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Abstract. We show that the asymptotic regularity and the strong conver-
gence of the modified Halpern iteration due to T.-H. Kim and H.-K. Xu and

studied further by A. Cuntavenapit and B. Panyanak and the Tikhonov-Mann

iteration introduced by H. Cheval and L. Leuştean as a generalization of an
iteration due to Y. Yao et al. that has recently been studied by Boţ et al.

can be reduced to each other in general geodesic settings. This, in particu-

lar, gives a new proof of the convergence result in Boţ et al. together with a
generalization from Hilbert to CAT(0) spaces. Moreover, quantitative rates of

asymptotic regularity and metastability due to K. Schade and U. Kohlenbach
can be adapted and transformed into rates for the Tikhonov-Mann iteration

corresponding to recent quantitative results on the latter of H. Cheval, L.

Leuştean and B. Dinis, P. Pinto respectively. A transformation in the con-
verse direction is also possible. We also obtain rates of asymptotic regularity

of order O(1/n) for both the modified Halpern (and so in particular for the

Halpern iteration) and the Tikhonov-Mann iteration in a general geodesic set-
ting for a special choice of scalars.
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1. Introduction

We consider in the sequel generalizations of the well-known Mann and Halpern
iterations obtained by combining them with the so-called Tikhonov regularization
terms [3, 23]. Although we will in the rest of the paper work in a general geodesic
setting we first discuss these iterations for simplicity in the context of linear normed
spaces, where X is a Banach space, C ⊆ X is a convex subset, and T : C → C is a
nonexpansive mapping.
One such generalization is the Tikhonov-Mann iteration, defined in [7] as follows:

(1) xn+1 = (1− λn)((1− βn)u+ βnxn) + λnT
(
(1− βn)u+ βnxn

)
,
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2 ON MODIFIED HALPERN AND TIKHONOV-MANN ITERATIONS

where (λn)n∈N, (βn)n∈N are sequences in [0, 1] and x0, u ∈ C. Obviously, if βn = 1,
then (xn) becomes the Mann iteration. For u = 0 one gets a modified Mann
iteration, studied in [32] and rediscovered in a recent paper [4].
Another generalization is the modified Halpern iteration, introduced in [13]:

yn+1 := γnv + (1− γn)(αnyn + (1− αn)Tyn),(2)

where (γn)n∈N and (αn)n∈N are sequences in [0, 1] and v, y0 ∈ C.
[13] showed the strong convergence of (yn) in uniformly smooth Banach spaces un-
der certain conditions on the scalars and assuming that T has a fixed point. Under
somewhat more liberal conditions, [9] showed the strong convergence in the nonlin-
ear setting of CAT(0) spaces.

In this paper we establish, in a general nonlinear setting, a strong connection be-
tween the modified Halpern and the Tikhonov-Mann iteration schemes. From this
connection it follows that the strong convergence of one scheme implies that of the
other. In particular, the strong convergence theorem of [4] follows from the much
older results on the modified Halpern iteration and - by a slight modification of the
argument provided in [9] - also under the exact same conditions on the scalars as
assumed in [4]. Moreover, quantitative rates of asymptotic regularity and metasta-
bility (in the sense of Tao [30, 31]) for one scheme translate into corresponding rates
for the other scheme. In 2012, Schade and the second author [28] extracted rates
of asymptotic regularity for the modified Halpern iteration in a general nonlinear
setting and of metastability for CAT(0) spaces from the proof given in [9]. We show
that with a slight modification of the rate of asymptotic regularity one can in that
extraction weaken again the conditions on the scalars to those used in [4]. By the
aforementioned reduction of the Tikonov-Mann iteration to the modified Halpern
iteration this induces corresponding rates of asymptotic regularity in a general
nonlinear setting and of metastability for CAT(0) spaces for the Tikhonov-Mann
scheme. A rate of asymptotic regularity in this case has recently been extracted
in [7] directly from the proof given in [4] by the first and the third author and a
rate of metastability has recently been obtained for the modified Mann iteration, a
special case of the Tikhonov-Mann iteration, in the case of Hilbert spaces in [10].
In [11] the authors introduce an alternating Halpern-Mann iteration and compute
rates of metastability for this iteration in the setting of CAT(0) spaces. As the
Tikhonov-Mann iteration (xn) is a special case of the alternating Halpern-Mann
iteration, one gets, as a corollary of [11, Theorem 5.1] rates of metastability for
(xn). However, the proof of [11, Theorem 5.1] uses a stronger condition on the
scalars than in our result.
Conversely, rates for the Tikhonov-Mann iteration imply - by the connection estab-
lished in this paper - corresponding rates for the modified Halpern iteration.
For some special test case for the choice of scalars, we for the first time obtain rates
of asymptotic regularity of order O(1/n) for both iterations which are new even in
the linear case.

2. W -spaces

Firstly, let us recall some basic notions from geodesic geometry. We refer to [26]
for details. Let (X, d) be a metric space. A geodesic path (or simply a geodesic) in
X is a function γ : [a, b] → X which is distance-preserving, that is d(γ(s), γ(t)) =
|s− t| for all s, t ∈ [a, b]. A geodesic segment in X is the image of a geodesic in X.
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If γ : [a, b] → X is a geodesic, γ(a) = x and γ(b) = y, we say that the geodesic
γ joins x and y or that the geodesic segment γ([a, b]) joins x and y. The metric
space (X, d) is (uniquely) geodesic if every two points of X are joined by a (unique)
geodesic segment. The following useful properties are well-known.

