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Abstract

In a recent paper, Bauschke et al. study ρ-comonotonicity as a generalized notion of mono-
tonicity of set-valued operators A in Hilbert space and characterize this condition on A in terms
of the averagedness of its resolvent JA. In this note we show that this result makes it possible
to adapt many proofs of properties of the proximal point algorithm PPA and its strongly con-
vergent Halpern-type variant HPPA to this more general class of operators. This also applies to

quantitative results on the rates of convergence or metastability (in the sense of T. Tao). E.g.

using this approach we get a simple proof for the convergence of the PPA in the boundedly
compact case for ρ-comonotone operators and obtain an effective rate of metastability. If A
has a modulus of regularity w.r.t. zer A we also get a rate of convergence to some zero of A
even without any compactness assumption. We also study a Halpern-type variant HPPA of the

PPA for ρ-comonotone operators, prove its strong convergence (without any compactness or

regularity assumption) and give a rate of metastability.

Keywords: Generalized monotone operators, proximal point algorithm, Halpern-type proximal
point algorithm, rates of convergence, metastability, proof mining.
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1 Introduction

A central theme in convex optimization is the computation of zeros z ∈ zer A := A−1(0) of (max-

imally) monotone set-valued operators A ⊆ H × H in Hilbert space H. This stems from the fact

that for A being the subdifferential ∂f of a proper, convex and lower semi-continuous function

f : H → (−∞,∞], zer A coincides with the set of minimizers of f.

An important algorithm for the approximation of zeros of A is the Proximal Point Algorithm PPA

([17, 20])

xn+1 := JγnAxn, (γn) ⊂ (0,∞),

where Jγn := (I + γnA)−1 : R(I + γnA) → D(A) is the single valued resolvent of γnA and A is

assumed to satisfy some range condition such as D(A) ⊆ R(I+λA) for all λ > 0 so that the iteration

is defined for x0 ∈ D(A) ⊆ R(I + γ0A). Here D(A) and R(A) denote the domain and range of A

respectively as defined for set-valued mappings (see e.g. [4]).
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The range condition trivially holds for maximally monotone operators A such as ∂f since then

R(I + λA) = H.

The crucial relation between A and JλA is that the set of zeros of A coincides with the fixed point

set of JλA (which, therefore, in particular does not depend on the choice of λ > 0). If A is monotone,

then JλA is firmly nonexpansive so that many results from metric fixed point theory apply (see e.g.

[4] for all this).

In order to be able to treat functions f which are not necessarily convex, one needs to weaken the
requirement of A to be monotone from

(+) ∀(x, u), (y, v) ∈ A (〈x− y, u− v〉 ≥ 0)

to e.g. stipulating

(++) ∀(x, u), (y, v) ∈ A (〈x− y, u− v〉 ≥ ρ‖u− v‖2),

where now ρ may also be negative (see e.g. [7, 8]).

In the recent paper [5], this condition - called ρ-comonotonicity - is thoroughly investigated and

related to properties of JA. One key result is that JA is an averaged mapping whenever (++) holds

with ρ > − 1
2 . The averaged mappings form a larger class of mappings than the firmly nonexpansive

ones but still have nice properties, e.g. they are strongly nonexpansive.

In the recent papers [12, 13], we studied from a quantitative point of view the PPA as well as a

strongly convergent so-called Halpern-type variant HPPA (in Banach spaces) making use essentially

only of the fact that all firmly nonexpansive mappings have a common so-called modulus for being

strongly nonexpansive (see [10]). This also holds true for the class of averaged mappings if we have

some control on the averaging constant (see [21]). Putting all this together, it is rather straightfor-

ward to see that the main results on the PPA and HPPA established in [12, 13] generalize (in the

case of Hilbert spaces) to ρ-comonotone operators which is the content of this short note. While the

PPA has been considered for ρ-comonotone operators before (even for sequences of operators, error

terms and relaxations, see [7]) our note shows that by the connection between the comonotonicity

of A and the averagedness of JA as established in [5], many proofs for properties of the PPA and

the HPPA for monotone operators can be easily adapted to cover the ρ-comonotone case. We also
provide new quantitative results on the convergence. For the HPPA, to the best of our knowledge,
our note provides the first results in the absence of monotonicity.

