp(b)) is a bound on (xn)n∈N, and the conclusion follows
by Theorem 4.6.

2

Notice that the Cauchy rate in the preceeding corollary only depends on p,
ω, η, α and b. Given these the rate is uniform in the space, the mapping and
the starting point.

We can treat the situation where the space is not complete as follows. We
consider a metric space (X, d) and a function f : X → X with moduli ω and η
of uniform continuity and uniform generalized p-contractivity. We denote by f
also the canonical extension of f to the completion of X. We can then define
e.g. ω′ : (0,∞) → (0,∞) by ω′(ε) := ω(ε/2) and η′ : (0,∞) → (0,∞) by
η′(ε) := η(ε)/2. It is easy to see that ω′ and η′ are moduli of uniform continuity
and uniform generalized p-contractivity for f considered as a function on the
completion of X. We can thus find Cauchy rates for (xn)n∈N with x0 ∈ X by
considering the completion and the suitably modified moduli.

We will now improve Corollary 4.27 similarly to the way Corollary 4.21 is
an improvement of Corollary 4.20, and at the same time spell out the details
for what happens in this case when the space is not complete. Notice that in
the following corollary the Cauchy rate does not depend on an upper bound on
the distance d(x0, z) between the starting point and the fixed point, but rather
on an upper bound on the distance d(x0, y) between the starting point and a
point y which is moved a sufficiently short distance by the mapping.

Corollary 4.28. Let (X, d) be a nonempty metric space which is a uniform
territory with a uniform territory modulus α. Let p ∈ N, p ≥ 1, and let f : X →
X have a modulus η of uniform generalized p-contractivity and a modulus ω of
uniform continuity. Suppose that for some starting point the Picard iteration
sequence is bounded. Let ω′ and η′ be defined as above, and let x0 ∈ X. Let
b, c ∈ (0,∞) be such that there is y ∈ X with

d(y, fp(y)) <
η′(c)

2
,

such that d(x0, y) < b. Then (fn(x0))n∈N is bounded by

2Kp−1(b+ c+KNp(b+ c)),

where K : (0,∞)→ (0,∞) is defined by

K(γ) := max
{
α

(
1
2
· ω′(1),

⌈
γ

1/2 · ω′(1)

⌉)
, γ

}
,
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N :=
⌈
b+ c

ρ′(δ)

⌉
,

ρ′ : (0,∞)→ (0,∞) is defined by

ρ′(γ) := min
{
η′(γ),

γ

2
, η′
(

1
2
ω′p
(γ

2

))}
,

and δ := min{b+ c, ω′(b+ c)}. Let ε > 0 and let Φ be as in Theorem 4.6. Then

m,n ≥ Φ(p, ω, η, 2Kp−1(b+ c+KNp(b+ c)), ε)

gives d(xn, xm) ≤ ε.

Proof. We consider the completion (X̂, d̂ ) of (X, d) and the canonical extension
of f , which we also denote by f . We have that ω′ and η′ are moduli of uniform
continuity and uniform generalized p-contractivity for f . Now (X̂, d̂) satisfies the
condition that for each ε′ > 0 and for all x, y ∈ X̂ and n ∈ N, if d̂(x, y) < nε′,
then there exist x′0 = x, x′1, . . . , x

′
α(ε′,n) = y ∈ X̂ with d̂(x′i, x

′
i+1) < 2ε′ for

i < α(ε′, n). Let z be the unique fixed point. By assumption we have

d(y, fp(y)) < η′(c)/2,

and so by Lemma 4.16 we get that d̂(y, z) ≤ c. And since we assume that
d(x0, y) < b we get

d̂(x0, z) < b+ c.

Our new definition of K serves the same purpose as the version in Corollary 4.27,
i.e. for x ∈ X̂ and b′ > 0 with d̂(x, z) < b′, we get d̂(f(x), z) < K(b′). This
follows since ⌈

b′

1/2 · ω′(1)

⌉
· 1/2 · ω′(1) > d̂(x, z),

so with

m := α

(
1/2 · ω′(1),

⌈
b′

1/2 · ω′(1)

⌉)
,

we have that there exist x′0 = x, x′1, . . . , x
′
m = z ∈ X̂ with

d̂(x′i, x
′
i+1) < 2 · 1/2 · ω′(1)

for i < m. And so d̂(f(x), z) < K(b′). Now by identical reasoning as in
Corollary 4.27 we get that for all n ∈ N we have

d̂(fn(x0), z) < Kp−1(b+ c+KNp(b+ c)).

