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1 Extractive Proof Theory: New results by logical analysis
of proofs

Proof theory has its historic origin in foundational issues centered around (relative) consistency
proofs (Hilbert’s program). Since the 1950’s Georg Kreisel pushed for a shift of emphasis in proof
theory towards the use of proof theoretic transformations (as developed in the course of Hilbert’s
program) to analyze given proofs P e.g. of ineffectively proved ∀∃-statements C with the aim to
extract new information on C that could not be read off from P directly. Herbrand’s fundamental
theorem plays an important role in this development. The general situation is as follows:

Input: Ineffective proof P of C

Goal: Additional information on C:

• effective bounds (e.g. on the number of solutions of an ineffectively proven finiteness theorem,
see theorem 1.9) or effective rates of convergence in nonlinear analysis (see sections 4 and 5),

• algorithms for computation of actual solutions of ineffectively established existential state-
ments,

• continuous dependency or full independence from certain parameters (e.g. rates of convergence
or stability for iterative processes in fixed point theory and ergodic theory that are independent
from parameters such as the starting point or the function being iterated, see remark 5.3 below)

• generalizations of proofs: weakening of premises (e.g. replacing boundedness assumptions by
bounds on the rate of growth, see corollary 4.4 below).

In this article, when we use terms like ‘computable’ or ‘decidable’ for functions f : IN → IN or
subsets A ⊆ IN we always refer to the standard notion of computability as developed by Herbrand,
Gödel, Church, Turing, Kleene and others. Herbrand’s important role in this development is nicely
explained in Coquand’s contribution to this volume ([5]).
Now let C ≡ ∀x ∈ IN∃y ∈ IN F (x, y).

Naive Attempt: try to extract an explicit computable function f realizing (or bounding) ‘∃y ∈ IN’:
∀x ∈ IN F (x, f(x)).

Unless some restrictions on F are imposed this naive attempt in general fails as the following
counterexample shows:

Proposition 1.1. There exists a sentence A ≡ ∀x∃y∀z Aqf (x, y, z) in the language of arithmetic
(Aqf quantifier-free and hence decidable) such that
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• A is logically valid,

• there is no computable bound f s.t. ∀x∃y ≤ f(x)∀z Aqf (x, y, z).

Proof: Consider any undecidable but semi-decidable predicate Q(x) ≡ ∃y ∈ INP (x, y) (P may even
be taken as a primitive recursive predicate as in the Halting Problem for Turing machines or – if
x, y are replaced by tuples of variables and one uses Matiyasevich’s diophantine representation of
semi-decidable sets – even of the form p(x, y) = 0 with p ∈ Z[x, y]). Now consider the logically valid
sentence

A :≡ ∀x ∈ IN∃y ∈ IN∀z ∈ IN
(
P (x, y) ∨ ¬P (x, z)).

Let f : IN → IN be a bound on ‘∃y ∈ IN’, i.e.

∀x ∈ IN∃y ≤ f(x)∀z ∈ IN (P (x, y) ∨ ¬P (x, z)).

Then f is not computable since, otherwise, we could use f to decide Q(x). �

However, one can obtain computable bounds and even finitely many witnessing candidates (and
so by case decision functions also realizing function(al)s) for a weakened version AH of A (which,
however, is equivalent to A w.r.t. provability in first order theories that do not mention the index
function(s) referred to below in their axioms).
Every formula A can be written in a logical equivalent form which has all quantifiers lined up in front
of a quantifier-free formula (a so-called prenex formula). For the issues discussed in this paper only
the alternations of quantifiers (between ∀ and ∃) but not the length of blocks of equal quantifiers
matter. Hence we will notationally identify single quantifiers and blocks of the same quantifier.
Moreover, all relevant phenomena already show up for formulas of rather limited logical complexity.
In the following, we will, therefore, restrict ourselves to the formulas mentioned in the next definition:

Definition 1.2. Let A ≡ ∃x1∀y1∃x2∀y2Aqf (x1, y1, x2, y2) with Aqf being quantifier-free. Then the
Herbrand normal form of A is defined as

AH :≡ ∃x1, x2Aqf (x1, f(x1), x2, g(x1, x2)),

where f, g are new function symbols, called index functions.

