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Abstract. In this paper, we obtain explicit rates of asymptotic regularity for er-

godic averages under various circumstances, and apply them to extracting explicit and

metastable rates of convergence for Cesàro means. Moreover, by obtaining a rate of

asymptotic regularity for an averaged Mann type iteration, we extract an effective rate

of convergence depending on a modulus of regularity, and a rate of metastability by

computing a modulus of uniform Fejér monotonicity. In the presence of a modulus

of uniqueness, we compute a rate of metastability for averaged Mann type iterations

without any condition on coefficients. Our approach in this paper proposes a procedure

that unifies methods for developing nonlinear ergodic theorems and facilitating further

research.

1. Introduction

The first nonlinear mean ergodic theorem for nonexpansive mappings on bounded

closed convex (not necessarily compact) subsets of a Hilbert space was established by

Baillon [5], based on Zarantonello’s inequality which is valid in Hilbert spaces. In [9, 10],

Bruck simplified Baillon’s method and studied the mean ergodic theorem in Banach

spaces, based on an inequality for nonexpansive mappings called of type (γ) (see (2.1)).

By [9, Lemma 1.1], if C is a bounded closed convex nonempty subset of a uniformly

convex Banach space E, there exists a γ depending on the diameter of C and a modulus

of uniform convexity for E such that every nonexpansive mapping on C is of type (γ).

Baillon’s theorem is extended in [9, Theorem 2.1] to Banach spaces as follows:

Suppose C is a weakly compact and convex subset of a Banach space E with a Fréchet

differentiable norm, and T : C → C is a nonexpansive mapping such that T n is of type

(γ) for all n, then for each x ∈ C the Cesàro means 1
n

∑n−1
j=0 T

j+kx converge weakly to a

fixed point of T uniformly in k ∈ N.

In [10], for a mapping T of type (γ) on a bounded, closed, and convex subset C of a

B-convex space, the asymptotic regularity of Cesàro means of T was established, which

relied on the following crucial property of the approximate fixed point sets:

∀ε > 0∃δ > 0
(
coFδ(T ) ⊆ Fε(T )

)
. (1.1)

To prove (1.1) (and also asymptotic regularity), Bruck [10] employed recursive construc-

tions based on γ and the convex approximation property of a B-convex space. Bruck’s

approach subsequently became the cornerstone of research on nonlinear mean ergodic

theorems; for examples, see [19, 18, 17, 32, 14, 13, 1]. In particular, following Bruck’s

Key words and phrases. Nonexpansive mapping, semigroup, asymptotic regularity, proof mining.

1



2 ULRICH KOHLENBACH† AND SHAHRAM SAEIDI‡

methodology, Freund and the first author derived in [14] a rate of asymptotic regularity

for Cesàro means of T in uniformly convex Banach spaces, which depends on a bound

for C and a modulus of uniform convexity, and in [13] a rate of metastability for a strong

nonlinear ergodic theorem due to [19].

On the other hand, in 1964, Edelstein [12] studied first the convergence of Cesàro means

of nonexpansive mappings for finding fixed points on compact domains in strictly convex

Banach spaces. Atsushiba and Takahashi showed in [2] that for a compact, convex subset

C of a strictly convex Banach space, there exists a γ ∈ Γ such that every nonexpansive

mapping T : C → C is of type (γ). Furthermore, by establishing (1.1), utilizing the

techniques of [9, 10], and using the compactness of C, they provided a uniform version

of [12, Theorem II] as follows:

Let C be a nonempty compact convex subset of a strictly convex Banach space and let

T be a nonexpansive mapping of C into itself. Then for each x ∈ C, the Cesàro means

Sn(T kx) = 1
n

∑n−1
i=0 T

i+kx converge strongly to a fixed point of T (which does not depend

on k), uniformly in k ∈ N.

The latter strong convergence is equivalent to the following:

∀ε > 0∃N ∈ N∀n,m ≥ N∀k ∈ N
(
‖Sn(T kx)− Sm(T kx)‖ ≤ ε

)
. (1.2)

For a quantitative version of (1.2), we naturally look for a Cauchy rate. It is known that

such a rate cannot be computed in general, even for a linear T (see [3, Theorem 5.1]).

However, we will be able to construct a Cauchy rate (Theorem 6.2), depending on rates

of convergence for the nonincreasing sequences (‖T n+kx − T nx‖)n≥0 and a modulus of

regularity of T w.r.t. Fix(T ). Moreover, in a general situation, we construct a rate of

metastability (Theorem 6.1), which is a map (ε, g, h) 7→ Φ(ε, g, h) ensuring

∀ε > 0∀x ∈ C∀g, h : N→ N∃N ≤ Φ(ε, g, h)∀m,n ∈ [N ;N + g(N)]∀k ≤ h(N)(
‖Sn(T kx)− Sm(T kx)‖ ≤ ε

)
.

(1.3)

Note that a rate for N in (1.2) trivially implies (1.3). Moreover, (1.3) is as strong as

(1.2). Indeed, (1.2) is equivalent to

∀ε > 0∃N ∈ N∀M,K ∈ N∀n,m ∈ [N ;N+M ]∀k ≤ K
(
‖Sn(T kx)−Sm(T kx)‖ ≤ ε

)
. (1.4)

If (1.2) fails, then for some ε > 0, we have

∀N ∈ N∃M,K ∈ N∃n,m ∈ [N ;N +M ]∃k ≤ K
(
‖Sn(T kx)− Sm(T kx)‖ > ε

)
. (1.5)

Therefore, if we set g(N) := M and h(N) := K for such numbers, (1.3) must fail. That

is, (1.3) is a quantitative version of (1.2).

Ignoring the bound Φ, the ∀∃-sentence (1.3) is, in fact, the so-called Herbrand nor-

mal form of the ∀∃∀-sentence (1.4). General theorems from logic enable the extraction

of effective bounds from ineffective proofs of ∀∃-theorems. Obtaining effective bounds

for equivalent but constructively weakened reformulations started in Gödel’s functional

interpretation and the so-called no-counterexample interpretation due to Kreisel [30, 31].
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Kreisel [31] also launched a program to analyze specific prima facie nonconstructive

proofs, aiming to extract hidden constructive information. This initiative laid the con-

ceptual groundwork for proof mining [21], which is the project of applying proof-theoretic

transformations to produce (specific) quantitative and qualitative information from exist-

ing proofs in areas of core mathematics such as nonlinear analysis. The first applications

of the proof mining methodology in analysis involved the extraction of explicit moduli

of uniqueness in the context of Chebycheff approximation [22]. However, the scope of

proof mining program has since broadened to include numerous other quantitative mod-

uli, existing in mathematics or formulated as quantitative proof-theoretic counterparts of

qualitative notions; notably, the program has been used to explicitly transform moduli

between different settings.

Computable rates of convergence are in general unattainable even for computable

bounded monotone sequence of rationals R by a classical result of [36]. Given this state of

affairs, the first author suggested in [24] the following (noneffectively) equivalent but con-

structively weakened reformulation (of the form ∀∃) of the Cauchy property of a sequence

(xn) in normed (and hyperbolic) spaces:

∀k ∈ N∀g : N→ N∃N ∈ N∀m,n ∈ [N ;N + g(N)]
(
‖xn − xm‖ ≤ 2−k

)
, (1.6)

in order to effectively convert other bounds in the premises of a concrete case study

into a bound on ∃N ∈ N. Such a bound, which indeed is a bound for the Kreisel’s no-

counterexample interpretation of the Cauchy property, is called a rate of metastability,

since Tao [37, 38] calls an interval [N ;N + g(N)] with the property in (1.6) an interval

of metastability. As an example, Φ(g, k) := g̃(2k+1)(0), where g̃(n) := n + g(n), is a rate

of metastability for monotone sequences in [0, 1] ⊂ R. See, e.g., [21, Proposition 2.27].

The concept of metastability has been studied within the proof mining program, based

on variants of Gödel’s functional interpretation and monotone extensions (see [21]).

Regarding quantitative results on Baillon’s mean ergodic theorem and related problems,

we refer the reader to [20, 14, 13, 35], while the case of linear T was treated already in

[25] and [3].

This paper begins with a quantitative version of the ε-δ sentence (1.1) under various

circumstances. Then, in Section 5, we present a general result that yields explicit rates

of asymptotic regularity for ergodic averages, applicable e.g., to any of the following

cases: E is uniformly convex, refining the main result in [14]; E is strictly convex and

C is compact; and T possesses a modulus of regularity in the sense of [28]. These

sections reveal that Bruck’s method consists of two steps: first, constructing a modulus

of convexity for approximate fixed points (1.1), and then, recursively deriving a rate of

asymptotic regularity for ergodic averages using that modulus. In Section 6, we extract an

explicit rate of convergence for Cesàro means of a mapping T with a modulus of regularity

φ, in terms of φ and rates for the nonincreasing sequences (‖T n+kx − T nx‖)n≥0. Here,

even the qualitative version of this result is new. Without such rates, we also extract a



4 ULRICH KOHLENBACH† AND SHAHRAM SAEIDI‡

highly uniform rate of metastability ensuring (1.3) (Theorem 6.1). In Section 7, we apply

our results to obtain rates of asymptotic regularity for averaged Mann type iterations

xn+1 = αnxn + (1 − αn)Sn(xn), where (αn) ⊆ [0, 1) is such that
∑∞

n=1(1 − αn) = ∞
with a rate of divergence D. Based on [28], we obtain a rate of convergence when T

has a modulus of regularity w.r.t. Fix(T ). Moreover, by computing a modulus of (xn)

being uniformly Fejér monotone (w.r.t Fix(T )) in the sense of [27], we extract a rate of

metastability in view of [27, Theorem 5.1]. In the presence of a modulus of uniqueness

(see [21] for this concept), we also obtain a rate of metastability for averaged Mann type

iterations without any condition on (αn) ⊆ [0, 1). Our approach in this paper proposes a

procedure that unifies methods, which appear to be different at first glance, for developing

nonlinear ergodic theorems and averaged iterations, thereby facilitating further research.