Lemma 2.1. Assume that X is a geodesic space.

(i) Let x, y ∈ X and γ([a, b]) be a geodesic segment that joins x and y. For
every λ ∈ [0, 1], z = γ((1 − λ)a + λb) is the unique point in γ([a, b])
satisfying d(z, x) = λd(x, y), and this unique z satisfies also d(z, y) =
(1− λ)d(x, y).

(ii) The following are equivalent:
(a) X is uniquely geodesic.
(b) For any x, y ∈ X and any λ ∈ [0, 1] there exists a unique element

z ∈ X such that d(x, z) = λd(x, y) and d(y, z) = (1− λ)d(x, y).

As in [7], we consider a W -space to be a metric space (X, d) together with a function
W : X×X× [0, 1]→ X. We think of W (x, y, λ) as an abstract convex combination
of the points x, y ∈ X. That is why we shall write (1−λ)x+λy instead of W (x, y, λ).
In the sequel, we denote a W -space simply by X. Let us define, for any x, y ∈ X,
[x, y] = {(1−λ)x+λy | λ ∈ [0, 1]}. A nonempty subset C ⊆ X is said to be convex
if for all x, y ∈ C, we have that [x, y] ⊆ C.
Consider the following axioms:

(W1) d(z, (1− λ)x+ λy) ≤ (1− λ)d(z, x) + λd(z, y),

(W2) d((1− λ)x+ λy, (1− λ̃)x+ λ̃y) = |λ− λ̃|d(x, y),

(W3) (1− λ)x+ λy = λy + (1− λ)x,

(W4) d((1− λ)x+ λz, (1− λ)y + λw) ≤ (1− λ)d(x, y) + λd(z, w),

(W5) 1x+ 0y = x and 0x+ 1y = y,

(W6) (1− λ)x+ λx = x,

(W7) d(x, (1− λ)x+ λy)=λd(x, y) and d(y, (1− λ)x+ λy)=(1−λ)d(x, y).

W -spaces satisfying (W1) were introduced by Takahashi [29] under the name of
convex metric spaces.

2.1. W -geodesic spaces.

Definition 2.2. A W -geodesic space is a W -space X satisfying (W2) and (W5).

Let X be a W -geodesic space.

Proposition 2.3. (W6) and (W7) hold.

Proof. Use that, by (W5), x = 1x+0x = 1x+0y, y = 0x+1y, and apply (W2). �

Define, for any x 6= y ∈ X, the mapping

Wxy : [0, d(x, y)]→ X, Wxy(s) =

(
1− s

d(x, y)

)
x+

s

d(x, y)
y.

We also define, for uniformity, Wxx : {0} → X, Wxx(0) = x.

Proposition 2.4. For all x, y ∈ X, Wxy is a geodesic that joins x and y such that
Wxy([0, d(x, y)]) = [x, y]. Thus, [x, y] is a geodesic segment that joins x and y.
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Proof. The case x = y is trivial, by (W6). Assume that x 6= y. One can eas-
ily see that, by (W2), Wxy is a geodesic. Furthermore, by (W5), we have that
Wxy(0) = x and Wxy(d(x, y)) = y. Thus, Wxy is a geodesic that joins x and y.
Since the mapping [0, 1] → [0, d(x, y)], λ 7→ λd(x, y) is a bijection, it follows that
Wxy([0, d(x, y)]) = [x, y]. �

In fact, a metric space is geodesic if and only if it is W -geodesic for some W :
X ×X × [0, 1]→ X.

Proposition 2.5. For all x, y ∈ X and all λ ∈ [0, 1], there exists a unique z ∈ [x, y]
(namely z = (1− λ)x+ λy) such that

(3) d(x, z) = λd(x, y) and d(y, z) = (1− λ)d(x, y).

Proof. Apply (W7), Lemma 2.1.(i) and the previous proposition. �

2.2. W -hyperbolic spaces. A W -hyperbolic space [14] is a W -space satisfying
(W1)-(W4). One can easily see that (W5)-(W7) also hold in a W -hyperbolic space.
In particular, any W -hyperbolic space is a W -geodesic space.
W -hyperbolic spaces turn out to be a natural class of geodesic spaces for the study of
nonlinear iterations. Normed spaces are obvious examples of W -hyperbolic spaces,
as one can define W (x, y, λ) = (1−λ)x+λy. Busemann spaces [6, 26] and CAT(0)
spaces [1, 5] are also W -hyperbolic spaces:

(i) by [2, Proposition 2.6], Busemann spaces are the uniquely geodesic W -
hyperbolic spaces;

(ii) by [15, p. 386-388], CAT(0) spaces are the W -hyperbolic spaces X satis-
fying

d2

(
z,

1

2
x+

1

2
y

)
≤ 1

2
d2(z, x) +

1

2
d2(z, y)− 1

4
d2(x, y) for all x, y, z ∈ X.

It is well-known that any CAT(0) space is a Busemann space.

