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Abstract

This paper provides a case study for the extraction of computational content of proofs in geometry using
Herbrand’s theorem. More specifically, we show how a valid Herbrand disjunction for the Outer Pasch
Theorem can be extracted in a modular way from its proof by Schwabhäuser, Szmielew and Tarski.
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1 Introduction
We present a case study of an application of Herbrand’s theorem to the field of Euclidean geometry. That
Herbrand’s theorem can be utilized in connection with Tarski’s axioms for geometry was first observed in [2],
where it is used to show the underivability of the parallel axiom from (a first-order version of) the other axioms.
There Herbrand’s theorem is applied negatively to show that a certain proof cannot exist as the Herbrand
terms extractable from such a proof would have a property which cannot hold for the conclusion (as is pointed
out in [2, p.120], a related negative use of Herbrand’s theorem is implicit already in [15]). In this paper, we
indicate that Herbrand’s theorem can also be used in a positive way suggested by the ‘proof mining’ paradigm,
namely to extract computational content from proofs in geometry. Our case study concerns the proof of the
‘Outer Pasch Theorem’ given in [13, Satz I.9.6] from which we extract a valid Herbrand disjunction whose terms
are built up only from the input variables and the function symbols used to skolemize the axiomatization of
geometry from [13]. It turns out that the extraction of a Herbrand disjunction for that theorem can be done in
a modular way by combining Herbrand disjunctions of the various lemmas used in its proof. This is in contrast
to the fact that in general Herbrand’s theorem has a bad behavior w.r.t. the modus ponens rule (see [9]) and,
as a result of this, requires nonmodular techniques such as cut-elimination (see e.g. [1]). While one always can
obtain a high-level description of Herbrand terms (involving λ-abstraction in higher types) using the modular
(Shoenfield-variant of) Gödel’s functional interpretation, to obtain the actual Herbrand terms then requires a
normalization procedure (see [7]).
Our modular approach is possible in the case at hand since in the lemmas φ used which are of the logical form1

∀∃∀, and so require a reformulation to their Herbrand normal form φH , we obtain Herbrand terms which do not
involve the Herbrand index functions used to built φH . As a consequence of this, these terms actually satisfy
(disjunctively) the original lemma φ and not just φH . This feature is due to the fact that the proofs of these
lemmas φ use the law-of-excluded-middle principle LEM only for quantifier-free formulas in the parameters of
the statement which in turn is a consequence of the fact that the innermost universally quantified subformulas
of φ allow for different formulations which are in ∃-form.
Our case study may indicate that such a modular approach might typically apply to proofs in geometry and
that Herbrand-techniques allow one to convert ordinary textbook proofs in geometry which make use of (even
nested) quantifiers into quantifier-free proofs, i.e. proofs in constructive geometry in the sense of [10]. Here

∗This paper grew out of a Bachelor thesis [5] of the first author written under the supervision of the 2nd author.
1Lemmas of the form ∀∃ do not create any problems w.r.t. the modus ponens rule even from the perspective of Herbrand

disjunctions.
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‘constructive geometry’ refers to a quantifier-free axiomatization which takes certain geometric operations as
primitives (see also [14, 11, 12] for further developments in this direction). Similarly to [10, p.144] one can also
define in our setting the relations T and E in terms of the function symbol ext and equality.

2 Herbrand’s theorem and Euclidean geometry

2.1 Herbrand’s theorem
Theorem 2.1 (Herbrand’s theorem for theories T with purely universal axioms (‘open theories’)). Let φ be a
formula in prenex normal form and φH its Herbrand normal form (see e.g. [8]). Then T ⊢ φ if and only if there
exist terms t1, . . . , tn, s1, . . . , sk, r1, . . . , rm (which are built up from the free or outmost universally quantified
variables y

0
and the constant and function symbols occurring φH ∧ Tqf (v), possibly with a default constant

symbol c if there is no other constant occurring) such that

k∧
i=1

Eqf (si) ∧
m∧
i=1

Tqf (ri) →
n∨

i=1

φH
qf (y0, ti) ∈ TAUT.

Here ∀vTqf (v) is the universal closure of the conjunction of the T-axioms used in the proof and ∀uEqf (u) is the
purely universal prenex normal form of the conjunction of the equality axioms for all the function and predicate
symbols occurring in φ and the T-axioms used in the proof. In particular

T ⊢ φ ⇒ T′ ⊢
n∨

i=1

φH
qf (y0, ti)

where T′ results from T by adding the new Herbrand index functions to the language but no non-logical axioms
in which they occur.

Remark 2.2. Let T be a theory. Via replacing T by its Skolem normal form TS , the theorem also holds for
T via the purely universal TS . In cases where T is not purely universal, the Herbrand terms will in general
involve the Skolem functions used to define TS from T.

In this paper, we call the terms ti ‘Herbrand terms’ or ‘realizers’ and
n∨

i=1

φH
qf (y0, ti) a ‘Herbrand disjunction’.

We say that we realize a formula φ or its existential variables if we provide realizers for the existential variables
in its Herbrand normal form. We will further refer to the function symbols introduced in the process of
Herbrandization as ‘Herbrand index functions’.

2.2 Tarski’s axioms
We now give the axiomatization of geometry from [13] using the notation from [2] as well as its Skolemized
form introduced in [2]. This axiom system only has variables for points, which we will denote by small Latin
letters, and two primitive relations T and E, which are three- and four-ary, respectively. We call T ‘betweenness
relation’, and write T(a, b, c) to express that b lies between a and c. We call E ‘equidistance relation’, and write
E(a, b, c, d) to express that the segment ab is congruent to the segment cd 2.

2for a formal definition of ‘segment’, see Definition 3.3.
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(d) Circle axiom [13,
Abb. 8]

Figure 1: Depiction of (from left to right) Segment extension axiom A4, Inner Pasch axiom A7, Parallel axiom
A10, Circle axiom CA.

Table 1: Tarski’s axioms for geometry. [2, TABLE 1.]

A1 ∀a, b E(a, b, b, a) (Symmetry)
A2 ∀a, b, c, d, e, f [E(a, b, c, d) ∧ E(a, b, e, f) → E(c, d, e, f)] (Pseudo-Transitivity)
A3 ∀a, b, c[E(a, b, c, c) → a = b] (Cong Identity)
A4 ∀a, b, c, d∃x[T(a, b, x) ∧ E(b, x, c, d)] (Segment extension)
A5 ∀a, a′, b, b′, c, c′, d, d′[E(a, b, a′, b′) ∧ E(b, c, b′, c′) ∧ E(a, d, a′, d′) ∧ E(b, d, b′, d′) ∧ a ̸= b∧

T(a, b, c) ∧ T(a′, b′, c′) → E(c, d, c′, d′)] (Five segments)
A6 ∀a, b[T(a, b, a) → a = b] (Between Identity)
A7 ∀a, b, c, k, l[T(b, k, c) ∧ T(l, a, c) → ∃x(T(a, x, b) ∧ T(l, x, k))] (Inner Pasch)
A8 ∃abc[¬T(a, b, c) ∧ ¬T(b, c, a) ∧ ¬T(c, a, b)] (Lower Dimension)
A9 ∀a, b, c, p, q[E(a, p, a, q) ∧ E(b, p, b, q) ∧ E(c, p, c, q) ∧ p ̸= q → T(a, b, c) ∨ T(b, c, a) ∨ T(c, a, b)] (Upper Dim.)
A10 ∀a, b, c, d, t∃xy[T(a, d, t) ∧ T(b, d, c) ∧ a ̸= d→ T(a, b, x) ∧ T(a, c, y) ∧ T(x, t, y)] (Parallel)
A11 ∀XY

[
∃a∀x, y[x ∈ X ∧ y ∈ Y → T(a, x, y)] → ∃b∀x, y[x ∈ X ∧ y ∈ Y → T(x, b, y)]

]
(Continuity)

A11’ ∃a∀x, y[Φ(x) ∧Ψ(y) → T(a, x, y)] → ∃b∀x, y[Φ(x) ∧Ψ(y) → T(x, b, y)] (FoContinuity)
CA ∀a, b, p, q, x, y[T(a, x, b) ∧ T(a, b, y) ∧ E(a, x, a, p) ∧ E(a, q, a, y) → ∃z(E(a, z, a, b) ∧ T(p, z, q))] (Circle)

The universal axioms A1 − A3,A5,A6 and A9 are unproblematic from the perspective of Herbrand’s theorem.
The axioms A4,A7,A8,A10 and CA, however, are ∀∃-axioms or purely existential. Under certain conditions,
they assert the existence of new points with defined properties.
The segment extension axiom A4 (Figure 1a) states that there exists a point that extends a segment by the
length of some other given segment. The inner Pasch axiom A7 (Figure 1b) ‘intuitively says that if a line meets
one side of a triangle and does not pass through the endpoints of that side, then it must meet one of the other
sides of the triangle’ [2, p.112]. The lower dimension axiom A8 states that there are three points that are not
collinear, i.e. that the geometry under consideration is at least plane. Axiom A9 (not used in our case study)
ensures that the dimension of the space is ≤ 2. The parallel axiom A10 (Figure 1c) is an equivalent formulation
of Euclid’s famous fifth postulate about parallel lines and states that ‘through a point t inside an angle ∠bac,
there always exists a line that intersects both sides of this angle’ [13, p.13]. The continuity axiom expresses
that ‘first-order Dedekind cuts are filled’ ([2, p.116]). It is the only axiom in this axiom system which cannot
be formulated in terms of first-order logic and so needs to be replaced by an axiom schema as in [13, p.14]).
An even weaker formulation is the circle axiom CA (Figure 1d) which states that if we have a circle and points
inside and outside of that circle, then there exists a point on that circle. Since the continuity axiom and the
circle axiom are not used in our case study we will not discuss them any further. We, therefore, consider the
following first-order theory with language L (T,E):

T := A1 − A10.