2. Preliminaries

Throughout this paper, let E denote a (real) Banach space, and let C be a nonempty,

bounded, closed, and convex subset of E. BE denotes the closed unit ball of E. We

assume that b > 0 is a constant such that C ⊂ Bb/2(0). For a mapping T : C → E

and a given ε > 0, let Fε(T ) denote the set of ε-approximate fixed points defined as:

Fε(T ) := {x ∈ C| ‖x− Tx‖ ≤ ε}. If T is nonexpansive (i.e., ‖Tx− Ty‖ ≤ ‖x− y‖ for all

x, y ∈ C) and T (C) ⊆ C, then Fε(T ) 6= ∅. For a subset M of E, coM denotes the convex

hull of M , and copM denotes the set

{
p∑
i=1

λixi|
p∑
i=1

λi = 1, λi ≥ 0, xi ∈M}.

A Banach space E is said to be strictly convex if for all x, y ∈ E with ‖x‖ = ‖y‖ = 1

and x 6= y, we have ‖x+y
2
‖ < 1. E is called uniformly convex, if for each ε > 0, there

exists δ > 0 such that ‖(x + y)/2‖ ≤ 1 − δ, for each x, y ∈ E with ‖x‖, ‖y‖ ≤ 1 and

‖x− y‖ ≥ ε. In this case, a function η : (0, 2]→ (0, 1] is a modulus of uniform convexity

for E if for all ε ∈ (0, 2] and x, y ∈ E,

‖x‖, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε ⇒ ‖x+ y

2
‖ ≤ 1− η(ε).

Notation. We denote by Γ the set of continuous, strictly increasing, convex functions

γ : R+ → R+ with γ(t) ≤ t and γ(0) = 0.

Definition 2.1. Let γ ∈ Γ. A mapping T : C → E is of type (γ), if ∀x, y ∈ C and

∀λ ∈ [0, 1],

γ(‖λTx+ (1− λ)Ty − T (λx+ (1− λ)y)‖) ≤ ‖x− y‖ − ‖Tx− Ty‖. (2.1)

The fixed point set of a mapping T : C → E which is of type (γ) is convex.

Remark 2.2. (cf. [13, 14]) Suppose that E is uniformly convex with a modulus η :

(0, 2]→ (0, 1]. Then η1 : [0,∞)→ [0, 1],

η1(ε) := sup{η(ε′)|0 < ε′ ≤ min{2, ε}}, η1(0) := 0,
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is increasing. Moreover, defining η̃(ε) := 1
2

∫ ε
0
η1(t)dt, we have η̃ ∈ Γ. Bruck [1] proved

that, defining γ ∈ Γ by γ(ε) := b
2
η̃(4ε

b
), every nonexpansive mapping T : C → E is of

type (γ). Since η1(t) ≤ 1, we have η̃(ε) ≤ ε/2 and thus γ(ε) ≤ ε. We also know that

η̃(ε) ≥ 1

2

∫ ε

ε
3

η1(t)dt ≥ ε

3
η1(

ε

3
) ≥ ε

3
η(min{2, ε

3
}).

Thus, we have for all ε > 0,

γ(ε) =
b

2
η̃(

4

b
ε) ≥ b

2
η̃(

3

b
ε) ≥ ε

2
η(min{2, ε

b
}). (2.2)

Lemma 2.3. Let C be a nonempty, compact, and convex subset of a strictly convex

Banach space E. Then, there exists a γ ∈ Γ such that every nonexpansive mapping

T : C → C is of type (γ).

Proof. Let diamC = 2r > 0. Define D := 1
2r

(C − C). Obviously, D is compact and

convex, 0 ∈ D ⊆ B1(0), and diamD ≥ 1. We define δ : [0, 2]→ [0, 1] by δ(0) = 0 and for

0 < ε ≤ 2,

δ(ε) := inf{max{‖u‖, ‖v‖} − ‖u+ v

2
‖; u, v ∈ D and ‖u− v‖ ≥ ε/2}. (2.3)

Since diamD ≥ 1, the above set is nonempty and thus δ(ε) ≤ 1. Moreover, since D is

compact and E is strictly convex, we have δ(ε) > 0, for ε ∈ (0, 2].

It is known that for all 0 ≤ λ ≤ 1 and x, y ∈ E,

2 min{λ, 1− λ}(max{‖x‖, ‖y‖} − 1

2
‖x+ y‖) ≤ max{‖x‖, ‖y‖} − ‖λx+ (1− λ)y‖. (2.4)

(Assume 0 ≤ λ ≤ 1
2
. Then, taking k := max{‖x‖, ‖y‖}, we have

2λk + ‖λx+ (1− λ)y‖ = 2λk + ‖λ(x+ y) + (1− 2λ)y‖

≤ 2λk + λ‖x+ y‖+ (1− 2λ)‖y‖ ≤ 2λk + λ‖x+ y‖+ (1− 2λ)k = k + λ‖x+ y‖.

Thus 2λ(k − 1
2
‖x+ y‖) ≤ k − ‖λx+ (1− λ)y‖, which is equivalent to (2.4).)

Note that by the definition of δ,

δ(2‖u− v‖) ≤ max{‖u‖, ‖v‖} − ‖u+ v

2
‖,

for all u, v ∈ D. Thus, using (2.4), we have

2λ(1− λ)δ(2‖u− v‖) ≤ 2 min{λ, 1− λ}δ(2‖u− v‖)

≤ 2 min{λ, 1− λ}(max{‖u‖, ‖v‖} − ‖u+ v

2
‖)

≤ max{‖u‖, ‖v‖} − ‖λu+ (1− λ)v‖.

(2.5)

Define

α(ε) :=

δ(ε), if 0 ≤ ε ≤ 2

δ(2), if 2 < ε,
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and d(ε) := 1/2
∫ ε

0
α(t)dt. Then, for all 0 ≤ ε ≤ 2, we have d(ε) ≤ α(ε) and d ∈ Γ. By

(2.5), we have

2λ(1− λ)d(2‖u− v‖) ≤ max{‖u‖, ‖v‖} − ‖λu+ (1− λ)v‖. (2.6)

We take u := (1−λ)
2r

(Ty − T (λx+ (1− λ)y)),

v := λ
2r

(T (λx+ (1− λ)y)− Tx),

where x, y ∈ C and 0 ≤ λ ≤ 1. Since 0 ∈ D and D is convex, we have u, v ∈ D. Now,

using (2.6), we have

2λ(1− λ)d(
2

2r
‖λTx+ (1− λ)Ty − T (λx+ (1− λ)y)‖) = 2λ(1− λ)d(2‖u− v‖)

≤ max{(1− λ)

2r
‖Ty − T (λx+ (1− λ)y)‖, λ

2r
‖T (λx+ (1− λ)y)− Tx‖}

− ‖λ(1− λ)

2r
(Ty − T (λx+ (1− λ)y)) +

λ(1− λ)

2r
(T (λx+ (1− λ)y)− Tx)‖

≤ λ(1− λ)

2r
‖x− y‖ − λ(1− λ)

2r
‖Tx− Ty‖.

Consequently,

4rd(
1

r
‖λTx+ (1− λ)Ty − T (λx+ (1− λ)y)‖) ≤ ‖x− y‖ − ‖Tx− Ty‖.

Defining γ(t) := 4rd( t
r
), the result follows. �

Remark 2.4. Lemma 2.3 was first proved by Atsushiba and Takahashi in [2]. Above,

we have presented a different and easier proof compared to [2]. They proved the result of

the lemma by defining a function γ ∈ Γ as γ(ε) := 2rdr(
1
r
ε), where dr(ε) := 1

2

∫ ε
0
αr(t)dt,

αr(ε) :=

δr(ε), if 0 ≤ ε ≤ 2

1, if 2 < ε,

and δr : [0, 2]→ [0, 1] is defined as

δr(ε) :=
1

r
inf{max{‖z − x‖, ‖z − y‖} − ‖z − x+ y

2
‖ :

‖z − x‖ ≤ r, ‖z − y‖ ≤ r, ‖x− y‖ ≥ rε, x, y, z ∈ C}.

Lemma 2.5. [10, Lemma 2.1] Suppose γ ∈ Γ. Then for each positive integer n there

exists γn ∈ Γ such that for any T : C → E of type (γ), any λ1, . . . λn ∈ [0, 1] with∑n
i=1 λi = 1, and any x1, . . . , xn ∈ C,

γn
(
‖T (

n∑
i=1

λixi)−
n∑
i=1

λiT (xi)‖
)
≤ max

1≤i,j≤n

(
‖xi − xj‖ − ‖Txi − Txj‖

)
. (2.7)

In [10, Lemma 2.1], γn is defined recursively by γ2 := γ and γn to be any function in

Γ such that

γ−1
n+1(t) ≥ γ−1

2 (t) + γ−1
n (t+ 2γ−1

2 (t). (2.8)
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Remark 2.6. (2.8) is a recursive construction of γ−1
n . Since a function and its inverse do

not generally belong to the same complexity class, the following construction suggested

in [13]: for n ≥ 2, define

γn+1(t) := min{γn(t), γ2(
γn(t/2)

3
)}. (2.9)

The mappings γn in preceding structure satisfy property (2.8) (see [13, Lemma 2.5]).

Furthermore, the mappings γn in (2.9) are continuous strictly increasing, though not

necessarily convex. Notably, Bruck’s proof of [10, Lemma 2.1] does not require γ and γn

to be convex.

3. A modulus for convex approximation property

Definition 3.1. E is said to be B-convex if for some natural number k ≥ 2 and ε > 0,

there holds for each choice of x1, x2, . . . , xk from BE, ‖ ± x1 ± x2 ± · · · ± xk‖ ≤ k(1− ε)
for some choice of the + and − signs.