3. The Tikhonov-Mann and modified Halpern iterations

Let X be a W -space, C ⊆ X a convex subset, and T : C → C be a nonexpansive
mapping, i.e. for all x, y ∈ C

d(Tx, Ty) ≤ d(x, y).

This very general setting suffices for defining the iterations of interest for us in this
paper. Let (βn) and (λn) be sequences in [0, 1] and u ∈ C.
The Tikhonov-Mann iteration (xn) and the modified Halpern iteration (yn) are
defined as follows:

x0 ∈ C, xn+1 = (1− λn)un + λnTun,(4)

y0 ∈ C, yn+1 = (1− βn+1)u+ βn+1vn,(5)

where

un = (1− βn)u+ βnxn and vn = (1− λn)yn + λnTyn.(6)

The ordinary Halpern iteration is the special case of (yn) with λn = 1 for all n ∈ N
and was introduced (in the case where u := 0) by Halpern in [12].
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Remark 3.1. We use for the parameter sequences from the definition of the mod-
ified Halpern iteration different notations than the ones from [13, 9, 28]: we write
1− βn+1 instead of βn and 1− λn instead of αn.

We get from (4) the following inductive definition for (un):

(7)
u0 = (1− β0)u+ β0x0 ∈ C,

un+1 = (1− βn+1)u+ βn+1

(
(1− λn)un + λnTun

)
.

The following observation establishes the essential link between our iterations.

Proposition 3.2. Assume that y0 = (1− β0)u+ β0x0. Then for all n ∈ N,

un = yn and xn+1 = vn.

Proof. We prove the first equality by induction on n. The case n = 0 holds by
hypothesis. As for the inductive step n⇒ n+ 1:

yn+1
(5)
= (1− βn+1)u+ βn+1vn

(6)
= (1− βn+1)u+ βn+1

(
(1− λn)yn + λnTyn

)
(IH)
= (1− βn+1)u+ βn+1

(
(1− λn)un + λnTun

)
(7)
= un+1.

Furthermore, xn+1 = (1− λn)un + λnTun = (1− λn)yn + λnTyn = vn. �

3.1. (Quantitative) conditions on (βn) and (λn). The following conditions on
the sequences (βn) and (λn) were used in the study of the asymptotic regularity
and strong convergence of the Tikhonov-Mann and modified Halpern iterations:

(H1)

∞∑
n=0

(1− βn) =∞, (H1∗)

∞∏
n=1

βn+1 = 0,

(H2)

∞∑
n=0

|βn+1 − βn| <∞, (H3)

∞∑
n=0

|λn+1 − λn| <∞,

(H4) lim
n→∞

βn = 1, (H5) lim inf
n→∞

λn > 0,

(H6) lim
n→∞

λn = 1, (H7)

∞∑
n=0

(1− λn) =∞.

Kim and Xu [13] proved the strong convergence of the modified Halpern iteration
in uniformly smooth Banach spaces under the hypotheses (H1)− (H4), (H6), and
(H7). Cuntavenapit and Panyanak [9] showed that strong convergence holds in
CAT(0) spaces without assuming (H7); they remarked that (H7) can be eliminated
also in the case of Kim and Xu’s result. Note that all the remaining conditions
permit the choice of λn = 1 (for all n) by which the modified Halpern iteration
becomes the ordinary Halpern iteration.
It is easy to see that the proof in [9] can be modified in such a way that instead of
(H6) only the weaker condition (H5) is needed: replace the last inequality in [9,
(3.4)] by (using (H5) for λn = 1− αn)

(1− αn)d(xn, Txn) ≤ d(xn, xn+1) + βnd(u, yn)→ 0, as n→∞.
Boţ, Csetnek and Meier [4] used (H1)− (H5) to obtain the strong convergence of
a modified Mann iteration in Hilbert spaces. By the comment above, Proposition
3.2 and Lemma 4.1 below, this result follows from [9].
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As a consequence of the quantitative results obtained by Cheval and Leuştean
[7], conditions (H1) − (H5) suffice for proving the asymptotic regularity of the
Tikhonov-Mann iteration in W -hyperbolic spaces. We also consider condition
(H1∗) (which - for strictly positive βn > 0 - is equivalent with (H1)), since, as
observed for the first time by the second author [16], its quantitative version is
useful in obtaining better rates of asymptotic regularity.
As we are interested in effective bounds on the asymptotic behaviour of our itera-
tions, we consider quantitative versions of the above conditions (with the exception
of (H7), which, as pointed above, is superfluous):

(H1q)
∞∑
n=2

(1− βn) diverges with rate of divergence σ1;

(H1∗q)
∞∏
n=1

βn+1 = 0 with rate of convergence σ∗1 ;

(H2q)
∞∑
n=0
|βn+1 − βn| converges with Cauchy modulus σ2;

(H3q)
∞∑
n=0
|λn+1 − λn| converges with Cauchy modulus σ3;

(H4q) lim
n→∞

βn = 1 with rate of convergence σ4;

(H5q) Λ ∈ N∗ and NΛ ∈ N are such that λn ≥ 1
Λ for all n ≥ NΛ;

(H6q) lim
n→∞

λn = 1 with rate of convergence σ5.