As we are interested in discussing applications of Herbrand’s theorems in the setting of (elementary) plane
Euclidean geometry, we continue to define the purely universal Skolem normal form of T and give some intuition
towards this: When considering axioms A4, A7 and A8, we can not only think of them as asserting the existence
of some new points if certain conditions are met but, as Beeson, Boutry and Narboux describe it, as asserting
‘the existence of new points that are constructed from other given points in various ways’ [2, p. 111]. Intuitively,
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this is what we think of when e.g. looking at axiom A4. It enables us to use our ruler to construct (or ‘draw’)
a new point x that extends a segment in a certain way. It is thus also intuitive from a construction point of
view to replace existential quantifiers in our axioms by function symbols. The terms in our extended language
L (TS) now ‘correspond to ruler and compass constructions’ [2, p. 112]. Prima facie, we argue by the axiom
of choice that this Skolemized version of T is equivalent to T with respect to satisfiability. However, if we can
show that the points asserted to exist by our axioms are unique, we do not need the axiom of choice to argue
for the introduction of a function symbol as, in every model of our theory, we are always able to pick one unique
element without choice. Since in each case where the point asserted to exist is not unique it is possible to,
nevertheless, declare it in a spefic way by which it gets uniquely determined (see below), the axiom of choice in
fact is not needed at all.
We will now consider the Skolemized version of our axioms (which are not already purely universal). We adapt
the notation of [2] and define

A4S := ∀a, b, c, d
[
T(a, b, ext(a, b, c, d)) ∧ E(b, ext(a, b, c, d), c, d)

]
for a new (Skolem) function symbol ext(a, b, c, d). That is, ext(a, b, c, d) maps the points a, b, c, d to a point
that extends the segment ab by the ‘length’ of the segment cd. Here already, as discussed above, we can show
that if a ̸= b then ∀a, b, c, d∃!x [T(a, b, x) ∧ E(b, x, c, d)] and we don’t need to rely on choice to argue for the
introduction of ext. If however a = b, there are many ways to extend the segment ab and we need choice to
argue for the introduction of our function symbol. We can think of A4S as a simple ruler construction. We
take our ruler, measure the distance of the segment cd and extend the segment ab by that distance. If a ̸= b,
this ruler construction is unique. If a = b, there are many ways to extend the segment ab, the axiom of choice
‘selects’ one. We further set

A7S := ∀a, b, c, k, l
[
T(b, k, c) ∧ T(l, a, c) → T(a, ip(b, l, c, k, a), b) ∧ T(l, ip(b, l, c, k, a), k)

]
for a new (Skolem) function symbol ip(b, l, c, k, a). That is, ip(b, l, c, k, a) maps the points a, b, c, k, l to a point
that lies on the intersection of the segments ba and kl, we can think of this as being able to find the intersection
point of two line segments if certain conditions are met. Again, the point claimed to exist by A7 can be shown
to be unique if we are not in the degenerate case. In the degenerate case, i.e. if all the points we consider lie on
a line, x is not unique. We choose to argue by the axiom of choice for the introduction of our function symbol
in this case and will discuss this again later.
The lower dimension axiom A8 is purely existential. We hence consider:

A8S := ¬T(ld1, ld2, ld3) ∧ ¬T(ld2, ld3, ld1) ∧ ¬T(ld3, ld1, ld2)

for three new constant symbols ld1, ld2 and ld3. This can be understood as always having ‘access’ to three
points that are not collinear, namely ld1, ld2, ld3. Here, we do not need to argue by the axiom of choice.
We further define

A10S := ∀a, b, c, d, t
[
T(a, d, t) ∧ T(b, d, c) ∧ a ̸= d→
T(a, b, pa1(a, b, c, d, t)) ∧ T(a, c, pa2(a, b, c, d, t)) ∧ T(pa1(a, b, c, d, t), t, pa2(a, b, c, d, t))

]
for two new function symbols pa1(...) and pa2(...). Again, we can interpret this as being able to use our ruler in
yet another way. The points x and y of axiom A10 are not unique. This can be visualized in Figure 1c. Here
one could extend segment bx and shorten segment cy such that still T (a, b, x) ∧ T (a, c, y) ∧ T (x, t, y). We thus
argue by choice here.
For the circle axiom we introduce a new Skolem function symbol ilc(a, b, p, q, x, y):

CAS := T(a, x, b) ∧ T(a, b, y) ∧ E(a, x, a, p) ∧ E(a, q, a, y) → E(a, il(a, b, p, q, x, y), a, b) ∧ T(p, il(a, b, p, q, x, y), q))

Just as for A4, it can be shown that z in CA is unique. We hence do not need the axiom of choice to argue
for the existence of a function symbol with the desired properties and can think of our function as a simple
compass construction where we have a compass with radius ab, draw a circle around a and find the point at
which it intersects with pq.
The axiom A10 is only used in our case study to derive some purely universal facts which could be treated as
axioms in the process of the extraction of Herbrand terms which explains why the Skolem functions pa1, pa2 do
not occur in our extracted terms. As mentioned already, CA (and hence CAS) are not used at all in our case
study. We, hence, define
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Definition 2.3. TS := A1 − A3 ∧ A4S ∧ A5 − A6 ∧ A7S ∧ A8S ∧ A9-A10, with Ai and AiS as above.

Note that TS is only a partial Skolemization of T since we did not skolemize A10 for the reason given above.
By (TS)′ we denote extensions of TS by Herbrand index functions needed to define the Herbrand normal form
φH of φ when needed.
As mentioned already, it is possible to strengthen the axioms A4 and A7, whose Skolem normal forms are
included in TS , in such a way that the claimed existence statement is unique and so the corresponding Skolem
functions are uniquely determined and hence are not choice functions (for A8S , which only states the existence
of Skolem constants, the issue of the axiom of choice does not arise). This can be achieved by declaring in the
degenerate cases the then non-unique object of existence in a specific way. We indicate this for A4: consider

A4∗ := ∀a, b, c, d∃!x

 (a ̸= b→ T(a, b, x) ∧ E(b, x, c, d))
∧(a = b ∧ ld1 ̸= b→ T(ld1, b, x) ∧ E(b, x, c, d)
∧(a = b ∧ ld1 = b ∧ ld2 ̸= b→ T(ld2, b, x) ∧ E(b, x, c, d))

 .
By A8S exactly one of the cases considered above holds and in each case x is uniquely determined. Hence the
Skolem function ext in

A4S∗ := ∀a, b, c, d

 (a ̸= b→ T(a, b, ext(a, b, c, d)) ∧ E(b, ext(a, b, c, d), c, d))
∧(a = b ∧ ld1 ̸= b→ T(ld1, b, ext(a, b, c, d)) ∧ E(b, ext(a, b, c, d), c, d)
∧(a = b ∧ ld1 = b ∧ ld2 ̸= b→ T(ld2, b, ext(a, b, c, d)) ∧ E(b, ext(a, b, c, d), c, d))


is uniquely defined.
As a consequence of this, the equality axiom

∀a, a′, b, b′, c, c′, d, d′ (a = a′ ∧ b = b′ ∧ c = c′ ∧ d = d′ → ext(a, b, c, d) = ext(a′, b′, c′, d′))

for ext becomes provable and so is not an extra requirement of ext.
Using A4S∗ instead of A4S (and similarly for A7S) would allow one in some case to shorten the extracted
Herbrand disjunction. However, as we aim at extracting the Herbrand disjunction which corresponds to the
original proof as given in [13], we are not making use of such consequences of having fixed the meaning of the
Skolem functions also in the degenerate cases and, correspondingly, are not applying equality axioms for the
Skolem functions realizing the axioms. This is also the case for the index functions used to convert φ into φH

since - as mentioned already in the introduction - our Herbrand terms do not involve these function symbols.

3 Herbrand analysis of the outer Pasch theorem
In section 2.2, we have given a geometrical intuition towards the definition of TS . With Herbrand’s theorem in
mind, but also from a geometrical perspective, it now makes sense to ask if we can construct any point that is
proven to exist in T from these axioms. Suppose for instance that we have proven an existential statement in
T, e.g: on a line, there is always exactly one perpendicular from a point outside the line ([13, I.8.18. Lotsatz]).
We now ask, how, given our four different ways (via A4S ,A7S and A8S) of using a ruler to construct new
points, this perpendicular (however ‘perpendicular’ or ‘line’ is defined from our points) is constructed from
these. That is, we ask for a list of finitely many possible ‘chains’ of constructions for such a point (accounting
for different situations) such that one of these chains of constructions will yield in our desired point. This leads
us to considering Herbrand’s theorem, stating that we can extract from a proof of our statement realizers for
our point in a (potentially slightly weaker) Herbrandized form of the statement.

b
k

l

c
a

x

Figure 2: Outer Pasch
[13, Abb.4]

In the case study presented in this paper, our goal is to provide a Herbrand disjunction
for the so-called outer Pasch theorem (Figure 5):

Theorem 3.1 (outer Pasch). [13, Satz I.9.6]

T ⊢ φ := ∃x
[
T(a, c, l) ∧ T(b, k, c) → T(a, x, b) ∧ T(l, k, x)

]
.

In earlier versions of his axiom system, instead of A7 (Figure 6), Tarski included the
outer Pasch theorem as an axiom. Taken as such, a particularly nice result about its role
in the characterization of the models of the respective theory was found: In a suitable
axiomatization, the outer Pasch axiom corresponds to the monotonicity law for the multiplication ([13, p.448f]).
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Figure 3: Inner Pasch
[13, Abb.3]

In later versions, the outer Pasch axiom was replaced by the inner Pasch axiom A7
([13, p.21f]), following results obtained by Gupta in [6], where it is shown that outer
Pasch can be derived from inner Pasch. It is this result that makes the constructive
axiomatization of absolute geoemetry given in [11] possible ([11, p.129f]).
The inner Pasch axiom states if T(b, k, c) and T(l, a, c), then there exists a point x that
fulfills T(a, x, b) and lies between the points k and l. The outer Pasch theorem on the
other hand states that if T(b, k, c) and if T(a, c, l) (i.e. ‘a lies on the opposite extension
of segment cl’ [13, p.12]), then there exists a point x that fulfills T(b, x, a) and lies
outside of the segment kl. In order to provide Herbrand terms for the existential quantifier in Theorem 3.1, we
analyze its proof. The proof is based on multiple other propositions and lemmas, we thus start by considering
those.
Remark 3.2. In the course of this section, we will often use without explicit mention that the equidistance
relation is an equivalence relation and independent of the order of its points (i.e. E(a, b, c, d) → E(b, a, c, d) and
E(a, b, c, d) → E(a, b, d, c)). These properties of E can be shown from axioms A1 and A2 (see [13, p.27f]). We
further use without explicit mention or proof that T is symmetric (i.e. T(a, x, c) → T(c, x, a)). This can be
shown by axioms A7 and A6 (see [13, Satz I.3.2]).
The next definition will be used later.

Definition 3.3. [13, Definition I.2.6] By a segment we mean an unordered pair {a, b} of points, which we also
denote as ab or ba; we call a and b the endpoints of the segment ab and ab the connecting segment of the points
a and b.

3.1 The ruler and a disjunction due to choice
Before constructing terms for more involved theorems like outer Pasch, we want to expand our ‘ruler-abilities’ a
little, e.g. if we can extend a segment by some existing length, we should be able to argue that we can perform a
reflection of a point through another point. We hence start by considering two propositions about the possibility
of reflection of a point through another point. To this end, we define a new relation symbol (or: ‘abbreviation’),
stating that the point m ‘lies in the middle of’ the segment ab:

Definition 3.4. [13, Definition I.7.1] M(a,m, b) :↔ T(a,m, b) ∧ E(m, a,m, b).

We also define the notion of three points a, b, c being collinear. To this end, we want to say that they all lie on
the same ‘line’. Using our betweenness relation, we can say that either b must lie between a and c or a must lie
between c and b and so on. Hence:

Definition 3.5. [13, Definition I.4.10] Col(a, b, c) :↔ T(a, b, c) ∨ T(b, c, a) ∨ T(c, a, b).

We can now show in T that there exists exactly one point x that is the reflection of a point b through a point a:

Proposition 3.6. [13, Satz I.7.4] T ⊢ φ := ∃!xM(b, a, x) = ∃x∀x′
[
M(b, a, x) ∧ [M(b, a, x′) → x = x′]

]
.

