Referent:

1. Korreferent:

2. Korreferent:

Tag der Einreichung:

Tag der miindlichen Priifung:

Proof interpretations:
theoretical and practical aspects

Vom Fachbereich Mathematik
der Technischen Universitat Darmstadt
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

genehmigte Dissertation

von
Mestre em Matematica Jaime Gaspar
aus Lissabon (Portugal)

Darmstadt, Dezember 2011
D 17

Prof. Dr. Ulrich Kohlenbach
Reader Dr. Paulo Oliva
Prof. Dr. Thomas Streicher
6. Oktober 2011

6. Dezember 2011

Abstract /Zusammenfassung

Abstract

We study theoretical and practical aspects of proof theoretic tools called proof in-
terpretations.

Theoretical contributions

Completeness and w-rule Using a proof interpretation, we prove that Peano
arithmetic with the w-rule is a complete theory.

Proof interpretations with truth Proof interpretations without truth give in-
formation about the interpreted formula, not the original formula. We
give three heuristics on hardwiring truth and apply them to several proof
interpretations.

Copies of classical logic in intuitionistic logic The usual proof interpretations
embedding classical logic in intuitionistic logic give the same copy of
classical logic, suggesting uniqueness. We present three different copies.

Practical contributions

“Finitary” infinite pigeonhole principles Terence Tao studied finitisations of
statements in analysis. We take a logic view at Tao’s finitisations through
the lenses of proof interpretations and reverse mathematics.

Proof mining Hillam’s theorem Hillam’s theorem characterises the convergence
of fixed point iterations. We proof mine it, getting a “finitary rate of con-
vergence” of the fixed point iteration.

Zusammenfassung

Wir untersuchen theoretische und praktische Aspekte von Beweisinterpretationen.

Theoretische Ergebnisse

Vollstandigkeit und w-Regel Mit Hilfe einer Beweisinterpretation zeigen wir,
dass die Peano-Arithmetik mit der w-Regel eine vollstandige Theorie ist.

Beweisinterpretationen mit Wahrheitspradikat Beweisinterpretationen ohne
Wahrheitspradikat geben Informationen tiber die interpretierte Formel
und nicht mehr tiber die urspriingliche Formel. Wir préasentieren drei
Heuristiken, um Wahrheitspradikate zu Beweisinterpretationen hinzuzu-
fligen, und geben einige Beispiele.

Kopien von klassischer Logik in intuitionistischer Logik Die iiblichen Einbet-
tungen von klassischer Logik in intuitionistische Logik mit Hilfe von Be-
weisinterpretationen erzeugen alle die gleiche Kopie der klassischen Logik.
Dies deutet darauf hin, dass diese Kopie eindeutig sein konnte. Wir
zeigen, dass dies nicht der Fall ist und prasentieren drei verschiedene
Kopien.

Angewandte Ergebnisse

“Finitisierungen” des unendlichen Schubfachprinzips Terence Tao untersucht
Finitisierungen von Satzen der Analysis. Wir betrachten Taos Ergebnisse
aus dem Blickwinkel der Beweisinterpretationen und reverse mathemat-
1CS.

Proof mining des Satzes von Hillam Der Satz von Hillam charakterisiert die
Konvergenz von Fixpunktiterationen. Wir extrahieren mit Hilfe von proof
mining eine Rate der Konvergenz fur die Fixpunktiteration.

Introduction

What are proof interpretations

A proof interpretation I is a mapping of formulas, mapping a formula A of a theory
S to a formula A' = 3z A;(z) of a theory T

I.S—>T
A A =3z Ay(z)

such that I maps a theorem A of S to a theorem A! of T:
SFA = Tt A" (1)
Even better, I gives us a term ¢ witnessing the quantification 3z in A"
SFA = Tk A(®). (2)
Proof interpretations have many applications. We summarise the main ones.

Relative consistency The proof interpretation I shows that S is consistent relatively
to T. Indeed, L' = 1, so (1) becomes St L = Tk L.

Conservation The proof interpretation I shows that S is conservative over T with

respect to formulas in a certain set I'. Indeed, A' = A for A € T, so (1)
becomes SFA = Tk A.

Closure under rules If S = T, then I gives us the closure of S for some rules. For
example, (AV B)i(t) is equivalent to A or to B, so (2) givesus SF AV B =
(SFAorSkE B).

Unprovability The proof interpretation I gives us the unprovability in S of some

formulas A. Indeed, if T ¥ A;(t), then (2) gives us S ¥ A.

Computational content The proof interpretation I gives us a term ¢ encapsulating
computational content about a theorem A. For example, for A = Vz 3y B(x, y)
we have Aj(t) = Vo B(x,t(x)), so if S + A, then (2) gives us a t such that
TV B(x,t(x)), that is t gives us y = t(z) as a function of z.

bt

What is done in this thesis

Framework In the first part of the thesis we construct the theories T that we will

consider: versions of Peano arithmetic that talk not only about N, but also
about NN, (NM)N N® " and so on.

Proof interpretations In the second part of the thesis we present the proof interpre-
tations I that we will consider. They all have different features: for example,
if 3z A(z), then some proof interpretations give an exact witness (that is a
term ¢ such that A(t)), while others give a bound (that is a term ¢ such that
dr < tA(x)). For each proof interpretation we give applications: relative
consistency results, extraction of computational content, and so on.

The first two parts of the thesis read like an introduction to proof interpreta-
tions.

Theoretical contributions In the third part of the thesis we give three theoretical
contributions by means of proof interpretations.

Completeness and w-rule The w-rule (essentially) states that from A(0), A(1),
A(2),... we infer Vn A(n). Using a proof interpretation, we prove that
Peano arithmetic with the w-rule is a complete theory.

Proof interpretations with truth A proof interpretation I gives information

about A!, but usually we want information about A. One way of trans-
ferring the information from A! to A is to hardwire truth in I: to change
I so that A implies A. We give three heuristics on how to hardwire truth
and apply them to several proof interpretations.

Copies of classical logic in intuitionistic logic Some proof interpretations copy
(that is embed) classical logic (that is the usual logic in mathematics) into
intuitionistic logic (that is the logic of constructive mathematics). The
usual proof interpretations all give the same copy, suggesting that the
copy is unique. We refute this and present three different copies.

Practical contributions In the fourth part of the thesis we give two practical contri-
butions by means of proof interpretations.

“Finitary” infinite pigeonhole principles Terence Tao studied finitisations of
statements in analysis: assigning to qualitative-infinitary statements equiv-
alent quantitative-finitary statements. One of his prime examples is a
finitisation of the infinite pigeonhole principle (that is “if we colour the
natural numbers with finitely many colours, then some colour occurs in-
finitely often”). We take a logic view at Tao’s finitisations: we give a
counterexample to a mistaken finitisation, we obtain a correction by a
proof interpretation, and we compare in the context of reverse mathe-
matics our correction with Tao’s correction.

Proof mining Hillam’s theorem Hillam’s theorem characterises the convergence
of a fixed point iteration (z,) of a continuous function f: [0,1] — [0, 1]:
the fixed point iteration (z,) converges if and only if =, — x, — 0.

6

We proof mine Hillam’s theorem, that is using a proof interpretation
we extract computational content from Hillam’s proof: a “finitary rate
of convergence” of (x,) in terms of a “finitary rate of convergence” of
(Tp41 —) and a rate of uniform continuity of f.

The following diagram gives an overall impression of the many connections be-
tween the chapters of the thesis:

1 3 4 5

. 2 2
Heyting — o Negative Modified —— Bour}ded Godpl s
and Peano ¢ lati realisabilit modified functional
arithmetics rapstations y realisability 7 interpretation

LA/
\;‘%&*”
ﬁéﬁiﬁ « \(A'N interpretation

'\v\\\.'w
Fullrg%g | V\\‘ ‘ ‘y Shoez}ﬁeld
pigeonhole ’\ exprtat

interpretation

logic

y AN
Copies of V 8
classical Monotone
logic in functional
intuitionistic interpretation

13 19 9
Proof - 11 Bounded
interpretations Corriipletenless Slash functional
with truth and w-rue interpretation

interpretation

Acknowledgements

First of all, I would like to gratefully thank my thesis advisor, Ulrich Kohlenbach,
for all his kind advice.

I would like to gratefully thank Jeremy Avigad, Ulrich Berger, Eyvind Briseid,
Jan Hendrik Bruinier, Fernando Ferreira, Gilda Ferreira, Hajime Ishihara, Daniel
Kornlein, Alexander Kreuzer, Burkhard Kiimmerer, Paulo Oliva, Pavol Safarik,
Helmut Schwichtenberg, Thomas Streicher, Terence Tao, Benno van den Berg and
Martin Ziegler, for all their kind mathematical help.

I would like to gratefully thank Barbara Bergstrafler, Claudia Cramer, Elisabeth
Klingenburg and Betina Schubotz, for kindly making my stay in Germany easier.

I would also like to gratefully thank the Logic Group, the Department of Math-
ematics and the Technical University of Darmstadt, for all their kind logistical sup-
port.

Last but not least, I would like to gratefully thank the Portuguese Fundagao para
a Cieéncia e a Tecnologia for all its kind financial support under grant
SFRH/BD/36358/2007 co-financed by Programa Operacional Potencial Humano /
Quadro de Referéncia Estratégico Nacional / Fundo Social Europeu (Unido Eu-
ropeia).