Thus
2Kp−1(b+ c+KNp(b+ c))

is a bound on (fn(x0))n∈N in X̂, and hence also in X. The conclusion follows
by Theorem 4.6.

2
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Corollary 4.29. Let (X, d) be a nonempty metric space which is a uniform
territory with a uniform territory modulus α. Let p ∈ N, p ≥ 1, and let f : X →
X have a modulus η of uniform generalized p-contractivity and a modulus ω of
uniform continuity. Suppose that for some starting point the Picard iteration
sequence is bounded. Let x0, y0 ∈ X, and let b, c ∈ (0,∞) be such that d(x0, y0) <
b and such that c is a bound on (fn(y0))n∈N. Then (fn(x0))n∈N is bounded by

2Kp−1(b+ c+KNp(b+ c)),

where K, N , ρ′ and δ are defined as in Corollary 4.28. Let ε > 0 and let Φ be
as in Theorem 4.6. Then

m,n ≥ Φ(p, ω, η, 2Kp−1(b+ c+KNp(b+ c)), ε)

gives d(xn, xm) ≤ ε.

Proof. We have in the completion (X̂, d̂ ) of (X, d) that d̂(x0, z) < b+ c, where
z is the unique fixed point. Now the result follows as in Corollary 4.28.

2

Finally we include some remarks on applications of fixed point theorems for
mappings satisfying contractive type conditions more general than e.g. the one
due to Banach or the one due to Edelstein. Such contractive type conditions
have been extensively studied as part of an attempt to conceptually understand
the fixed point theory of selfmappings of abstract metric spaces, but they are
often difficult to apply in other areas of mathematics.

It is a relevant point in this connection that Banach’s original contraction
mapping principle is so frequently used in analysis precisely because the con-
tractive condition involved is so simple. The results in this chapter show that
the classes of mappings studied here are asymptotic contractions in the sense of
Kirk (when we restrict the treatment to bounded spaces), and indeed, the char-
acterization of asymptotic contractions in the sense of Kirk on bounded spaces,
which we gave in Chapter 3, shows that we in some sense have found conditions
which are so general that they cover all classes of mappings on bounded metric
spaces which we would consider “nice”. A natural line of further research would
be to investigate possible applications of the theorems concerning asymptotic
contractions, and this might thus involve trying to find less general conditions
on the mappings – that is, one can try to find conditions which are sufficient
for a mapping to be an asymptotic contraction, but conditions which are more
easy to check in various cases of interest, and which lend themselves easily to
applications.

As an example of the kind of result one easily obtains from a fixed point
theorem for mappings satisfying a general contractive condition we will consider
how we can formulate a more general version of Picard’s theorem for differential
equations using Theorem 4.5. This will illustrate the fact that often, when one
wishes to apply fixed point theorems for more general contractive conditions to
obtain in turn more general versions of theorems outside of metric fixed point
theory proper, the results are indeed more general, but also seemingly not always
very practical.
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Picard’s theorem (for a proof, see e.g. [29]) tells us that given a bounded,
continuous real-valued function f : G → R defined on an open subset G of R2,
if f satisfies a Lipschitz condition with respect to the second variable, i.e., if
there exists M ≥ 0 such that

|f(x, y1)− f(x, y2)| ≤M |y1 − y2|

holds for all (x, y1), (x, y2) ∈ G, then for any (x0, y0) ∈ G the differential equa-
tion y′ = f(x, y) with initial condition y(x0) = y0 has a unique solution φ in
some interval I = [x0 − δ, x0 + δ]. Here δ > 0 is chosen such that Mδ < 1 and
such that

{(x, y) : |x− x0| ≤ δ, |y − y0| ≤ Kδ} ⊆ G,

where K > 0 is such that |f(x, y)| ≤ K for all (x, y) ∈ G. The proof involves
considering the complete metric space (X, d) of all continuous functions

g : I → [y0 −Kδ, y0 +Kδ],

with the metric d defined by d(g, h) = maxt∈I |g(t) − h(t)|, and the mapping
T : X → X defined by