The significance of B-convexity stems from a result by Beck [5, 6] establishing that a

Banach space E is B-convex iff a certain strong law of large numbers holds for E-valued

random variables. Giesy [16, Lemma 6] showed that E is B-convex iff l1 is not finitely

representable in E. In other words, E is not B-convex iff

∀k ≥ 2∀ε > 0∃x1, · · · , xk ∈ BE∀α1, · · · , αk ∈ R
(
(1− ε)

k∑
i=1

|αi| ≤ ‖
k∑
i=1

αixi‖
)
.

Finite dimensional normed spaces and uniformly convex Banach spaces are B-convex,

but the Banach spaces `1, `∞ and c0 are not B-convex (see [16]).

Definition 3.2. A Banach space E is said to have Rademacher type q ∈ [1, 2] with

constant Cq if all finite sequences (x1, · · · , xn) in E validate

E(‖
n∑
i=1

εixi‖q)
1
q ≤ Cq(

n∑
i=1

‖xi‖q)
1
q ,

where (εi) is a sequence of independent random variables that take values ±1 with prob-

ability 1
2
, and E represents the expected value.

The Rademacher type of a Banach space is always less than or equal to 2. Pisier [33]

showed that a Banach space E is B-convex iff it has Rademacher type q > 1. Based on

[33], Bruck provided in [10, Theorem 1.1] a simple equivalent form for B-convexity that

may be stated as follows: A Banach space E is B-convex if and only if it has the convex

approximation property:

∀ε > 0∃p ∈ N∗∀M ⊆ B1(0)

(
coM ⊆ cop(M) +Bε(0)

)
. (3.1)
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The proof of [10, Theorem 1.1] (see also [13, Lemma 2.6]) shows that in a B-convex space

E, any p ≥ d(2Cq
ε

)
q
q−1 e validates (3.1), where q is a Rademacher type with constant Cq

for E. Taking

%(ε) := d(2Cq
ε

)
q
q−1 e, (3.2)

it follows that (3.1) is equivalent to having

∀ε > 0∀r > 0∀M ⊆ Br(0)

(
coM ⊆ co%(ε/r)(M) +Bε(0)

)
. (3.3)

Inspired by (3.3), we introduce the following definition.

Definition 3.3. A nonempty bounded subset C of E is said to have the convex approx-

imation property if

∀ε > 0∃p ∈ N∗∀M ⊆ C

(
coM ⊆ cop(M) +Bε(0)

)
. (3.4)

In this case, a function %C : R∗+ → N∗ is a modulus of convex approximation for C, if

∀ε > 0∀M ⊆ C

(
coM ⊆ co%C(ε)(M) +Bε(0)

)
. (3.5)

Remark 3.4. Assume that C is a nonempty bounded subset of a B-convex space E such

that C ⊂ Br(0) for some r > 0. From (3.2) and (3.3), %C(ε) := %(ε/r) is a modulus of

convex approximation for C, depending on r, the Rademacher type q, and the constant

Cq for E.

Remark 3.5. In [14, Theorem 3.1], q and Cq are explicitly determined for uniformly

convex (and even for uniformly nonsquare) Banach spaces. Suppose η is a modulus of

uniform convexity for E, and let δ := η(1) and λ := 1 − δ. Assume that ξ ∈ (0, 1) is

sufficiently small and p′ ∈ [2,∞) is sufficiently large such that:

1− ξ
1 + 2

√
2ξ
≥ 1

2

√
2λ2 + 2 and

1

21/p′
≥ 1− ξ.

Let p satisfy 1 = 1
p

+ 1
p′

. Then, for any q ∈ (1, p), the space E has Rademacher type q

with constant

Cq = 3 · 21/q

2(1/q)−(1/p) − 1
.

Definition 3.6. Let A be a nonempty subset of a metric space (X, d).

(i) [28, Definition 2.1] A function α : N→ N is called a I-modulus of total bounded-

ness for A if for every k ∈ N, there exist elements a0, a1, . . . , aα(k) in X such that

for all x ∈ A, there exists 0 ≤ i ≤ α(k) satisfying d(x, ai) <
1

k+1
.

(ii) [15, Definition 5.2](see also [28, Definition 2.2]) A function β : N→ N is called a

II-modulus of total boundedness for A if for any k ∈ N and for any sequence (xn)

in A, there exist 0 ≤ i < j ≤ β(k) such that d(xi, xj) ≤ 1
k+1

.

Proposition 3.7. [27, Proposition 2.4]
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(i) If α is a I-modulus of total boundedness for A, then β(k) := α(2k + 1) + 1 is a

II-modulus of total boundedness for A.

(ii) If β is a II-modulus of total boundedness for A, then α(k) := β(k) − 1 is a I-

modulus of total boundedness for A.

Lemma 3.8. Let C be a nonempty, compact, convex set with a I-modulus of total bound-

edness α : N → N in a Banach space E. Then C satisfies the following convex approxi-

mation property:

∀k ∈ N∀M ⊆ C

(
coM ⊆ coα(2k)+1M +B1/(k+1/2)(0)

)
. (3.6)

In particular, %C(ε) := α(2d1/εe) + 1 defines a modulus of convex approximation for C.

Proof. Let k ∈ N and M ⊆ C. Then there are a0, a1, . . . , aα(2k) ∈ C such that

∀x ∈ C ∃0 ≤ i ≤ α(2k)

(
‖x− ai‖ <

1

2k + 1

)
.

Let JM := {0 ≤ i ≤ α(2k) : M ∩ B 1
2k+1

(ai) 6= ∅}. Then |JM | ≤ α(2k) + 1. For each

i ∈ JM , we pick some yi ∈ M ∩ B 1
2k+1

(ai). Let u ∈ coM and suppose u =
∑n

j=1 λjuj,

where λj ≥ 0,
∑n

j=1 λj = 1 and uj ∈ M . Thus for each j ∈ {1, 2, . . . , n}, there exists

some ij ∈ JM such that

uj ∈ B 1
2k+1

(aij) ⊆ B 1
k+1/2

(yij).

That is, for each j ∈ {1, 2, . . . , n}, there exists ij ∈ JM such that uj − yij ∈ B 1
k+1/2

(0).

Consequently,

u =
n∑
j=1

λjuj ∈ coα(2k)+1M +B 1
k+1/2

(0).

�

4. Moduli of convex regularity

As previously indicated, establishing (1.1) is a crucial component in utilizing Bruck’s

approach for nonlinear ergodic theorems. To achieve our results, we must examine the

circumstances under which (1.1) is valid and derive a quantitative form of (1.1).

We first recall the notion of the modulus of regularity, which was introduced in [28].

Definition 4.1. Let (X, d) be a metric space and F : X → R be a mapping with zerF =

{x ∈ X : F (x) = 0} 6= ∅. Fixing z ∈ zerF and r > 0, we say that φ : (0,∞)→ (0,∞) is

a modulus of regularity for F w.r.t. zerF and B(z, r) if for all ε > 0 and x ∈ B(z, r) we

have the following:

|F (x)| < φ(ε)⇒ dist(x, zerF ) < ε.

Let C be a closed convex subset of a Banach space E. Consider a mapping T : C → E

with Fix(T ) 6= ∅, and define F : C → R by F (x) = ‖x − Tx‖. Let z ∈ Fix(T ) and

r > 0. A modulus of regularity for T with respect to Fix(T ) and B(z, r) is defined as a

modulus of regularity for F with respect to zerF and B(z, r). If C is locally compact, T
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is continuous, z ∈ Fix(T ), and r > 0, then T has a modulus of regularity with respect

to Fix(T ) and B(z, r) (see [28, Corollary 3.5]). In Example 6.6, a modulus of regularity

is computed for a nonexpansive mapping on a non-compact set.

Given that C is assumed to be bounded throughout this paper, a modulus of regularity

for T : C → E with Fix(T ) 6= ∅ is defined as a function φ : (0,∞)→ (0,∞) satisfying

‖x− Tx‖ < φ(ε)⇒ dist(x, F ix(T )) < ε, (4.1)

for each ε > 0 and x ∈ C.

Lemma 4.2. Let φ : (0,∞) → (0,∞) be a modulus of regularity for a nonexpansive

mapping T : C → E such that Fix(T ) is nonempty and convex. Then, for all ε > 0,

coFφ( ε
2

)(T ) ⊆ Fε(T ).

Proof. Let ε > 0 be given. Consider x1, . . . , xn ∈ C such that ‖xi − Txi‖ < φ( ε
2
), for

i = 1, . . . , n, and λ1, . . . , λn ≥ 0 satisfying
∑n

i=1 λi = 1. By the property of φ in 4.1,

we have dist(xi, F ix(T )) < ε/2, i = 1, . . . , n. Thus we may choose f1, . . . , fn ∈ Fix(T )

such that ‖xi − fi‖ < ε/2, i = 1, . . . , n. Thus, ‖
∑n

i=1 λixi −
∑n

i=1 λifi‖ < ε/2. Given

that Fix(T ) is convex, it follows that
∑n

i=1 λifi ∈ Fix(T ), and consequently
∑n

i=1 λixi ∈
Fix(T ) +Bε/2(0) ⊆ Fε(T ), where the latter inclusion derives from the nonexpansivity of

T . �

The above result shows that the existence of a modulus of regularity implies (1.1) and

provides an explicit quantitative form thereof. In light of this, we introduce the following

definitions for the sake of simplification.

Definition 4.3. (Convex regularity) Suppose that F is a family of nonexpansive map-

pings from C to E. We say that F is uniformly convex regular, if we have

∀ε > 0∃δ > 0∀T ∈ F
(
coFδ(T ) ⊆ Fε(T )

)
. (4.2)

Definition 4.4. (Modulus of convex regularity) Suppose that F is a convex regular

family of nonexpansive mappings from C to E. We say that θ : (0,∞) → (0,∞) is a

modulus of convex regularity for F , if

∀ε > 0∀T ∈ F
(
coFθ(ε)(T ) ⊆ Fε(T )

)
. (4.3)

Remark 4.5. From Lemma 4.2, it follows that θ(t) := φ( t
2
) is a modulus of convex

regularity for F = {T}, where T : C → E is a nonexpansive mapping such that Fix(T )

is nonempty and convex, and φ : (0,∞) → (0,∞) is a modulus of regularity for T with

respect to Fix(T ). It is worth noting that (4.2) (or (4.3)) implies that Fix(T ) is convex.