Contents

I

1

2

3

Framework

Heyting and Peano arithmetics

1.1 Imtroduction
1.2 Notation
1.3 Intuitionistic and classical logics
1.4 Types . . . o e
1.5 Heyting and Peano arithmetics
1.6 Term reduction
1.7 A-abstraction
1.8 Terms for primitive recursive functions
1.9 Characteristic terms for quantifier-free formulas
1.10 Definition by quantifier-free cases
1.11 Law of excluded middle for quantifier-free formulas
1.12 Majorisability and majorants
1.13 Principles
1.14 Conclusion

II Proof interpretations

Negative translations

2.1 Introduction
2.2 Definition e
2.3 Soundness e
2.4 Characterisation e
2.5 Applications
2.6 Conclusion e
Modified realisability

3.1 Introduction
3.2 Definition e
3.3 Soundness e
3.4 Characterisation
3.5 Applications
3.6 Conclusion e

13

15
15
16
17
19
20
30
32
34
36
38
39
40
44
46

47

49
49
20
93
o6
o6
o8

Bounded modified realisability

4.1 Introductiono
4.2 Definition
4.3 Soundmess
4.4 Characterisation e
4.5 Applications
4.6 Conclusion e
Godel’s functional interpretation

5.1 Introduction
5.2 Definition
5.3 Soundness
5.4 Characterisation
5.5 Applications
5.6 Conclusion
Diller-Nahm functional interpretation

6.1 Introduction
6.2 Definition
6.3 Soundness
6.4 Characterisation e
6.5 Applications
6.6 Conclusion e
Shoenfield functional interpretation

7.1 Introduction
7.2 Definition
7.3 Factorisation
7.4 Soundness
7.5 Characterisation
7.6 Applications
7.7 Conclusion e
Monotone functional interpretation

8.1 Introduction
8.2 Definition
.3 Soundness
8.4 Applications
8.5 Conclusion
Bounded functional interpretation

9.1 Introduction e
9.2 Definition
9.3 Soundness e
9.4 Characterisation e
9.5 Applications
9.6 Conclusion e

73
73
73
75
80
83
84

85
85
86
86
87
88
88

91
91
92
93
99
101
102

103
103
103
104
105
105
106
106

109
109
110
110
110
111

10 Shoenfield-like bounded functional interpretation 127
10.1 Introduction 127
10.2 Definitiono 127
10.3 Factorisation 128
10.4 Soundness 129
10.5 Characterisation 130
10.6 Applications 131
10.7 Conclusion 132

11 Slash 133
11.1 Introduction 133
11.2 Definition 134
11.3 Soundness 136
11.4 Characterisation 140
11.5 Applications 142
11.6 Conclusion 143

II1 Theoretical contributions 145

12 Completeness and w-rule 147
12.1 Introduction 147
12.2 Hilbert’s program and w-rule 0L 147
12.3 Term model 148
12.4 Completeness 150
12.5 Conclusion 153

13 Proof interpretations with truth 155
13.1 Introduction 155
13.2 Heuristic 1 e 156
13.3 Heuristic 2o 176
13.4 Heuristic 3 e 177
13.5 Conclusion o 186

14 Copies of classical logic in intuitionistic logic 187
14.1 Introductiono 187
14.2 Definitions 187
14.3 Three different copieso 189
14.4 Characterisation 192
14.5 Conclusiono 193

IV Practical contributions 195

15 “Finitary” infinite pigeonhole principles 197
15.1 Introduction 197
15.2 Asymptotic stability oo 200

15.3 “Finitary” infinite pigeonhole principles 203

15.4 Reverse mathematicso 207
15.5 Reverse mathematics of the “finitary” infinite pigeonhole principles . 212
15.6 Conclusion L 219
16 Proof mining Hillam’s theorem 221
16.1 Introduction 221
16.2 Formalising the proof 222
16.3 Rates of uniform continuity, convergence and metastability 230
16.4 Partial proof miningo 237
16.5 Full proof miningo 240
16.6 Computer testing 246
16.7 Conclusion 252

12

Part 1

Framework

13

Chapter 1

Heyting and Peano arithmetics

1.1 Introduction

1.1. In this chapter we lay out our framework: a version HA* of Peano arithmetic
that

1. does not have the law of excluded middle AV —A,;
2. talks not only about N, but also about NN, (NM)N/ N®) " and so on.

To set up our framework, we mainly have to do three big tasks.

Define HAY For HA“ to talk about N, NN (NM)N, N . we have to introduce the
so-called types. The idea is simple: we assign to each term of HA* an object,
called type, that tells us in which of the sets N, NN (NN)N, NO™) .. the term
takes values.

To bar the law of excluded middle from HA®, we introduce intuitionistic logic.
Intuitionistic logic is, roughly speaking, the usual logic in mathematics without
the law of excluded middle.

Functions Once we have defined HA®, it is time to set up all the machinery for
constructing functions in N, NV, (NV)N N®in the language of HA.

The first thing to do is set up A-abstraction. Informally, given a term t(x),
A-abstraction allows us to define the function x — ().

The second thing to do is to show that every primitive recursive function can
be represented in HA” by a term. This allows HA“ to talk about addition,
multiplication, and so on.

The third thing to do is to show that quantifier-free formulas Aq(z) have
characteristic terms that are (roughly speaking) characteristic functions of
sets {x : Ay(z)}. Characteristic terms allow us to make in HA* definitions by

cases like
flay =45, Aale)
23 if = Ay(z)

15

These definitions by cases play an important role in a delicate point of Godel’s
functional interpretation: the interpretation of the seemly innocuous axiom

A— ANA.

Majorisability Some of the proof interpretations that we will consider later, in the
face of a theorem Jx A(x), seek to find not an exact witness ¢ for = such
that A(t), but a bound ¢ on z such that 3z < ¢t A(x). The majorisability
< in question is such that f < g (roughly speaking) means “f is pointwise
smaller than or equal to g, and ¢ is non-decreasing”. To work fluently with
this majorisability, we need to prove its basic properties.

1.2. Our (admittedly modest) main contribution to this topic is checking [19, ca-
pitulos 1 and 7] that the standard material on A-abstraction, terms for primitive
recursive functions, characteristic terms, term definition by cases, and so on, goes
through in the neutral setting with an intensional majorisability HA;" (introduced
later on). This led to three tiny patches to the literature and filling in a common
small omission in the literature (in the proofs of point 1 of theorem 1.30, point 1 of
theorem 1.61, point 1 of proposition 1.66, and theorem 1.34).

1.2 Notation

1.3. We collect here the non-standard notation and conventions that we will be
using later on.

1.4 Notation. Let A be a formula, x = x,...,x, be a tuple of variables and
t=ty,...,t, be a tuple of terms.

1. We use = to denote syntactic/literal equality.
2. We use = and < for implication and equivalence in meta-level.

3. We denote (possibly empty) tuples ti,...,t, of terms by an underlined letter
t.

4. When we write A[t/x] or A(t) to denote the simultaneous substitution of z by
t in A(z), we implicitly assume that each t; is free for z; in A(z).

5. We denote the sets of free and bounded variables of A by FV(A) and BV(A),
respectively. We denote by FV(t) the set of variables of t.

6. We abbreviate {z1,...,z,} by {z}.
7. We denote by p} the projection p}: N — N defined by pi(z1,...,2,) = xy.
8. We denote by un . A(n) the least n such that the condition A(n) holds true.

9. We denote the set {0,1,2,...,n— 1} by n.

16

1.3 Intuitionistic and classical logics

1.5. Intuitionistic logic is a formalisation of intuitionism. Historically, intuitionism
was introduced by Brouwer [6] and formalised by Heyting [32]. Informally, classical
logic CL is the usual logic in mathematics, and intuitionistic logic IL is CL without:
—A
1. proof by contradiction J_ ;
A
2. law of double negation =—A — A;

3. law of excluded middle AV —A4;

(as a curiosity, these three principles are equivalent in IL). Formally, here CL and
IL are axiomatised in definition 1.8 by a Hilbert-style deductive system (essentially)
due to Godel [28] [30, page 280].

1.6. There are two antagonistic ways of comparing IL and CL.

IL is poorer than CL Intuitionistic logic IL is weaker than classical logic CL, that is
IL proves fewer theorems than CL: IL F A z CLF A.

IL is richer than CL Classical logic CL does not see the difference between —(—=A A
—B) and AV B, and between —Vz —A(x) and 3z A(x). Intuitionistic logic IL
refines this situation by making a difference:

1. =(=AA=B) has the usual meaning “A or B”, while AV B has the stronger
meaning “A or B, and we can point to one that holds true”;

2. =Vx —A(x) has the usual meaning “there exists an x such that A(x)”,
while 3z A(z) has the stronger meaning “there exists an z such that
A(z), and we know such an z”.

1.7. Another comparison between IL and CL is in terms of constructivity. The key
criteria to determine if a logic is constructive (arguably) is if it satisfies the following
properties:

Disjunction property if H AV B, then = A or - B (where AV B is a sentence);

Existence property if - 3z A(z), then there exists a closed term ¢ such that - A(t)
(where 3z A(x) is a sentence).

In this sense, IL is constructive but CL is not.
1.8 Definition.
1. Let us define intuitionistic logic IL [75, section 1.1.4] [50, section 3.1].

(a) The language of IL is the following.

i. The language of IL has the following symbols.
A. The logical constants L, A, V, —, V and 4.

17

B. Countable many variables x1, x9, 3,

C. For each arity n > 0, at most countable many (possibly none)
n-ary function symbols fi, fao, f3,. ...

D. For each arity n > 0, at most countable many (possibly none)
n-ary predicate symbols Py, Py, Ps,

1i. Terms are defined as follows.

A. Variables and (non-logical) constants (that is 0-ary function sym-
bols) are terms.

B. If ty,...,t, are terms and f is an n-ary function symbol, then
f(ty, ... t,) is also a term.

i1i. Formulas are defined as follows.
A. The logical constant L is an atomic formula.

B. If P is an n-ary predicate symbol and %, ...,t, are terms, then
P(ty,...,t,) is an atomic formula.

C. Formulas are built from atomic formulas by means of A, V, —,

YV and 4.
(b) We define the following in IL.
. "A=A— L.
ii. A«> B:=(A— B)AN(B— A).

(c) We adopt the following convention to save on parentheses: —, V and 3
bind stronger than A and V, which in turn bind stronger than — and <.

(d) The axioms and rules of IL are given in table 1.1 [50, section 3.1].

contraction axioms A—ANA AVA— A
weakening axioms ANB—A A— AVB
permutation axioms AAB —+BAA AVB—>BVA
ex falso quodlibet 1A
quantifier axioms Ve A — Alt/x] Alt/z] — 3z A
modus ponens rule AAT_)B
: A—-B B—~C
syllogism rule 150
tati | ANB—=C
exportation rule A= (B=O)
importation rule A= (B~ C)
ANB = C
. A— B
expansion rule CVASCVE
A— B B— A
quantifier rules A—VexB dJxB— A
(z ¢ FV(A))

Table 1.1: axioms and rules of IL.