We refer, for example, to [7] for the definitions of quantitative notions such as rate
of convergence, Cauchy modulus, rate of divergence. The indices in our conditions
above are chosen in such a way that the respective moduli satisfy the conditions in
both [7] and [28].

4. Rates of asymptotic regularity

Let us recall that if X is a metric space, ∅ 6= C ⊆ X, and T : C → C, then a
sequence (an) in C is said to be

(i) asymptotically regular if lim
n→∞

d(an, an+1) = 0; a rate of asymptotic regu-

larity of (an) is a rate of convergence of (d(an, an+1)) towards 0.
(ii) T -asymptotically regular if lim

n→∞
d(an, Tan) = 0; a rate of T -asymptotic

regularity of (an) is a rate of convergence of (d(an, Tan)) towards 0.

In the sequel, we explore the relation between rates of (T -)asymptotic regularity
of the Tikhonov-Mann iteration (xn) and those of the modified Halpern iteration
(yn).
For the rest of the section, (X, d,W ) is a W -hyperbolic space, C is a convex subset
of X, and T : C → C is a nonexpansive mapping. We assume that T has fixed
points, hence the set Fix(T ) of fixed points of T is nonempty. If p is a fixed point
of T , define

(8) Mp = max{d(x0, p), d(u, p)}.

By [7, Lemma 3.1.(ii)] and [7, Proposition 3.2.(8)], we have that

d(xn, un) ≤ 2Mp(1− βn).(9)

Let K ∈ N∗ be such that K ≥Mp.
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Lemma 4.1. Assume that (H4q) holds. Then lim
n→∞

d(xn, un) = 0 with rate of
convergence

(10) α(k) = σ4 (2K(k + 1)− 1) .

Proof. Let n ≥ α(k). Then, by (9), we get that

d(xn, un) ≤ 2Mp(1− βn) ≤ 2K(1− βn) ≤ 2K

2K(k + 1)
=

1

k + 1
.

�

Proposition 4.2. Assume that (H4q) holds and let Φ : N→ N. Define Φ′ : N→ N
by

(11) Φ′(k) := max {α(3k + 2),Φ(3k + 2)} ,

where α is given by (10).

(i) If Φ is a rate of (T -)asymptotic regularity of one of the sequences (xn),
(un), then Φ′ is a rate of (T -)asymptotic regularity of the other one.

(ii) Suppose, moreover, that y0 = (1 − β0)u + β0x0. If one of the sequences
(xn), (yn) is (T -)asymptotically regular with rate Φ, then the other one is
(T -)asymptotically regular with rate Φ′.

Proof. (i) Let k ∈ N and n ≥ Φ′(k). Assume first that Φ is a rate of T -
asymptotic regularity of (un). We get that

d(xn, Txn) ≤ d(xn, un) + d(un, Tun) + d(Tun, Txn)

≤ 2d(xn, un) + d(un, Tun) [since T is nonexpansive]

≤ 2d(xn, un) +
1

3(k + 1)
[since n ≥ Φ(3k + 2)]

≤ 2

3(k + 1)
+

1

3(k + 1)
=

1

k + 1
,

as n ≥ α(3k + 2), so we can apply Lemma 4.1.
Assume now that Φ is a rate of asymptotic regularity of (un). Then

d(xn, xn+1) ≤ d(xn, un) + d(un, un+1) + d(un+1, xn+1)

≤ d(xn, un) + d(un+1, xn+1) +
1

3(k + 1)

≤ 2

3(k + 1)
+

1

3(k + 1)
=

1

k + 1
.

The proof for the case when Φ is a rate of (T -)asymptotic regularity of
(xn) follows by symmetry.

(ii) We have, by Proposition 3.2, that yn = un for all n ∈ N. Apply (i).
�

It follows that if the starting points x0, y0 ∈ C satisfy y0 = (1− β0)u+ β0x0, then
(xn) is (T -)asymptotically regular if and only if (yn) is (T -)asymptotically regular.
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4.1. On rates of (T -)asymptotic regularity of the modified Halpern it-
eration. In [28, Propositions 6.1, 6.2], Schade and the second author computed
uniform rates of (T -)asymptotic regularity of the modified Halpern iteration in W -
hyperbolic spaces. The hypotheses on the sequences (λn), (βn) used in [28] were
(H1q) (or - for strictly positive βn > 0 - equivalently, (H1∗q)), (H2q) - (H4q) and
(H6q). We improve these results by showing that the hypothesis (H6q) can be
weakened to (H5q).
Let (yn) be the modified Halpern iteration, given by (4). Let M ∈ N∗ be such that

(12) M ≥ 4 max{d(u, p), d(y0, p)}
for some p ∈ Fix(T ).
The following lemma collects some properties of (yn) that will be useful in the
sequel.

Lemma 4.3. [9, 28] For all n ≥ 1,

d(yn, u) ≤M,d(Tyn, u) ≤M and d(yn, yn+1) ≤M,(13)

d(yn, T yn) ≤ d(yn, yn+1) + (1− βn+1)d(u, Tyn) + βn+1(1− λn)d(yn, Tyn),(14)

d(yn+1, yn) ≤ βn+1

(
d(yn, yn−1)+|λn−λn−1|d(yn−1, Tyn−1)

)
+|βn+1−βn|cn,(15)

where cn = (1− λn−1)d(u, yn−1) + λn−1d(u, Tyn−1).