The formula φ in Proposition 3.6 is in Σ0
2 and so seemingly seems to require to be weakened to its Herbrand

normal form
φH = ∃xφH

qf (a, b, x) = ∃x
[
M(b, a, x) ∧ [M(b, a, g(x)) → x = g(x)]

]
to allow for a Herbrand disjunction. However, φ can be decomposed into its purely existential part (1) ∃xM(b, a, x)
and the purely universal uniqueness part (2) ∀a, b, x, x′[M(b, a, x) ∧M(b, a, x′) → x = x′]) and so we only have
to realize (1) as this - together with (2) - also realizes φ. To do so we recall the

Proof of Proposition 3.6. (see [13, p.49]) Case 1: Suppose b ̸= a. Then the existence of a point x with M(b, a, x)
follows from axiom A4. Suppose there is another x′ with M(b, a, x′). But then, using pseudo-transitivity (A2)
of E(. . .), from E(a, b, a, x) and E(a, b, a, x′) we get that E(a, x, a, x′). Hence
T(b, a, x) ∧ T(b, a, x′) ∧ E(b, a, b, a) ∧ E(a, x, a, x′) ∧ E(b, x, b, x) ∧ E(a, x, a, x) ∧ b ̸= a and again by A5 we get
that E(x, x, x′, x) holds. Hence, by A3 we conclude x = x′.
Case 2: Suppose b = a. Then x = a satisfies M(b, a, x) and is with A3 the only such point.

The case distinction made in this proof suggests a realizing disjunction with the two Herbrand terms t1 =
ext(b, a, a, b), t2 = a. The 2nd term t2, however, is only needed in the case b = a. But in this situation it is
provable via A3 that t1 = t2. Put together have have shown that

Proposition 3.7. Let φ be as above then TS ⊢ φ(t1) for t1 = ext(b, a, a, b).

6



x

c

a b

Figure 4

As we will be referring to this term quite often in this paper, we give it a special name:

Definition 3.8. Let φ be as above. Set Sa(b) := ext(b, a, a, b).

The next lemma we consider states that the segment ab has a midpoint under the
assumption that there already is a point c from which they have the same distance
(Figure 4).

Lemma 3.9. [13, Lemma I.7.25] T ⊢ φ := ∃x
[
E(c, a, c, b) → M(a, x, b)

]
The proof of this lemma can be found in [13, p.55]. It distinguishes two cases. Here,
we cannot eliminate the case distinction in the proof of Lemma 3.9 in the same way as
we did above. The proof of Lemma 3.9 distinguishes the cases Col(a, b, c) and ¬Col(a, b, c). In case Col(a, b, c),
it deduces that either a = b or M(a, c, b) and hence M(a, x, b) for x = b or x = c. If ¬Col(a, b, c), it proceeds
to do a construction of a point x with M(a, x, b) that is not as trivial. We can show that the construction for
¬Col(a, b, c) works for almost all cases in Col(a, b, c) (what is meant here will become clear below), but not for
all of them. We hence, with Herbrand, will get a disjunction that is of length 2.

p q
r

t1
a b

c

Figure 5: Construction
of t1 [13, Abb. 21]

Lemma 3.10. Let φ be as above. Set
φH = ∃xφqf (a, b, c, x) = ∃x(E(c, a, c, b) → M(a, x, b)). Then
TS ⊢

∨2
i=1 φqf (a, b, c, ti(a, b, c)) for t1 = ip(c, b, p, a, r), t2 = c, where

r := ip(p, q, c, a, b), q := ext(c, b, a, p), p := ext(c, a, ld2, ld3).

Proof. (Consider Figure 5 for a visualization of this proof) We distinguish two cases
Case 1: T(a, c, b) ∧ a ̸= b ̸= c ̸= a.
From T(a, c, b) and E(c, a, c, b) we immediately get that M(a, c, b) hence φqf (t2).
Case 2: ¬ case 1, i.e. ¬T(a, c, b) ∨ a = b ∨ c = b ∨ c = a. Here, we have to construct
an ‘outer framework’ (terms p,q and later r) to then use axiom A7S to construct our
desired term ‘inside’ that framework: By A4S , we get a term p := ext(c, a, ld2, ld3)
such that T(c, a, p) ∧ E(a, p, ld2, ld3). By A8S (using A3 and A4) we know that ld2 ̸= ld3 (see [13, Proof of
1.3.13]) and hence deduce a ̸= p by A3. Again by A4S , we construct a term q := ext(c, b, a, p) such that
T(c, b, q)∧E(b, q, a, p). As we now have T(p, a, c)∧T(q, b, c) by A7S we get a term r := ip(p, q, c, a, b) such that
T(a, r, q) ∧ T(b, r, p). As we now have T(c, a, p) ∧ T(b, r, p) by A7S we get a term t1 := ip(c, b, p, a, r) such that
T(a, t1, b) ∧ T(r, t1, c). It remains to show that E(t1, a, t1, b) which is done as in [13, pp.55-56] (see also [5]),
where one distinguish the cases 2a: ‘a = b or c = b or c = a’ (and uses that then by E(c, a, c, b) one has t1 = a)
and 2b: ‘a, b, c are pairwise distinct’.

p

q

a

c = r = t1?

b

Figure 6: ‘Case 2a’

Remark 3.11. The only case which cannot be treated with t1 is when T(a, c, b)∧a ̸= b ̸=
c ̸= a (Figure 6). We can neither show trivially that t1 = c (as we did above) nor carry
this with us into case 2b, as we then wouldn’t be able to deduce L(aq) ̸= L(bp). We
hence have to make a case distinction. That we cannot show t1 = c is due to the fact
that we are now in the degenerate case and a, b, c, p, q are all collinear where the value of
ip(p, q, c, a, b) is no longer uniquely determined by A7S . Of course, we could strengthen
A7S by stipulating that in this situation, the value should be c. Then, indeed the term t2
would be sufficient in our Herbrand disjunction. In the light of these ‘discontinuities’,
M. Beeson [3] discusses an alternate formulation of Tarski’s theory, which he calls
‘Continous Tarski geometry’ that in particular formulates A7 (and A4) in a way that is strict and thus does not
allow for degenerate cases, but reintroduces symmetry and transitivity of betweenness as axioms. For further
reading on this, consider [3, §5.2.-§6.1.] as well as the subsequent [4].

Remark 3.12. Let φ be as above. From the Herbrand disjunction given in Lemma 3.10, one can obtain an
explicit construction in the following sense: Suppose that betweeness, equidistance and equality of points are
decidable (as discussed in section 1, it is even sufficient to ask only for the decidability of equality of points).
Suppose further that it is possible to use a ruler to extend a segment by a given length (ext), to find an
intersection point of two lines in the sense of inner Pasch (ip), and that we have access to three non-collinear
points ld1, ld2, ld3 in the sense of A8S . Assume that there are three points a, b, c with E(a, c, b, c) from which
we want to construct a point x such that M(a, x, b) by considering the respective Herbrand disjunction. As the
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disjunction is twofold, we do two constructions, which are "encoded" by the realizers. For the first one, we
simply set x := c (i.e., by extending the segment cc by its length). For the second construction, we consider
term t1 "from the inside out", thus first use the ruler to extend the segment ac by the length of ld2ld3. We call
this point p. After constructing a further point q in a similar way, we find the (unique) intersection of segments
pb and aq and call this point r. We then intersect ab and rc and complete the construction. We can now claim
that one of the two constructed points satisfies M(a, x, b) and, since we assumed decidability, we can even check
which one it is.

3.2 The square and a disjunction due to A8
The next proposition for which we will provide (just) one Herbrand term states, that ‘on a line, from a point
outside of that line, there always exists exactly one perpendicular’ ( [13, Satz I.8.18]). Or, in other words: given
a line and a point outside of that line, we can always construct the ‘foot’ of this point on the line. To this end,
we again define some new relational symbols (or: abbreviations).

b c

a

Sb(c)

Figure 7: [13, Abb. 22]

We want to define a relation that states that a segment ab is perpendicular to a segment
cd, where ab and cd intersect in point x. To this end, we define the notion of three
points forming a right angle (Figure 7). As per usual, we describe a right angle as an
angle that is congruent to it’s adjacent angle.

Definition 3.13. [13, Definition I.8.1] R(a, b, c) :↔ E(a, c, a, Sb(c)), where
Sb(c) := ιc′ M(c, b, c′), i.e. that point c′ for which M(c, b, c′).

For a formalization of this new operator, see [13, p.195f]. It can in particular be shown
that ι-terms can be equivalently eliminated, i.e. for every formula there exists a logically equivalent formula
that does not entail ι-terms [13, p.197, p.238f]. In our case, as we know that ∃!c′M(a, b, c′) (Proposition 3.6), it
can be shown ([13, Satz II.3.38]) that the following are equivalent:
(i) E(a, c, a, ιc′ M(c, b, c′)), (ii) ∃c′[M(c, b, c′) ∧ E(a, c, a, c′)], (iii) ∀c′[M(c, b, c′) → E(a, c, a, c′)].
Making use of this equivalence, the following lemma can be shown to hold true:

Lemma 3.14. [13, Satz I.8.3] T ⊢ R(a, b, c) ∧ a ̸= b ∧ Col(b, a, a′) → R(a′, b, c).

We further remark that, by Herbrand, we can in particular write (in TS) that R(a, b, c) ↔ E(a, c, a, ext(c, b, b, c))
as TS ⊢ M(c, b, ext(c, b, b, c)) (Proposition 3.7), where ext(c, b, b, c) = Sb(c) (see Definition 3.8).
The line that is determined by two distinct points l and k is exactly the set of those points that are collinear to
l and k, hence the following definition:

Definition 3.15. [13, Definition I.6.14] L(lk) := {x|Col(l, k, x)} defined for l ̸= k.

c d v

a

b

u

xSx(v)

Figure 8: ab ⊥
x
cd

We can now introduce the relation ⊥ stating that ab is perpendicular to cd via x
(Figure 8) iff L(ab) is perpendicular to L(cd) and L(ab) and L(cd) intersect in the point
x. In our formal definition of this new relation, we want to avoid to talk about sets of
points, as we mean to stay in a first order setting. We hence give the following definition
which is equivalent to the intuitive set-formulation (see [13, Anmerkung I.6.26]). With
(Col(a, b, x) ∧ Col(c, d, x)) we express that ‘x is a point on the lines L(ab) and L(cd)’.
With ∀u, v(Col(a, b, u) ∧ Col(c, d, v) → R(u, x, v)) we express that the line L(ab) is
perpendicular to the line L(cd) via x, i.e. if we find any point u on the line L(ab) and
any point v on the line L(cd), then the points u, x, v form a right angle.

Definition 3.16. [13, Definition I.8.11 and Anmerkung I.6.26 ]
ab ⊥

x
cd↔ a ̸= b ∧ c ̸= d ∧ (Col(a, b, x) ∧ Col(c, d, x)) ∧ ∀u, v[Col(a, b, u) ∧ Col(c, d, v) → R(u, x, v)].

We will consider below statements of the form (∀a, b, c, d)∃x . . . ab ⊥
x
cd . . . , where ab ⊥

x
cd occurs positively in

a quantier-free context. As this is of the form (∀)∃∀ (notice the ‘hidden’ ∀-quantifiers for u, v in the definition),
when considering the Herbrandization of our statement, we will introduce function symbols for u and v. We
hence state a ‘Herbrandized’ version of Definition 3.16 to the end of still being able to use the above shorthand
in a Herbrand setting.

Definition 3.17. ab
g,h

⊥
x
cd ↔ a ̸= b ∧ c ̸= d ∧ (Col(a, b, x) ∧ Col(c, d, x)) ∧ [Col(a, b, g(x)) ∧ Col(c, d, h(x)) →

R(g(x), x, h(x))] for g, h the function symbols that will be introduced when showing in a Herbrand-sense a
statement involving sentences of the form (∀a, b, c, d)∃x ab ⊥

x
cd.
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bxa

c

Figure 9

We can now show a proposition that states that given a line and a point outside the
line, we can always find/construct the foot of that point on the line (Figure 9).