18

2. Classical logic CL is IL plus the law of excluded middle AV —A [50, section 3.1].

1.9. The deductive systems given for IL and CL are suitable to prove properties of
IL and CL by induction on the length of derivations, but unsuitable to actually find
derivations in IL and CL. For this purpose, a much more practical system is the
(equivalent) natural deduction [75, section 1.1.5 and theorem 1.1.11].

1.4 Types

1.10. We are going to work with a version of Peano arithmetic that talks not only
about N, but also about NN, (NN)N/ N(NN), and so on. The elements of these sets
can only mix in a proper way: for example, given n € N, f € NN and F € N,
it makes sense to write f(n) and F(f), but not f(F') and F(n). So the syntax of
our Peano arithmetic has to somehow keep track of the sets in which the terms take
values. This is achieved by the types: to each term we assign a type, and the type
identifies the set according to the “dictionary” given in table 1.2. (We could directly
assign to each term a set, but traditionally we assign a type.)

Set N NV (NV)¥ NO
Type 0 00 (00)0 0(00)

Table 1.2: sets and their types.

1.11 Definition. Consider an alphabet {0, —, (,)}. Finite types, or simply types [75,
section 1.6.2] [50, section 3.3|, are words on this alphabet generated recursively by:

1. 0 is a type;
2. if o and p are types, then (o — p) is also a type.

We adopt the following notation, where o and p are types and p = py, ..., p, and
o =oy,...,0, are tuples of types.

1. We denote (0 — p) by po (note the inversion of the position of the letters).
2. In py - - pn, we associate to the left, that is we read (((p1p2)ps)ps) -+ Pim-
3. We define po := p1o1-- -0y, ..., pm0O1 -+ 0y

4. We define p* = pp, ..., p1.

1.12 Remark. All types p can be decomposed as p = Op; - -+ p,, (with possible no
pis) [75, section 1.6.2] [50, section 3.1].

1.13. We can interpret types in the following way:
1. the type 0 is interpreted as the set N;

2. if the types p and o are interpreted as sets A and B respectively, then the type
po is interpreted as the set AP [75, section 1.6.2].

This interpretation produces table 1.2. Then we can interpret the statement “z has
type p” as meaning “x is in the set interpreting p”.

19

1.5 Heyting and Peano arithmetics

1.14. Now we introduce a version PA* of Peano arithmetic that, informally, talks not
only about N but also about N¥, (NM)N N and so on. More formally, the syntax
of PA“ has the following two devices that mimic the sets N, NN, (NM)N NO

Assigning types to terms Each term has a type associated that, informally, says to
which of the sets N, NN (NN N the term belongs.

Applying terms In the same way that given F € N and f € NN we can apply
them getting F'(f) € N, given two terms s of type po and ¢ of type o we can
apply them getting a term st of type p. We can think of applying s and ¢ as
applying s € p? and t € o getting st € p.

1.15. Before we proceed to the definition of PA*, we need to compile some notation
about terms and their types. In the definition of PA* some axioms are restricted to
certain classes of formulas, so we also need to compile the classes of formulas that
we will need.

1.16 Definition. Let <, be some majorisability infixed between terms of type p,
=, be some equality infixed between terms of type p, and max, be some maximum
of two terms of type p (they will be defined later on).

1. If t is a term of type p, then we write t” to express this fact. More generally,
ift=1ty,...,t, is a tuple of terms, p = p1,..., p, is a tuple of types, and each
t; has type p;, then we write 2 to express this fact. If it is not important to
make the types explicit, then we write simply ¢, <, = and max instead of ¢*,

<,, =, and max,,.

2. Let s = s1,...,8, and t = ty,...,t, be tuples of terms. In ¢;---t, we
associate to the left, that is we read (((tltg)tg)t4) -o+t,. We define st :=
81t1"'tn,...,8mt1"'tn.

3. Given terms s and ¢, when we write st we implicitly assume that the types
of the terms s and ¢ fit, that is s has type po and t has type o for some
types p and 0. Given a formula A(z) with a distinguished tuple of variables
T = x1,...,T,, and terms t = ty,...,t,, when we write A[t/z] or A(t) we
implicitly assume that each t; has the same type that z;.

4. (a) We call bounded quantifiers [15, section 2| to quantifiers of the form

Vo <, tA,
dz <, tA

(where t is a term and z ¢ FV(t)).

(b) We call monotone quantifiers [15, section 2.1] to quantifiers of the form

Vaf A=V (v <, v — A),
o A=Tr (v <, 2 A A).

20

(¢) We call monotone bounded quantifiers to quantifiers of the form

Yz <GtA=Ve < t(e <, 0 — A),
T <tA =3 <t (e <, a N A).
5. Let p = p1,...,pn be a tuple of types, 22 = 2f*, ... 2" and y2 = y{*, ..., Yo"
be tuples of variables and s2 = s{',... s and 2 = t[',...,t’" be tuples of
terms. We define

S1=p i N+ NSp =p, tn,
TS, Y =81Sp LN NSy Sy, Uy,
max,(s,t) := max,, (s1,t1), ..., max,, (su,tn),
Val A =Vt .. Valn A,
Jaf A := Faft .. Fabr A,
Vel A=Vt . Yalr A,
2P A =328 .. Fabr A,

Vo <, tA=Ve <, b Ve, <, t 4,
dx Sgi_ﬁA =dn <, t .. T, <, 1 A,
‘5’@ SBEA = VY, <, t ‘G’xn <pn tn A,
Jz < tA =30 <t T, <, e A

1.17 Definition.
1. We reserve the subscript “at” (as in A,;) for atomic formulas.

2. A quantifier-free formula is a formula without (bounded and unbounded) quan-
tifiers. We reserve the subscript “qf” (as in Ag) for quantifier-free formulas.

3. A bounded formula [15, section 2] is a formula without unbounded quantifiers.
We reserve the subscript “b” (as in A},) for bounded formulas.

4. An 3-free formula [50, definition 5.2.1)] is a formula:

(a) without disjunctions;

(b) without (bounded and unbounded) existential quantifiers.
We reserve the subscript “3f” (as in Ag) for 3-free formulas.
5. An 3-free formula [14, definition 3] is a formula:

(a) without disjunctions;
(b) without unbounded existential quantifiers;

(c) whose universal quantifiers are all monotone.

We reserve the subscript “3f” (as in As,) for J-free formulas.

21

1.18 Definition.

1. Let us define the (typed) Heyting arithmetic HA® [76, section 3.1] [15, sec-

tion 2].

(a) The language of HA® is the following.

1.

11.

iii.

The language of HA has the following symbols.

A. The logical constants L, A, V, —, V and 4.

Countable many variables 1, 25, 2%, ... for each type p.
The constant zero 0.

The constant successor S.

A constant projector 11, , for each types p and o.

A constant combinator X, , for each types p, o and .

Q@EmEUaw

A tuple of constants recursors R, = (Ri1),,...,(Ry), for each
tuple of types p=p1,...,pn-

H. The binary relation equality =.

Terms are defined as follows (their types indicated in superscripts).
A. Variables z”, and the constants 0°, S%, 1eoe, E;,’}(ﬁp)T20) and
(Ri)gi(gtogt)gto are terms.

B. If s»” and t7 are terms, then (st)” is a term.

Formulas are defined as follows.

A. The logical constant L is an atomic formula.

B. The expressions s =g t are atomic formulas (where s and t° are
terms).

C. Formulas are built from atomic formulas by means of A, V, —,

Y and 4.

(b) We define the following in HA®.

1.

ii.

iii.

1v.

The formula AV; B := (t =9 0 — A) A (t #9 0 — B), where t° is a

term of HA® and A and B are formulas of HA®.

The extensional equality s =, t := Va (sz = tz), where s and ¢ are

terms of HA® of type p =0p, ---p; and z = ',

The hereditary equality s” ~, t* [75, section 2.7.2], where s and t are

terms of HA®, by recursion on the structure of p by:

A sxgt=s=¢t;

B. sx, t : =V27,y7 (v =y y — sz =, ty).

A. The type 0 inequality s < t := s ~t =y 0, where s and t°
are terms of HA” and — (a term of HA” standing for the cut-
off /limited /truncated subtraction) is defined in point 3 of defini-
tion 1.37.

B. We extended <, to higher types by s <, t := Vz (sz <, tz),
where s and t are terms of HA” of type p = 0p,,---p; and z =

p1
i A

22

v. The extensional majorisability s <5 t [39, section 2] [5, paragraph 1.1]
[50, definition 3.34], where s” and ¢” are terms of HA“ | by recursion
on the structure of p by:

A s<{t:=s<pt;
B. s <5, t:=Va?,y7 (v <§ y — sw <§ ty At <5 ty).

(¢) The axioms and rules of HA® are the ones of IL plus the ones given in

table 1.3.
. £ T =9
axioms of =
0 x=o y A Aatlz/2] = Aatly/z]
Sx 7£0 0

axioms of S
St =Sy —x=¢y

A1, sy /w
Aut[Yporryz/w
Aat[R,0yz/w
AR, (Sr)yz/w
A(0) A(x) = A(Sx)

A(x)

axioms of II, ¥ and R

induction rule

Table 1.3: axioms and rules of HA® (in addition to the ones of IL).

2. The (typed) Heyting arithmetic with weak extensionality [75, section 1.6.12]
[50, section 3.3] WE-HA® is HA® but with the extensionality rule [66, page 12]

Aat — S :p t
Ay = rls/x] =g r[t/z]

where 7%, s” and t” are terms of WE-HAY.

3. The (typed) Heyting arithmetic with extensionality E-HA® [75, section 1.6.12]
[50, section 3.3] is HA® but with the extensionality axioms

VYl y2, 2% (z =, y — 2z = zy).

4. The (typed) Heyting arithmetic with extensional majorisability HAY [14, sec-
tion 4.1] is HA® with primitive bounded quantifications Vx <5 t A and Jdz <5
t A (for each type p and with the restriction = ¢ FV(¢)) and their axioms

Vo <7 tA Vo (x §;t—>A),
Jz < tA < Jz (x g;tAA).

In HAY we redefine <° by (the equivalent) [14, page 333]

(a) s<§t:=s<pt;

23

(b) s <5, t:= Yy Y <8 y (s <5ty ANtx <5 ty).