2 Preparatory results

Throughout this paper H is a real Hilbert space and A ⊆ H×H a set-valued operator with the usual

definitions of D(A) and zer A. D(A) denotes the topological closure of D(A). We always assume

that D(A) 6= ∅.

Definition 2.1 ([5]). Let ρ ∈ R. A is called ρ-comonotone if

∀(x, u), (y, v) ∈ A (〈x− y, u− v〉 ≥ ρ‖u− v‖2).

In the case where ρ < 0 which we are interested in, ρ-comonotonicity has been studied before in [7]

under the name of |ρ|-cohypomonotonicity in the context of proximal methods as discussed in the

introduction (see also Remark 3.4 below).

Let JA := (I +A)−1 be the resolvent of A.
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Proposition 2.2. Let ρ ∈ R, λ > 0 and A be ρ-comonotone. Then D(JλA) = R(I + λA),

x ∈ JλAx↔ x ∈ zer A and, if ρ > −1, JA is at most single-valued and zer A = Fix(JA).

Proof: [4, Proposition 23.2] and [5, Proposition 2.13]. �

Lemma 2.3. If A is ρ-comonotone for ρ ∈ R, then for λ > 0 we have that λA is ρ/λ-comonotone.

Proof: If u ∈ λAx, v ∈ λAy, then u
λ ∈ Ax,

v
λ ∈ Ay and so

〈x− y, u− v〉 = λ
〈
x− y, u

λ
− v

λ

〉
≥ λ · ρ

∥∥∥u
λ
− v

λ

∥∥∥2 =
ρ

λ
‖u− v‖2.

�

The following proposition, which is well-known for monotone operators, extends to ρ-comonotone
operators:

Proposition 2.4. Let A ⊆ H ×H be ρ-comonotone with ρ ∈ R. Let λ, µ > 0.

1. If ρ ≥ −λ2 , then JλA is nonexpansive.

2. JλA satisfies the resolvent equation in the following form: if ρ > −λ,−µ, then

JλAx = JµA

(µ
λ
x+

(
1− µ

λ

)
JλAx

)
, x ∈ D(JλA).

3. If ρ ≥ −λ2 ,−
µ
2 then

‖x− JµAx‖ ≤
(

2 +
µ

λ

)
‖x− JλAx‖

for all x ∈ R(I + λA) ∩R(I + µA).

Proof: 1) By the assumptions and lemma 2.3, λA is − 1
2 -comonotone and so - by [5, Proposition

3.11(iii)] - JλA is nonexpansive.

2) follows as in [3][p.105] using Proposition 2.2 which is applicable since - by Lemma 2.3 - JλA, JµA
are > −1-comonotone.
3) Using 1) and 2) we get

‖x− JµAx‖ ≤ ‖x− JλAx‖+ ‖JλAx− JµAx‖ =

‖x− JλAx‖+
∥∥JµA (µλx+ (1− µ

λ )JλAx
)
− JµAx

∥∥ ≤
‖x− JλAx‖+

∥∥µ
λx+ (1− µ

λ )JλAx− x
∥∥ =

‖x− JλAx‖+
∣∣1− µ

λ

∣∣ ‖x− JλAx‖ ≤ (2 + µ
λ

)
‖x− JλAx‖ .

�

Definition 2.5 ([6]). Let C ⊆ H be a nonempty subset of H and T : C → H be a mapping.

1. T is called α-averaged with α ∈ (0, 1) if T = (1−α)I +αS, where S : C → H is nonexpansive.

2. T is called strongly nonexpansive (SNE) if T is nonexpansive and for all sequences (xn), (yn)

in H the following implication is true:

if ((xn − yn) bounded ∧ ‖xn − yn‖ − ‖Txn − Tyn‖ → 0) , then (xn − yn)− (Txn − Tyn)→ 0.
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Lemma 2.6. [10, Lemma 2.2] T : C → H is strongly nonexpansive iff T has as an SNE-modulus

ω : (0,∞)2 → (0,∞), i.e.

∀b, ε > 0∀x, y ∈ C (‖x− y‖ ≤ b ∧ ‖x− y‖ − ‖Tx− Ty‖ < ω(b, ε)→ ‖(x− y)− (Tx− Ty)‖ < ε) .