In the following, a modulus of convex regularity for mappings of type (γ) will be

explicitly computed when either E is B-convex or C is compact. We recall that every

uniformly convex Banach space is B-convex.

The subsequent result establishes a quantitative refinement of [10, Theorem 1.2]. Our

proof differs slightly and provides explicit estimates.
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Lemma 4.6. Suppose that C is a nonempty, bounded, closed, and convex subset of a

Banach space E possessing the convex approximation property with a modulus %C : R∗+ →
N∗. Let γ ∈ Γ. Given ε > 0, define θ(ε) := γ p̃(ε/3p̃+1), where p̃ ∈ N is such that

2p̃ ≥ %C( ε
3
). Then, θ : (0,∞)→ (0,∞) is a modulus of convex regularity for the family of

mappings T : C → E of type (γ).

Proof. Given ε > 0, define σ(ε) := 1
2
γ(2ε

3
). Let T : C → E be a mapping of type (γ).

First, we show that

co2Fσ(ε)(T ) ⊆ Fε(T ). (4.4)

Consider x1, x2 ∈ Fσ(ε)(T ), and 0 ≤ λ ≤ 1. Then

‖λx1 + (1− λ)x2 − T (λx1 + (1− λ)x2)‖

≤ λ‖x1 − Tx1‖+ (1− λ)‖x2 − Tx2‖+ ‖λTx1 + (1− λ)Tx2 − T (λx1 + (1− λ)x2‖

≤ σ(ε) + γ−1(‖x1 − x2‖ − ‖Tx1 − Tx2‖)

≤ σ(ε) + γ−1(‖x1 − Tx1‖+ ‖x2 − Tx2‖)

≤ σ(ε) + γ−1(2σ(ε)) =
1

2
γ(

2ε

3
) + γ−1(γ(

2ε

3
)) ≤ ε

3
+

2ε

3
= ε,

which proves (4.4). Now, by induction, we arrive at

co2pFσp(ε)(T ) ⊆ Fε(T ), (4.5)

for all p ∈ N. Besides, in light of (3.5), we have

∀ε > 0∀M ⊆ C

(
coM ⊆ co%C( ε

3
)(M) +B ε

3
(0)

)
. (4.6)

Let p̃ be such that 2p̃ ≤ %C( ε
3
). Then, using (4.6) and (4.5), we arrive at

coFσp̃(ε/3)(T ) ⊆ co%C( ε
3

)Fσp̃(ε/3)(T ) +B ε
3
(0)

⊆ co2p̃Fσp̃(ε/3)(T ) +B ε
3
(0)

⊆ F ε
3
(T ) +B ε

3
(0) ⊆ Fε(T ).

(4.7)

We note that, due to the convexity of γ, γ(ε/3) ≤ σ(ε), and by induction, θ(ε) :=

γ p̃(ε/3p̃+1) ≤ σp̃(ε/3). From (4.7), we deduce that coFθ(ε)(T ) ⊆ Fε(T ). �

Remark 4.7. From the above proof, we observe that we could also take θ(ε) := σp̃(ε/3)

as a modulus of convex regularity, where σ(ε) := 1
2
γ(2ε

3
).

Lemma 4.8. Suppose that C ⊂ Bb/2(0) is a nonempty, closed, and convex subset of a

B-convex space E. Let % be defined as in (3.2) and let γ ∈ Γ. Given ε > 0, define

θ(ε) := γ p̃(ε/3p̃+1), where p̃ ∈ N is such that 2p̃ ≥ %(2ε
3b

). Then, θ : (0,∞) → (0,∞) is a

modulus of convex regularity for the family of mappings T : C → E of type (γ).

Proof. Since E is B-convex, we can define %C(ε) := %( ε
(b/2)

). By Remark 3.4, it then

follows that %C is a modulus of convex approximation for C, and it is enough to apply

Lemma 4.6 to conclude the result. �
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The following is a direct consequence of the preceding lemma.

Lemma 4.9. Suppose that C ⊂ Bb/2(0) is a nonempty, bounded, closed, and convex

subset of a uniformly convex Banach space E with a modulus η. Given ε > 0, define

γ(ε) := b
2
η̃(4ε

b
), and θ(ε) := γ p̃(ε/3p̃+1), where p̃ ∈ N is such that (2p̃)

1−q
q Cq ≤ ε

3b
, and q

is a Rademacher type with constant Cq for E (q and Cq can be determined in terms of η,

as noted in Remark 3.5). Then, θ is a modulus of convex regularity for the family of all

nonexpansive mappings from C to E.

Proof. Given that uniformly convex Banach spaces are B-convex, and since by Remark

2.2 every nonexpansive mapping from C to E is of type (γ), it suffices to use Lemma 4.8,

considering %(ε) := d(2Cq
ε

)
q
q−1 e. �

Remark 4.10. In lemma 4.9, due to (2.2), we can replace γ(ε) with its lower bound

function ε
2
η(min{2, ε

b
}), using the monotonicity of γ.

Lemma 4.11. Let C be a nonempty, compact and convex set with a I-modulus of total

boundedness α in a Banach space E, and let γ ∈ Γ. Given ε > 0, define θ(ε) :=

γ p̃(ε/3p̃+1), where p̃ ∈ N is such that 2p̃ ≥ α(2d3/εe) + 1. Then, θ is a modulus of convex

regularity for the family of mappings T : C → E of type (γ).

Proof. We deduce from Lemma 3.8 that %C(ε) := α(2d1/εe) + 1 defines a modulus of

convex approximation for C. Therefore, by using Lemma 4.6, we conclude the desired

result. �

5. Rates of asymptotic regularity for Cesàro means

Definition 5.1. Let (X, d) be a metric space and F : X → R be a mapping. (xn) ⊆ X

is said to be a sequence of approximate zeros of F if limn F (xn) = 0. In particular, if

F (x) = d(x, Tx), where T : X → X, then a sequence (xn) of approximate zeros of F is

said to be asymptotically regular and a rate of convergence of (d(xn, Txn)) to 0 is called

a rate of asymptotic regularity for (xn). See [21, p. 458].

The subsequent summation formula is well-known. However, we provide a concise proof

for completeness.

Lemma 5.2. For each sequence (yn) in E, and m,n ∈ N∗, we have

1

n

n−1∑
i=0

yi =
1

n

n−1∑
i=0

1

m

m−1∑
j=0

yj+i +
1

nm

m−1∑
i=1

(m− i)(yi−1 − yn+i−1).

Proof. First note that for all j ∈ N,

n−1∑
i=0

(yi − yi+j) =

j∑
i=1

(yi−1 − yn+i−1).
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Then,

1

n

n−1∑
i=0

(yi −
1

m

m−1∑
j=0

yj+i) =
1

n

n−1∑
i=0

(
1

m

m−1∑
j=0

(yi − yi+j)) =
1

nm

m−1∑
j=1

n−1∑
i=0

(yi − yi+j)

=
1

nm

m−1∑
j=1

j∑
i=1

(yi−1 − yi+n−1) = (y0 − yn) +
(
(y0 − yn) + (y1 − yn+1)

)
+ · · ·+

+
(
(y0 − yn) + (y1 − yn+1) + · · ·+ (yj−1 − yn+j−1)

)
+ · · ·

+
(
(y0 − yn) + (y1 − yn+1) + · · ·+ (ym−2 − yn+m−2)

)
=

1

nm

m−1∑
j=1

(m− j)(yj−1 − yn+j−1),

which is the desired equality. �

We require the following lemma.

Lemma 5.3. For any sequence {wi} in C ⊆ B b
2
(0), any nonexpansive T : C → E, any

n ∈ N∗, and every 0 < ε ≤ 1,

1

n

n−1∑
i=0

‖wi − Twi‖ ≤ ε2

implies that

1

n

n−1∑
i=0

wi ∈ coFε(T ) +Bεb(0).

Proof. Put I := {i| 0 ≤ i ≤ n − 1, wi ∈ Fε(T )} and J := {0, 1, 2, . . . , n − 1} \ I. Note

that by assumption I 6= ∅ since ε2 ≤ ε ≤ 1. On the other hand, if J = ∅ the proof is

complete. So, let J 6= ∅ and note that

|J |ε
n

<
1

n

n−1∑
i=0

‖wi − Twi‖ ≤ ε2 ⇒ |J |
n
< ε.

Fix k0 ∈ I and write

1

n

n−1∑
i=0

wi =
1

n

∑
i∈I

wi +
1

n

∑
j∈J

wj

=

(
(
∑
i∈I

1

n
wi) +

|J |
n
wk0

)
+

(
1

n

∑
j∈J

(wj − wk0)

)
.

But
1

n

∑
j∈J

(wj − wk0) ≤ |J |
n
b < εb.

Thus

1

n

n−1∑
i=0

wi ∈ coFε(T ) +Bεb(0).

�
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Lemma 5.4. (cf. [14, Lemma 4.1]) For γ ∈ Γ and q̃ : [0,∞) → [0,∞) with q̃(t) =

γ−1(3t) + t, we have

0 < δ ≤ γp(
t

4p
)⇒ q̃p(δ) ≤ t.

Proof. For p = 1:

q̃(δ) ≤ q̃(γ(
t

4
)) = γ−1(3γ(

t

4
)) + γ(

t

4
) ≤ γ−1(γ(

3t

4
)) + γ(

t

4
) ≤ 3t

4
+
t

4
= t.

Now we may apply induction. �

Lemma 5.5. ([14, Lemma 4.2]) For qn(δ) := γ−1(2δ + b
n
) + δ, it holds

n ≥ b

δ
⇒ qpn(δ) ≤ q̃p(δ), ∀p ∈ N.

The following property is mentioned in the proof of [10, Theorem 3.1]; since the proof

is not included explicitly there, we provide a proof here for completeness.