5. The (typed) Heyting arithmetic with intensional magjorisability HA? [15, defi-
nition 5] is HA* with the following additions.

(a) A primitive binary relation <} (for each type p) infixed between terms of
HA! of type p, called intensional majorisability, and its axioms and rule

rhyeroy v <,y vushuleu < oAy <, p),

Ab/\xgify—)sxgipty/\txgipty
A, = s <)t

Y

where s and t are terms of HAY and in the rule we have the restriction
z,y ¢ FV(A,) UFV(s) UFV(t). We declare the formulas s <} ¢ atomic,
where s and ¢ are terms of HAY.

(b) Primitive bounded quantifications Yo <! tA and 3z <} t A (for each
type p and with the restriction x ¢ FV(¢)) and their axioms

Vo <Lt A e Vo (z <t — A),
Jr <[tA (< tAA).

6. The (typed) Peano arithmetics PA”, WE-PA“, E-PA“, PAY and PA? are, re-
spectively, HA®, WE-HA*,| E-HA®, HAY and HAY with the addition of the law
of excluded middle.

1.19. The role of II, 3, R, =, =, <5, gip and extensionality may be a bit obscure,
so let us explain it.

IT and 3 The role of IT and ¥ is to, given a term ¢(x), construct a term doing the
job of the function x + #(x). This will be treat in detail in section 1.7.

R The tuple of recursors R is used to define terms by recursion. For example, if

~ the tuple has only one recursor R, then Rzyz stands for the sequence (r2)zen
defined by recursion on = by ry := y and 7,41 := 2(r;, x). So, in Rzxyz, = is
the recursion variable, y is the initial value and z is the function that performs
the recursion step. The use of tuples of recursors R = Ry, ..., R, allows us to
define multiple sequences (rl).en, - -, (1")zen by simultaneous recursion.

We should note that r,1 := z(r,,z) is (in general) not a numeric equality
but a function equality; this feature takes our recursors beyond the scope
of primitive recursive functions (for example, we can define the Ackermann
function [34, pages 185-186]).

=, and ~, The equality =, just mimics the usual equality between, for example,
functions f,g: N* — N: f = g if and only if Vz € N (f(z) = g(x)).
The equality ~, is used for technicalities in points 3 and 6 of proposition 1.26:
to give an alternative formulation of the extensionality axioms in the form

Vz (2 =, z), and then to prove that every closed term ¢ is extensional in the
sense of ¢ ~,, .

24

<¢ and gip For p = 00, the majorisability f <f g means “(x;) f is pointwise smaller
than or equal to g, and (*;) g is non-decreasing”. By adding (*,) we gain the
property m < n — f(m) < g(n) which plays an important role for some proof
interpretations. For higher types p it is difficult to nicely describe f <¢ g.

The majorisability <¢ trivially satisfies () s <7, t <> Va7, y7 (z <§ y — sz <
ty ANtz <§ ty). The majorisability Sip is (essentially) <¢ but with the right-to-
left implication of (%) weakened to a rule because some proof interpretations
do not seem to interpret that implication.

Extensionality To better explain extensionality, let us advance that in point 4 of
proposition 1.26 we will show that the extensionality rule of WE-HA® implies
s =, t/A(s) — A(t), and the extensionality axioms of E-HA“ imply s =,
t — (A(s) — A(t)). So we see that extensionality is just an equality axiom
for =,, and that the extensionality rule is (essentially) the weakening of the
extensionality axioms to a rule because some proof interpretations do not
interpret the axioms.

1.20. Sometimes the axioms of IT, ¥ and R are given as term equalities like ¢[[Tzy /w] =
tlx/w] [75, section 1.6.15]. In the case of HA;” this would leave some atomic formulas
out of reach of the axioms because not all atomic formulas are term equalities (we
also have the atomic formulas s <'t). So we formulated the axioms of II, ¥ and R
as equivalences like Ay [Tlzy/w] <> Auiz/w] covering all atomic formulas.

This situation is somewhat typical: much of what is said below is well-known for
WE-HA® and E-HA®, but we should be careful with HA*, HAY | and especially HA!’

e

(because of <'), as sometimes some tweak are necessary. So we carefully check the
details below.

1.21. Due to the multiplicity of theories defined above, it is useful to draw a picture
clarifying the relation between the languages and theorems of the theories. Let us
denote by term(HA®) the set of all terms of HA”, and by form(HA®) the set of all
formulas of HA¥, and analogously for WE-HA®| E-HA”| HAY and HA;”. We have:

1. term(HA®) = term(WE-HA®) = term(E-HA®) = term(HA?) = term(HA?);

2. form(HA®) = form(WE-HA*) = form(E-HA®) C form(HAY) C form(HAY)
(modulo considering Vz <5 tA=Vr Sip t A and Jdz <5 tA=3x Sip tA);

3. for all formulas A of HA” we have HAY F A & HAYF A & HA*F A Z
WE-HA“ - A ZZ E-HA“ |- A [15, proposition 11] [39, theorem 3.2].

In figure 1.1 we picture the inclusions and main differences between between HA®,
WE-HA®, E-HAY HAY and HA;".

1.22. The next lemma is used to generalise axioms like z =¢ y A Aup[z/2] = Aatly/z]
from atomic formulas A,; to arbitrary formulas A. Roughly speaking, the lemma
says that if an axiom holds for atomic formulas, then it holds for all formulas.

1.23 Lemma. Let s = sq,...,8, and t = t,...,t, be tuples of terms of HA” and

A a formula of HA®. Tf HA® - A — (By[s/z] <> Ba[t/z]) for all atomic formulas
B, of HA* and for all tuples x = x4, ..., x, of variables of HA*, then:

25

4 N\
4 N\
()
E-HA® | WE-HA® HA® HAY HAY
exten- exten- Si <e
sionality | sionality
axioms rule L g)
g J
Ny Y,
_ ~

Figure 1.1: inclusions and main differences between HA*, WE-HA”, E-HA*, HAY and
HA?.

1. HA¥ = A — (B]s/z] <» BJt/z]) for all formulas B of HA* such that FV(A) N
BV(B) = 0 and for all tuples x = x1,...,x, of variables of HA“;

2. HAYFA —» s=t.
Analogously for WE-HA®, E-HA® | HAY and HA? [19, lemas 28 and 144].

1.24 Proof. Let us do the proof only for HAY; the cases of the other theories are
analogous.

1. The proof is by induction on the structure of B. Let us only see the case
of V<!; the other cases are analogous. Let 2z’ be the tuple obtained from z
by replacing y by a variable z ¢ FV(B). By induction hypothesis we have
HAY = A — (Bls/2'] «» B[t/2]), so (x1) HAY = A — (Vy <'r[s/2'] B[s/z'] <
Vy <irls/2'] B[t/z]) (since y & FV(A) because FV(A)NBV(Vy <ir B) = 0).
By the premise of the lemma we have (x;) A — (y <' r[s/2] < y < r[t/2]).
In the following, the last formula is provable by (*;) and (x2), so the first
formula is also provable:

— ((Vy <'r B)[s/z] < (Vy <'r B)[t/z]) =
A— (Vy <'r[s/z'| Bls/z'] <+ Vy <'r[t/2'| Blt/2']) +
A— (Vy(y <'rls/a] = Bls/2']) < Vy (y < rlt/z'] — Blt/z])).

2. Taking B := s = z (with ¢ FV(s)) in point 1 we get A — (s
where s = s is provable.

Il
1»
1»
I~
N—

1.25. Some axioms and rules of HA¥, WE-HA*, E-HA¥, HA; and HA;” where for-
mulated with restrictions on the classes of formulas and on the types. We always
choose the minimal formulation, that is the formulation in which the classes and
the types are as low as possible, because this makes easier to prove the so-called
soundness theorems of the proof interpretations. For example, we could have for-
mulated the extensionality rule (x;) Ay — s =, t/Ax — r[s/x] =¢ r[t/x] as
(x2) Ay = s =, t /Ay — r[s/x] =, r[t/x] (note that in the latter we have Ay
instead of A, and =, instead of =j), but we chose the minimal (x;). In the next

26

proposition we show that some minimal axioms and rules imply more liberal formu-
lations.

In the next proposition we also collect some properties about the theories HA*,
WE-HA®, E-HA®, HA; and HA;". Some of these properties are just expected proper-
ties, like that =, is an equivalence relation, but anyway we should make sure that
they are really provable. Other properties, like that the extensionality axioms can be
equivalently replaced by Vz (z & z), give us alternative axiomatisations sometimes
more convenient to prove the soundness theorems.

1.26 Proposition.
1. The theory HA® proves

Alll, ;xy/w] + Az /w], I, ,xy = x
AlSporayzfw] ¢ Alz2(y2)w), Sy = 22(y2),
AR, Oyz/w] < Aly/w], R,0yz =y,
AR, (Sz)yz/w] & Alz(Ryryz)e/w], R,(Sz)yz = z(R,ayz)z,

for all formulas A of HA“. Analogously for WE-HA” | E-HA” | HAY and HA;” [15,
proposition 2].

2. The theory HA® proves:
(a) Tr=pY;

(b) T=pY —Y=p
(c) x=p,yNy=p2—a=,=%

Analogously for WE-HA®, E-HA® [50, remark 3.11.2)], HAY and HAY.

3. The following three theories, with three different formulations of extensionality,
are equal [50, remark 3.11.3)] [75, section 2.7.2]:

E-HA® := HA* + Vz?, 92, 202" (z =,y = 2z =9 2y),
E-HAY := HA® + Va7, y?, 2" (x =, y — zx =, 2y),
E-HAY" := HA® + V29 (2 ~, 2).

4. (a) The theory HA® proves

=0y > tlx/ =otly/z], w=oyNAlr/z] = Aly/]

for all terms t° and formulas A of HA*. Analogously for WE-HA“, E-HA®,
HAZ and HAY [15, proposition 1].
(b) The rules

Aqf—>S:t Aqf—>S:pt
Ay — r[s/x] =, r[t/z] Ay N Als/x] — Alt/x]

hold in WE-HA® [50, remark 3.13]. Analogously for E-HA”.