Note that for purely existential sentences (and similarly for pure ∀∃-sentences once the ∀-quantifier is
treated either as a parameter or replaced by a fresh constant understood as a 0-place index function)
A and AH coincide.
In the following, let PL−= denote first order logic (without equality).

Remark 1.3. AH is nothing else but the negation of the so-called Skolem normal form of the
negation

∀x1∃y1∀x2∃y2¬Aqf

of A as discussed in section 4.3 of Coquand’s article [5] in this volume.

We now consider again the sentence (either as a sentence of first order logic with P as some binary
predicate symbol or read in the language of arithmetic with a concrete primitive recursive P s.t.
∃y ∈ IN P (x, y) is undecidable)

A ≡ ∀x∃y∀z(P (x, y) ∨ ¬P (x, z)).

Whereas (as shown above) for A we not even have a computable bound on ‘∃y’, for the Herbrand
normal form AH of A

AH ≡ ∃y
(
P (x, y) ∨ ¬P (x, g(y))

)
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one can construct a list (of fixed finite length – in the case at hand of length 2 –) of candidates
(uniformly in x, g) for ‘∃y’, namely (x, g(x)) or (c, g(c)) for any constant c s.t.

AH,D :≡
(
P (x, c) ∨ ¬P (x, g(c))

)
∨

(
P (x, g(c)) ∨ ¬P (x, g(g(c)))

)
︸ ︷︷ ︸

∈TAUT

is a tautology.

A tautology still is a tautology when one replaces all occurrences of a term s by a variable y. So if
we substitute all g-terms by fresh variables replacing bigger terms first, i.e. g(g(c)) by z and then
g(c) by y, then the result

AD :≡
(
P (x, c) ∨ ¬P (x, y)

)
∨

(
P (x, y) ∨ ¬P (x, z)

)
still is a tautology.
From AD we can derive A by a so-called direct proof:

P (x, c) ∨ ¬P (x, y) ∨ P (x, y) ∨ ¬P (x, z)
⇓ (∀-introduction)

P (x, c) ∨ ¬P (x, y) ∨ ∀z
(
P (x, y) ∨ ¬P (x, z)

)
⇓ (∃-introduction)

P (x, c) ∨ ¬P (x, y) ∨ ∃y∀z
(
P (x, y) ∨ ¬P (x, z)

)
⇓ (∀-introduction)

∀z
(
P (x, c) ∨ ¬P (x, z)

)
∨ ∃y∀z

(
P (x, y) ∨ ¬P (x, z)

)
⇓ (∃-introduction)

∃y∀z
(
P (x, y) ∨ ¬P (x, z)

)
∨ ∃y∀z

(
P (x, y) ∨ ¬P (x, z)

)
⇓ ( contraction)

∃y∀z
(
P (x, y) ∨ ¬P (x, z)

)
⇓ (∀-introduction)

∀x∃y∀z
(
P (x, y) ∨ ¬P (x, z)

)
Theorem 1.4 (J. Herbrand’s Theorem (‘Théorème fondamental’ [14], 1930)).
Let A ≡ ∃x1∀y1∃x2∀y2Aqf (x1, y1, x2, y2). Then:
PL−= ` A iff there are terms s1, . . . , sk, t1, . . . , tn (built up out of the constants and free variables
of A – possible with the help of some default constant c in case A does not contain any constant or
free variable – and the index functions used for the formation of AH) such that

AH,D :≡
k∨

i=1

n∨
j=1

Aqf

(
si, f(si), tj , g(si, tj)

)
is a tautology. AH,D is called a Herbrand Disjunction of A and the terms si, tj are called Herbrand
terms.
Note that the length of this disjunction is fixed: k · n.
The terms si, tj can be extracted from a given PL−=-proof of A.

Replacing in AH,D all terms ‘f(si)’,‘g(si, tj)’ by new variables as indicated above results in another
tautological disjunction AD s.t. A can be inferred from AD by a direct proof.

Corollary 1.5. Every PL−=-proof of a sentence A can be transformed into a direct proof which
does not contain any detours via formulas (‘lemmas’) of greater quantifier complexity than A.