The proof of [21, Proposition 2.7] establishes:

Proposition 2.7 ([21]). Let C ⊆ H be some subset of H and T : C → H be an α-averaged mapping

for some α ∈ (0, 1). Then T is strongly nonexpansive with SNE-modulus

ωα(b, ε) :=
1− α
4bα

· ε2.

Proposition 2.8. Let (γn) ⊂ (0,∞), γ > 0 be such that γn ≥ γ > 0 for all n ∈ N. Let ρ ∈ (−γ2 , 0]

and A ⊆ H ×H be ρ-comonotone.

Then for each n ∈ N, JγnA : R(I + γnA) → D(A) is strongly nonexpansive with common SNE-

modulus ωα, where α := 1
2((ρ/γ)+1) ∈ (0, 1).

In particular, if D(A) ⊆ C ⊆
⋂∞
n=0R(I + γnA), then (JγnA) (restricted to C) is a strongly nonex-

pansive sequence of mappings C → C in the sense of the papers [1, 2].

Proof: By the assumptions and Lemma 2.3, γnA is (ρ/γn)-comonotone and so, since

ρ

γn
≥ ρ

γ
> −1

2
,

it a fortiori is η-comonotone with η := ρ
γ > −

1
2 . Hence by [5, Proposition 3.11(v)] applied to γnA,

the resolvent JγnA : R(I + γnA) → D(A) is α-averaged. The claim now follows from Proposition

2.7. �

3 The Proximal Point Algorithm PPA for comonotone oper-
ators

Let A ⊆ H × H be ρ-comonotone, (γn) ⊂ (0,∞) and assume that D(A) ⊆
⋂∞
n=0R(I + γnA).

We assume that zer A 6= ∅. The Proximal Point Algorithm PPA for A and (γn) is defined by

(n ∈ N = {0, 1, 2, . . .})
xn+1 := JγnAxn, x0 ∈ R(I + γ0A).

Throughout this section we also assume that γn ≥ γ > 0 for all n ∈ N and that ρ ∈ (−γ2 , 0].

Proposition 3.1. 1.

lim
n→∞

‖xn − Jγ0Axn‖ = lim
n→∞

‖xn − xn+1‖ = 0.

Moreover, with α := 1
2((ρ/γ)+1) ∈ (0, 1), ωα as in Proposition 2.7 and b ≥ ‖x0 − p‖ for some

p ∈ zer A,
∆(ε, L, b) := db/ωα(b, ε)e+ L+ 1

is a modulus of lim inf (in the sense of [14]) i.e.

∀L ∈ N, ε > 0 ∃n (L ≤ n ≤ ∆(ε, L, b) and ‖xn − xn+1‖ < ε) .
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2. Define

un :=
xn − xn+1

γn
.

Then un ∈ Axn+1, lim
n→∞

un = 0 and

∃n ≤ ρ(ε, b, γ) := ∆(ε · γ, 0, b) (‖un‖ < ε) .

Proof: 1) Let p ∈ zer A. Then by Propositions 2.2 and 2.4 (using that γnA is > − 1
2 > −1

comonotone)

‖xn+1 − p‖ ≤ ‖xn − p‖ ≤ b, n ∈ N,

and so (xn) is Fejér monotone w.r.t. zer A = Fix(JγnA) and (‖xn − p‖) is convergent. Thus

|‖JγnAxn − JγnAp‖ − ‖xn − p‖| = |‖xn+1 − p‖ − ‖xn − p‖| → 0.

Hence by Proposition 2.8

‖xn+1 − xn‖ = ‖JγnAxn − xn‖ → 0.

By Proposition 2.4(3) (which is applicable in the nontrivial case where n ≥ 1 due to xn ∈ D(A) and

the range condition)

‖xn − Jγ0Axn‖ ≤
(

2 +
γ0
γ

)
‖xn − JγnAxn‖

and so also lim
n→∞

‖xn − Jγ0Axn‖ = 0.