27

(¢) The theory E-HA® proves
=,y > tx/2] = ty/z], w=,yNAlz/z] = Aly/7]
for all terms ¢” and formulas A of E-HA® [50, remark 3.11.2)].
5. (a) The theory HA® proves the induction axiom (schema) [50, remark 3.3.2)]
A(0) AVz (A(x) — A(Sz)) — Vo A(z).

Analogously for WE-HA®, E-HA”, HA; and HA}".

(b) The following double induction rule holds in HA® [78, proposition 2.6 in
chapter 3|:
A(0y) A(x,0) Alr,y) — A(Sz, Sy)

A(z,y)
Analogously for WE-HA®, E-HA®, HA_ and HA;".

6. For all closed terms ¢ of HA® we have HA® ¢ ~ ¢ [75, theorem 2.7.3]. Analo-
gously for WE-HA®, E-HA®, HA; and HA?.

1.27 Proof.
1. Follow from the axioms of II, ¥ and R, and lemma 1.23.

2. Let us only prove point 2c; points 2a and 2b are analogous. First we prove
the claim for p = 0: from z =gy — y =¢ x and y =¢ A Aa(y) = Au(z) we
get * =g y A At (y) = Au(x); taking Ay (w) = w =¢ 2 we get * =g y Ay =¢
2z — x =¢ 2. The claim for an arbitrary p follows from the claim for p = 0.

3. E-HA®” = E-HA*/

E-HAY V27,47, 27 (v =5 y — 22 =, 2y) Taking rx = r,w and y = y,w
in vz;g7z<£ = y — ZT =o zg) we get vxuyaz7w<x =Y 7 ZxWw =o
zyw), that is Vo, y, 2z (v = y — 2z =, zy).

E-HA®' = Va?, y?, 200" (z =p Y = 2L =g zy) The proof is by induction on

the length n of the tuples x and y. The base case n = 1 is trivial,
so let us see the induction step. We take arbitrary x = x1,...,Tny1,
Y = Y1, Yny1 and 2, assume z = y and prove zx =q zy. From
Ty = y; we get zry = 2yi, SO (¥1) 2T1To - Tpa1 = ZY1T -+ Tpad-
We have 9 = yo A -+~ ATy = Y = 2Y1%2 - Tp =0 2Y1Y2 - Yn Dy
induction hypothesis, so (x3) zy129 -+ T, =0 2Y1y2+ - Yn by T = y.
From (*;) and (*2) we get zz =¢ zy. -

E-HA*" = E-HA”" It suffices to show that both E-HA*" and E-HA“” prove x =,
y <> = ~, y. We do only the proof for E-HA*"; the case of E-HA*' is
analogous. The proof is by induction on the structure of p. The base
case is trivial, so let us see the induction step. Using the induction
hypothesis in the equivalences and E-HA*" -y ~,, v in the implication,
we get (%) u =, v & u Ry v = yu =, yv < yu =, yv. Using the

28

induction hypothesis in the first equivalence, taking v := u in the left-to-
right implication of the second equivalence, and using () in the right-to-
left implication of the second equivalence, we get

TR Y =

Vu?, 07 (u =, v = U ~, Yv)

T3

Vu?,v? (u =, v = Tu =, Yv)

Vu? (zu =, yu)

T =ps Y.

4. (a) Let us prove the claim for formulas: we have z =y y — (Au[z/z] <
Auly/z]) for all A,, so by point 1 of lemma 1.23 we get x =g y —
(Alz/z] <> Aly/z]) (with z and y are free for z in A, which implies
FV(z =¢ y) "N BV(A) = (). To prove the claim for terms, we apply the
claim for formulas to A := t[x/z] = t.

(b) Let us prove the claim for terms. We will prove in theorem 1.44 that A
is equivalent in HA” to an atomic formula A,;, so we replace Ay by Aa.
Let y be a tuple of variables such that ry has type 0, x does not occur in
y and y & FV(A,;). Using the extensionality rule in the first implication
we get

WE-HA“ F Ay — s =, t

WE-HA® I Ay — (ry)[s/z] =0 (ry)[t/x]
WE-HA® = Ay — r[s/x]y =o r[t/z]y
WE-HA® - Ay — Yy (r[s/zly =o 7[t/z]y)
WE-HAY - Ay — r[s/x] =, r[t/z].

R

Let us prove the claim for formulas. It suffices to prove it for atomic
formulas A = r; =¢ ro and A = L (the latter being trivial) by point 1
of lemma 1.23. If WE-HA" = A, — s =, ¢, then WE-HA" - A, —
rils/x] =¢ rit/x] for i = 1,2, so WE-HA” = A, — ((r1 =0 r2)[s/x] <
(r1 =0 r2)[t/x]).

(c) Let us prove the claim for terms by induction on the structure of ¢.

Base case If ¢ is a variable w, then © = y — t[x/z] = t[y/z] is provable
because its conclusion is x = y if w = 2z, and w = w if w # z.
Analogously for 0, S, II, ¥ and R.

Induction step Let us assume = = y and prove (x;) (st)[z/z] = (st)[y/z].
By induction hypothesis we have s[z/z] = s[y/z] and t[x/z] = t[y/z].
So (xq) s[z/z|tlx/z] = s[x/z]t[y/z] (by extensionality formulated as
x =y — zx = zy) and (x2) s[z/z]t[y/z] = sly/z]t[y/z]. From (xy)
and (x3) we get (*q).

The claim for formulas follows from the claim for terms analogously to
point 4b.

29

5. (a) Let B(z) := A(0) AVz (A(z) — A(Sz)) — A(z). We can prove B(0) and
B(z) — B(Sz), so by the induction rule we prove B(z), thus Vz B(x),
that is the induction axiom.

(b) We assume the premises of the rule and prove its conclusion by induction
on x.
A(0,y) It is the first premise.

A(z,y) = A(Sx,y) We assume A(z,y) and prove A(Sz,y) by induction
on y.

A(Sz,0) It is an instance of the second premise.
A(Sz,y) — A(Sz,Sy) Follows from A(z,y) and the third premise.

6. The proof is by induction on the structure of t. The induction step is easy, so
let us see the base case.

S We have Vu,v (u =¢ v — Su =¢ Sv), that is S = S. Analogously for 0.

R Note z =, y < Yu,v(u ~; v = 2u ~, yv) where p = ort. Say R =
Ri,...,Ry. Let us prove R; = R; by proving A(x) :=Va',y,y, 2,2’ (x =o
g ANy=y Nz=xzZ — N\ Rizyz = Ria'y'2’) by induction on z.
Base case The premise of A(0) implies 2’ =¢ 0, so the conclusion of A(0)
is equivalent to A, y; =y, which is implied by the premise.
Induction step The premise of A(Sz) implies 2’ =y Sz, so the conclusion
of A(Sz) is equivalent to A, zi(Rryz)r ~ z{(Rwy'z')x, which is
implied by the premise together with the induction hypothesis A(z).

Analogous for II and X.

1.6 Term reduction

1.28. Every natural number n can be represented in HA* by a closed term of type
0, namely the numeral n := S---S0. But is the reciprocal true: every closed term of
type 0 represents a natural number? If it is not, then HA® is not faithfully capturing
the natural numbers; it is also talking about some foreign numbers.

We are going to prove that the reciprocal is indeed true. Our strategy to prove
this has two main ideas.

1. Informally speaking, the axioms of ¥ say Yzyz = zz(yz), so they put Xzyz
and zz(yz) at the same level. However, we think of Yxyz = zz(yz) as mean-
ing “Yxyz reduces to xz(yz)”, not “rz(yz) reduces to Xzyz”, so the axioms
suggest a direction. Analogously for IT and R.

Given a term ¢, we can reduce in ¢ all occurrences of Ilzy, ¥xyz and Rryz,
getting a term ¢ that says the same that ¢t and cannot be reduced any further.
We think of t" as a normal form of ¢.

2. We show that if ¢ is closed and has type 0, then t* is a numeral 7.

30

Combining the two points above, as schematically in

t o~ "~ o,

we conclude that every closed term t of type 0 represents a numeral 7.
1.29 Definition. Let p and ¢ be terms of HA®.

1. We write p =1 ¢ if and only if ¢ is obtained from p by replacing exactly one
subterm of p of the form

IIrs, Srst, R,0st, R;(Sr)st
(where R=Ry4,..., Ry, s=51,...,8, and t = 14,...,t,) by, respectively,

r, rt(st), S, ti(Rrst)r.

2. We say that p reduces to ¢, and write p > ¢, if and only if there exists a
sequence p =1 -+ =1 q (possibly p = q).

3. We say that p is normal if and only if there is no term ¢ such that p > ¢.
4. We call normal form of p to a normal term p" such that p > p".
Analogously for WE-HA”, E-HA®, HAY and HAY [75, section 2.2.2].
1.30 Theorem.

1. Every term of HA® reduces to a unique normal form [78, proposition 2.10 and
section 2.22 in chapter 9] [75, theorem 2.2.23].

2. Every closed normal term of HA® of type 0 is a numeral [78, proposition 2.5(i)
in chapter 9] [75, lemma 2.2.8].

3. For all closed terms t° of HA”, there exists a unique numeral 7 such that
HA“ ¢ =y 7 [78, corollary 2.12 in chapter 9] [75, theorem 2.2.9].

Analogously for WE-HA®, E-HA®, HA_ and HA;".

1.31 Proof. We only do the proof for HA*; the cases of the other theories are
analogous. We only prove the existence of the normal form; the references given
contain proofs of the rest. Let N be the set of terms of HA® that reduce to normal
form. Let C be the union, for all types p, of Tait’s computability predicates C, [70,
pages 198-199] defined by recursion on the structure of p by

1. Cy is the set of all t° € N;
2. C,, is the set of all t*” € N such that for all s € C, we have ts € C,,.

Let us make two remarks.

31

1. Let p=00,---01. We have t € C, if and only if forall t; € C,, (i =1,...,n)
we have t, tty, ... tty---t,_1 € Nand tt; - - -t, € C, (this contains a tiny patch
to the literature).

2. If s>=tand t € C, then s € C.

We want to prove that every term is in N; it suffices to prove that every term is
in C by induction on the structure of the term. The induction step is easy, so let us
see the base case.

x Accordingly to remark 1 with o = 0, we prove that for all ¢,...,t, € C we have
x,xty,...,xty---t, € N. Since t; € C, then ¢; = 1", so v € N, xt; = zt] € N,
and so on. Analogously for 0 and S.