Proposition 3.18. [13, Satz I.8.18]

T ⊢ φ :=∃x
[
¬Col(a, b, c) → Col(a, b, x) ∧ ab ⊥

x
cx
]
3

=∃x∀u, v
[
¬Col(a, b, c) → Col(a, b, x) ∧ a ̸= b ∧ c ̸= x ∧ [Col(a, b, u) ∧ Col(c, x, v) → R(u, x, v)]

]
.

(On a line, from a point outside of that line, there always exists exactly one perpendicular).

The proof of this proposition can be found in [13, p.60]. There, it is also shown that x is unique. As discussed
above, this can be shown as a separate universal statement, we thus only consider existence here.
Although, as discussed above, we first have to convert the statement into its Herbrand normal form, it turns
out that we even can extract terms (in fact a single term t1) such that t1 realizes φ as the term does not depend
on the index functions g, h :

r p t1

c′

s

a b

q

s′

c

Figure 10: Construc-
tion of t1 [13, p.61
Abb. 25]

Proposition 3.19. Let φ be as above. Then TS ⊢ ¬Col(a, b, c) → Col(a, b, t1)∧ab ⊥
t1
ct1,

i.e. TS ⊢ ∀u, v
[
¬Col(a, b, c) → Col(a, b, t1) ∧ a ̸= b ∧ c ̸= t1∧

[Col(a, b, u) ∧ Col(c, t1, v) → R(u, t1, v)]
]
,where

t1 = ip(p, c′, ext(p, c, ld2, ld3), c, ip(ext(p, c, ld2, ld3), ext(p, c
′, c, ext(p, c, ld2, ld3)), p, c, c

′)),

with c′ = ext(s′, p, p, c), s′ = Sr(s), s = ext(q, p, p, a), r = ext(a, p, p, q),

q = ip(a, c, ext(a, p, ld2, ld3), p, ip(ext(a, p, ld2, ld3), ext(a, c, p, ext(a, p, ld2, ld3)), a, p, c)),

p = ext(b, a, a, c).

As t1 is a very long term that we want to refer to later, we define the following:

Definition 3.20. For t1(a, b, c) as above, we define foot(a, b, c) := t1(a, b, c).

r p t

c′

s

a b

q

s′

c

Figure 11: Using
square to construct

foot t

We can interpret this as having a new ‘ability’, besides the constructions we can do via
A4S ,A7S , . . . we can now also use some functions of a square, namely finding the foot
of a point on a line (Figure 11). We of course argue that this special use of a square is
merely a shortcut and can be replaced by a series of ruler (and compass) constructions at
any time. We base the proof of this proposition on the proof of Proposition 3.18 in [13,
p.60f].

Proof of Proposition 3.19. Consider first the Herbrand normal form of φ :

φH := ∃xφH
qf (a, b, c, x) :=

∃x
[
¬Col(a, b, c) → Col(a, b, x) ∧ a ̸= b ∧ c ̸= x ∧ [Col(a, b, g(x)) ∧ Col(c, x, h(x)) → R(g(x), x, h(x))]

]
=

∃x
[
¬Col(a, b, c) → Col(a, b, x) ∧ ab

g,h

⊥
x
cx
]

for new function symbols g, h. It is helpful to consider Figure 10 in the course of this proof. The idea of the
proof is to ‘construct’ a term c′ that lies ‘on the opposite side’ of the line determined by ab with respect to
c in such a way that the midpoint of the segment cc′ will be the foot of c on the line determined by ab. To
this end, we begin by invoking A4S and get a term p := ext(b, a, a, c) with T(b, a, p) ∧ E(a, p, a, c). We further
know that ¬Col(a, p, c): Suppose not, i.e. Col(a, p, c). Then with T(b, a, p) and a ̸= b, also Col(a, b, c) which
contradicts our assumption. We now want to construct the midpoint of the segment cp. We hence want to
(sub)use Herbrand’s theorem to get terms qi(c, p, a) and an n such that

(TS)′ ⊢

(
n∨

i=1

E(a, c, a, p) ∧ ¬Col(a, p, c) → M(c, qi, p)

)
.

3to be precise, in [13, 8.18 Satz, p.60] it is only shown that T ⊢ φ := ∃x[¬Col(a, b, c) → (Col(a, b, x) ∧ ab ⊥ cx)] where
ab ⊥ cx := ∃y(ab ⊥

y
cx) but it is immediate from the proof that x is the point for which ab ⊥

x
cx, hence our formulation.
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But now we are in the situation of Lemma 3.10, case 2. We have already provided such a term:

q := ip(a, c, ext(a, p, ld2, ld3), p, ip(ext(a, p, ld2, ld3), ext(a, c, p, ext(a, p, ld2, ld3)), a, p, c))

with M(c, q, p). We can now show the following equality between terms: via considering Proposition 3.7 for
terms p and q, we can deduce that c = Sq(p) (here, we need uniqueness). But then we have that E(a, p, a, Sq(p))

and hence by Definition 3.13 R(a, q, p). Again via A4S and falling back on what we have already shown in
Proposition 3.7, we get terms r := ext(a, p, p, q) with T(a, p, r)∧E(p, r, p, q), s := ext(q, p, p, a) with T(q, p, s)∧
E(p, s, p, a), s′ := Sr(s) with M(s, r, s′) and c′ := ext(s′, p, p, c) with T(s′, p, c′) ∧ E(p, c′, p, c). As we have
E(p, c, p, c′) we can now again by Lemma 3.10 ask for terms ti(c, c′, p) such that

(TS)′ ⊢
2∨

i=1

E(p, c, p, c′) → M(c, ti, c
′).

Again we want to argue that we are in one of two cases of the proof of Lemma 3.10, namely ‘case 2’ and
hence only get one term t with the desired properties. Assume to this end that T(c, p, c′) ∧ c ̸= c′ ̸= p ̸= c
(i.e that we are in case 1 of the proof of Lemma 3.10). But then by properties about T(. . .) (see [13, Satz
I.5.1]) we can show the following: T(c, p, c′) ∧ T(s′, p, c′) ∧ p ̸= c′ ⇒ T(s′, c, c′) ∨ T(c, s′, c′), thus in particular
Col(s′, c, c′). T(c, p, c′) ∧ T(c, p, s) ∧ c ̸= p ⇒ T(c, c′, s) ∨ T(c, s, c′), thus in particular Col(c, c′, s). But now
T(s′, r, s) ∧ Col(s′, c, c′) ∧ Col(c, c′, s) ∧ c ̸= c′ ⇒ Col(c, r, c′). From T(s, p, q) and T(p, q, c) as well as p ̸= q
(otherwise M(c, q, p) implies c = p) we can infer that T(s, p, c) (this is rather intuitive, for reference see [13,
Satz I.3.7]). But then again T(s, p, c) ∧ Col(c, c′, s) ∧ c ̸= s ⇒ Col(c, p, c′). Finally, Col(c, r, c′) ∧ Col(c, p, c′) ∧
Col(b, a, r)∧Col(b, a, p)∧¬Col(a, b, c)∧ c ̸= c′∧ b ̸= a⇒ p = r. (This can be proven with the same propositions
referenced to above, we refrain from giving the proof here). Now E(p, r, p, q) ∧ p = r ⇒ p = q. Contradiction.
We hence, just as above, argue that (from Lemma 3.10) we get a term

t := ip(p, c′, ext(p, c, ld2, ld3), c, ip(ext(p, c, ld2, ld3), ext(p, c
′, c, ext(p, c, ld2, ld3)), p, c, c

′))

for which M(c, t, c′). Again, in the same way as we demonstrated for q above, we can argue that c′ = St(c) and

hence R(p, t, c). In order to show that t is the desired term, we have to show that Col(a, b, t) and that ab
g,h

⊥
t
ct.

This is done as in [13, p.61] (which in turn uses Lemma 3.14).
Finally, since the index functions g, h do not occur in t, we may in the proof above replace all g- and h-terms
by the variables u and v respectively and so obtain the claim of the proposition.

Remark 3.21. As hinted already in the introduction, the reason why the index functions play no role in the
above proof is that only quantifier-free case distinctions are made. This in turn is related to the fact that the
universal formula ab ⊥

x
cx can be written equivalently as an ∃-formula (see [13, Satz 1.8.13]) so that it can be

treated essentially as being quantifier-free.

a d

b

c

a′

b′x

Figure 12: [13, Abb. 9]

Next, we provide a Herbrand term for a slightly technical lemma, which we will also need later.

Lemma 3.22. [13, Satz I.3.17]

T ⊢ φ :=∃xφqf (a, a
′, b, b′, c, d, x)

:=∃x
[
T(a, b, c) ∧ T(a′, b′, c) ∧ T(a, d, a′) → T(d, x, c) ∧ T(b, x, b′)

]
.

The proof of this lemma can be found in [13, p.33].

a d

b

c

a′

b′t1

Figure 13:
Construction of t1 [13,

Abb. 10]

With Herbrand, we get the following:

Lemma 3.23. Let φ be as above. As φH = φ,

TS ⊢ φqf (a, b, c, a
′, b′, d, t1(a, b, c, a

′, b′, d)) for t1 = ip(c, b′, a, b, ip(c, a, a′, b′, d)).

The proof is based on the proof of Lemma 3.22 in [13, p.33].

Proof. It is helpful to consider Figure 13 in the course of this proof. As
T(c, b′, a′) ∧ T(a, d, a′), A7S implies T(b′, ip(c, a, a′, b′, d), a) ∧ T(d, ip(c, a, a′, b′, d), c).
But then T(c, b, a) ∧ T(b′, ip(c, a, a′, b′, d), a) and again by A7S , T(b, t1, b

′) ∧
T(ip(c, a, a′, b′, d), t1, c) for t1 := ip(c, b′, a, b, ip(c, a, a′, b′, d)). It can now be shown that
since T(d, ip(c, a, a′, b′, d), c)∧T(ip(c, a, a′, b′, d), t1, c) also T(c, t1, d) as desired (see e.g.
[13, Satz I.3.5]).
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With Proposition 3.19, we can construct the foot of a point outside of a line on that line. We now show a
proposition that provides us with means of constructing a perpendicular of a point on a line in a given half
plane (Figure 14). We can think of this as being able to argue that we can extend the functionality of our
square. If we show a proposition of this kind, we are not only able to connect a point and a line via a segment
that is perpendicular to said line but also can draw a perpendicular from any point on that line (in a given half
plane). To this end, we consider the following proposition.

Proposition 3.24. [13, Satz I.8.21]

T ⊢ φ := ∃x, y
[
a ̸= b→ ab ⊥

a
xa ∧ Col(a, b, y) ∧ T(c, y, x)

]
=

∃x, y∀u, v
[
a ̸= b→ a ̸= b ∧ x ̸= a ∧ [Col(a, b, u) ∧ Col(x, a, v)

→ R(u, a, v)] ∧ Col(a, b, y) ∧ T(c, y, x)]
]
.