The lim inf-bound is proved as in [13, Proposition 2.1] using Proposition 2.8. We include the proof

here for completeness: Let L ∈ N and δ > 0. Then there exists an n ∈ N with L ≤ n ≤ L+ db/δe+ 1

such that
‖xn − p‖ − ‖JγnAxn − JγnAp‖ = ‖xn − p‖ − ‖xn+1 − p‖ < δ

since, otherwise,

b ≥ ‖xL − p‖ ≥ ‖xL − p‖ − ‖xL+db/δe+1 − p‖ ≥ (db/δe+ 1) · δ > b.

Now fix δ := ωα(b, ε). Then Proposition 2.8 implies the existence of an n with L ≤ n ≤ ∆(ε, L, b)

such that
‖xn − xn+1‖ = ‖(xn − p)− (JγnAxn − JγnAp)‖ < ε.

2) is immediate from 1). �

The PPA for maximally monotone operators, while being weakly convergent, fails to be strongly

convergent as shown in [9]. In the boundedly compact (i.e. finite dimensional) case there is in

general no computable rate of convergence unless some strong metric regularity assumption is made

(see [19] and [11]). However, in the boundedly compact case, one can get effective rates Ψ of

metastability in the sense of T. Tao [24, 25] for the Cauchy property of (xn), i.e.

∀ε > 0 ∀g : N→ N∃n ≤ Ψ(ε, g)∀i, j ∈ [n, n+ g(n)] (‖xi − xj‖ < ε) .

Note that, noneffectively, this property implies the Cauchy property of (xn) and hence the existence

of a limit x but does not allow one to convert Ψ into an effective rate of convergence. One can

additionally ensure that for i ∈ [n, n+ g(n)], xi is an approximate zero of A which guarantees that

x is a zero of A.

We now extend our rate of metastability for the PPA from [13] to the ρ-comononotone case:
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Theorem 3.2. Let A be as above and assume additionally that D(A) ⊆
⋂∞
n=0R(I + γnA) is bound-

edly compact and x0 ∈ D(A). Then (xn) strongly converges to a zero of A. Moreover, the rate of

metastability Ψ from [13, Theorem 2.12] also holds in our current situation with ∆ being replaced by

our definition in Proposition 3.1(1), i.e.

(∗) ∀k ∈ N ∀g ∈ NN ∃n ≤ Ψ(k, g, β)∀i, j ∈ [n, n+ g(n)]

(
‖xi − xj‖ ≤

1

k + 1
and xi ∈ F̃k

)
,

where

F̃k :=
⋂
i≤k

{
x ∈ D(A) : ‖x− JγiAx‖ ≤

1

k + 1

}
and β is a modulus of total boundedness (in the sense of [13, Theorem 2.12]) for D(A) ∩ B(0,M),

where B(0,M) := {x ∈ H : ‖x‖ ≤M}, with M ≥ b+ ‖p‖ and b ≥ ‖x0 − p‖ for some p ∈ zer A.
If C ⊆ H is closed and convex with D(A) ⊆ C ⊆

⋂∞
n=0R(I + γnA), then without compactness

assumption, (xn) converges weakly to a zero of A.

Proof: The proof of [13, Theorem 2.12] for the rate of metastability of (xn) can be taken without

any changes observing that [14, Lemma 8.1] holds with the same proof in our context and that Φ

can be shown to be an approximate F -bound as in [13, Proposition 2.11] using Propositions 2.4(3)

and 3.1(1) instead of [13, Prop.2.3(ii),Prop.2.1].

Since (xn) is metastable (the first part of (∗)), it is a Cauchy sequence and hence convergent with

x := limn xn ∈ D(A). By the extra clause ‘xi ∈ F̃k’ in (∗), which strengthens the usual formulation

of a rate of metastability, we can conclude that x ∈ zer A. Indeed, choosing in (∗) for given N ∈ N
the function g(n) := N we get an nN ≥ N with ‖xnN

− Jγ0AxnN
‖ ≤ 1

k+1 . Using the nonexpansivity

of Jγ0A this implies that x ∈ Fix(Jγ0A) = zer A.