Lemma 5.6. Suppose that γ ∈ Γ and C ⊂ Bb/2(0) is a nonempty and convex subset of a

Banach space E. Let T : C → E be a mapping of type (γ), and let {yi} be a sequence in

C. Put wpi = 1
p

∑p−1
j=0 yj+i, for p ∈ N∗. Then, we have

∀δ > 0∀n ∈ N∀p ∈ N∗(
∀i ∈ [0, p+ n− 2](‖yi+1 − Tyi‖ ≤ δ)→ 1

n

n−1∑
i=0

‖wpi+1 − Tw
p
i ‖ ≤ qn

p−1(δ)

)
,

(5.1)

where qn(δ) := γ−1(2δ + b
n
) + δ.

Proof. Let δ > 0 and n ∈ N. The proof is by induction on p. The base case, p = 1, is

readily verified. Assume that the assertion (5.1) is true for p. We will then demonstrate

its validity for p + 1. Let ‖yi+1 − Tyi‖ ≤ δ for any i ∈ [0, (p + 1) + n − 2]. Since

wp+1
i = p

p+1
wpi + 1

p+1
yp+i for all i, we have by the induction hypothesis and the convexity



EFFECTIVE RATES FOR NONLINEAR ERGODIC AVERAGES 15

and increasing property of γ,

1

n

n−1∑
i=0

‖wp+1
i+1 − Tw

p+1
i ‖ ≤

1

n

n−1∑
i=0

‖ p

p+ 1
Twpi +

1

p+ 1
Typ+i − Twp+1

i ‖

+
1

n

n−1∑
i=0

p

p+ 1
‖wpi+1 − Tw

p
i ‖+

1

n

n−1∑
i=0

1

p+ 1
‖yp+i+1 − Typ+i‖

≤ 1

n

n−1∑
i=0

‖ p

p+ 1
Twpi +

1

p+ 1
Typ+i − T (

p

p+ 1
wpi +

1

p+ 1
yp+i)‖+ qn

p−1(δ)

≤ 1

n

n−1∑
i=0

γ−1(‖wpi − yp+i‖ − ‖Tw
p
i − Typ+i‖) + qn

p−1(δ)

≤ γ−1(
1

n

n−1∑
i=0

(‖wpi − yp+i‖ − ‖Tw
p
i − Typ+i‖)) + qn

p−1(δ) (since γ−1 is concave)

≤ γ−1(
1

n

n−1∑
i=0

(‖wpi − yp+i‖ − ‖w
p
i+1 − yp+i+1‖)

+
1

n

n−1∑
i=0

(‖wpi+1 − Tw
p
i ‖+ ‖yp+i+1 − Typ+i‖)) + qn

p−1(δ)

≤ γ−1(
1

n
(‖wp0 − yp‖ − ‖wpn − yp+n‖) +

1

n

n−1∑
i=0

‖wpi+1 − Tw
p
i ‖+ δ) + qn

p−1(δ)

≤ γ−1(
b

n
+ qn

p−1(δ) + δ) + qn
p−1(δ) ≤ γ−1(

b

n
+ 2qn

p−1(δ)) + qn
p−1(δ) = qn

p(δ).

�

Theorem 5.7. Suppose that γ ∈ Γ and C ⊂ Bb/2(0) is a nonempty, closed and convex

subset of a Banach space E. Let F be a family of nonexpansive mappings from C to E

of type (γ) and suppose that θ : (0,∞)→ (0,∞) is a modulus of convex regularity for F .

Then, we have

∀ε > 0 ∀T ∈ F ∀(yi) ⊂ C∀n ≥ ϕ̃(ε, γ, b, θ)(
∀i ∈ [0;n+ p− 2]

(
‖yi+1 − Tyi‖ ≤ ∆(ε)

)
→ ‖ 1

n

n−1∑
i=0

yi − T (
1

n

n−1∑
i=0

yi)‖ ≤ ε

)
,

(5.2)

where ∆(ε) := min{ ε
3
, γp−1(2τ(ε)2

4p
)}, p := d 2b

τ(ε)2 e, τ(ε) := min{θ( ε
3
), ε

6b
, 1}, and

ϕ(ε, γ, b, θ) := max{d b

∆(ε)
e, d p

τ(ε)
e}.

Proof. Given ε > 0, let δ := ∆(ε), where ∆(ε), p and τ(ε) are defined as above. Since

δ ≤ γp−1(2τ(ε)2

4p
), Lemma 5.4 implies that q̃p−1(δ) ≤ τ(ε)2

2
. Fix some n ≥ ϕ(ε, γ, b, θ). Then

n ≥ b
δ

and hence in view of Lemma 5.5, we have qn
p−1(δ) ≤ τ(ε)2

2
. Let T : C → E be a

mapping of type (γ) in F , and let {yn} be a sequence in C such that ‖yi+1 − Tyi‖ ≤ δ
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for any i ∈ [0;n + p− 2]. It suffices to prove that ‖ 1
n

∑n−1
i=0 yi − T ( 1

n

∑n−1
i=0 yi)‖ ≤ ε. Put

wi = 1
p

∑p−1
j=0 yj+i. Using Lemma 5.6, we get

1

n

n−1∑
i=0

‖wi+1 − Twi‖ ≤ qn
p−1(δ) ≤ τ(ε)2

2
.

Given that ‖wi+1 − wi‖ ≤ b
p
≤ τ(ε)2

2
, we obtain

1

n

n−1∑
i=0

‖wi − Twi‖ ≤
b

p
+ qn

p−1(δ) ≤ τ(ε)2.

Since τ(ε) ≤ 1, by Lemma 5.3, we have

1

n

n−1∑
i=0

wi ∈ coFτ(ε)(T ) +Bτ(ε)b(0) ⊆ coFτ(ε)(T ) +B ε
6
(0).

Now, by Lemma 5.2, we write

1

n

n−1∑
i=0

yi =
1

n

n−1∑
i=0

wi +
1

np

p−1∑
i=1

(p− i)(yi−1 − yn+i−1). (5.3)

Since

‖ 1

np

p−1∑
i=1

(p− i)(yi−1 − yn+i−1)‖ ≤ p− 1

2n
b ≤ pb

2ϕ(ε, γ, b, θ)
≤ τ(ε)b

2
≤ ε

12
,

utilizing (5.3), we obtain

1

n

n−1∑
i=0

yi ∈ coFτ(ε)(T ) +B ε
6
(0) +B ε

12
(0) ⊆ coFτ(ε)(T ) +B ε

3
(0)

⊆ coFθ( ε
3

)(T ) +B ε
3
(0) ⊆ F ε

3
(T ) +B ε

3
(0) ⊆ Fε(T ).

This completes the proof. �

Remark 5.8. In the above proof, our aim was to show ‖ 1
n

∑n−1
i=0 yi−T ( 1

n

∑n−1
i=0 yi)‖ ≤ ε.

Now, if F consists of self-mappings on C, then without lose of generality, we could assume

by stipulating that for i ≥ n − 1, yi := T i−n+1(yn−1), i.e. yi+1 = Tyi. Therefore, in this

case, we may replace “∀i ∈ [0;n+ p− 2]” with “∀i ∈ [0;n− 1]” in (5.2).

Remark 5.9. With the same assumptions as in Theorem 5.7, if moreover the mappings

in F are self-mappings on C, then we may assume that ε ≤ b, since for ε > b the

conclusion of Theorem 5.7 trivially holds for any n. For ε ≤ b, we find that

τ(ε) = min{θ(ε
3

),
ε

6b
, 1} = min{θ(ε

3
),
ε

6b
}. (5.4)

Lemma 5.10. With the same assumptions as in Theorem 5.7, if moreover the mappings

in F are self-mappings on C, then the same result holds with τ(ε) being replaced with

τ̃(ε) := min{θ( ε
3
), ε

6b
, ε}, and when this occurs, we have ϕ(ε, γ, b, θ)= d b

∆(ε)
e.
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Proof. We note that the conclusion of Theorem 5.7 holds with τ(ε) being replaced with

any 0 < δ ≤ τ(ε), since γ(t) ≤ t for all t ≥ 0. Since we consider self-mappings on C, we

have by (5.4), τ̃(ε) ≤ τ(ε), for ε ≤ b. On the other hand, since τ̃(ε) ≤ ε, we have

∆(ε) ≤ γp−1(
2τ̃(ε)2

4p
) ≤ 2τ̃(ε)2

4p
≤ 2ετ̃(ε)

4p
≤ ετ̃(ε)

p
,

and thus

b

∆(ε)
≥ b

ε
(
p

τ̃(ε)
) ≥ p

τ̃(ε)
.

Therefore, ϕ(ε, γ, b, θ) = max{d b
∆(ε)
e, d p

τ̃(ε)
e} = d b

∆(ε)
e. �

We now extend the main result of [14] as a corollary of Theorem 5.7.

Corollary 5.11. (See [14, Theorem 4.1]) Let E be a uniformly convex Banach space with

a modulus η, and define γ(t) := b
2
η̃(4t

b
). Given t > 0, define θ(t) := γ p̃(t/3p̃+1), where

p̃ ∈ N is such that (2p̃)
1−q
q Cq ≤ t

3b
, and q is a Rademacher type with constant Cq for E.

With these explicit θ and γ, define τ̃(ε) := min{θ( ε
3
), ε

6b
}, ∆(ε) := min{ ε

3
, γp−1(2τ̃(ε)2

4p
)},

p := d 2b
τ̃(ε)2 e, and ϕ(ε, γ, b, θ)= d b

∆(ε)
e. Then for the family F of nonexpansive map-

pings from C to C, (5.2) holds. We may replace γ(ε) with its lower bound function
ε
2
η(min{2, ε

b
}) in definitions of θ and ∆.