(Tg)(x) = y0 +
∫ x

x0

f(t, g(t)) dt

for all g ∈ X and x ∈ I, and then showing that T is a contraction. As a
consequence we also get that (Tng)n∈N converges to the unique solution φ for any
g ∈ X. A crucial step in the proof involves showing that d(Tg, Th) ≤Mδ·d(g, h)
by showing that

|(Tg)(x)− (Th)(x)| ≤
∣∣∣∣∫ x

x0

[f(t, g(t))− f(t, h(t))] dt
∣∣∣∣ ≤Mδ · d(g, h)

for all g, h ∈ X and all x ∈ I. This follows since f is Lipschitzian with constant
M with respect to the second variable. Now from Ćirić’s theorem we can deduce
that if we remove the condition that f is Lipschitzian with respect to the second
variable (but still assume that f is continuous and bounded) then for (x0, y0) ∈
G and initial condition y(x0) = y0 we can still conclude the existence of a unique
solution φ in I = [x0 − δ, x0 + δ], with δ > 0 such that

{(x, y) : |x− x0| ≤ δ, |y − y0| ≤ Kδ} ⊆ G,

if for some M ≥ 0 with Mδ < 1 we have for all x ∈ I and all g, h ∈ X that one
of the following conditions holds:∣∣∣∣∫ x

x0

[f(t, g(t))− f(t, h(t))] dt
∣∣∣∣ ≤Mδ ·max

t∈I
|g(t)− h(t)|,

∣∣∣∣∫ x

x0

[f(t, g(t))− f(t, h(t))] dt
∣∣∣∣ ≤Mδ ·max

t∈I

∣∣∣∣ y0 +
∫ t

x0

f(u, h(u)) du− h(t)
∣∣∣∣ ,
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∣∣∣∣∫ x

x0

[f(t, g(t))− f(t, h(t))] dt
∣∣∣∣ ≤Mδ ·max

t∈I

∣∣∣∣ y0 +
∫ t

x0

f(u, g(u)) du− g(t)
∣∣∣∣ ,∣∣∣∣∫ x

x0

[f(t, g(t))− f(t, h(t))] dt
∣∣∣∣ ≤Mδ ·max

t∈I

∣∣∣∣ y0 +
∫ t

x0

f(u, g(u)) du− h(t)
∣∣∣∣

or ∣∣∣∣∫ x

x0

[f(t, g(t))− f(t, h(t))] dt
∣∣∣∣ ≤Mδ ·max

t∈I

∣∣∣∣ y0 +
∫ t

x0

f(u, h(u)) du− g(t)
∣∣∣∣ .

We have also in this situation that (Tng)n∈N converges to the unique solution
φ for any g ∈ X.
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[1] Asuman Güven Aksoy and Mohamed Amine Khamsi, Nonstandard meth-
ods in fixed point theory, Universitext. New York etc.: Springer-Verlag.
ix+139 p., 1990. (20)
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[39] Barry Cooper, Benedikt Löwe, and Andrea Sorbi (eds.), New computa-
tional paradigms: Changing conceptions of what is computable, Springer,
2008. (154)

[40] Charles N. Delzell, Kreisel’s unwinding of Artin’s Proof, in Odifreddi [143],
pp. 113–246. (4, 6)

[41] William G. Dotson Jr., On the Mann iterative process, Transactions of the
American Mathematical Society 149 (1970), 65–73. (13)

[42] Michael Edelstein, On fixed and periodic points under contractive map-
pings, Journal of the London Mathematical Society. Second Series 37
(1962), 74–79. (17)

[43] Solomon Feferman, Theories of finite type related to mathematical practice,
in Barwise [13], pp. 913–972. (35)

[44] , Kreisel’s “Unwinding Program”, in Odifreddi [143], pp. 247–273.
(4)

[45] , In the light of logic, Logic and Computation in Philosophy. New
York, NY: Oxford University Press. xii+340 p., 1998. (-)

[46] , Lieber Herr Bernays!, Lieber Herr Gödel! Gödel on finitism,
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[65] Dietrich Göhde, Zum Prinzip der kontraktiven Abbildung, Mathematische
Nachrichten 30 (1965), 251–258. (15)
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