(On a line, from a point of that line, there is a perpendicular in a given half-plane).

c

a by

x

Figure 14: [13, Abb.
28]

The proof of Proposition 3.24 in [13, p.64] distinguishes two cases ¬Col(a, b, c) and
Col(a, b, c). If ¬Col(a, b, c) they construct the foot f of the point c on L(a, b) (Figure 15). They then ‘mirror’
(via what we call Proposition 3.6) the point c at its foot f and at the point a, we hence get two more points Sf (c)
and Sa(c) respectively. It turns out that the center of the segment Sf (c)Sa(c) is our desired point. The point y
that witnesses that we are ‘on the other side’ of L(ab) with respect to c is shown to exist due to Lemma 3.22.
If Col(a, b, c), it is argued that by A8, we find a point c′ for which ¬Col(a, b, c′). The same construction as
above can hence be carried out with c replaced by c′. The point y can now be chosen to be c, which trivially
fulfills Col(a, b, y) and T(c, y, x). It is not needed as a witness, as Col(a, b, c) implies that the point f can live
on any side of L(ab).
We can now show the following:

f s1 a b

c

t1Sf (c) Sa(c)

f a b s2 = c

ld1

ld2

ld3

t2Sf (ld1) Sa(ld1)

Figure 15: constr. for
terms with index 1 and 2
(see proof) [13, Abb. 29]

Proposition 3.25. TS ⊢
4∨

i=1

[a ̸= b→ ab ⊥
a
tia ∧ Col(a, b, si) ∧ T(c, si, ti) for

t1 = ip(a, Sa(c), ext(a, Sf (c), ld2, ld3), Sf (c),

ip(ext(a, Sf (c), ld2, ld3), ext(a, Sa(c), Sf (c), ext(a, Sf (c), ld2, ld3)), a, sf (c), Sa(c)))

s1 = ip(c, f, Sa(c), a, ip(c, Sa(c), Sf (c), f, t1)), where
f = foot(a, b, c) is the term that we get from Proposition 3.19 and
Sf (c) = ext(c, f, f, c), Sa(c) = ext(c, a, a, c),

t2 = t1[ld1/c], s2 = c, t3 = t1[ld2/c], s3 = c, t4 = t1[ld3/c], s4 = c.

As for Proposition 3.19, we define the following:

Definition 3.26. Let ti, si be as above. Then we set
perp(a, b, c) := t1, wit(a, b, c) := s1. Then perp(a, b, ldi−1) = ti for i = 2, 3, 4.

We can now officially use our square to draw a perpendicular from any given point on a line. For the proof, we
argue in the same way as in the outline of the proof of Proposition 3.24.

Proof. Let

φH = ∃x, y φH
qf (a, b, c, x, y)

= ∃x, y
[
a ̸= b→ a ̸= b ∧ x ̸= a ∧ [Col(a, b, g(x, y)) ∧ Col(x, a, h(x, y))

→ R(g(x, y), a, h(x, y))] ∧ Col(a, b, y) ∧ T(c, y, x)
]

for new function symbols g(. . .), h(. . .).

We distinguish two cases. Case 1: ¬Col(a, b, c) (Figure 15, above). In the proof of Proposition 3.24, we set x
to be the foot of the perpendicular from c to L(a, b). We thus use Proposition 3.19, i.e.

(∗) TS ⊢ ∀u, v
[
¬Col(a, b, c) → Col(a, b, f) ∧ ab

u,v

⊥
f
cf
]

where f = foot(a, b, c) and conclude that, as we have
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¬Col(a, b, c) by assumption of our case, it follows (in particular) that Col(a, b, f) ∧ ab
a,c

⊥
f
cf . By Proposi-

tion 3.7, we get terms Sf (c) := ext(c, f, f, c) with M(c, f, Sf (c)) and Sa(c) := ext(c, a, a, c) with M(c, a, Sa(c)).
Lemma 3.10 provides terms ti such that (TS)′ ⊢

∨2
i=1 E(a, Sf (c), a, Sa(c)) → M(Sf (c), ti, Sa(c)). We show

E(a, Sf (c), a, Sa(c)), and thus know
∨2

i=1 M(Sf (c), ti, Sa(c)): ab
a,c

⊥
f
cf implies R(a, f, c). Hence by definition

of R, E(a, c, a, Sf (c)). With E(a, c, a, Sf (c)) and E(a, c, a, Sa(c)) we get E(a, Sf (c), a, Sa(c)). We further argue
that already M(Sf (c), t1, Sa(c)) for

t1 := ip(a, Sa(c), ext(a, Sf (c), ld2, ld3), Sf (c), ip(ext(a, Sf (c), ld2, ld3),

ext(a, Sa(c), Sf (c), ext(a, Sf (c), ld2, ld3)), a, Sf (c), Sa(c)))

as it can be shown that we are in ‘case 2’ of the proof of Lemma 3.10, i.e. that ¬(T(Sf (c), a, Sa(c)) ∧ Sf (c) ̸=
Sa(c) ̸= a ̸= Sf (c)) : Suppose that T(Sf (c), a, Sa(c)) ∧ Sf (c) ̸= Sa(c) ̸= a ̸= Sf (c). Then, from T(Sa(c), a, c) ∧
T(Sf (c), a, Sa(c)) ∧ a ̸= Sa(c) we infer that Col(a, c, Sf (c)). We further have Col(c, f, Sf (c)) ∧ Sf (c) ̸= c and
thus Col(a, c, f). But now with Col(a, b, f) ∧ a ̸= f 4 it follows that Col(a, b, c). Contradiction.
As we have T(Sa(c), a, c) ∧ T(Sf (c), f, c) ∧ T(Sa(c), t1, Sf (c)), Lemma 3.23 provides us with a term s1 :=
ip(c, f, Sa(c), a, ip(c, Sa(c), Sf (c), f, t1)) such that T(c, s1, t1) ∧ T(f, s1, a). But then, in particular Col(a, b, s1).
We have now shown that s1 is one of our realizers, i.e. Col(a, b, s1) and T(c, s1, t1).
It remains to show that also t1 is as desired, i.e t1 ̸= a and (Col(a, b, g(t1, s1)) ∧ Col(t1, a, h(t1, s1)) →
R(g(t1, s1), a, h(t1, st))). To show t1 ̸= a, suppose for the sake of contradiction that t1 = a. But then from
T(Sf (c), t1, Sa(c)) we get that T(Sf (c), a, Sa(c)). With T(Sa(c), a, c), Sa(c) ̸= a and E(a, c, a, Sf (c)), this im-
plies c = Sf (c). Contradiction.
We show (Col(a, b, g(t1, s1)) ∧ Col(t1, a, h(t1, st)) → R(g(t1, s1), a, h(t1, s1))) by a case distinction. Assume
Col(a, b, g(t1, s1)) ∧ Col(t1, a, h(t1, s1)). Suppose f ̸= a. We have shown that R(a, f, c) and further know that
f ̸= c. In the same way as in the proof of Proposition 3.19 (i.e. using Lemma 3.14) it now follows that
R(g(t1, s1), a, h(t1, s1))). Suppose f = a. Then since T(f, s1, a) also s1 = a, hence L(t1a) = L(t1s1) = L(cf).
Thus Col(t1, a, h(t1, s1)) implies Col(c, f, h(t1, s1)). By (∗) and reasoning as above, we know that in particular

ab
g,h

⊥
f
cf and as we have Col(a, b, g(t1, s1)) and Col(c, f, h(t1, s1)) it follows that R(g(t1, s1), f, h(t1, s1)). As

f = a it follows that R(g(t1, s1), a, h(t1, s1)) which was to show. We have shown that in case 1, φH(t1, s1).
Case 2: Col(a, b, c). By A8 it holds that ¬Col(a, b, ld1)∨¬Col(a, b, ld2)∨¬Col(a, b, ld3). We can thus set si = c
(i = 2, 3, 4), for which trivially Col(a, b, si) and T(c, si, ti) and do the same construction for ti as we did in case
1 with c substituted by ld1, ld2, ld3. Hence in case 2, φH(t2, s2) ∨ φH(t3, s3) ∨ φH(t4, s4).
As our Herbrand terms do not involve the Herbrand index functions g, h, the proposition follows.

Remark 3.27. Note that here, the case distinction that is made in the proof actually translates into different
Herbrand disjunctions. This is due to the fact that we actually have to consider at least two different ways
of realizing our points x,y as we can only find the foot of a perpendicular from c on L(ab) if ¬Col(a, b, c).
Hence, if Col(a, b, c), we first have to construct a point c′ for which ¬Col(a, b, c′). As axiom A8 that provides
us with such a term is of disjunctive character itself (i.e. can only say that c′ must be one of three options), this
also translates into different Herbrand disjunctions. Of course, this does not imply that there is no Herbrand
disjunction for φH for which n < 4. However, one would have to find a very different way of constructing points
x and y, e.g. one wouldn’t be allowed to use Proposition 3.18.

We have already shown that two points that have the same distance from a third point have a midpoint. With
what we have considered above, we can now show that we can construct a midpoint for any two given points.
We can prove the following statement:

Proposition 3.28. [13, Satz I.8.22] T ⊢ φ := ∃xM(a, x, b).

Remark 3.29. Again, it can be shown that x is unique. We will only consider existence
here but can prove uniqueness as a universal statement.

4suppose a = f , then Sa(c) = Sf (c)
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Proposition 3.30. We have the following Herbrand disjunction (Figure 16)

TS ⊢
4∨

i=1

M(a, ti, b) where ti := wit(a, b, pi) for i = 1, 2, 3, t4 := a

with pi = perp(a, b, qi) for i = 1, 2, 3 , qi = perp(b, a, ldi) for i = 1, 2, 3.

p1

t1

ld1

a b

q1

Figure 16: Constr. for
t1, using square

Definition 3.31. Set mi(a, b) := ti for i = 1, . . . , 4.

Proof. The proof is based on the proof of Proposition 3.28 in [13, p. 64f]. We distinguish two cases. Case 1:
a = b. Then M(a, a, b), hence t4 = a. Case 2: a ̸= b. We want to construct a perpendicular on ab in the point b,
where we take a as our reference point (Figure 17). With the proof of Proposition 3.25 with (b, a, a) as (a, b, c)

we, in particular have TS ⊢ b ̸= a →
∨3

i=1 ba
a,qi
⊥
b
qib for qi := perp(b, a, ldi) for i = 1, 2, 3 (as by Col(b, a, a),

we are in ‘case 2’ of the proof of Proposition 3.25). By assumption b ̸= a, thus
∨3

i=1 ba
a,qi
⊥
b
qib. Suppose that

ba
a,qi
⊥
b
qib. Then (as Col(b, a, a) and Col(qi, b, qi)) also R(a, b, qi).

p1

t1a b

q1

Sb(q1)Sa(q1)

Figure 17: Constr. for t1,
only using square for q1

We now again construct a perpendicular (Figure 17), however this time in a and
take qi to be our ‘reference point’ (i.e c in Proposition 3.25 is qi). As we have that
¬Col(a, b, qi), we are in ‘case 1’ of Proposition 3.25 and get terms pi = perp(a, b, qi)
and ti = wit(a, b, pi) with properties as in Proposition 3.25 and in particular
R(b, a, pi). The proof of Proposition 3.28 in [13, p.64f] would now entice us to distin-
guish two subcases, ‘api ≤ bqi’ and ‘api ≥ bqi’ and construct a term with the desired
properties for both of these cases. However, it can be shown that E(a, pi, b, qi), i.e.
‘api = bqi’. Yet, the argument is based on propositions that are themselves proved by
Proposition 3.28 in [13]. Hence, in the proof of Proposition 3.28 in [13], the case distinction cannot be avoided
by arguing via these propositions. We, however, can freely use true universal facts as axioms when extracting
Herbrand terms. We thus now establish the truth of a suitable universal statement by proving it in T.

p1

t1a b

q1

Sb(q1)Sa(q1)

Sa(b)

Sa(Sb(q1)) Sa(p1)

Figure 18: Ext. constr.