Proof. Since E is uniformly convex, by Remark 2.2 every nonexpansisve mapping on C

is of type (γ) for γ(t) := b
2
η̃(4t

b
). Moreover, Lemma 4.9 shows that the defined θ is a

modulus of convex regularity for nonexpansive mappings on C. Since the mappings in F
are from C into C, we can apply Lemma 5.10 to deduce (5.2) for τ̃(ε) = min{θ( ε

3
), ε

6b
, ε}

instead of τ(ε), and ϕ(ε, γ, b, θ)= d b
∆(ε)
e. We note also that in this case the inequality

θ(ε) = γ p̃(ε/3p̃+1) ≤ ε implies that τ̃(ε) = min{θ( ε
3
), ε

6b
}. �

Remark 5.12. In Corollary 5.11, if we choose ε ∈ (0, 1], and enlarge the defined p̃

for θ(ε/3) = γ p̃( ε/3
3p̃+1 ) sufficiently large such that Cqp̃

(1−q)/q ≤ ε
6b

, then we may write

τ̃(ε) = θ(ε/3). In fact, since the elements of F are self-mappings, we may assume that

ε ≤ b, and then

θ(ε/3) = γ p̃(
ε/3

3p̃+1
) ≤ ε/3

3p̃+1
≤ 3−p̃ ≤ p̃−

1
2 ≤ p̃

1−q
q ≤ Cqp̃

1−q
q ≤ ε

6b
.

That is, τ̃(ε) = min{θ( ε
3
), ε

6b
} = θ( ε

3
).

We now state the main result of this section.

Theorem 5.13. Suppose that γ ∈ Γ and C ⊂ Bb/2(0) is a nonempty, closed and convex

subset of a Banach space E. Let F be a family of nonexpansive mappings from C to E

of type (γ) and suppose that θ : (0,∞)→ (0,∞) is a modulus of convex regularity for F .
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Then, we have

∀ε > 0 ∀M ∈ N ∀T ∈ F ∀(xi) ⊆ C ∀n ≥ Φ̃(ε, γ, b, θ,M)(
∀i ∈ [M ;M + n+ p̂− 2]

(
‖xi+1 − Txi‖ ≤ ∆̂(ε)

)
→ ‖ 1

n

n∑
i=1

xi − T (
1

n

n∑
i=1

xi)‖ ≤ ε

)
,

(5.5)

where ∆̂(ε) := min{ ε
6
, γ p̂−1(2τ̂(ε)2

4p̂
)}, p̂ := d 2b

τ̂(ε)2 e, τ̂(ε) := min{θ( ε
6
), ε

12b
, 1}, and

Φ̃(ε, γ, b, θ,M) := max{d b

∆̂(ε)
e, d p̂

τ̂(ε)
e, d4(M − 1)b

ε
e}.

Remark 5.14. Theorem 5.13 includes the case where a sequences (xn) satisfies ‖xn+1−
Txn‖ → 0. In fact, if A : (0,∞)→ N is a convergence rate for ‖xn+1− Txn‖ → 0, it just

suffices to take M := A(∆̂(ε)).

Proof. Given ε > 0, M ∈ N, T ∈ F and n ≥ Φ̃(ε, γ, b, θ,M), let (xi) be a sequence

in C such that ‖xi+1 − Txi‖ ≤ ∆̂(ε) for each i ∈ [M ;M + n + p̂ − 2]. Our aim is

to show ‖ 1
n

∑n
i=1 xi − T ( 1

n

∑n
i=1 xi)‖ ≤ ε. Set yi := xM+i. From Theorem 5.7, since

∆̂(ε) = ∆(ε/2), τ̂(ε) = τ(ε/2), Φ̃(ε, γ, b, θ,M) ≥ ϕ(ε/2, γ, b, θ), and

‖yi+1 − Tyi‖ = ‖xM+i+1 − TxM+i‖ ≤ ∆̂(ε),

for all i ∈ [0;n+ p̂− 2], we deduce

‖ 1

n

n+M−1∑
i=M

xi − T (
1

n

n+M−1∑
i=M

xi)‖ = ‖ 1

n

n−1∑
i=0

yi − T (
1

n

n−1∑
i=0

yi)‖ ≤
ε

2
.

Using this, along with n ≥ Φ̃(ε, γ, b, θ,M) ≥ d4(M−1)b
ε
e, we obtain

‖ 1

n

n∑
i=1

xi − T (
1

n

n∑
i=1

xi)‖

= ‖( 1

n

n+M−1∑
i=1

xi −
1

n

n+M−1∑
i=n+1

xi)− T (
1

n

n+M−1∑
i=M

xi) + T (
1

n

n+M−1∑
i=M

xi)− T (
1

n

n∑
i=1

xi)‖

≤ ‖ 1

n

M−1∑
i=1

xi −
1

n

n+M−1∑
i=n+1

xi‖+ ‖ 1

n

n+M−1∑
i=M

xi − T (
1

n

n+M−1∑
i=M

xi)‖

+ ‖T (
1

n

n+M−1∑
i=M

xi)− T (
1

n

n∑
i=1

xi)‖ ≤
(M − 1)b

n
+
ε

2
+ ‖ 1

n

n+M−1∑
i=M

xi −
1

n

n∑
i=1

xi‖

=
(M − 1)b

n
+
ε

2
+ ‖ 1

n

n+M−1∑
i=n+1

xi −
1

n

M−1∑
i=1

xi‖ ≤
(M − 1)b

n
+
ε

2
+

(M − 1)b

n

=
2(M − 1)b

n
+
ε

2
≤ ε

2
+
ε

2
= ε.

�
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Remark 5.15. If F consists of self-mappings on C, then in view of Remark 5.8, we may

replace “∀i ∈ [M ;M + n+ p̂− 2]” with “∀i ∈ [M ;n− 1]” in (5.5).

As a direct corollary, we obtain the following qualitative result which generalizes [10,

Corollary 1.2].

Corollary 5.16. Assume that C is a bounded, closed, and convex subset of a Banach

space E, T : C → E is of type (γ), and (xn) is a sequence in C with ‖xn+1 − Txn‖ → 0.

If {T} is convex regular, then limn ‖ 1
n

∑n
i=1 xi+k − T ( 1

n

∑n
i=1 xi+k)‖ = 0, uniformly in

k ∈ N.

Remark 5.17. It is worth reiterating that the modulus θ : (0,∞)→ (0,∞) in Theorem

5.13 may be computed depending on the parameters and moduli specific to the situation

at hand:

(i) If, additionally, E is B-convex, then, in view of Lemma 4.8, θ : (0,∞) → (0,∞)

can be explicitly defined by θ(ε) := γ p̃(ε/3p̃+1), where p̃ ∈ N is such that 2p̃ ≥
%(2ε

3b
), and % is defined as in (3.2).

(ii) If E is a uniformly convex Banach space with a modulus η, then, by Lemma

4.9, defining γ(ε) := b
2
η̃(4ε

b
), and θ(ε) := γ p̃(ε/3p̃+1), where p̃ ∈ N is such that

(2p̃)
1−q
q Cq ≤ ε

3b
, and q is a Rademacher type with constant Cq for E (see Remark

3.5), θ is a modulus of convex regularity for the family of all nonexpansive map-

pings from C to E.

(iii) If C is compact with a I-modulus of total boundedness α in a Banach space E,

then by Lemma 4.11, a modulus θ can be computed as θ(ε) := γ p̃(ε/3p̃+1), where

p̃ ∈ N is such that 2p̃ ≥ α(2d3/εe) + 1.

(iv) For a nonexpansive T : C → E with Fix(T ) 6= ∅ admitting a modulus of regularity

φ with respect to Fix(T ), we can define θ(ε) = φ( ε
2
) due to Lemma 4.2.

By the item (ii) of the above, we get the following result, where the mapping γ is

computed in terms of the other data.

Corollary 5.18. Let E be a uniformly convex Banach space with a modulus η, and define

γ(t) := b
2
η̃(4t

b
). Define θ(t) := γ p̃(t/3p̃+1), where p̃ ∈ N is such that (2p̃)

1−q
q Cq ≤ t

3b
, and

q is a Rademacher type with constant Cq for E (defined in Remark 3.5 in terms of η(1)).

With these explicit θ and γ, (5.5) holds for the family F of all nonexpansive mappings

from C to E.

As mentioned in Remark 4.10, we can replace γ(ε) in Corollary 5.18 with its lower

bound function ε
2
η(min{2, ε

b
}).



20 ULRICH KOHLENBACH† AND SHAHRAM SAEIDI‡

Remark 5.19. With the same assumptions as in Theorem 5.13, if moreover the mappings

in F are from C into C, then, using the idea of Lemma 5.10, the assertion (5.5) holds for

τ̂(ε) := min{θ( ε
6
), ε

12b
, ε

2
} and Φ̃(ε, γ, b, θ,M) := max{d b

∆̂(ε)
e, d4(M−1)b

ε
e}.

In view of the above remark, we deduce the following result:

Corollary 5.20. Let E be a strictly convex Banach space, and let C ⊆ Bb/2(0) be a

compact, convex set, and let F be the family of nonexpansive mappings from C into C.

Define γ : R+ → R+ as in Lemma 2.3. Let α be a I-modulus of total boundedness for

C, and define θ : (0,∞) → (0,∞) by θ(t) := γ p̃(t/3p̃+1), where p̃ ∈ N is such that

2p̃ ≥ α(2d3/te) + 1. Then, given ε > 0, (5.5) holds for ∆̂(ε) := min{ ε
6
, γ p̂−1(2τ̂(ε)2

4p̂
)},

p̂ := d 2b
τ̂(ε)2 e, τ̂(ε) := min{θ( ε

6
), ε

12b
, ε

2
}, and

Φ̃(ε, γ, b, θ,M) := max{d b

∆̂(ε)
e, d4(M − 1)b

ε
e}.

Proof. Since C is compact and E is strictly convex, by Lemma 2.3, every nonexpansive

T : C → C is of type (γ) for a fixed γ ∈ Γ. Now it suffices to combine Theorem 5.13 with

Remark 5.19 and Lemma 4.11. �

At this stage, we present some applications of the above ergodic results in studying

the ergodic properties of sequences generated by known iterative methods. The following

result involves both the Halpern and Mann iteration methods.