X We prove that for all r, s,z € C we have (*1) ¥, ¥r,Xrs € N and (x;) Xrst € C.
To prove (k1) we note X € N, Xr = ¥r" € N and Xrs = Xr"s* € N. To prove
(%2) we note Xrst = rt(st) € C.

R; Say R=Ry,....R,, s=s1,...,s, and t = tq,...,t,. We prove, simultaneously

~ fori=1,...,n,thatforallr, st € Cwehave (%) Ry, Ri7, Rirs1, . .., Rirsy - - - 5,
Rirsy -« spt1,...,Rirsy -+ spty---t,—1 € N and (%) Ryrst € C. We have
r* = S*r’ for some k € N and 7/ € N not of the form r' = Sr”. To prove (x;)
we note R; € N, R;r = R;7™ € N, and so on. The proof of (x;) is by induction
on k.

Base case If ' = 0, then R;rst = R;0st = s; € C. If ' #£ 0, then Ryrst =
R;r's"t™ € C since, accordingly to remark 1 with o = 0, forall ¢y, ..., ¢, €
C we have R;7's"t" € N, Ryr’'s"t"q; = R;r's"t"¢} € N, and so on.

Induction step We have Ryrst = R;(S¥")st = t;(R(S*1")st)(S¥r") € C.

1.7 M-abstraction

1.32. Now we are going to see that given a term f(x), we can construct a term
Az . t(x) that behaves like the function x +— ¢(z). This is important so that HA“ can
talk not only about terms like 2x, but also about functions like z +— 2x. The sole
role of the constants II and ¥ is to construct the term Az .¢(x):

1. the role of II is to construct the term Az .c := Ilc for a constant c;

2. the role of ¥ is to combine two terms Az .s for s and Az .t for ¢ into a new
term Az . st := X(Azx. s)(Ax.t) for st.

1.33 Definition.

1. Let t* be a term and z7 a variable of HA“. We define the term (A\z.t)*7 [75,
theorem 1.6.8] [50, lemma 3.15] of HA® (essentially) by recursion on the struc-
ture of t by

(a) Ax?.tP:=11,,t if x ¢ FV(t);

32

(b) Azl . x? = 20700701_[07001_[070;
(c) Az7.(s"t7) =Xy p(Ax.s)(Ax . 1) if x € FV(st).

2. We extent the definition to tuples of

(a) variables x = x4, ...,z by Azt = Axy. -+ Az, . t [50, page 50];
(b) terms t =t1,...,t, by Az .t := Az .ty,...,\x . tp.

3. We adopt the following convention to save on parentheses:
(a) Az.rs means Az . (rs), not (Az.7)s;
(b) Az.t[s/y] means Az . (¢[s/y]), not (Az.1)[s/y].
Analogously for WE-HA*, E-HA®, HAY and HAY.

1.34 Theorem. For all tuples of terms ¢ = ¢1,...,¢, and t = t,...,,, tuples of
variables = x1,..., 2, and y = y1,...,yn, and formulas A of HA¥, we have:

1. HA® = A[(Az.t)q/y] <+ Altlg/z]/y] [75, section 1.6.15] [19, teorema 43];
2. HA¥ = (\z.1)q = t[q/z] [75, theorem 1.6.8] [50, lemma 3.15].
Analogously for WE-HA*, E-HA®, HAY and HAY.

1.35 Proof. We sketch the proof for HA”; the cases of the other theories are anal-
ogous. By lemma 1.23 it suffices to prove the claim for atomic formulas.

1. First we prove the claim for m = n = 1 by induction on the structure of . If
x € FV(rs), then using induction hypothesis in the second equivalence we get

Aul(Az . st)q/y
A 2Nz . s)(Ax . t)g

/Y]

) /Y]

Aat[((M“ s)q)((Az.t)q)/y]
[[q/]tlq/x]/y]
Aail(st)[g/z]/y].

Analogously for z ¢ FV(t) and for t = «.

<
3

2. Now we consider a tuple ' = z/, ..., 2] of variables such that z, 2" are distinct
and z’' ¢ FV(t,q) UFV(Ay), and remark:
(a) (Azj.t)]q;/x}] = Aaj . t]g; /5] for i # j [19, lema 37];
(b) tlg/z] = tla'/allar /7] - - [gm/27,] [19, lema 39.1;

(c) Aalg/z] = Aula'/z]lqr /2] - [gm /23] [19, lema 39.2];

(d) Az.t =\ .t[2'/x] [19, lema 41].

33

3. Now we generalise to an arbitrary m [19, teorema 43| (a common small omis-
sion in the literature). Actually, we argue for m = 2 since the argument for
m > 2 is just an iteration of the argument for m = 2:

Aut[(A1, 72 . 1) 0162/ Y]

Aat[(Axy, oy -), 25/ 21, 22]) 162/ Y]
Au[(A2y . (Azy - t[2, 25 /1, 23))) 0162/)
at[(Azy - 22y, @ /1, o)1 /21]go fy] = (by 2a)
])
])

]

(by 2d)

A
Aat[(Ay -ty /w1, o]l /2]) @2/ y
Aai[t[2), b /21, 2] [qn /2] [q2/ 73] [y
Aatltlqr, 2/ 71, 22] /Yy

4. Now we generalise to an arbitrary n [19, teorema 43] (a common small omission
in the literature). Actually, we argue for n = 2, since the argument for n > 2
is just an iteration of the argument for n = 2:

Aat[(Az . t1)q, (Az . t2)q/y1, 2] = (by 2c¢)
Aatlyl, v y1 vl [0z 80) g/ yi)[(Az - t2) g/ yh) > (by 3)
Ausly) Yo/ yr, ollti g/ 2]/ [talg/ 2] f11] = (by 2c)

]

Aac[tiq/z], talg/z]/y1, 12

1.8 Terms for primitive recursive functions

1.36. Now we show that every primitive recursive function can be represented in
HA® by a term of HA®. In particular, we can introduce in HA” the operations +
and -, and the order relation <, which are conspicuously missing in our arithmetic.
The idea to represent primitive recursive functions by terms is fairly simple.

1. Primitive recursive function are constructed
(a) from the basic functions 0, S and p};

(b) by means of (generalised) composition;

(c) and primitive recursion.
2. We can represent

(a) the basic functions 0, S and p} the terms 0, S and Axy, ..., T, . Tg;
(b) composition by term application st of two terms s and t;

(¢) and primitive recursion using the recursor Ry.

1.37 Definition.

1. In the following, let all functions be primitive recursive, and f be introduced
by the equalities stated. To each derivation of a primitive recursive function
f: N" — N we assign a closed term T f of HA* of type 0---0 (n+ 1 times) by
recursion on the derivation of f by [75, paragraph 1.6.9] [19, teorema 47.1]:

34

(a) TO:=0
(b) TS:=S
(c) Tpy:=)\xl, ey Ty T
(d) if f(z) = g(hi(z), ..., hn(z)), then Tf := Az. Tg(Thy z) - - (Thy, z);
. f(0,z) = g(z) _
(e) if { Fy+1,2) = hiy, f(y.2).2)° then Tf := Ay, z. Roy(Tgz)(Az,y. Thyzx).
2. Let f € {+,2,-,58,pd, ~, |- — -|,maxg}. We denote by just f the term Tf of

HA® assigned to derivation of the function f given in table 1.4 [50, page 45]
[75, section 1.3.9].

N r+0=7pl(z)
4 (y+1) =S(ps(y, = +y, 7))
, z(0) =0
2(x +1) = pi(z,2(x))
x-0= ()
- ()= ()
sg(z + 1) = z(pf(x,58 7))
bd pd(0) =0
pd(z + 1) = pi(z, pdz)
R z =0 =pj(z)

z=(y+1)=pd(pi(y,z =y,))
= |z —yl=(z=y)+ (p3(z,y) = pi(z,y))
maxy maxo(z,y) = pi(z,y) + (p3(z,y) = pi(x,y))

Table 1.4: derivations of the primitive recursive functions mentioned in defini-
tion 1.37.

3. Wedefine s < t := s—t =; 0, where s and t are terms of HA” [78, definition 2.7
in chapter 3] [19, definicao 128].

4. We define the term max, of HA“ by recursion on the structure of p by [15,
section 2.1]:

(a) maxg is already defined;

(b) max,, := Axf?,y??, 27 . max,(rz)(yz).

Analogously for WE-HA®, E-HA®, HA_ or HAY.

35

1.38. Just to be sure that the term T f behaves (inside HA*) like the function f
does (on N), we state the following proposition.

1.39 Proposition. In the following, let all functions be primitive recursive, and f
be introduced by the equalities stated. We have

1. HA® - TO =, 0:
2. HA* = TSz =q Sx;
3. HAY = Tplay - - @, =0 T;
43 f(2) = g (z), . ., ha(x)), then HA® - Tf 1 = Tg(Thy z)- - (Thy z);
: f(0,z) = g(z) HA* = Tf0z =0 Tgx
if , then " .
fly+1,2) = hly, f(y, 2), z) HA® =Tf (Sy)z =0 Thy(Tfyz)z
Analogously for WE-HA®, E-HA*, HAY and HA? [19, teorema 47.2].

1.40 Proof. Let us only prove HAY F Tf (Sy)x =¢ Thy(Tfyz)x; the remaining
claims are analogous. We have

Tf(Sy)z
(A\y,z.Roy(Tgz)(A\z,y. Thyzz))(Sy)z =0
Ro(Sy)(Tgz)(A\z,y. Thyzz) =
(Az,y. Thyzz)Roy(Tgz)(A\z,y . Thyzz))y =o
—0Tfya
Thy(Tfyz)x.

1.9 Characteristic terms for quantifier-free for-
mulas

1.41. Now we are going to see that each quantifier-free formula A, has a charac-
teristic term x4, such that Ay <> xa, =0 0. These terms are important for two
reasons:

1. they play a main role in interpreting the axiom A — A A A with Godel’s
functional interpretation;

2. they are used to show that HA“ (despite being an intuitionistic theory) proves
the law of excluded middle for quantifier-free formulas.