But first, we extend our construction a little (Figure 18). We consider
terms Sa(pi), Sa(Sb(qi)) and Sa(b) for which by Proposition 3.7 M(pi, a, Sa(pi)),
M(Sb(qi), a, Sa(Sb(qi))) and M(b, a, Sa(b)) respectively. It can be shown that if we
interpret Sa(. . .) as a function that reflects given points at a, it preserves congruence
and betweenness (see [13, p.49-51]). Hence the marked sides of Figure 18 are con-
gruent to each other, and our ‘new’ terms are still collinear. The same can be shown
for mirroring points at a line ([13, p.89 f]) which is why from T(pi, ti, qi) it follows
that also T(Sa(pi), ti, Sb(qi)).

l

nm

f

gh

e
k

Figure 19

Now back to our purely universal statement. We will argue that (Figure 19)

T ⊢ ∀e, f, g, h,m, k, l, n
[
E(f, g, e, h) ∧ E(h, g, f, e) ∧ ¬Col(e, f, g) ∧ f ̸= h∧
Col(e,m, g) ∧ Col(f,m, h) ∧ T(e, k, f) ∧ T(g, l, h)∧
E(k, f, l, g) ∧ T(l, n, f) ∧ T(k, n, g) → E(k, l, f, g)

]
.

To show this, it can be shown that if E(f, g, e, h) ∧ E(h, g, f, e) ∧ ¬Col(e, f, g) ∧ f ̸=
h∧Col(e,m, g)∧Col(f,m, h), then the segment ef is parallel to the segment gh (which
is to be understood as: there is no point x that is both collinear to ef and gh, we refrain
from giving a formal definition here but for reference see [13, Folgerung I.12.7(a)]).
This is proven in [13, Satz I.12.18 (a)]. But then of course also for any point k between
e and f , and l between g and h, i.e. with T(e, k, f) and T(g, l, h) it holds true that kf is parallel to gl. We can
further show a sentence that states that if kf and gl are parallel and E(k, f, l, g) and if there exists a point n with
T(l, n, f) ∧ T(k, n, g) then E(k, l, f, g). This is proven in [13, Satz I.12.20], in particular via Proposition 3.28.
We hence have shown our universal statement to hold in T.
With the argument we have given above, now also

TS ⊢E(qi, Sb(qi), Sa(Sb(qi)), Sa(qi)) ∧ E(Sa(qi), Sb(qi), qi, Sa(Sb(qi))) ∧ ¬Col(Sa(Sb(qi)), qi, Sb(qi)) ∧ qi ̸= Sa(qi)

∧ Col(Sa(Sb(qi)), a, Sb(qi)) ∧ Col(qi, a, Sa(qi)) ∧ T(Sa(Sb(qi)), Sa(pi), qi) ∧ T(Sb(qi), pi, Sa(qi))

∧ E(Sa(pi), qi, pi, Sb(qi)) ∧ T(pi, ti, qi) ∧ T(Sa(pi), ti, Sb(qi)) → E(Sa(pi), pi, qi, Sb(qi)).
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qi

mi = b

q′i = Smi (qi)
pi

a

Sa(pi)

ti

Figure 20

We thus have E(Sa(pi), pi, qi, Sb(qi)) which implies E(pi, a, qi, b) which was to be
shown.
We can now proceed to show that already ti is the term for which M(a, ti, b). Here, we
again proceed just as in the proof of Proposition 3.28 in [13, p. 64f]. By construction,
Col(a, b, ti). From above, we know that R(b, a, pi). Further, a ̸= b and a ̸= pi,
hence ¬Col(a, b, pi). To see this (by contraposition), assume Col(a, b, pi) and assume
further R(b, a, pi) and b ̸= a. It then follows by Lemma 3.14 that R(pi, a, pi) and
thus pi = a by [13, Satz I.8.8]. Analogously, ¬Col(a, b, qi). It now is enough to show
that E(b, pi, a, qi) (Figure 20), as then the points a, qi, b, pi form a non-degenerate
quadrangle where the respective opposite sides are congruent. It then can be shown that the diagonals half
each other and hence M(a, ti, b) ∧ M(pi, ti, qi) (for a proof of this, see [13, Lemma I.7.21]). For the proof of
E(b, pi, a, qi) we refer to [13, p.65]. In total, we have shown that in case 2, M(a, ti, b) holds for some of i = 1, 2, 3.

Remark 3.32. Note that we were only able to use Proposition 3.25 in the course of our proof because the terms
provided there satisfy the original statement φ and not just its Herbrand normal form φH .

3.3 Opposed points and a disjunction due to the character of φ

If points a, b and c are pairwise distinct and in the relation T(a, b, c), we can say that points a and c lie on
opposite sides of point b ([13, p.43, 6.1 Definition]). We now define a notion stating that points a and b lie on
the same side of point c:

Definition 3.33. [13, Definition I.6.1] a ⋍
c
b :↔ a ̸= c ∧ b ̸= c ∧ [T(c, a, b) ∨ T(c, b, a)].

We now want to provide Herbrand disjunctions for three lemmas, all of which talk about points lying on different
sides of a line in various ways. We therefore define a notion ‘T(a, L(lk), b)’ which is true iff there is a point
x ∈ L(lk) such that T(a, x, b), i.e. iff a and b lie on different sides of L(lk).

Definition 3.34. [13, Definition I.9.1]
T(a, L(lk), b) :↔ l ̸= k ∧ ¬Col(a, l, k) ∧ ¬Col(b, l, k) ∧ ∃x[Col(l, k, x) ∧ T(a, x, b)].

We further define a notion that enables us to ‘compare the length of two segments’. We say that ab is less or
equal cd if there exists a point y between the points c and d in such a way that the segment ab is congruent (i.e.
has the same length) to the segment cy:

Definition 3.35. [13, Definition I.5.4 and Definition I.5.14]
ab ≤ cd :↔ ∃y[T(c, y, d) ∧ E(a, b, c, y)], ab < cd :↔ ab ≤ cd ∧ ¬E(a, b, c, d).

We also give an equivalent characterization:

Proposition 3.36. [13, Satz I.5.5] ab ≤ cd↔ ∃y[T(a, b, y) ∧ E(a, y, c, d)].

For a proof, see [13, p.41f]

Corollary 3.37. It holds that either ab ≤ cd or cd < ab.

l n m x

c
kl

a

b

Figure 21: based on
[13, Abb.33]

The first lemma (Figure 21) that we consider states that if points a and c lie on different
sides of the line L(lk) in such a way that they are each other’s mirror image with respect
to a point m on the line and if the point n is also on L(lk), then every point b with
a ⋍

n
b (i.e that lies on ‘one side’ of L(lk) on the line determined by the points n and a)

lies on the opposite side of L(lk) with respect to c (see [13, description of Lemma I.9.3]).

Lemma 3.38. [13, Lemma I.9.3]

T ⊢ φ := (∀L(lk)∀a, b, c,m, n)
[
T(a, L(lk), c) ∧ Col(m, l, k) ∧M(a,m, c) ∧ Col(n, l, k) → ∀b[a ⋍

n
b→ T(b, L(lk), c)]

]
.

The above lemma is not formulated in our first order setting as we quantify over L(lk). We further have hidden
some quantifiers in expressions T(a, L(lk), c) and T(b, L(lk), c). We therefore state an equivalent, fully prenexed
version. To this end, we introduce two new variables j and x and write T(a, L(lk), c) as
∃j[l ̸= k ∧ ¬Col(a, l, k) ∧ ¬Col(c, l, k) ∧ Col(l, k, j) ∧ T(a, j, c)] and T(b, L(lk), c) as
∃x[l ̸= k ∧ ¬Col(b, l, k) ∧ ¬Col(c, l, k) ∧ Col(x, l, k) ∧ T(b, x, c)]:
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Lemma 3.39.

T ⊢ φ :=∃xφqf (l, k, a, b, c,m, j, n, x)

:=∃x
[
l ̸= k ∧ ¬Col(a, l, k) ∧ ¬Col(c, l, k) ∧ Col(l, k, j) ∧ T(a, j, c) ∧ Col(m, l, k) ∧M(a,m, c) ∧ Col(n, l, k)

→ [a ⋍
n
b→ l ̸= k ∧ ¬Col(b, l, k) ∧ ¬Col(c, l, k) ∧ Col(x, l, k) ∧ T(b, x, c)]

]
.

We can now prove the following:

l n
m

t1

c

k

a
b

Figure 22: Case 1: Constr.
for t1, based on [13, Abb.33]

l n m t

c

k

a

b

Sm(b)

Sm(n)

Figure 23: Case 2: Constr.
for t2, [13, Abb.33]

Lemma 3.40. Let φ be as in Lemma 3.39. As φH = φ,

TS ⊢
2∨

i=1

φqf (l, k, a, b, c,m, j, n, ti(l, k, a, b, c,m, j, n)) for t1 := ip(n, c, a, b,m), t2 := ip(Sm(n), b, Sm(b), c,m).5

We refrain from giving a detailed proof here but only give an outline. The proof
is based on the proof of Lemma 3.39 in [13, p.68].

Outline of the proof. Let a ⋍
n
b. Then either T(n, b, a) or T(n, a, b).

We distinguish two cases. Case 1 (Figure 22) considers T(n, b, a). As we also
have T(c,m, a), by A7S we get a term t1 := ip(n, c, a, b,m)
with T(b, t1, c) ∧ T(m, t1, n).
From n ̸= b it follows that ¬Col(l, k, b) as else Col(l, k, a). From T(m, t1, n) it
follows that Col(t1, l, k). Hence φH

qf (t1).
For case 2 (Figure 23), T(n, a, b), we cannot do the same construction as we
cannot invoke A7S on our points in the same way. However, we can retreat
ourselves to a situation as in case 1 but for different points. To this end, we
consider terms Sm(b) and Sm(n) and deduce T(Sm(n), c, Sm(b)) from T(n, a, b).
But now T(Sm(b), L(lk), b) via m and T(Sm(n), c, Sm(b)), i.e. case 1 for our new
points. Hence again from T(Sm(n), c, Sm(b)) ∧ T(b,m, Sm(b)) and A7S we can
show that for t2 as defined above, φH

qf (t2).

Remark 3.41. The case distinction that is made in the proof here, resulting in
multiple Herbrand terms, originates in the disjunctive character of the sentence
itself. By definition, a ⋍

n
b ↔ a ̸= n ∧ b ̸= n ∧ [T(n, b, a) ∨ T(n, a, b)]. We thus distinguish cases T(n, b, a) and

T(n, a, b) and get two different terms.

l n

u

a

x j

v

c
o k

Figure 24: based on [13,
Abb. 34]

The next lemma (Figure 24) that we will consider states that if the points a and
c lie on opposite sides of a line and if the points n and o are the feet of the plumbs
of a and c on that line respectively, then every point on the half-line that starts at
the point n and passes through a lies opposite, with respect to our line, to every
point
that lies on the half-line that starts at point o and passes through c
([13, description of Lemma I.9.4]).