Proof. These properties are proved in [28] following [9] which treats the case of
CAT(0) spaces. As we pointed out in Remark 3.1, the sequence (xn) and the
scalars βn, αn in [28] correspond to (yn) and 1− βn+1, 1− λn in our current paper.
Then (13) is [28, Lemma 5.2(6),(8),(9)], (14) is [28, Lemma 5.1(6)], and (15) is [28,
Proof of Lemma 5.1(3), last line on p.10]. �

Proposition 4.4. Assume that (H2q), (H3q) hold. Define

(16) γ(k) = max {σ2(8M(k + 1)− 1), σ3(4M(k + 1)− 1)} .
(i) If (H1q) holds, then (yn) is asymptotically regular with rate

Σ(k) = σ1

(
γ(k) + dln(M(k + 1))e+ 1

)
+ 1.(17)

(ii) Suppose that (H1∗q) holds, and ψ : N→ N∗ satisfies

(18)
1

ψ(k)
≤
γ(k)∏
n=0

βn+1.

Then (yn) is asymptotically regular with rate

Σ∗(k) = σ∗1 (Mψ(k)(k + 1)− 1) + 1.(19)

Proof. This result is proven - in a different notation - in [28, Propositions 6.1, 6.2]
observing that only the assumptions stated above are used there, where [28] in turn
is based on [18]. More specifically:

(i) replace the notations used for the modified Halpern iteration in [28] with
the ones from this paper (see Remark 3.1).

(ii) use 1
k+1 instead of ε.

(iii) replace M2 with M , ψα with σ3, ψβ with σ2, and θβ with σ1 in (i) and
with σ∗1 in (ii), D with 1

ψ(k) in (ii), with the corresponding changes in

the parameters, due to the definitions, used in this paper, of the rates as
mappings N→ N.
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We get that Σ from (i) is Φ̃ from [28, Proposition 6.1] with ψβ

(
ε

8M2

)
replaced by

σ2(8M(k+1)−1), ψα

(
ε

4M2

)
replaced by σ3(4M(k+1)−1), and

⌈
M2

ε

⌉
replaced by

M(k + 1). Furthermore, Σ∗ from (ii) is Φ̃ from [28, Proposition 6.2] with θβ

(
Dε
M2

)
replaced by σ∗1 (Mψ(k)(k + 1)− 1). �

Proposition 4.5. Assume that (H4q) and (H5q) hold. If Σ : N → N is a rate of
asymptotic regularity of (yn), then

Σ̂(k) = max{NΛ,Σ(2Λ(k + 1)− 1), σ4(2MΛ(k + 1)− 1)}(20)

is a rate of T -asymptotic regularity of (yn).

Proof. We get that for all n ∈ N,

d(yn, T yn)
(14)

≤ d(yn, yn+1) + (1− βn+1)d(u, Tyn) + βn+1(1− λn)d(yn, T yn)

(13)

≤ d(yn, yn+1) +M(1− βn+1) + (1− λn)d(yn, Tyn).

After moving (1− λn)d(yn, Tyn) to the left-hand side, we get that, for all n ∈ N,

λnd(yn, T yn) ≤ d(yn, yn+1) +M(1− βn+1).(21)

Let now n ≥ Σ̂(k). Since n ≥ NΛ, we can apply (H5q) to obtain that λn ≥ 1
Λ . It

follows from (21) that

1

Λ
d(yn, T yn) ≤ d(yn, yn+1) +M(1− βn+1),

hence

d(yn, T yn) ≤ Λd(yn, yn+1) +MΛ(1− βn+1).(22)

As n ≥ Σ(2Λ(k + 1)− 1), we have that

d(yn, yn+1) ≤ 1

2Λ(k + 1)
.(23)

Since n ≥ σ4(2MΛ(k + 1)− 1), we get that

1− βn+1 ≤
1

2MΛ(k + 1)
.(24)

Apply (22), (23) and (24) to conclude that

d(yn, T yn) ≤ 1

2(k + 1)
+

1

2(k + 1)
=

1

k + 1
.

�

Thus, as an application of Propositions 4.4, 4.5, one computes also rates of T -
asymptotic regularity of the modified Halpern iteration.

One can easily see that particularizing the rates obtained in Propositions 4.4.(ii)
and 4.5 to the scalars λn = λ ∈ (0, 1] and βn = 1− 1

n+1 yields to quadratic rates of

(T -)asymptotic regularity. In [27] a linear rate of convergence is obtained for some
other Halpern-type iteration in the normed case for βn = 1− 2

n . We now show that
we also obtain this for the modified Halpern iteration in W-hyperbolic spaces using
[27, Lemma 3]:
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Lemma 4.6 ([27]). Let L > 0 and (an) be a sequence of non-negative real numbers
with a1 ≤ L such that for bn = min{2/n, 1} we have for all n ≥ 1,

an+1 ≤ (1− bn+1)an + (bn − bn+1)cn,

where (cn) is a sequence of reals such that cn ≤ L for all n ≥ 1.
Then an ≤ 2L/n for all n ≥ 1.