1.42. The idea to construct the terms is quite simple: we replace the logical oper-
ations A, V and — on formulas by the arithmetic operations +, - and Sg on terms.
For example, if we already have characteristic terms y 4 for A and yp for B, then
we can construct the characteristic term xanp := xa + x5 for A A B:

ANB & = = =, 0.
AND XAa=00AXB=00 <+ xa+xB=00

logical operation on formulas arithmetic operation on terms

36

1.43 Definition. Let Ay be a quantifier-free formula of HA*. We define a term
XA, of HA* with FV(xa,) = FV(A), called characteristic term of Ay, by recursion
on the structure of Ay by:

1. x. = S0;
2. Xseot = |8 —t[;
3' XAqf/\qu = XAqf _'_ Xqu;

4. XAyVBg ‘= XA " XBqs

ot

: XAqf*)qu = (@ XAqf) : Xqu'
Analogously for WE-HA”, E-HA*, HAY and HA? [50, proposition 3.8].

1.44 Theorem. For all quantifier-free formulas A, of HA”, we have HA* = Ay <
X4, =0 0. Analogously for WE-HA®, E-HA®, HAY and HAY" [50, proposition 3.8].

1.45 Proof.

First, we prove four properties of +, -, 5g, and |- — -| by double induction on x and
y [50, lemma 3.7].

Alz,y) = 4+y=00<2=00Ay=00

A(0,y) It is provable because we can prove 0 + y =q y by induction on y.

A(z,0) It is provable because = + 0 = x.

A(z,y) — A(Sz,Sy) It is provable because Sz +Sy =¢ S(Sz+y) #¢ 0, Sz #(0
and Sy #q 0.

B(z,y) =z -y =00+ x=00Vy=¢0 Analogously to A(z,y).

Cz,y) = (gx) - y=0 0> (xr =00 —y=00)

Q

(0,y) It is provable because 5g0 -y = (S0) -y and we can prove (S0)-y =¢ y
by induction on .
C(z,0) It is provable because sgz - 0 =g 0.

(x,y) — C(Sx,Sy) It is provable because 5g(Sz) - Sy = 0 - Sy = 0.

Q

D(x,y) =|v—y| =00z =0y

-

(0,y) It is provable because |0 — y| =¢ (0~ y) + (y = 0) =¢ 0 +y =0 y since
we can prove 0 —y = 0 by induction on y.

D(z,0) Analogous to D(0,y).

D(z,y) — D(Sxz,Sy) It is provable because |Sz — Sy| =¢ (Sxz — Sy) + (Sy —
Sx) =¢ (x ~y) + (y ~ x) =g |x — y| since we can prove pd(Sz =~ 0) =¢ =
by induction on x and then Sx — Sy =¢ « — y by induction on y.

Finally, using A(z,y), B(z,y), C(x,y) and D(z,y), it is easy to prove the claim
of the theorem by induction on the structure of A.

37

1.10 Definition by quantifier-free cases

1.46. Now we are going to show that given terms r” and s” and a quantifier-free
formula Ay, we can define a term ¢” by cases by

‘= T if Aqf
s ifmAg
This definition by cases is important because it plays a major role in interpreting
the axiom A — A A A with Godel’s functional interpretation.
The idea for the definition of ¢ is simply: since Ay and — Ay reduce to x Ay =0 0
and xa, 7o 0, then we only need a term that distinguishes between a number being

zero and non-zero; the recursor R is such a term since Rx distinguishes between
x =¢ 0 and x % 0.

1.47 Definition.

1. For each terms r2 = 7', ... rfn % and t2 = ', ..., % of HA* we define the

y'n

terms r V4 t := Rsr(A\z, y.t) where z,y ¢ FV(t) [50, proposition 3.19].

2. For each type p = Op, - - - p1 (possibly with no p;s) we define the term Of :=
Aty xPr 0[50, page 98].

Analogously for WE-HA*, E-HA®, HAY and HAY.

1.48 Proposition. For all terms r2 = r{*, ... 7/ s® and t2 = ¢*,... t¢" of HA
and formulas A(z?) of HA“, we have:

1. HA® F (s =0 0 = (A(r Vs t) <> A(1))) A (s #0 0 = (A1 Vs t) <> A(2)));
2. HAYF (s =00 = r Vit =1) A (s #0 0 = 1 Vst =1).

Analogously for WE-HA®,| E-HA” | HAY? and HA{’ [50, proposition 3.19].

1.49 Proof.

1. We can prove Vz (x =9 0 V x #¢ 0) by induction on x, so s =9 0V s #¢ 0. If
s #0 0, then s =¢ S(pd s), therefore

A(rVst) <
A((Az,y . t)(Rsr(Az, y . 1)s)
A(t).

Analogously if s = 0.

2. Just take A(z) :=1r Vst =z (with z ¢ FV(r V4 t)) in the previous point.

38

1.50. The term r V, t provably reduces to r or ¢ according to s =¢ 0 or s #¢ 0, or
in a more pictorial form,
r ifs =0 0
rVgyt =

t ifs 7é0 0 .
A particularly important use of 7Vt is when s = xa_;:

r o if Aqf
rV t=] .
Xt tif = Ay

1.51. The term O is a dummy term that we use when we need to present a closed
term but does not matter which term. For example, if we are asked to witness by a
closed term the existential quantifier in 3z (L — A(x)), we can take x = O.

1.11 Law of excluded middle for quantifier-free
formulas

1.52. The Heyting arithmetic HA* is an intuitionistic theory, and intuitionistic
logic does not prove the law of excluded middle, so naturally HA“ does not prove
the law of excluded middle. However, HA® does prove the law of excluded middle
for quantifier-free formulas. This is a contribution not of the logical part of HA®,
but of the arithmetical part of HA”, namely characteristic terms and induction. The
idea of the proof is very simple:

1. we reduce quantifier-free formulas Aqs to xa, =0 0;
2. we prove Yz (x =9 0 V 2 #¢ 0) by induction on z;
3. taking r = x4, we get Ay V — Ay

1.53 Theorem.

1. For all quantifier-free formulas Ay of HA®, we have HA” = Ay vV —Ag [78,
proposition 2.9 in chapter 3] [50, corollary 3.18].

2. For all quantifier-free sentences Ay of HA®, we have HAY F Ay or HAY -
= Ay [50, proposition 3.8] [75, theorem 2.2.23].

Analogously for WE-HA*,| E-HA®, HAY and HAY.

1.54 Proof. We do the proof only for HA”; the cases of the other theories are
analogous.

1. By theorem 1.44 we have (*;) Aq > xa, =o 0. We can prove Vo (z =¢
0V x # 0) by induction on x, so0 (*2) Xa, =0 0V xa, 70 0. From (x;) and
(x2) we get (x3) Agr V A

2. By theorem 1.44 we have (%) HA” F Ay <> XA, =0 0 where x4, is a closed
term of type 0. So by point 3 of theorem 1.30 there exists n € N such that
(*2) HA® = x4, =0 1. From (*1) and (*2) we get HA* = Ay <3 0 =0 0. So we
have HA* = Ay or HA* F = Ay accordingly to n = 0 or n # 0, respectively.

39

1.12 Majorisability and majorants

1.55. Now we turn to the basic properties of majorisability and to the existence of
majorants of closed terms. These properties are necessary for some proof interpre-
tations that, in the face of a theorem Jx A(x), seek to find not an exact witness ¢
for x (such that A(t)) but a bound ¢ on z (such that 3z <°t A(x)).

Properties of <°®, <' and max We prove the basic properties of <¢, <' and max.
Some properties are expected: for example, <€ is transitive. Other properties
are a little bit more surprising: for example, x <® max xy but provided that
r <¢x and y <°y. Admittedly, the proofs are tedious, so the reader may
want to skip them.

Majorants We show that every closed term ¢ has a majorant t™ such that ¢t <¢ ¢™.
The construction of t™ uses a small cute idea: we cannot simply take t™ =t
because t <°® t™ requires t™ to be non-decreasing, so we (essentially) take t™
to be the non-decreasing version t™n := max{t0,t1,t2,...,tn} of t.

1.56 Proposition. The theory HA® proves:

1. (a) 0 <gx [19, lema 30.1].
(b) <o 0 <> x=¢ 0 [19, lema 30.3];
2. (a) z <oy <> Sz <y Sy [19, lema 30.2];
(b) o <o Sy <>z <oy Va=¢Sy [19, lema 30.5];
3. (a) x <oz [19, teorema 131.1];
(b) 2 <oy ANy <o x — x =¢ y [78, proposition 2.8(ii) in chapter 3] [19,
teorema 131.2];
(¢) z <ogyANy <o z = x < z [78, proposition 2.11(iii) in chapter 3| [19,
teorema 131.3];
4. (a) v <o maxzy Ay <o maxzy [19, lema 134.1];
(b) = <o ' ANy <oy — maxxy <o maxz'y’ [19, lema 134.3];
5. (a) v <y — y <5y [15, lemmas 1(i) and 2(i)];
(b) 2 <SyAy<§z— x <52 [15, lemmas 1(i) and 2(i)];
6. (a) max, <5, max, [15, lemma 4(ii)];
(b)

b) z <§ x/\y <6y — x <° max, vy Ay <° max, zy [15, lemma 4(i)];
7. The following rule holds in HA“ [19, proposi¢cdo 143]:

Ap ANz <ty — sz <*tyAtx <ty
Ab—>s§et .

Analogously for WE-HA“ | E-HAY, HAY and HA{ (for HAY replacing <°¢ by <!).

40

1.57 Proof. We do the proofs only for HAY; the cases of the other theories are

analogous.
1. (a)
(b)
2. (a)
(b)
3. (a)
(b)
(c)

4. (a)
(b)
5. (a)

We can prove 0 <y z =0 =~ x =¢ 0 by induction on .

Follows from z <g0=2 -0 =00 and x — 0 =¢ z.

Follows from Sx — Sy =g — y, which we can prove by induction on y.

We prove A(x,y) =2 <o Sy <> = <o y V& =¢ Sy by double induction
on x and y.

A(0,y) Follows from point 1a.

A(z,0) The proof is by induction on z. The base case is an instance
of A(0,y), so let us see the induction step: by point 2a, A(Sz,0)
is equivalent to r <y, 0 <+ Sz <y 0V x =¢ 0, which is provable by
point 1b.