For the weak convergence in the noncompact case we reason as follows: let w be a weak sequential

cluster point of (xn). Then there is a subsequence (xnk
) which weakly converges to w. By Proposition

3.1(1) (xnk
) is an approximate fixed point sequence of Jγ0A. Hence by Browder’s demiclosedness

principle ([4, Corollary 4.28]) applied to Jγ0A and C it follows that w ∈ Fix(Jγ0A). Hence we can

- using again the fact that (xn) is Fejér monotone w.r.t. Fix(Jγ0A) - conclude that (xn) weakly

converges to w ∈ Fix(Jγ0A) = zer A by [4, Theorem 5.5]. �

Remark 3.3. The range condition in Theorem 3.2 is trivially satisfied if A is maximally ρ-comonotone

(in the sense of [5, Definition 2.4.(iv)]) since then by Lemma 2.3 λA is maximally (ρ/λ)-comonotone

with ρ/λ > −1 for λ ≥ γ so that by [5, Corollary 2.12] R(I + λA) = H.

Remark 3.4. Note that the conditions on ρ, γn made in [7] on their general PPA in the case of a

single operator A and without relaxation (i.e. λn := 1) imply our condition that ρ > − inf{γn:n∈N}
2 :

observing that ρ in [7] corresponds to our −ρ, the conditions (iii),(iv) in [7, Theorem 3.1] state the

existence of an ε ∈ (0, 1) s.t.

1

1 + ρ/γn
≤ 2− ε, γn > −ρ, n ∈ N.

An easy calculation shows that this implies that

inf{γn : n ∈ N} ≥ −ρ2− ε
1− ε

> −2ρ.
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Also the converse holds: let δ > 0 be such that γ > −2ρ+ δ. Then the condition

1

1 + ρ
γn

< 2− ε

is satisfied with ε := 2− 2γ
γ+δ .

Error terms un subject to the condition that
∑
‖un‖ <∞ (implied by condition (vi) in [7, Theorem

3.1]) can be incorporated even in the quantitative part of our theorem (similar to [15, Theorem 4.5]).

Our approach makes the relevance of the averagedness of JγnA explicit which only implicitly occurs

in the proof of [7, Theorem 3.1].

Definition 3.5 ([16]). Let A be as at the beginning of this section with p ∈ zer A and define

F (x) := dist(0X , A(x)) (with F (x) := ∞ for x 6∈ D(A)). A function φ : (0,∞) → (0,∞) is

called a ‘modulus of regularity for A w.r.t. zer A and B(p, r) with r > 0’ if for all ε > 0 and

x ∈ B(p, r) := {y ∈ H : ‖y − p‖ ≤ r} one has

F (x) < φ(ε)→ dist(x, zer F ) < ε.

As [13, Lemma 2.6] (but reasoning in the proof of zer F ⊆ zer A with - say - γ0A and Jγ0A instead

of A, JA) one shows that

Lemma 3.6. With F as defined in the previous definition, zer F = zer A and so (xn) as defined by

the PPA for A is Fejér monotone w.r.t. zer F = zer A, i.e.

∀p ∈ zer F ∀n ∈ N (‖xn+1 − p‖ ≤ ‖xn − p‖).

As in the case of [13, Theorem 2.8] one now gets

Theorem 3.7. Let A and (γn) be as above and assume that D(A) ⊆
∞⋂
n=0

R(I + γnA). Let p ∈ zer A

and b ≥ ‖x0 − p‖. If A has a modulus φ of regularity w.r.t zer A and B(p, b), then (xn) converges

to a zero z := limxn of A with rate of convergence ρ(φ(ε/2), b, γ) + 1, where ρ is as in Proposition

3.1(2).

Proof: The proof is largely identical to that of [13, Theorem 2.8]. We only have to observe that in

that latter proof it suffices to have the existence of an n ≤ ρ(ε, b, γ) (|F (xn+1)| ≤ ‖un‖ ≤ ε) (rather

than that this holds for all n ≥ ρ(ε, b, γ)) and that this follows from Proposition 3.1(2). �

4 The Halpern-type Proximal Point Algorithm HPPA for
comonotone operators

Whereas the PPA even for monotone operators A in general is not strongly convergent ([9]) a

Halpern-type variant strongly converges also for ρ-comonotone operators as we show in this section.