Lemma 3.42. [13, (subcase of) Lemma I.9.4]

T ⊢ φ := (∀L(lk), a, c, n, o, u, v)
[
T(a, L(lk), c) ∧ Col(n, l, k) ∧ lk ⊥

n
an ∧ Col(o, l, k)

∧ lk ⊥
o
co→ [u ⋍

n
a ∧ v ⋍

o
c→ T(v, L(lk), u)]

]
.6

Again, we can formulate a version that is slightly more spelled out where we, just as above, introduce j and x
to be the points witnessing T(a, L(lk), c) and T(v, L(lk), u) respectively.

5Note that j, l, k do not occur in t1 or t2 but j implicitly occurs as j = m.
6To be precise, in [13, 9.4 Lemma, p.68] it is only shown that T ⊢ φ := (∀L(lk), a, c, n, o, u, v)

[
T(a, L(lk), c)∧Col(n, l, k)∧ lk ⊥

an ∧ Col(o, l, k) ∧ lk ⊥ co → [u ⋍
n
a ∧ v ⋍

o
c → T(v, L(lk), u)]

]
but it is immediate from the proof that n resp. o are the points for

which lk ⊥
n
an resp. lk ⊥

o
co, hence our formulation.
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Lemma 3.43.

T ⊢ φ := ∃x
[
l ̸= k ∧ ¬Col(a, l, k) ∧ ¬Col(c, l, k) ∧ Col(j, l, k) ∧ T(a, j, c) ∧ Col(n, l, k) ∧ lk ⊥

n
an ∧ Col(o, l, k)

∧ lk ⊥
o
co→ [u ⋍

n
a ∧ v ⋍

o
c→ l ̸= k ∧ ¬Col(v, l, k) ∧ ¬Col(u, l, k) ∧ Col(x, l, k) ∧ T(v, x, u)]

]
.

Still, we are not in a prenexed setting as we find 4 more universally quantified variables in the expressions
lk ⊥

n
an and lk ⊥

o
co (see Definition 3.16) which we will denote by z := (z1, z2, z3, z4). If we pull out these

quantifiers, we can write φ in a form where φ = (∀y)∃z, x ψqf (y, z, x). If we applied Herbrand to this, we would
hence realize five different points. In our further investigations however, we are only interested in realizing
T(u, L(lk), v), i.e that point x for which Col(x, l, k) ∧ T(v, x, u). We thus only formulate the following lemma:

Lemma 3.44. Let φ = ∃xψ(l, k, a, c, n, o, u, v, j, x) be as above, where ψ denotes the formula [. . .]. Then

TS ⊢
4∨

i=1

ψ(l, k, a, c, n, o, u, v, j, ti(l, k, a, c, n, o, u, v, j)) with

ti = ip(o, u, Ssi(u), v, si), for i = 1, 2, and ti = ip(Ssi−2
(o), v, Ssi−2

(v), u, si−2) for i = 3, 4, where
s1 = ip(n, c, a, r1, j) with r1 = ext(Sn(a), n, o, c) and s2 = ip(o, a, c, r2, j) with r2 = ext(So(c), o, n, a).

l n

u

a

t1j
v

c

o k

Sn(a)

s1

Ss1(u)

r1

Figure 25: Case 1: Constr.
for t1 based on [13, Abb. 34]

Again, we only give an outline here. The proof is based on the proof of Lemma 3.42
in [13, p. 69].
Outline of the proof. For the proof, we distinguish two different cases and, af-
ter a few construction steps, argue that we are in the situation of Lemma 3.40.
With Corollary 3.37, we know that T ⊢ oc ≤ na ∨ na ≤ oc, i.e. T ⊢
∃x[T(n, x, a) ∧ E(n, x, o, c)] ∨ ∃y[T(o, y, c) ∧ E(o, y, n, a)].

We show that TS ⊢ oc
r1
≤ na∨na

r2
≤ oc where oc

r1
≤ na := T(n, r1, a)∧E(n, r1, o, c).

That is r1 and r2 realize x and y, respectively, in the above expression: If oc ≤ na
(Figure 25), we argue via Proposition 3.7 and A4S that for r1 := ext(Sn(a), n, o, c)
we have E(n, r1, o, c) i.e. ‘nr1 = oc’. Further T(n, r1, a). For, if not, then
T(n, a, r1) ∧ a ̸= r1. But then Proposition 3.36 and ¬E(n, a, o, c) imply na

r1
< oc

and hence na < oc, contradiction. We hence have oc
r1
≤ na and in particular

oc
r1
≤ na ∨ na

r2
≤ oc. An analogous argument for the case that na ≤ oc results

in the same realizing terms r1 and r2. We can now distinguish cases oc
r1
≤ na

and na
r2
≤ oc. Just as above, this case distinction is necessary to be able to

argue with A7S . If oc
r1
≤ na (Figure 25), argue that from T(c, j, a) ∧ T(n, r1, a) and A7S it follows that

T(n, s1, o)∧T(r1, s1, c) for s1 = ip(n, c, a, r1, j). In our situation, it even holds true that M(n, s1, o)∧M(r1, s1, c)
(for a proof, consider e.g. realizers for [13, Lemma I.8.24]). From properties about Ss1(. . .) and the assump-
tions u ⋍

n
a and v ⋍

o
c it can be shown that Ss1(u) ⋍

o
v. But now T(Ss1(u), L(lk), u) via s1 and further

Col(l, k, s1)∧M(Ss1(u), s1, u)∧Col(o, l, k)∧Ss1(u) ⋍
o
v. We thus are in the situation of Lemma 3.40 and deduce

that Col(t1, l, k)∧T(v, t1, u) or Col(t3, l, k)∧T(v, t3, u) for t1 and t3 as defined above. Hence ψqf (τ, t1)∨ψqf (τ, t3).
An analogous procedure for case 2, where we proceed in the exact same way but ‘on the other side’, yields
ψqf (τ, t2) ∨ ψqf (τ, t4).

lj k

c

n
a

b

x

Figure 26

The last lemma (Figure 26) of this kind we consider states, that if the points a
and c lie on opposite sides of a line and if the point n lies on that same line, then
every point b of the half-line that starts at n and passes through a lies on the
opposite side of our line with respect to c ([13, description of Satz I.9.5]).

Lemma 3.45. [13, Satz I.9.5]

T ⊢ φ := (∀L(lk)∀a, b, c, n)
[
T(a, L(lk), c) ∧ Col(n, l, k) → [a ⋍

n
b→ T(b, L(lk), c)]

]
.

Again, equivalently
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Lemma 3.46.

T ⊢ φ := ∃x
[
l ̸= k ∧ ¬Col(a, l, k) ∧ ¬Col(c, l, k) ∧ Col(j, l, k) ∧ T(a, j, c) ∧ Col(l, k, n) →
[a ⋍

n
b→ l ̸= k ∧ ¬Col(b, l, k) ∧ ¬Col(c, l, k) ∧ Col(l, k, x) ∧ T(b, x, c)]

]
.

With Herbrand, we can show

l

j

k

c

n

a

b
t1

q11fb fa

fc
m1

Sm1
(a)

ld1

Figure 27: (based on [13, Abb. 35]) Con-
struction for t1, where q11 results from ap-
plying Lemma 3.40 and t1 from applying
Lemma 3.44.

Lemma 3.47. Let φ be as above. As φH = φ, we can show

TS ⊢
32∨
i=1

φqf (a, b, c, n, j, l, k, ti(a, b, c, n, j, l, k)) with

ti = ip(fc, b, Ss11i
(b), c, n11i

) for i = 1, . . . , 4 ,

ti = ip(fc, b, Ss12i−4
(b), c, s12i−4

) for i = 5, . . . , 8 ,

ti = ip(fc, b, Ss21i−8
(b), c, n21i−8

) for i = 9, . . . , 12 ,

ti = ip(fc, b, Ss22i−12
(b), c, s22i−12

) for i = 13, . . . , 16 ,

ti = ip(Ss11i−16
(fc), c, Ss11i−16

(c), b, s11i−16
) for i = 17, . . . , 20 ,

ti = ip(Ss12i−20
(fc), c, Ss12i−20

(c), b, s12i−20
) for i = 21, . . . , 24 ,

ti = ip(Ss21i−24
(fc), c, Ss21i−24

(c), b, s21i−24
) for i = 24, . . . , 28 ,

ti = ip(Ss22i−28
(fc), c, Ss22i−28

(c), b, s22i−28
) for i = 29, . . . , 32,

where
s11i = ip(fb, Smi(fa,fc)(a), r1i , q1i), s12i = ip(fb, Smi(fa,fc)(a), r1i , q2i), r1i = ext(Sfb(b), y, fc, Smi(fa,fc)(a)),

s21i = ip(fc, b, Smi(fa,fc)(a), r2i , q1i), s22i = ip(fc, b, Smi(fa,fc)(a), r2i , q2i), r2i = ext(Sz(Smi(fa,fc)(a)), fc, y, b),

q1i = ip(n, Smi(fa,fc)(a), a, b,mi(fa, fc)), q2i = ip(Smi(fa,fc)(n), b, Smi(fa,fc)(b), Smi(fa,fc)(a),mi(fa, fc)),

fa := foot(l, k, a), fb := foot(l, k, b), fc := foot(l, k, c).

Just as above, we give an outline of the proof. It is based on the proof of Lemma 3.45 in [13, p.70].

Outline of the proof. It is helpful to consider Figure 27 in the course of this proof. By Proposition 3.19
we get terms fa := foot(l, k, a) with lk ⊥

fa
afa, fb := foot(l, k, b) with lk ⊥

fb
bfb, fc := foot(l, k, c) with

lk ⊥
fc
cfc. By Proposition 3.30, we know that

∨4
i=1 M(fa,mi(fa, fc), fc). Suppose that M(fa,mi(fa, fc), fc)

for some i ∈ {1, . . . , 4}. Additionally, we know that M(a,mi(fa, fc), Smi(fa,fc)(a)). Further, by the unique-
ness in Proposition 3.7 and M(fa,mi(fa, fc), fc), it holds that fc = Smi(fa,fc)(fa). Similar to the proof
of Lemma 3.44 it can thus be shown that Smi(fa,fc)(a) ⋍

fc
c. From T(a, L(lk), Smi(fa,fc)(a)) via mi(fa, fc)

and Col(l, k,mi(fa, fc)) ∧ M(a,mi(fa, fc), Smi(fa,fc)(a)) ∧ Col(n, l, k) ∧ a ⋍
n
b and Lemma 3.40 we know that

q1i := ip(n, Smi(fa,fc)(a), a, b,mi(fa, fc)) or q2i := ip(Smi(fa,fc)(n), b, Smi(fa,fc)(b), Smi(fa,fc)(a),mi(fa, fc)) wit-
nesses T(b, L(lk), Smi(fa,fc)(a)). But now we can invoke Lemma 3.44 on the following: T(b, L(lk), Smi(fa,fc)(a))
via q1i or q2i and Col(fb, l, k)∧ lk ⊥

fb
bfb ∧Col(fc, l, k)∧ lk ⊥

fc
Smi(fa,fc)(a)fc ∧ b ⋍

fb
b∧ c ⋍

fc
Smi(fa,fc)(a). We thus

get terms as above witnessing T(b, L(lk), c).

b
k

l

c
a

x

Figure 28: Outer
Pasch [13, Abb. 4]

With these Herbrand disjunctions, we can now show our final result, a Herbrand dis-
junction for the outer Pasch theorem (Figure 28). We formulate it again here.