Discussion:
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1. Herbrand’s original proof was syntactic and provides an algorithm for the extraction of the
Herbrand terms from a given PL−=-proof of A. However, two lemmas in his proof need a
correction as was discovered first by K. Gödel in the 40’s (unpublished, see [13]) and in the
60’s by B. Dreben et al. [6]. After Herbrand’s work, alternative syntactic proofs were given by
D. Hilbert and P. Bernays (using Hilbert’s ε-substitution method) and by G. Gentzen (using
his cut elimination procedure for a sequent calculus formulation of PL−=). Most textbook
treatments of Herbrand’s theorem nowadays are model theoretic and do not yield any term
extraction algorithm (with Shoenfield [32] as a notable exception).

2. The forward direction in Herbrand’s theorem immediately extends to logic with equality PL
and even open theories T (i.e. theories with purely universal axioms only), where then the
Herbrand disjunction is a tautological consequence of finitely many instances of equality axioms
(‘quasi-tautology’) and – in the case of T – finitely many instances of the universal axioms.
To get from such an implicative tautology a proof of A in T (i.e. the converse direction) it is
crucial that the Herbrand index functions f, g are new not only w.r.t. A but also w.r.t. T ,
i.e. do not occur in the axioms of T . Already for logic with equality the syntactic procedure
to eliminate the f, g-terms in the Herbrand disjunction becomes much more complicated if
instances of f, g-equality axioms are used (see e.g. Shoenfield [32]).

3. Although Herbrand’s theorem constitutes a kind of reduction of predicate logic to propositional
logic this does not contradict the undecidability of the former as there is no effective a-priori
bound (depending only on A) on the number of Herbrand terms needed but only bounds
depending on the data of a given proof P of A. In fact, as was first shown by Statman [35],
the required number can be extremely large and, in general, is superexponential in the basic
P -data.

4. Note that the Herbrand terms do not depend on the predicate symbols in A.

We now give an example that illustrates that already extremely elementary proofs (in open theories)
can give rise to Herbrand disjunctions that are far from obvious.
Example (Ulrich Berger): Consider the open first order theory T in the language of first order logic
with equality and a constant 0 and two unary function symbols S, f . The only non-logical axiom of
T is ∀x(S(x) 6= 0) (e.g. think of x as ranging over IN including 0 and S as the successor function).

Proposition 1.6. T proves that ∃x
(
f(S(f(x))) 6= x).

Proof sketch: Suppose that
∀x

(
f(S(f(x))) = x

)
,

then f is injective, but also (since S(x) 6= 0) surjective on {x : x 6= 0} and hence non-injective.
Contradiction! �

Analyzing the above proof yields the following Herbrand terms since the sentence in question is
purely existential it is already in Herbrand normal form (though not exhibiting the instances of the
=-equality axioms needed): PL proves that

(S(s) 6= 0) →
3∨

j=1

(f(S(f(tj))) 6= tj),

where
t1 := 0, t2 := f(0), t3 := S(f(f(0))), s := f(f(0)).

Remark 1.7. For sentences A ≡ ∀x∃y∀z Aqf (x, y, z), AD can always be written in the form

Aqf (x, t1, b1) ∨Aqf (x, t2, b2) ∨ . . . ∨Aqf (x, tk, bk),

where the bi are new variables and the ti do not contain any bj with i ≤ j.
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Theorem 1.8 (Roth [31]). An algebraic irrational number α has only finitely many exceptionally
good rational approximations, i.e. for ε > 0 there are only finitely many q ∈ IN such that

R(q) :≡ q > 1 ∧ ∃!p ∈ Z : (p, q) = 1 ∧ |α− pq−1| < q−2−ε.

Guided by Herbrand’s theorem in the form of remark 1.7 and using ideas from Kreisel [26], the
following polynomial (in ε) bound on the number of exceptionally good rational approximation was
obtained by H. Luckhardt based on a Herbrand analysis of an ineffective proof of Roth’s theorem
due to Esnault and Viehweg [7]. Previously, only exponential bounds had been known (this shows
that logical methods not only can be used to obtain effective bounds ‘in principle’ but even to yield
clear-cut numerically improvements of known bounds).