Proposition 4.7. Let λn = λ ∈ (0, 1], β1 = 0 and βn = 1− 2
n for n ≥ 2. Then for

all n ≥ 0,

d(yn+1, yn) ≤ 2M

n+ 1
,

d(yn, Tyn) ≤ 4M

λ(n+ 1)
,

where M ∈ N∗ is such that M ≥ 4 max{d(u, p), d(y0, p)}.

Proof. Apply (15) to get that for all n ≥ 1,

d(yn+1, yn) ≤ βn+1d(yn, yn−1) + |βn+1 − βn|cn,
where cn = (1− λ)d(u, yn−1) + λd(u, Tyn−1). By (13), we have that

max{d(y1, y0), cn} ≤M.

As βn = 1 − min{2/n, 1} for all n ≥ 1, we can apply Lemma 4.6 with an =
d(yn, yn−1) to obtain that for n ≥ 0,

d(yn+1, yn) ≤ 2M

n+ 1

and so by - the proof of - (22) above

d(yn, T yn) ≤ 2M

λ(n+ 1)
+

2M

λ(n+ 1)
=

4M

λ(n+ 1)
.

�

4.2. From modified Halpern iteration to Tikhonov-Mann iteration. We
derive rates of (T -)asymptotic regularity of the Tikhonov-Mann iteration from the
rates of the modified Halpern iterations computed in Subsection 4.1.
Let (xn) be the Tikhonov-Mann iteration, defined by (4), and K ∈ N∗ be such that
K ≥Mp, where p is a fixed point of T and Mp is given by (8).

Proposition 4.8. Assume that (H2q), (H3q), and (H4q) hold.

(i) If (H1q) holds and Σ is defined as in Proposition 4.4.(i), then (xn) is
asymptotically regular with rate

Φ(k) = max{σ4(6K(k + 1)− 1),Σ(3k + 2)}.

(ii) If (H1∗q) holds and ψ, Σ∗ are as in Proposition 4.4.(ii), then (xn) is asymp-
totically regular with rate

Φ(k) = max{σ4(6K(k + 1)− 1),Σ∗(3k + 2)}.

(iii) If (H5q) holds and Σ is a rate of asymptotic regularity of (yn), then

Φ̂(k) = max {σ4(6K(k + 1)− 1), NΛ,Σ(6Λ(k + 1)− 1), σ4(24KΛ(k + 1)− 1)}

is a rate of T -asymptotic regularity of (xn).
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Proof. Define y0 = (1 − β0)u + β0x0 and consider the modified Halpern iteration
(yn) starting with y0. By an application of (W1), we get that

d(y0, p) ≤ (1− β0)d(u, p) + β0d(x0, p) ≤ K.

Hence, we can use Proposition 4.4 with M = 4K to get rates of asymptotic regu-
larity of (yn). Apply now Proposition 4.2.(ii) to obtain (i) and (ii).
As for item (iii), assume, furthermore, that (H5q) holds and let Σ be a rate of

asymptotic regularity of (yn). Then Σ̂ defined as in Proposition 4.5 is a rate of
T -asymptotic regularity of (yn). Applying Proposition 4.2.(ii), we get that

Φ̂(k) = max {σ4(6K(k + 1)− 1), NΛ,Σ(6Λ(k + 1)− 1), σ4(24KΛ(k + 1)− 1)}

is a rate of T -asymptotic regularity of (xn). �

We consider now again the case λn = λ ∈ (0, 1], β1 = 0 and βn = 1− 2
n for n ≥ 2.

Let y0 = (1− β0)u+ β0x0. As yn = un (by Proposition 3.2), we get from (9) that
for all n ≥ 1,

d(xn, yn) ≤ 4K

n
.

Since d(y0, p) ≤ K, we can apply Proposition 4.7 with M = 4K and reason as in
the proof of Proposition 4.2.(i) to obtain that for all n ≥ 1,

d(xn, xn+1) ≤ d(xn, yn) + d(xn+1, yn+1) + d(yn, yn+1) ≤ 4K

n
+

12K

n+ 1
<

16K

n
,

d(xn, Txn) ≤ 2d(xn, yn) + d(yn, Tyn) ≤ 8K

n
+

16K

λ(n+ 1)
<

24K

λn
.

So we have obtained a linear rate of asymptotic regularity also for the Tikhonov-
Mann iteration as a consequence of the corresponding fact for the modified Halpern
iteration and the reduction of the former to the latter.

4.3. From Tikhonov-Mann iteration to modified Halpern iteration. Let
(yn) be the modified Halpern iteration, defined by (5), p be a fixed point of T , and
K ∈ N∗ be such that K ≥ max{d(u, p), d(y0, p)}.
The following proposition gives rates of (T -)asymptotic regularity of (yn).

Proposition 4.9. Assume that (H2q), (H3q), and (H4q) hold. Define

χ(k) = max{σ2(8K(k + 1)− 1), σ3(8K(k + 1)− 1)},
θ(k) = σ4(6K(k + 1)− 1).

(i) Suppose that (H1q) holds. Then
(a) (yn) is asymptotically regular with rate

Σ(k) = max{θ(k), σ1(χ(9k + 8) + 2 + dln(18K(k + 1))e) + 1}.

(b) If (H5q) holds, then (yn) is T -asymptotically regular with rate

Σ̂(k) = max{θ(k), NΛ,Σ(6Λ(k + 1)− 1), σ4(12KΛ(k + 1)− 1)}.