Proposition 5.21. Let b, b′, b′′ > 0. Suppose that γ ∈ Γ, C ⊆ Bb/2(0) is a nonempty

closed convex subset of a Banach space E, and θ : (0,∞) → (0,∞) is a modulus of

convex regularity for a family F of mappings of type (γ) from C to E. Let {αn} ⊆ [0, 1]

converging to 0 with a rate A. Given ε > 0, let

Φ̃(ε, γ, b, θ, A(
∆̂(ε)

(b′′ + b′ + b)
)) := max{d b

∆̂(ε)
e, d p̂

τ̂(ε)
e, d

4(A( ∆̂(ε)
(b′′+b′+b)

)− 1)b

ε
e}, (5.6)

where ∆̂(ε) := min{ ε
6
, γ p̂−1(2τ̂(ε)2

4p̂
)}, p̂ := d 2b

τ̂(ε)2 e, and τ̂(ε) := min{θ( ε
6
), ε

12b
, 1}.

Then, for every T in F satisfying dist(0, T (C)) < b′, and every (xn) ⊂ C satisfying

xn+1 = (1− αn)Txn + αnyn, (5.7)

where (yn) is an arbitrary sequence in Bb′′(0), we have

∀n ≥ Φ̃(ε, γ, b, θ, A(
∆̂(ε)

(b′′ + b′ + b)
))

(
‖ 1

n

n∑
i=1

xi − T (
1

n

n∑
i=1

xi)‖ ≤ ε

)
. (5.8)

Proof. Let dist(0, T (C)) < b′. Then, we may choose some p ∈ T (C) such that ‖T (p)‖ < b′.

We note that for n ≥ A(∆̂(ε)/(b′′ + b′ + b)), we have

‖xn+1 − Txn‖ = αn‖yn − Txn‖ ≤ αn(‖yn‖+ ‖Tp‖+ ‖Tp− Txn‖)

≤ αn(b′′ + b′ + b) ≤ ∆̂(ε)

(b′′ + b′ + b)
(b′′ + b′ + b) = ∆̂(ε).

(5.9)

The result follows now from Theorem 5.13. �
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Let E be uniformly convex Banach space with a modulus η. Let T : E → E be a

nonexpansive mapping with Fix(T ) 6= ∅, and let f : E → E be a contraction with

coefficient 0 < ` < 1. Let {αn} ⊆ [0, 1] converge to 0 with a rate A, and let (xn) be

generated under the Moudafi viscosity version of Halpern’s iteration

xn+1 = (1− αn)Txn + αnf(xn), (5.10)

x0 ∈ E. We demonstrate that (5.10) constitutes a special case of (5.7). Fix some

p0 ∈ Fix(T ). We observe that

‖xn+1 − p0‖ ≤ (1− αn)‖xn − p0‖+ αn‖f(xn)− f(p0)‖+ αn‖f(p0)− p0‖

≤ (1− αn(1− `))‖xn − p0‖+ αn(1− `)‖f(p0)− p0‖
1− `

≤ max{‖xn − p0‖,
‖f(p0)− p0‖

1− `
}.

Then, it is easy to show by induction that for all n ∈ N,

‖xn − p0‖ ≤ max{‖x0 − p0‖,
‖f(p0)− p0‖

1− `
} = L. (5.11)

In particular,

‖f(xn)‖ ≤ ‖f(xn)− f(p0)‖+ ‖f(p0)‖

≤ `‖xn − p0‖+ ‖f(p0)‖ ≤ `L+ ‖f(p0)‖

≤ `L+ (1− `)L+ ‖p0‖ = L+ ‖p0‖.

Thus, for b ≥ 2(L + ‖p0‖), the sequences (f(xn)) and (xn) are clearly contained in

Bb/2(0). We take C := Bb/2(0). Since the fixed point p0 belongs to C, we have also

dist(0, T (C)) ≤ b/2. Now, considering T |C : C → E, we observe that (5.10) is a specific

case of (5.7). Since E is uniformly convex, defining γ(t) := b
2
η̃(4t

b
), and θ(t) := γ p̃(t/3p̃+1),

where p̃ ∈ N is such that (2p̃)
1−q
q Cq ≤ t

3b
, and q is a Rademacher type with constant Cq

for E (see Remark 3.5), it follows by Lemma 4.9 that T |C : C → E is of type (γ) and θ

is a modulus of convex regularity for the family of all nonexpansive mappings from C to

E. Therefore, applying Proposition 5.21, we conclude that the statement (5.8) holds for

the Halpern iteration (5.10) with the bound defined in (5.6), where here b′ = b′′ = b/2.

Therefore, we have obtained a rate of asymptotic regularity for the ergodic averages

of (xn) generated by Halpern’s method, under the sole condition αn → 0 on (αn). We

recall that two necessary conditions on (αn) for convergence of Halpern’s method are

αn → 0 and
∑
αn = ∞, and these conditions are not even sufficient to guarantee the

convergence.

For mappings from C into C, in view of Remark 5.19, we may obtain the following

corollary of Proposition 5.21:

Corollary 5.22. Suppose that γ ∈ Γ, C ⊆ Bb/2(0) is a nonempty closed convex subset

of a Banach space E, and θ : (0,∞) → (0,∞) is a modulus of convex regularity for a
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family F of self-mappings of type (γ) on C. Let {αn} ⊆ [0, 1] converging to 0 with a rate

A. Given ε > 0, let

Φ̃(ε, γ, b, θ, A(
∆̂(ε)

b
)) := max{d b

∆̂(ε)
e, d

4(A( ∆̂(ε)
b

)− 1)b

ε
e},

where ∆̂(ε) := min{ ε
6
, γ p̂−1(2τ̂(ε)2

4p̂
)}, p̂ := d 2b

τ̂(ε)2 e, and τ̂(ε) := min{θ( ε
6
), ε

12b
, ε

2
}.

Then, for every T in F , each arbitrary sequence (yn) ⊂ C, and x0 ∈ C, defining (xn)

by

xn+1 = (1− αn)Txn + αnyn, (5.12)

we have

∀n ≥ Φ̃(ε, γ, b, θ, A(
∆̂(ε)

b
))

(
‖ 1

n

n∑
i=1

xi − T (
1

n

n∑
i=1

xi)‖ ≤ ε

)
.

6. Cauchy Rates of Cesàro means

Theorem 6.1. Suppose γ ∈ Γ, C ⊆ Bb/2(0) is a nonempty, closed, and convex subset of

a Banach space E, T : C → C is a nonexpansive mapping with Fix(T ) 6= ∅, and T n is of

type (γ) for all n. Let φ : (0,∞) → (0,∞) be a modulus of regularity for T with respect

to Fix(T ). Then, we have

∀ε > 0∀x ∈ C∀g, h :N→ N∃N ≤ Φ̃(ε, b, h, g, φ, γ)∀m,n ∈ [N ;N + g(N)]∀k ≤ h(N)

(
‖ 1

n

n−1∑
i=0

T i+kx− 1

m

m−1∑
i=0

T i+kx‖ ≤ ε
)
,

where Φ̃(ε, b, h, g, φ, γ) = Φ(f̃ , k̃, c̃) + ũ(Φ(f̃ , k̃, c̃)), Φ(f̃ , k̃, c̃) := f̃ (c̃·2k̃+1)(0), ũ(n) :=

d4(n0−1)b
ε
e+d8nb

ε
e, n0 := ϕ(φ( ε

9
), γ, b, θ), θ(t) := φ( t

2
), f(n) := max{(g+h)(n), (g+h)(n+

ũ(n))}+ ũ(n), k̃ = max{0, d− ln(γn0( ε
8
))/ ln(2)e}, f̃(n) := n+f(n), c̃ := d bn0(n0−1)

2
e, (γn)

is defined by recursion as in (2.9) or (2.8), ϕ(t, γ, b, θ) = d b
∆(t)
e, ∆(t) := min{ t

3
, γp−1(2τ̃(t)2

4p
)}

for p := d 2b
τ̃(t)2 e, and τ̃(t) := min{θ( t

3
), t

6b
, t}.

In particular, the Cesàro means 1
n

∑n−1
i=0 T

i+kx converge strongly and uniformly in k ∈
N. Moreover, this limit is a fixed point of T which does not depend on k.

Proof. Given ε > 0, in view of Theorem 5.7, Lemmas 5.10 and 4.2, for n0 := ϕ(φ( ε
9
), γ, b, θ),

where θ(t) := φ( t
2
), we have for all x ∈ C and k ∈ N,

‖ 1

n0

n0−1∑
j=0

T j+kx− T (
1

n0

n0−1∑
j=0

T j+kx)‖ ≤ φ(
ε

9
). (6.1)

Now, let g, h : N→ N be given. Define

ũ(n) := d4(n0 − 1)b

ε
e+ d8nb

ε
e,

and f(n) := max{(g+ h)(n), (g+ h)(n+ ũ(n))}+ ũ(n). Choose k̃ ∈ N with 2−k̃ ≤ γn0( ε
8
)

(e.g., k̃ = max{0, d− ln(γn0( ε
8
))/ ln(2)e}). Define f̃(n) := n+ f(n), c̃ := d bn0(n0−1)

2
e, and

Φ(f̃ , k̃, c̃) := f̃ (c̃·2k̃+1)(0).
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Now let x ∈ C and define αj,j̃,n := ‖T j̃+nx− T j+nx‖ and an :=
∑n0−1

j,j̃=0
αj,j̃,n. Obviously,

(an) is nonincreasing and for all n, we have an ≤ bn0(n0−1)
2

≤ c̃. Moreover, it is easy to

check that

∀m,n
(
m ≥ n→ max

0≤j,j̃≤n0−1
(αj,j̃,n − αj,j̃,m) ≤ an − am

)
. (6.2)

Using the metastability of bounded monotone sequences (see, [21, corollary 2.28 ]), we

have

∃Ñ ≤ Φ(f̃ , k̃, c̃)∀n,m ∈ [Ñ ; Ñ + f(Ñ)]
(
|an − am| < 2−k̃ ≤ γn0(

ε

8
)
)
. (6.3)

Taking N := Ñ + ũ(Ñ), we note that Ñ ≤ N and

Ñ + f(Ñ) = Ñ + ũ(Ñ) + (h+ g)(Ñ + ũ(Ñ)) = N + (h+ g)(N).