Theorem 1.9 (Luckhardt [29]). The following upper bound on #{q : R(q)} holds:

#{q : R(q)} <
7
3
ε−1 log Nα + 6 · 103ε−5 log2 d · log(50ε−2 log d),

where Nα < max(21 log 2h(α), 2 log(1 + |α|)), d = deg(α) and h(α) is the absolute homogeneous
height of α as defined in [3].

A similar bound was independently also obtained by Bombieri and van der Poorten [4].

Towards generalizations of Herbrand’s theorem: allow functionals Φ(x, f) instead of just
Herbrand terms. Let’s consider again the example (with decidable P )

A ≡ ∀x∃y∀z
(
P (x, y) ∨ ¬P (x, z))

)
.

AH can be realized by a computable functional (of type level 2) which is defined by cases:

Φ(x, g) :=
{

x if ¬P (x, g(x))
g(x) otherwise.

From this definition it easily follows that

∀x, g
(
P (x, Φ(x, g)) ∨ ¬P (x, g(Φ(x, g)))

)
.

If A is not provable in PL or in some open theory but only with a logically complex instance of
induction, then more complicated functionals are needed (Kreisel [25]):

Let (an) be a nonincreasing sequence in [0, 1]. Then, clearly, (an) is convergent and so a Cauchy
sequence which we write as:

(1) ∀k ∈ IN∃n ∈ IN∀m ∈ IN∀i, j ∈ [n;n + m] (|ai − aj | ≤ 2−k),

where [n;n + m] := {n, n + 1, . . . , n + m}.
Then the (partial) Herbrand normal form of this statement is

(2) ∀k ∈ IN∀g : IN → IN∃n ∈ IN∀i, j ∈ [n;n + g(n)] (|ai − aj | ≤ 2−k).

By E. Specker [33] (‘Specker sequences’), there exist computable such sequences (an) even in Q∩[0, 1]
without a computable bound on ‘∃n’ in (1). By contrast, there is a simple (primitive recursive) bound
Φ∗(g, k) on (2) (also referred to as ‘metastability’ by Tao [36]):

Proposition 1.10. Let (an) be any nonincreasing sequence in [0, 1]. Then

∀k ∈ IN∀g : IN → IN∃n ≤ Φ∗(g, k)∀i, j ∈ [n;n + g(n)] (|ai − aj | ≤ 2−k),

where
Φ∗(g, k) := g̃(2k)(0) with g̃(n) := n + g(n).

In fact, there exists an i < 2k such that n can be taken as g̃(i)(0).
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Remark 1.11. The previous result can be viewed as a Herbrand disjunction of variable (in k)
length (rather than of fixed length as in Herbrand’s theorem):

2k−1∨
i=0

(
|ag̃(i)(0) − ag̃(g̃(i)(0))| ≤ 2−k

)
.

Corollary 1.12 (T. Tao’s finite convergence principle, Tao [36]).

∀k ∈ IN, g : IN → IN∃M ∈ IN∀ 0 ≤ aM ≤ . . . ≤ a0 ≤ 1∃n ∈ IN(
n + g(n) ≤ M ∧ ∀i, j ∈ [n;n + g(n)] (|ai − aj | ≤ 2−k

))
.

In fact, one can take M := g̃(2k)(0).

2 Kreisel’s No-Counterexample Interpretation

Definition 2.1 (G. Kreisel [25]). Let A ≡ ∃x1∀y1 . . .∃xn∀ynAqf (x1, y1, . . . , xn, yn). If a tuple of
functionals Φ1, . . . ,Φn realizes the Herbrand normal form AH of A, i.e. if

Aqf

(
Φ1(f), f1(Φ1(f)), . . . ,Φn(f), fn(Φ1(f), . . . ,Φn(f))

)
holds for all functions f = f1, . . . , fn, then we say that Φ(= Φ1, . . . ,Φn) satisfies the no-counterexample
interpretation (n.c.i.) of A.

Motivation for the name ‘no-counterexample interpretation’: Let A be as above. Then ¬A
is equivalent to

∀x1∃y1 . . .∀xn∃yn¬Aqf (x1, y1, . . . , xn, yn).