(ii) Suppose that (H1∗q) holds and that ψ : N → N∗ is such that 1
ψ(k) ≤

χ(3k+2)∏
n=0

βn+1. Then



12 ON MODIFIED HALPERN AND TIKHONOV-MANN ITERATIONS

(a) (yn) is asymptotically regular with rate

Σ∗(k) = max{θ(k), σ∗1(ψ∗(k)− 1) + 1, χ(9k + 8) + 2},
where ψ∗(k) = 18K(k + 1)ψ(3k + 2).

(b) If (H5q) holds, then (yn) is T -asymptotically regular with rate

Σ̂∗(k) = max{θ(k), NΛ,Σ
∗(6Λ(k + 1)− 1), σ4(12KΛ(k + 1)− 1)}.

Proof. Take β0 = 1. Then, by (W5), y0 = (1 − β0)u + β0y0. Apply [7, The-
orems 4.1,4.2] for the Tikhonov-Mann iteration (xn) starting with y0 to obtain
rates of (T -)asymptotic regularity for this iteration and use Proposition 4.2.(ii) to
translate them into rates for (yn).
For the proof of (ii), remark that if (H1∗q) holds, then σ∗1 is also a rate of convergence

of

( ∞∏
n=0

βn+1

)
towards 0, hence [7, (C2q)] holds with σ2 := σ∗1 . �

The first and the third author computed, for the particular case λn = λ ∈ (0, 1] and
βn = 1− 1

n+1 , quadratic rates of (T -)asymptotic regularity for the Tikhonov-Mann

iteration (see [7, Corollary 4.3]). We show in the sequel that we can use Lemma 4.6
for this iteration, too, and obtain, as a consequence, linear rates of (T -)asymptotic
regularity by letting βn = 1− 2

n .

Proposition 4.10. Assume that λn = λ ∈ (0, 1], β1 = 0 and βn = 1− 2
n for n ≥ 2,

and let (xn) be the Tikhonov-Mann iteration. Then for all n ≥ 1,

d(xn+1, xn) ≤ 4K

n
,

d(xn, Txn) ≤ 8K

λn
.

Proof. Using [7, Proposition 3.2(7)], we get that for all n ≥ 1,

d(xn+2, xn+1) ≤ βn+1d(xn+1, xn) + 2K|βn+1 − βn| ≤ βn+1d(xn+1, xn) + 2K.

Moreover, d(x1, x0) ≤ d(x1, p) + d(p, x0) ≤ 2K. Applying Lemma 4.6 for an =
d(xn+1, xn), bn = 1− βn, cn = 2K, and L = 2K, we get that for all n ≥ 1,

d(xn+1, xn) ≤ 4K

n
.

We obtain, as in the proof of [7, Proposition 5.5], that for all n ≥ 1,

d(xn, Txn) ≤ 1

λ
d(xn, xn+1) +

2K

λ
(1− βn) ≤ 4K

λn
+

4K

λn
=

8K

λn
.

�

We argue now as in Section 4.2 to get, from Proposition 4.10, linear rates for the
modified Halpern iteration (yn): for all n ≥ 1,

d(yn+1, yn) ≤ d(xn, yn) + d(xn+1, yn+1) + d(xn, xn+1) ≤ 12K

n
,

d(yn, T yn) ≤ 2d(xn, yn) + d(xn, Txn) ≤ 16K

λn
.

So for d(yn, T yn) the detour through the Tikhonov-Mann iteration gives (almost)
exactly the same rate as the direct approach in Proposition 4.7 while the latter
gives the slighty better constant ‘8’ in the rate for d(yn+1, yn).
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5. Rates of metastability

Recall that if X is a metric space and (an) is a sequence in X, a function Ω :
N × NN → N is a rate of metastability of (an) if it satisfies the following: for all
k ∈ N and all g : N→ N, there exists N ≤ Ω(k, g) such that

∀i, j ∈ [N,N + g(N)]

(
d(ai, aj) ≤

1

k + 1

)
.

Noneffectively, the above statement of metastability is trivially equivalent to the
Cauchy property of (an) and hence to its convergence if X is complete. Whereas
there are no computable rates of convergence for the iterations we consider (as a
consequence of [25]), effective rates of metastability can be extracted even from
highly noneffective convergence proofs (as the one given in [9] using Banach limits
and hence the axiom of choice) by general tools from proof theory. See [15] as
well as the recent survey [17], where also a short history of metastability is given
which goes back to Kreisel’s seminal work in the early 50’s ([20, 21]), while the
term ‘metastability’ was coined by Tao [30] who in turn refers to Jennifer Chayes’
concept of a ‘metastability principle’.

The following result shows that, as in the case of (T -)asymptotic regularity, there
is a strong relation between rates of metastability of the Tikhonov-Mann iteration
(xn) and the ones of the modified Halpern iteration (yn). The setting is the same
as in Section 4.

Proposition 5.1. Assume that (H4q) holds and let Ω : N × NN → N. Define
Ω′ : N× NN → N by

Ω′(k, g) = Ω̃(3k + 2, g, α(3k + 2)),(25)

where α is given by (10) and Ω̃ : N× NN × N→ N is defined by

Ω̃(k, g, q) = Ω(k, gq) + q,

with gq : N→ N, gq(n) = g(n+ q) + q.