Theorem 3.48 (outer Pasch). [13, Satz I.9.6]

T ⊢ φ := ∃x
[
T(a, c, l) ∧ T(b, k, c) → T(a, x, b) ∧ T(l, k, x)

]
.
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l s1fc fa m1 k

fbq1

a

b

r1

Sm1 (c)

t1

c
ld1

Figure 29: (based on [13, Abb.
35])

Construction of t1.

Our final Herbrand analysis of the ‘Outer Pasch Theorem’ is now as follows:

Theorem 3.49 (Herbrand for outer Pasch). Let φ be as above and φqf := [. . .]. Then

TS ⊢
10∨
i=1

φqf (a, b, c, l, k, ti(a, b, c, l, k)) for

ti = ip(fb, a, Ssi(a), b, si) for i = 1, . . . , 4 ,

ti = ip(fa, b, Ssi−4(b), a, si−4) for i = 5, . . . , 8

t9 = a, t10 = b where
si = ip(fa, Smi(fc,fb)(c), a, ri, qi), ri = ext(Sfa(a), fa, fb, Smi(fc,fb)(c))

qi = ip(Smi(fc,fb)(l), a, Smi(fc,fb)(a), Smi(fc,fb)(c),mi(fc, fb)),

fc = foot(l, k, c), fa = foot(l, k, a), fb = foot(l, k, b).

The proof is based on the proof of Theorem 3.48 in [13, p.70f].
Proof. We distinguish two cases.
Case 1: Col(l, k, c). Here, we further distinguish T(l, k, c) ∨ ¬T(l, k, c).
If T(l, k, c), with T(l, c, a) we can show T(l, k, a). Hence φqf (a). If ¬T(l, k, c), by Definition 3.33 we know that
l ⋍

k
c. Further, as T(c, k, b), it follows that T(l, k, b). Hence, φqf (b).

Case 2: ¬Col(l, k, c). Then L(lk) ̸= L(ck). Again, we distinguish two subcases.
Case 2a: b ∈ L(lk), i.e. Col(b, k, l). Then b = k as, otherwise, L(lk) = L(ck). Hence again φqf (b).
Case 2b: b /∈ L(lk), i.e. ¬Col(b, k, l) (consider Figure 29). We now want to find the point witnessing that
T(a, L(lk), b). To this end, we want to use Lemma 3.47. If we went by the proof of Theorem 3.48 in [13, p.70f],
we would now state that T(c, L(lk), b) via k and c ⋍

l
a∧Col(l, l, k) and could thus directly argue via Lemma 3.47

that φqf (t1)∨ . . .∨φqf (t32), where the ti are defined as in Lemma 3.47.7 But in this way, we are forgetting some
of our information as we only use that c ⋍

l
a even though we know that in fact T(a, c, l) (and of course still c ̸= l).

We can thus show that we only need 8 terms to realize φ in this case 2b. To this end, we consider the proof of
Lemma 3.47. Here, after some constructions, we invoke Lemma 3.40 on T(c, L(lk), Smi(fc,fb)(c)) via mi(fc, fb)
and Col(mi(fc, fb), l, k) ∧ M(c,mi(fc, fb), Smi(fc,fb)(c)) ∧ Col(l, l, k) ∧ c ̸= l ∧ T(a, c, l) (instead of ∧ c ⋍

l
a).

We can thus argue that we are in case 2 of the proof of Lemma 3.40 and only get one term qi as above
that witnesses T(a, L(lk), Smi(fc,fb)(c)). Now, just as in the proof of Lemma 3.47, we invoke Lemma 3.44 on
T(a, L(lk), Smi(fc,fb)(c)) via qi and Col(fa, l, k) ∧ lk ⊥

fa
afa ∧ Col(fb, l, k) ∧ lk ⊥

fb
bfb ∧ a ⋍

fa
a ∧ Smi(fc,fb)(c) ⋍

fb
b.

But again, we can show that Smi(fc,fb)(c)fb
ri
≤ afa, thus avoiding the outer case distinction that is made in

the proof of Lemma 3.44. We cannot however avoid the ‘inner’ case distinction in the proof of Lemma 3.44:
Here (in our case), the proof of Lemma 3.44 invokes Lemma 3.40 on T(Ssi(a), L(lk), a) via si and Col(l, k, si)∧
M(Ssi(a), si, a) ∧ Col(fb, k, l) ∧ Ssi(a) ⋍

fb
b for ri and si as defined above, whose proof distinguishes cases

T(fb, b, Ssi(a)) and T(fb, Ssi(a), b). As both can be the case, we have now argued that terms t1, . . . , t8 as above
witness T(a, L(lk), b) as desired. Let now T(a, ti, b) for i ∈ {1, . . . , 8}. It remains to show that also T(l, k, ti).
To this end, we invoke A7S on T(l, c, a) ∧ T(b, ti, a) such that T(l, r, ti) ∧ T(b, r, c) for r := ip(l, b, a, c, ti). But
now r is the intersection point of lines L(lk) and L(cb) = L(ck). Hence r = k and T(l, k, ti) as desired. We

conclude the proof by giving an outline as to why Smi(fc,fb)(c)fb
ri
≤ afa can be shown in case 2b. To this end,

we prove (in T) the following existential formula (see Figure 30):

l b d k

c

e

fh
b′′

c′′

c′

Figure 30: c′′b′′ ≤ ed

φ :=
[
Col(b, l, k) ∧ Col(d, l, k) ∧ T(l, c, e) ∧ R(l, b, c) ∧ R(l, d, e) ∧ l ̸= c∧
¬Col(l, k, c) ∧ E(c′′, b′′, c, b) → c′′b′′ ≤ ed

]
=∃h

[
Col(b, l, k) ∧ Col(d, l, k) ∧ T(l, c, e) ∧ R(l, b, c) ∧ R(l, d, e) ∧ p ̸= c∧
¬Col(l, k, c) ∧ E(c′′, b′′, c, b) → T(e, h, d) ∧ E(c′′, b′′, e, h)

]
and then show that - for the case at hand - ri is a witnessing term for ∃. To

7To be precise, Lemma 3.47 only provides terms ti so that TS ⊢
∨32

i=1 T(a, ti, b). We show below that also T(l, k, ti) and thus
TS ⊢ φqf (t1) ∨ . . . ∨ φqf (t32).
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establish the existence h, we first argue that cb ≤ ed, i.e. ∃f [T(e, f, d) ∧ E(c, d, e, f)]. To this end, consider the
following:

• If c = e (by the uniqueness of the foot point) we are done. Assume hence that c ̸= e.

• It can be shown that for every line L(lk) and every point c there exists exactly one line that is parallel
to L(lk) and entails c. Let hence c′ be a point such that L(cc′) is (strictly) parallel to L(lk). This point
exists by [13, Satz I.12.13] and (for strictness) [13, Definition I.12.3] with ¬Col(c, l, k).

• As the line L(ed) intersects L(lk) at the point d, it can be shown ([13, Satz I.12.16]) that it also intersects
any line that is parallel to L(lk). Let hence in particular f be the intersection point of lines L(ed) and
L(cc′).

• We can further show that ‘two lines are parallel to each other if and only if they form congruent alternate
angles with another line’ [13, Satz I.12.21]. As we know that L(bd) and L(cf) are parallel and that
R(l, d, e) and R(c, b, l) it thus follows that R(c, f, d) and R(b, c, f).

• As now lines L(bc) and L(df) form congruent angles with L(cf), by the same argument (but in the other
direction), they are parallel.

• We have now shown that segment cf is parallel to segment bd and that segment cb is parallel to segment
fd. We further know that ¬Col(b, c, f) and thus the points c, b, d, f form a parallelogram. It can be
shown ([13, Satz I.12.19]) that now the opposite sides of this parallelogram are congruent, in particular
E(b, c, d, f).

• It remains to show that also T(e, f, d). We first establish T(e, L(cc′), d).

– We know that T(e, L(cc′), l) as T(e, c, l) and ¬Col(l, c, c′) and ¬Col(e, c, c′) by assumption of our
case and the choice of c′: ¬Col(l, c, c′) holds as L(cc′) and L(lk) are (strictly) parallel (see e.g.
[13, Definition I.12.2]), ¬Col(e, c, c′) holds as otherwise Col(e, c, c′) ∧ T(l, c, e) ∧ c ̸= e would imply
Col(l, c, c′) contrary to what was just shown.

– It is intuitively clear that if segments cc′ and ld are strictly parallel, then the points l, d must ‘lie on
the same side’ of the line determined by the points c and c′ (see [13, Definition I.9.7] for a definition)
and [13, Folgerung I.12.7 (a)] for a proof).

– We now have that T(e, L(cc′), l), i.e the points e and l lie on opposite sides of L(cc′) and that l, d lie
on the same side of L(cc′). It is thus again intuitive that also T(e, L(cc′), d) (see [13, Satz I.9.8] for
a proof).

• As Col(e, d, f) and Col(f, c, c′) we further know that f is that point for which T(e, L(cc′), d) ([13, Satz
I.6.21]) and hence deduce T(e, f, l) as desired.

Now, from cb ≤ ed and E(c, b, c′′, b′′) it follows that c′′b′′ ≤ ed ([13, Satz I.5.6]), i.e. ∃h[T(e, h, d)∧E(c′′, b′′, e, h)]
as desired which finishes the proof of φ. By instantiating the variables in φ by suitable terms and argueing as
in the proof of Lemma 3.44 we get

TS ⊢Col(fc, l, k) ∧ Col(fa, l, k) ∧ T(l, c, a) ∧ R(l, fc, c) ∧ R(l, fa, a) ∧ l ̸= c ∧ ¬Col(l, k, c) ∧ E(Smi(fc,fb)(c), fb, c, fc)

→ Smi(fc,fb)(c)fb
ri
≤ afa

where ri is as defined above. Thus Smi(fc,fb)(c)fb
ri
≤ afa as all the premises are satisfied, notice that

E(Smi(fc,fb)(c), fb, c, fc) follows from [13, Satz I.7.13] as fb = Smi(fc,fb)(fc).

Note that although A10 is used in the proof of [13, Satz I.12.13] which we refrence above, we do not need the
Skolemization A10S since it is only used to show the uniqueness of the constructed parallel. However, even if
A10 had been used to construct c′, we still would not need A10S since c′ is only used to verify the quantifier-free
formula T (e, f, d) and so does not need to be constructed.
If one allows for decision functions for ‘T’ and ‘=’ and hence for Boolean combinations of these relations, then
one can contract the Herbrand disjunction in Theorem 3.49 into a single program.
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4 Conclusion
In this paper we showed in a case study how Herbrand’s theorem can be used to extract realizers for the
existential quantifier in the outer Pasch theorem by analyzing its proof in [13]. We thereby made two interesting
observations: In order to provide realizers for the outer Pasch theorem, a modular analysis of the proof is possible,
i.e. we e.g. did not have to consider a cut-free proof of the theorem but were able to analyze the existing proof.
This will likely be the case for most of the theorems in [13], even if their proofs use lemmas more complex than
themselves, as it seems inherent to proofs in plane elementary Euclidean geometry to be ‘constructive enough’.
We also observed that the plurality of terms realizing existential statements is due to case distinctions which
in general cannot be avoided as e.g. A8 itself expresses an alternative and we have to rule out trivial cases
resulting in degenerate situations when e.g. invoking A7S , as we loose uniqueness here.
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