So a counterexample to A is given by functions f1, . . . , fn such that

(+) ∀x1, . . . , xn ¬Aqf (x1, f1(x1), . . . , xn, fn(x1, . . . , xn))

holds. Hence functionals Φ satisfying the n.c.i. of A produce a counterexample to (+) i.e. to the
existence of counterexample functions f1, . . . , fn.
More information of the no-counterexample interpretation can be found in [10] and – in particular
– [22].

Problems of the no-counterexample interpretation: For principles F ∈ ∃∀∃ the n.c.i. no
longer is ‘correct’ in the sense that the functionals sufficient to realize the n.c.i. of F may not reflect
the true complexity of extractable bounds from proofs based on F (technically, this problem is due
to the bad behavior of the no-counterexample interpretation w.r.t. to the modus ponens rule). We
now give an example for the issue involved:

The Infinitary Pigeonhole Principle (IPP) is defined as follows:

∀n ∈ IN∀f : IN → Cn∃i ≤ n∀k ∈ IN∃m ≥ k
(
f(m) = i

)
,

where Cn := {0, 1, . . . , n}. It is easy to show that (over weak fragments of arithmetic) IPP im-
plies the induction principle for induction formulas with one quantifier and – consequently – can
cause arbitrary primitive recursive complexity of bounds extractable from proofs based on IPP.
However, the n.c.i. of IPP

(IPP)H ≡ ∀n ∈ IN∀f : IN → Cn∀F : Cn → IN∃i ≤ n∃m ≥ F (i)
(
f(m) = i

)
has a trivial solution:

M(n, f, F ) := max{F (i) : i ≤ n} and I(n, f, F ) := f(M(n, f, F ))

6



are realizers for ‘∃m’ and ‘∃i’ in (IPP)H .

Thus M, I do not reflect the true contribution of IPP to the complexity of bounds extractable
from IPP-based proofs, while functionals G, I satisfying the Gödel functional interpretation of IPP,
discussed in the next section, do.

3 Gödel’s Functional Interpretation

In [12], K. Gödel developed a much refined so-called functional interpretation (originally for systems
based on intuitionistic logic but combined with his negative embedding of classical systems into
intuitionistic ones also for systems based on ordinary classical logic). This interpretation (we in the
following tacitly always refer to the combination of negative and functional interpretation) has the
property that the equivalence between A and its interpretation AG can be proved using the axiom
schema of choice only for quantifier-free formulas though in higher type function spaces

QF-AC : ∀xρ∃yτ Aqf (x, y) → ∃Y ρ→τ∀xρ Aqf (x, Y (x)).

Here the type IN in xIN is that of a natural number whereas for types ρ, τ an object fρ→τ is a function
from objects of type ρ to objects of type τ. We will not give any details on the general definition of
G but just reveal the G-interpretation of IPP:

(IPP)
QF−AC⇔

∀n ∈ IN∀f : IN → Cn∃i ≤ n∃g : IN → IN∀k ∈ IN
(
g(k) ≥ k ∧ f(g(k)) = i

)
QF−AC⇔

(IPP)G ≡
{
∀n ∈ IN∀f : IN → Cn∀K : Cn × ININ → IN∃i ≤ n∃g : IN → IN(

g(K(i, g)) ≥ K(i, g) ∧ f(g(K(i, g))) = i
)
.

The construction of explicit functionals I(n, f, K), G(n, f, K) producing witnesses for ‘∃i ≤ n’ and
‘∃g : IN → IN’ is remarkably involved (see Oliva [30]). To appreciate the complexity we invite the
reader to come up with a solution just for n = 2 (i.e. the case with 3 ‘colors’).
For a thorough discussion of the functional interpretation of IPP and its relation to the ‘finitary
infinite pigeonhole principle’ from Tao [36] see Kohlenbach [22].

General facts about Gödel’s functional interpretation

• Functional interpretation was first developed for Peano Arithmetic PA as well as suitable
extensions PAω+QF-AC to higher type functionals and allows one to extract primitive re-
cursive programs of higher type (first considered by Hilbert in 1926 [15]) from proofs of
∀∃-theorems in PAω+QF-AC (Gödel, Kreisel, Yasugi). The modus ponens rule this time is
treated without any complexity increase.