A(z,y) — A(Sz,Sy) By point 2a, A(Sz,Sy) is equivalent to A(x,y).

The proof is by induction on z, using point 2a in the induction step.

We prove A(z,y) =z <oy Ay <oz — x =¢ y by double induction on x
and y.

A(0,y) Follows from point 1b.

A(z,0) Analogously to A(0,y).

A(z,y) — A(Sx,Sy) By point 2a, A(Sz,Sy) is equivalent to A(x,y).

We prove A(z) =2 <gy Ay <oz — x <g z is by induction on z. The
base case follows from point 1b, so let us see the induction step: from
A(z) we get © <g y A (y <o 2V Yy =9 S2) > & <o zVax <y Sz, where
by point 2b the premise is equivalent to the premise of A(Sz), and the
conclusion implies the conclusion of A(Sz).

Let us only prove A(z,y) =z <, maxzy by double induction on = and
y; the case of y <y maxxy is analogous. The base cases are easy, so let
us see the induction step: from A(z,y) = z = (x + (y — x)) =¢ 0 we
get A(Sz,Sy) = Sz — (Sx + (Sy — Sz)) =¢ 0 since z ~ (z + (y — x)) =¢
Sx = (Sz + (Sy — Sz)).

We only sketch the proof. First we prove (x) z <g zAy <¢ z = maxzy <g
z by triple induction on z, y and z. Now, if z <q 2’ and y <q ¥/,
then x <o maxz’y’ and y <o maxz'y’ by points 3c and 4a, therefore
max zy <o maxx'y’ taking z := max 'y’ in ().

If p = 0, then the claim follows from point 3a. If p is a composite type,
then z <!y Au <'v— yu < yvAyu < yv, so x <'y — y <!y by the
rule of <.

The proof is by induction on the structure of p. The base case is point 3c,
so let us see the induction step. We have v <! y Ay <l z Au <l v —
zu <! 2v A zu <! zv: from the premise (which implies v <'v and z <! z
by point 5a) we get zu <' yv, yv <' zv and zu <' 20, so zu <' 2v by

41

induction hypothesis. By the rule of <! we conclude z <!y Ay <' 2z —
x <!z

6. (a) Anticipating point 7, it suffices to prove z <' 2/ Ay <' ¢/ — max,zy <!
max, 2"y’ by induction on the structure of p. The base case is point 4b,
so let us see the induction step. We have z <! 2/ Ay <! ¢/ Au <'v —
max (zu)(yu) <' max(z'v)(y'v) A max(z'u)(y'u) <' max(z'v')(y'v): from
the premise we get zu <! /v, yu <! y'v, 2’u <' 2'v and y'u <' y'v, so we
get the conclusion by induction hypothesis.

(b) The proof is by induction on the structure of p. The base case follows
from point 4a, so let us see the induction step. We prove z <! zAy <!y —
r <'maxzy (the part z <' z Ay <'y — y <! maxwy is analogous) by
proving z <! x Ay <ty Au <o — zu < max(2v)(yv) A max(zu)(yu) <!
max(zv)(yv): from the premise we get zu <! zv, zv <' zv, yu <! yv and

yv <'yv so we get the conclusion by induction hypothesis and points 5b
and 6a.

7. The proof is by induction on the length of the tuple x. The base case is trivial,
so let us see the induction step. We assume (1) HAY = Ay Az, o’ <'y,y —
sza’ <'tyy' Atza’ <'tyy and prove (%) HAY - A, — s <'t. Taking z =y
in (1) we get (A, Ay < y) Az’ <ly' — tyr’ < tyy'. So we have the premises
of the following instances of the rule of gi_, therefore we have the conclusions:

(Ap Az < y) N <y — szpa’ < tyy' A tya' <i tyy'
Apnz <ty = sz <ty

(A, Az < y) A <y = taa’ < tyy' A tyx' <i tyy'
Apne <ty o ta <ty

Y

I

From the conclusions we get (*3) by induction hypothesis.

1.58 Definition. Let ¢ be a term of HA* and FV(t) = {z}. We say that t is
monotone if and only if HAY - Az .t <° Az .t. Analogously for WE-HA®, E-HA®,
HA? and HA? (for HAY replacing <°® by <') [15, definition 3].

1.59. In point 1b of the next definition we will define a term ¢™ in a formal manner
that turns out to be quite cryptic. So it is convenient to say that, informally, ™ is
just the following non-decreasing version of ¢: ™'n := max{t0,t1,2,... tn}.

1.60 Definition.

1. For each closed term t of HA® we define the term t™ of HA“ by recursion on
the structure of ¢ by:
(a) t™:=t for t € {0,S,11,X};

(b) (Ry)™ := (Ry)™ where t™ := Az.R,z(t0) (\y, z . max, y(¢(Sz))) [50, def-
inition 3.65].

(c) (st)™:= s™™.

42

2. For each term t of HA” we define the term t™(z) := (Az . t)™z where FV(t) =
{z} and (A\z.t)™ was defined in the previous point.

Analogously for WE-HA®, E-HA“ HA? and HAY (for HAY replacing <¢ by <1).
1.61 Theorem.
1. For all closed terms ¢ of HAY we have HAY F ¢ <¢ ™,

2. For all terms t(z) of HA® we have HA® b Va/ Yz <°¢ 2’ (t(z) <°® t™(2')) where
FV(t) = {z}.

Analogously for WE-HA”| E-HA®, HA? and HAY (for HAY replacing <°® by <) [15,
lemma 5].

1.62 Proof. We do the proof only for HAY"; the cases of the other theories are
analogous.

1. First we prove: (*;) for all terms s and " of HAY, if () HAY V20 (s2 <!
tz) then HAY s <' ¢™ (this contains a tiny patch to the literature [19,
lema 151]). We assume the premise and prove the conclusion by proving
Av) :=Vu (u <o v — su <o A ™y <o) by induction on v,

Base case By point 1b of proposition 1.56, A(0) is equivalent to s0 <' tOAt0 <!
t0, which follows from ().
Induction step We assume A(v), take any u < Sv and prove the conclusion
of A(Sv), that is (*3) su <! max(t™ v)(t(Sv)) At™u <' max(t™v)(t(Sv)).
By point 2b of proposition 1.56 we have two cases.
u <o v We have su <' t™v and t™'u <' t™'v by A(v), and t(Sv) <! (Sv)
by (*2). So we have (x3) by points 5b and 6b of proposition 1.56.
u =¢ Sv We have s(Sv) <' t(Sv) by (x;), and t™v <' t™v by A(v)
with u = v. So s(Sv) <! max(t™v)(t(Sv)) A max(t™v)(t(Sv)) <!
max (™ v)(t(Sv)) by point 6a of proposition 1.56, that is (x3).

Now we prove the claim of the theorem by induction on the structure of t.
The induction step is easy, so let us see the base case.

S We have z <o y — Sz <o Sy by point 2a of proposition 1.56, so S <'S by
the rule of <'. Analogously for 0.

X We have <" o/ Ay <My Az < 2= Bayz <1 Sa'y'2 because the
conclusions is equivalent to zz(yz) <' 2'2/(y'2'). So ¥ <! ¥ by point 7 of
proposition 1.56. Analogously for II.

R Say R = Ry,...,R,. We can prove Rz <! Rz by proving y < Y Az <
2 — Rayz <i Rzy'z’ by induction on x. Then R; <RI by (*1).

2. By point 2d of proof 1.35 we have Az.t(z) = A\z’.t(2'). By the previous
point we have Az .t(z) <! (A\z’.t(z/))™. So, if x <' 2/, then (Az.t(z))z <!
(M2’ .t(2'))™z’, that is t(z) <'t™(z').

43

1.13 Principles

1.63. So far we have been working with with HA” (and its variants). However, proof
interpretations interpret more than just HA”: they also interpret certain principles
like the axiom (schema) of choice

Vo 3y A(z,y) — Y Vo A(x, Yo).
So now we collect all the principles that we will be considering later.

1.64 Definition. In table 1.5 we define several principles [50, section 5.1, defi-
nitions 5.26 and 8.4] [15, section 4.1 and proposition 4.4] [14, section 3.1]. The
principles using <° can also be read with <! instead of <°: in the context of HAY
and PAY they use <°, while in the context of HA{ and PAY they use <'. The vari-
ables introduced as bounds are not free in the formulas A, Ay, Az, Az, Ay, B and
By,. For example, in BAC, z and y can be free in A, but « and v cannot.

1.65 Remark. In all principles, where are single variables x and y, we can generalise
to tuples of variables x and y by induction on the length of the tuples. For example,
AC generalises to Vx dy A(g_, y) — Y Vz A(z,Yz). (Some principles are already
stated with tuples because they seemly do not generalise to tuples. For example,
——dz Ay — Jz Ay does not seem to generalise to =3z Ay — Iz Ayf, so we stated
QF-MP already with tuples z.)

1.66 Proposition.

1. The theories HAY 4+ B-BAC + 3F-BIP + MAJ and HA!” + B-BAC + V-BIP + MAJ
prove B-BC [15, page 92]. Analogously replacing both B-BAC by BAC and
B-BC by BC [15, proposition 3] [14, proposition 2].

2. The theories HA® + B-BAC + 3F-BIP and HA® 4 B-BAC + V-BIP prove B-MAC.
Analogously replacing both B-BAC by BAC and B-MAC by MAC [15, proposi-
tion 3] [14, proposition 3.
1.67 Proof.

1. We do the proof only for HAY + B-BAC + JF-BIP + MAJ; the cases of the
other theories are analogous. By MAJ, there exists an v’ such that u <° v’
(this contains a tiny patch to the literature). Using JF-BIP in the second
implication, B-BAC in the fourth implication, and taking z’ := ' (which
satisfies 2’ <® 2’) in the fifth implication, we get

Ve <°u Jy Ap —
Vo (v <®u — Jy Ap) —
Vz Ju r<‘u—Jdy< vy —

AN <u—Jdy<vdy)) —

ANr<u—Jy<od,)) —

AN <u—Jy<vd)) —

Jo'Va <° u Jy < ' A, —

§|ny <*udy < uA,.

8

Va3
J' Vo' Vo <° 2/ Ju < vz