(i) If Ω is a rate of metastability of one of the sequences (xn), (un), then Ω′

is a rate of metastability of the other one.
(ii) Suppose that y0 = (1 − β0)u + β0x0. If one of the sequences (xn), (yn)

is Cauchy with rate of metastability Ω, then the other one is Cauchy with
rate of metastability Ω′.

Proof. (i) Assume first that Ω is a rate of metastability of (un).

Claim: For all k ∈ N, g : N→ N, q ∈ N, there exists N ∈ N such that

q ≤ N ≤ Ω̃(k, g, q) and ∀i, j ∈ [N,N + g(N)]

(
d(ui, uj) ≤

1

k + 1

)
.

Proof of claim: Let k ∈ N, g : N → N, q ∈ N. As Ω is a rate of
metastability of (un), it follows that there exists N0 ≤ Ω(k, gq) such that

∀i, j ∈ [N0, N0 + gq(N0)]

(
d(ui, uj) ≤

1

k + 1

)
.

Let N := N0 + q. Then q ≤ N ≤ Ω(k, gq) + q = Ω̃(k, g, q). Furthermore,
[N,N + g(N)] = [N0 + q,N0 + q + g(N0 + q)] = [N0 + q,N0 + gq(N0)] ⊆
[N0, N0 + gq(N0)], hence d(ui, uj) ≤ 1

k+1 for all i, j ∈ [N,N + g(N)]. �
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Let k ∈ N and g : N → N. Apply the claim for k := 3k + 2, g and
q := α(3k + 2) to get the existence of N ∈ N such that α(3k + 2) ≤ N ≤
Ω̃(3k + 2, g, α(3k + 2)) = Ω′(k, g) such that

(26) ∀i, j ∈ [N,N + g(N)]

(
d(ui, uj) ≤

1

3(k + 1)

)
.

It follows that for all i, j ∈ [N,N + g(N)],

d(xi, xj) ≤ d(xi, ui) + d(ui, uj) + d(uj , xj)

≤ 1

3(k + 1)
+ d(xi, ui) + d(uj , xj) by (26)

≤ 1

3(k + 1)
+

1

3(k + 1)
+

1

3(k + 1)
=

1

k + 1
,

as i, j ≥ N ≥ α(3k + 2), and α is a rate of convergence towards 0 of
(d(xn, un)), by Lemma 4.1.

The proof for the case when Ω is a rate of metastability of (xn) is similar.
(ii) Apply Proposition 3.2 and (i).

�

The main results of [28] are quantitative versions of the strong convergence, proved
in [9], of the modified Halpern iteration (yn) in complete CAT(0) spaces. These
quantitative versions provide effective uniform rates of metastability for (yn) (see
[28, Theorems 4.1, 4.2] and also note [19] for a numerical improvement). In Sub-
section 4.1 we improved the quantitative results on the asymptotic regularity of
(yn) obtained in [28, Propositions 6.1, 6.2] by weakening the hypothesis (H6q) to
(H5q). One can easily see that this also eliminates the hypothesis (H6q) in favor
of (H5q) also in [28, Theorems 4.1, 4.2], as it is not used in their proofs except via
the rate of asymptotic regularity. Hence, for CAT(0) spaces, new rates of metasta-
bility for (yn) are obtained by considering the ones from [28] with the new rates of
(T -)asymptotic regularity computed in Subsection 4.1. By Proposition 5.1.(ii), it
follows that we can compute rates of metastability for the Tikhonov-Mann iteration
(xn) in CAT(0) spaces, assuming that (H1q) (or, equivalently for βn > 0, (H1∗q))
and (H2q)-(H5q) hold.

6. Conclusions

In this paper we showed that there is a strong relation between the modified Halpern
iteration and the Tikhonov-Mann iteration for nonexpansive mappings. Thus, as-
ymptotic regularity and strong convergence results can be translated from one it-
eration to the other. This translation holds also for quantitative versions of these
results, providing rates of asymptotic regularity and rates of metastability. A future
direction of research is to explore similar connections to other modified versions of
the Halpern and Mann iterations. One candidate is the alternating Halpern-Mann
iteration, introduced recently by Dinis and Pinto [11].
By applying a lemma on sequences of real numbers due to Sabach and Shtern
[27, Lemma 3], we obtained, for a particular choice of the scalars, linear rates
of asymptotic regularity for the modified Halpern and Tikhonov-Mann iterations.
Previous results guaranteed only quadratic such rates. This lemma was applied for
the first time in [27] to get linear rates of asymptotic regularity for the sequential
averaging method (SAM), developed in [33]. As a consequence, one gets linear
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rates for the Halpern iteration also obtained (with an optimal constant) in the
case of Hilbert spaces using a different technique in [24]. Leuştean and Pinto [22]
computed, using the same method, linear rates for the alternating Halpern-Mann
iteration. Recently, the first and the third author in [8] applied (a version of) [27,
Lemma 3] to other classes of nonlinear iterations and, as a result, obtain linear
rates of asymptotic regularity for these iterations.

Acknowledgement: The second author has been supported by the German Sci-
ence Foundation (DFG Project KO 1737/6-2).
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