• Applied to plain logic PL, functional interpretation can be used for an extraction algorithm
of Herbrand terms of optimal complexity (Gerhardy-Kohlenbach [8]). In this sense, functional
interpretation can be viewed as a generalization of Herbrand’s theorem.

• Seminal work of Spector [34] further extended Gödel’s functional interpretation to proofs in
‘full classical analysis’ Aω, i.e. to proofs in PAω augmented by the full axiom schema of
dependent choice DC. Then the extractable programs will no longer be primitive recursive
in general but so-called bar recursive functionals (i.e. functionals defined by recursion over
well-founded trees).

• The primitive recursive as well as the bar recursive functionals used in the context of func-
tional interpretation not only are computable but enjoy a strong mathematical property called
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‘majorizability’ due to W.A. Howard [16] (which fails for general computable functionals).
Making use of this fact one can apply a variant of functional interpretation (‘monotone func-
tional interpretation’, Kohlenbach [18]) to extract highly uniform bounds from given proofs
of pointwise existence results.

• Recently, (monotone) functional interpretation (based on a novel majorization relation) has
been applied to extensions Aω[X, . . .] of Aω by abstract structures X such as arbitrary
metric, hyperbolic, CAT(0), normed, uniformly convex or Hilbert spaces and provides bounds
which are uniform even in metrically bounded parameters without any compactness assumption
(Kohlenbach [19, 22], Gerhardy-Kohlenbach [9]). In fact, all the applications mentioned in the
next two sections are based on this.

4 An application in Metric Fixed Point Theory

In the following

• (X, d, W ) is a hyperbolic space in the sense of [19] (e.g. a convex subset of a normed space),

• f : X → X is a nonexpansive mapping: d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X,

• (λn) is a sequence in [0, c] for some 0 < c < 1 that is divergent in sum,.

• xn+1 = (1− λn)xn ⊕ λnf(xn) (Krasnoselski-Mann iteration).

Theorem 4.1 (Ishikawa [17], Goebel-Kirk [11]).

If (xn) is bounded, then d(xn, f(xn)) → 0.

Logical analysis of the proof of Ishikawa’s theorem: Since the sequence (d(xn, f(xn)))n is
nonincreasing its convergence towards 0 can be expressed as a ∀∃-statement so that we do not need
any Herbrand normal form here.
Let K ∈ IN and α : IN → IN be such that

(λn)n∈IN ∈ [0, 1− 1
K

]IN and ∀n ∈ IN(n ≤
α(n)∑
i=0

λi).

A logical metatheorem from Gerhardy-Kohlenbach [9] that is based on a new extension of Gödel’s
functional interpretation applied to the proof of Ishikawa’s theorem yields (primitive recursively)
computable Ψ,Φ s.t. for all l ∈ IN and nonexpansive f

∀i, j ≤ Ψ(K, α, b, b̃, l)
(
d(x, f(x)) ≤ b̃ ∧ d(xi, xj) ≤ b

)
→

∀m ≥ Φ(K, α, b, b̃, l)
(
d(xm, f(xm)) < 2−l

)
holds in any (nonempty) hyperbolic space (X, d, W ). Note that the bounds depend on x, f, (X, d, W )
only via b, b̃. To obtain the existence of such highly uniform computable bounds one only has to verify
that the proof of Ishikawa’s theorem (as given in [11]) can be formalized in a suitable formal system
(extending Aω by (X, d, W ) as atom as discussed above). In fact, proofs of purely universal lemmas
do not need to be considered at all as those can be treated just as additional universal assumptions.
A somewhat closer look at the resources used in the proof (relative to those lemmas) already yields
a-priori the existence of primitive recursive bounds. Moreover, the proof of the logical metatheorem
from Gerhardy-Kohlenbach [9] provides an actual algorithm for the extraction of explicit bounds
from the given proof. Applied to that proof in [11] this yields the following

8



Theorem 4.2 (Kohlenbach [22]). Logical analysis of a proof from [11] yields an explicit rate of
convergence Φ of (d(xn, f(xn)) (depending only on K, α, b, b̃ and ε = 2−l) as well as quantitative
information on ‘the amount of boundedness of (xn)’ needed.
More precisely, let (X, d, W ), (λn),K be as above and f : X → X nonexpansive. Then the following
holds for all ε, b, b̃ > 0 :