Again we assume that (γn) ⊂ (0,∞) with γn ≥ γ > 0 for all n ∈ N and that A is ρ-comonotone

with ρ ∈ (−γ2 , 0] with zer A 6= ∅. Let C ⊆ H be a nonempty closed and convex subset such that

D(A) ⊆ C ⊆
⋂∞
n=0R(I + γnA).
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Definition 4.1 ([2, 18, 23]). Let S ⊆ H be some nonempty subset of H and T : S → H a mapping

and (Sn) be a sequence of mappings Sn : S → H. Let F ((Sn)) :=
⋂
n∈N Fix(Sn) be the set of

all common fixed points of Sn for all n. (Sn) is said to satisfy the NST condition (I) with T if

F ((Sn)) 6= ∅, F ix(T ) ⊆ F ((Sn)) and xn − Txn → 0 whenever (xn) is a bounded sequence in S with

xn − Snxn → 0.

Proposition 4.2. Let T := Jγ0A : C → C and Sn := JγnA : C → C. Then (Sn) (strictly speaking

the sequence of the restrictions of Sn to C) satisfies the NST condition (I) with T.

Proof: Clearly, Fix(T ) = Fix(Sn) = zer A 6= ∅. Let (xn) be a bounded sequence in C with

limn ‖xn − Snxn‖ = 0. Then by Proposition 2.4(2) also limn ‖xn − Txn‖ = 0. �

Theorem 4.3. Let (αn) ⊂ (0, 1] be such that limn αn = 0 and
∑∞
n=0 αn =∞. For u, x0 ∈ C define

the Halpern-type proximal point algorithm (HPPA) by

xn+1 := αnu+ (1− αn)JγnAxn ∈ C.

Then (xn) strongly converges to the zero of A which is closest to u. Moreover, the rate of metastability

from [12, Theorem 4.1] also holds for our current situation if ωη is replaced by ωα from Proposition

2.7 above with α := 1
2((ρ/γ)+1) and ωJ(b, ε) := ε.

Proof: The strong convergence follows from [2, Theorem 3.1] whose assumptions are satisfied by

Propositions 2.4(1), 2.8 and 4.2 using also that H has the fixed point property for nonexpansive

mappings. The strong convergence also follows using [12, Theorem 4.1] which, moreover, gives the

rate of metastability stated in the theorem. For this we only have to observe that the proof of

[12, Theorem 4.1] only uses properties of JγnA which by the results stated above also hold true

for ρ-comonotone operators A where now we use ωα and Proposition 2.8 instead of ωη and [12,

Lemma 2.4]. Finally, we note that we can take ωJ(b, ε) := ε as modulus of uniform continuity for

the normalized duality map on B(0, b) since we are in a Hilbert space. �

Remark 4.4. Remark 3.3 applies here as well: if A is maximally ρ-comonotone, then the range

condition is satisfied for any closed and convex subset C ⊆ H satisfying D(A) ⊆ C.

Acknowledgments: The author has been supported by the German Science Foundation (DFG

Project KO 1737/6-1).

References

[1] Aoyama, K., Toyoda, M., Approximation of zeros of accretive operators in a Banach space.

Israel J. Math. 220, pp. 803-816 (2017).

[2] Aoyama, K., Toyoda, M., Approximation of common fixed points of strongly nonexpansive

sequences in a Banach space. J. Fixed Point Theory and Appl. 21, Article no. 35 (2019).

[3] Barbu, V., Nonlinear semigroups and differential equations in Banach spaces, Noordhoff Inter-

national Publishing, Leyden, The Netherlands, 1976.

[4] Bauschke, H.H., Combettes, P.L., Convex analysis and monotone operator theory in Hilbert

spaces, Springer, New York, 2nd edn., 2017.

8



[5] Bauschke, H.H., Moursi, W.A, Wang, X., Generalized monotone operators and their averaged

resolvents. Math. Programming Ser. B, https://doi.org/10.1007/s10107-020-01500-6 (2020).

[6] Bruck, R.E., Reich, S., Nonexpansive projections and resolvents of accretive operators in Banach

spaces. Houston J. Math. 3, pp. 459-470 (1977).

[7] Combettes, P.L., Pennanen, T., Proximal methods for cohypomonotone operators. SIAM J.

Control Optim. 43, pp. 731-742 (2004).

[8] Diakonikolas, J., Daskalakis, C., Jordan, M.I., Efficient methods for structured nonconvexnon-

concave Min-Max optimization. arXiv:2011.00364.
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