If d(x, f(x)) ≤ b̃ and ∀i ≤ Φ∀j ≤ α(Φ,M) (d(xi, xi+j) ≤ b), then ∀n ≥ Φ
(
d(xn, f(xn)) ≤ ε

)
,

where
Φ := Φ(K, α, b, b̃, ε) := α̂

(⌈
b̃·exp

“
K·

“
3b̃+b

ε +1
””

ε

⌉
−· 1,M

)
,

M :=
⌈

3b̃+b
ε

⌉
,

α̂(0, n) := α̃(0, n), α̂(i + 1, n) := α̃(α̂(i, n), n) with
α̃(i, n) := i + α(i, n) (i, n ∈ IN)

with α s.t.1

∀i, n ∈ IN
(
(α(i, n) ≤ α(i + 1, n)) ∧ (n ≤

i+α(i,n)−1∑
s=i

λs)
)
.

For related results see Kohlenbach-Leu̧stean [23].

Remark 4.3. If (λn) is in [ 1
K , 1− 1

K ], then we may take α(i, n) := K · n.

The above bound can be used in this case to weaken the assumption of (xn) being bounded in
Ishikawa’s theorem:

Corollary 4.4 (Kohlenbach [22]). Let (λn) in [a, b] ⊂ (0, 1).

If lim
n→∞

c(n)
n

→ 0, where c(n) := max{d(x, xj) : j ≤ n}, then lim
n→∞

d(xn, f(xn)) = 0.

The result is optimal: c(n) ≤ C · n for some C > 0 is not sufficient!
For a survey of numerous other applications of proof theory to metric fixed point theory see [20].

5 An application in Ergodic Theory

Let X be a Hilbert space, f : X → X linear and nonexpansive. Define

An(x) :=
1

n + 1
Sn(x), where Sn(x) :=

n∑
i=0

f i(x) (n ≥ 0).

Theorem 5.1 (von Neumann Mean Ergodic Theorem).
For every x ∈ X, the sequence (An(x))n converges.

As shown in Avigad et al. [1], even in simple cases there already is no computable rate of convergence
so that one has to consider the ‘metastable’ Herbrand normal form of the Cauchy property as in the
finite convergence principle (see (2) above):

∀ε > 0∀g : IN → IN∃n∀i, j ∈ [n;n + g(n)]
(
‖Ai(x)−Aj(x)‖ < ε

)
.

The von Neumann Mean Ergodic Theorem was generalized in 1939 to uniformly convex Banach
spaces by Garrett Birkhoff [2] with a proof that nicely formalizes in (a weak fragment of) the system
Aω[X, ‖ · ‖, η] (see the end of section 3) to which functional interpretation applies.2 In fact, a logical

1Such a function can easily be constructed from any unary function satisfying the previous condition.
2Also in 1939, E.R. Lorch [28] extended the Mean Ergodic Theorem to general reflexiv Banach spaces but his proof

is less suited for a logical analysis.
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metatheorem from Kohlenbach [19] based on functional interpretation guarantees the extractability
of a computable bound Φ on ‘∃n’ that only depends on ε, g, a modulus of uniform convexity η of X
and some norm upper bound b ≥ ‖x‖. Running the extraction procedure on Birkhoff’s proof has led
to following explicit bound:

Theorem 5.2 (Kohlenbach-Leu̧stean [24]). Assume that X is a uniformly convex Banach space, η
is a modulus of uniform convexity and f : X → X is a nonexpansive linear operator. Let b > 0.
Then for all x ∈ X with ‖x‖ ≤ b,

∀ε > 0∀g : IN → IN∃n ≤ Φ(ε, g, b, η)∀i, j ∈ [n;n + g(n)]
(
‖Ai(x)−Aj(x)‖ < ε

)
, where

Φ(ε, g, b, η) := M · h̃K(0), with
M :=

⌈
16b
ε

⌉
, γ := ε

16η
(

ε
8b

)
, K :=

⌈
b
γ

⌉
,

h, h̃ : IN → IN, h(m) := 2(Mm + g(Mm)), h̃(m) := maxi≤m h(i).

If η(ε) can be written as ε · η̃(ε) with 0 < ε1 ≤ ε2 → η̃(ε1) ≤ η̃(ε2), then we can replace η by η̃ and
the constant ‘16’ by ‘8’ in the definition of γ in the bound above.

Remark 5.3. Note that the above bound Φ is independent from f and depends on the space X and
the starting point x ∈ X only via the modulus of convexity η and the norm upper bound b ≥ ‖x‖.
Moreover, it is easy to see that the bound depends on b and ε only via b/ε.

Specialized to the case where X is a Hilbert space, theorem 5.2 yields the following result which
improves a prior bound (also guided by [19]) from Avigad et al. [1] (see also Tao [37]):

Corollary 5.4 (Kohlenbach-Leu̧stean [24]). Assume that X is a Hilbert space and f : X → X is a
nonexpansive linear operator. Let b > 0. Then for all x ∈ X with ‖x‖ ≤ b,

∀ε > 0∀g : IN → IN∃n ≤ Φ(ε, g, b)∀i, j ∈ [n;n + g(n)]
(
‖Ai(x)−Aj(x)‖ < ε

)
,

where Φ is defined as above, but with K :=
⌈

512b2

ε2

⌉
.

Acknowledgement: I am grateful to E.M. Briseid and L. Leuştean for helpful comments on an
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[23] Kohlenbach, U., Leuştean, L., Mann iterates of directionally nonexpansive mappings in hyper-
bolic spaces. Abstract and Applied Analysis, vol. 2003, no.8, pp. 449-477 (2003).

[24] Kohlenbach, U., Leuştean, L., A quantitative mean ergodic theorem for uniformly convex Ba-
nach spaces. arXiv:0804.3844[math.DS] (2008), submitted.

[25] Kreisel, G., On the interpretation of non-finitist proofs, part I. J. Symbolic Logic 16, pp.241-267
(1951).

11



[26] Kreisel, G., Finiteness theorems in arithmetic: an application of Herbrand’s theorem for Σ2-
formulas. Proc. of the Herbrand symposium (Marseille, 1981), North-Holland (Amsterdam),
pp. 39-55 (1982).

[27] Kreisel, G., Macintyre, A., Constructive logic versus algebraization I. Proc. L.E.J. Brouwer Cen-
tenary Symposium (Noordwijkerhout 1981), North-Holland (Amsterdam), pp. 217-260 (1982).

[28] Lorch, E.R., Means of iterated transformations in reflexive vector spaces. Bull. Amer. Math.
Soc. 45, pp. 945-947 (1939).

[29] Luckhardt, H., Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale An-
zahlschranken. J. Symbolic Logic 54, pp. 234-263 (1989).

[30] Oliva, P., Understanding and using Spector’s bar recursive interpretation of classical analysis.
In: Proceedings of CiE 2006, Springer LNCS 3988, pp. 423-434 (2006).

[31] Roth, K.F., Rational approximations to algebraic numbers. Mathematika 2, pp. 1-20 (1955).

[32] Shoenfield, J.S., Mathematical Logic. Addison-Wesley Publishing Company (Reading, Mas-
sachusetts) 1967.

[33] Specker, E., Nicht konstruktiv beweisbare Sätze der Analysis. J. Symb. Logic 14, pp. 145-158
(1949).

[34] Spector, C., Provably recursive functionals of analysis: a consistency proof of analysis by an
extension of principles formulated in current intuitionistic mathematics. In: Recursive function
theory, Proceedings of Symposia in Pure Mathematics, vol. 5 (J.C.E. Dekker (ed.)), AMS,
Providence, R.I., pp. 1-27 (1962).

[35] Statman, R., Lower bounds on Herbrand’s theorem. Proc. Amer. Math. Soc. 75, pp. 104-107
(1979).

[36] Tao, T., Soft analysis, hard analysis, and the finite convergence principle. Essay posted May
23, 2007. Available at: http://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-analysis-
and-the-finite-convergence-principle/.

[37] Tao, T., Norm convergence of multiple ergodic averages for commuting transformations. Ergodic
Theory and Dynamical Systems 28, pp. 657-688 (2008).

12