That is,

[N ;N + h(N) + g(N)] ⊆ [Ñ ; Ñ + f(Ñ)]. (6.4)

Then, N = Ñ+ũ(Ñ) ≤ Φ̃(ε, b, h, g, φ, γ) := Φ(f̃ , k̃, c̃)+ũ(Φ(f̃ , k̃, c̃)), since ũ is monotone.

Using the definition of the modulus of regularity φ in (6.1) for k = Ñ , we choose f0 ∈
Fix(T ) such that

‖ 1

n0

n0−1∑
j=0

T j+Ñx− f0‖ ≤
ε

8
. (6.5)

From Lemma 5.2, we may write for all k ∈ N and n ∈ N∗,

1

n

n−1∑
i=0

T i+kx =
1

n

n−1∑
i=0

1

n0

n0−1∑
j=0

T j+i+kx+
1

nn0

n0−1∑
i=1

(n0 − i)(T i+k−1x− T n+i+k−1x).
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Then, for any n ∈ [N ;N + g(N)] and k ∈ [0;h(N)], we have by (6.2) and (6.5), and

Lemma 2.5 applied to T i+k−Ñ , λi := 1/n0 and xj := T j+Ñx,

‖ 1

n

n−1∑
i=0

T i+kx− f0‖ = ‖ 1

n

Ñ−1∑
i=0

( 1

n0

n0−1∑
j=0

T j+i+kx− f0

)
+

1

n

n−1∑
i=Ñ

( 1

n0

n0−1∑
j=0

T j+i+kx− T i+k−Ñ(
1

n0

n0−1∑
j=0

T j+Ñx)
)

+
1

n

n−1∑
i=Ñ

(
T i+k−Ñ(

1

n0

n0−1∑
j=0

T j+Ñx)− f0

)
+

1

nn0

n0−1∑
i=1

(n0 − i)(T i+k−1x− T n+i+k−1x)‖

≤ 1

n

Ñ−1∑
i=0

b+
1

n

n−1∑
i=Ñ

γ−1
n0

( max
0≤j,j̃≤n0−1

(‖T j+Ñx− T j̃+Ñx‖ − ‖T j+i+kx− T j̃+i+kx‖))

+
1

n

n−1∑
i=Ñ

‖
(
T i+k−Ñ(

1

n0

n0−1∑
j=0

T j+Ñx)− f0

)
‖+

1

nn0

n0−1∑
i=1

(n0 − i)b

≤ Ñb

n
+

1

n

n−1∑
i=Ñ

γ−1
n0

( max
0≤j,j̃≤n0−1

(αj,j̃,Ñ − αj,j̃,i+k)) + ‖ 1

n0

n0−1∑
j=0

T j+Ñx− f0‖+
(n0 − 1)b

2n

≤ Ñb

n
+

1

n

n−1∑
i=Ñ

γ−1
n0

(aÑ − ai+k) +
ε

8
+

(n0 − 1)b

2n
.

(6.6)

Moreover,

1

n

n−1∑
i=Ñ

γ−1
n0

(aÑ − ai+k) ≤ γ−1
n0

(γn0(
ε

8
)) =

ε

8
, (6.7)

by (6.3) and Ñ ≤ Ñ + k ≤ i+ k ≤ n− 1 + k ≤ N + g(N) + h(N) ≤ Ñ + f(Ñ), in view

of (6.4). Now, by (6.6) and (6.7), since

4(n0 − 1)b

ε
+

8Ñb

ε
≤ ũ(Ñ) ≤ N ≤ n,

we arrive at

‖ 1

n

n−1∑
i=0

T i+kx− f0‖ ≤
ε

8
+
ε

8
+
ε

8
+
ε

8
=
ε

2
,

and consequently, for any m,n ∈ [N ;N + g(N)] and k ∈ [0;h(N)], we obtain

‖ 1

n

n−1∑
i=0

T i+kx− 1

m

m−1∑
i=0

T i+kx‖ ≤ ‖ 1

n

n−1∑
i=0

T i+kx− f0‖+ ‖ 1

m

m−1∑
i=0

T i+kx− f0‖ ≤
ε

2
+
ε

2
= ε.

This completes the proof of the first part. The claim that the limit of ( 1
n

∑n−1
i=0 T

i+kx) is

a fixed point of T follows from (6.1). The fact that this fixed point does not depend on
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k is also clear: let fk ∈ Fix(T ) be the limit of ( 1
n

∑n−1
i=0 T

i+kx). From

‖ 1

n

n−1∑
i=0

T i+1x− 1

n

n−1∑
i=0

T ix‖ ≤ b

n

n→∞→ 0

we obtain that f0 = f1 and so - by induction - fi = fj for all i, j. �

Theorem 6.2. Suppose γ ∈ Γ, C ⊆ Bb/2(0) is a nonempty, closed, and convex subset of

a Banach space E, T : C → C is a nonexpansive mapping with Fix(T ) 6= ∅, and T n is of

type (γ) for all n. Let φ : (0,∞) → (0,∞) be a modulus of regularity for T with respect

to Fix(T ). Let x ∈ C and let for each k ∈ N , ρk : R∗+ → N be a rate of convergence for

the nonincreasing sequence (‖T n+kx− T nx‖)n≥0. Then, we have

∀ε > 0∀n,m ≥ Ω(ε, (ρk), ϕ)∀k
(
‖ 1

n

n−1∑
i=0

T i+kx− 1

m

m−1∑
i=0

T i+kx‖ ≤ ε
)
,

where Ω(ε, (ρk), ϕ) = max{Ñ , d8Ñb
ε
e, d4(n0−1)b

ε
e}, n0 := ϕ(φ( ε

9
), γ, b, θ), θ(t) := φ( t

2
), Ñ :=

max{ρ1(1
2
γn0( ε

8
)), · · · , ρn0(1

2
γn0( ε

8
))}, (γn) is defined by recursion as in (2.9) or (2.8), and

ϕ(t, γ, b, θ) as in Theorem 6.1.

Proof. The proof is similar to the previous one. We only mention the differences. Given

ε > 0, (6.1) holds similarly for n0 := ϕ(φ( ε
9
), γ, b, θ), and for all x ∈ C and k ∈ N. Fix

x ∈ C and take

Ñ := max{ρ1(
1

2
γn0(

ε

8
)), · · · , ρn0(

1

2
γn0(

ε

8
))}. (6.8)

Thus

∀n,m ≥ Ñ∀k̃ ≤ n0

(
‖T n+k̃x− T nx‖ − ‖Tm+k̃x− Tmx‖ ≤ γn0(

ε

8
)
)
. (6.9)

Using (6.1), we deduce the existence of some f0 ∈ Fix(T ) such that

‖ 1

n0

n0−1∑
j=0

T j+Ñx− f0‖ ≤
ε

8
, (6.10)

where Ñ is as chosen in (6.8). Now, choose some

n ≥ max{Ñ , d8Ñb
ε
e, d4(n0 − 1)b

ε
e}.
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Then, similarly to (6.6), using (6.9) and (6.10), we obtain

‖ 1

n

n−1∑
i=0

T i+kx− f0‖

≤ 1

n

Ñ−1∑
i=0

b+
1

n

n−1∑
i=Ñ

γ−1
n0

( max
0≤j,j̃≤n0−1

(‖T j+Ñx− T j̃+Ñx‖ − ‖T j+i+Ñx− T j̃+i+Ñx‖))

+
1

n

n−1∑
i=Ñ

‖
(
T i+k−Ñ(

1

n0

n0−1∑
j=0

T j+Ñx)− f0

)
‖+

1

nn0

n0−1∑
i=1

(n0 − i)b

≤ Ñb

n
+

1

n

n−1∑
i=Ñ

γ−1
n0

(γn0(
ε

8
)) + ‖ 1

n0

n0−1∑
j=0

T j+Ñx− f0‖+
(n0 − 1)b

2n
≤ ε

8
+
ε

8
+
ε

8
+
ε

8
=
ε

2
.

(6.11)

This completes the proof. �

Theorem 6.3. Suppose γ ∈ Γ, C ⊆ Bb/2(0) is a nonempty, closed, and convex subset of

a Banach space E, T : C → C is a nonexpansive mapping with Fix(T ) 6= ∅, and T n is of

type (γ) for all n. Let φ : (0,∞) → (0,∞) be a modulus of regularity for T with respect

to Fix(T ). Let x ∈ C and let ρ : R∗+ → N be a rate of asymptotic regularity for (T nx).

Then, (T nx) is convergent with a Cauchy rate Ω̃(Ω, ρ), where

Ω̃(Ω, ρ) := ρ(
ε

2(Ω(ε/4, (ρk), ϕ) + 1)
),

ρk(t) := ρ(t/k), and Ω(t, (ρk), ϕ) is defined as in Theorem 6.2.

Proof. Defining ρk(t) := ρ(t/k), for each k ∈ N , we deduce that ρk : R∗+ → N be a rate

of convergence for the nonincreasing sequence (‖T n+kx − T nx‖)n≥0. Now, given ε > 0,

utilizing Theorem 6.2, we have

∀n,m ≥M0 := Ω(ε/4, (ρk), ϕ)∀k
(
‖ 1

n

n−1∑
i=0

T i+kx− 1

m

m−1∑
i=0

T i+kx‖ ≤ ε

4

)
. (6.12)

Moreover, by the property of ρ, we have

∀k ≥ ρ(
ε

2(M0 + 1)
)
(
‖T kx− T k+1x‖ ≤ ε

2(M0 + 1)

)
. (6.13)

In view of (6.12), we may assume limn
1
n

∑n−1
i=0 T

i+kx = y, uniformly in k ∈ N. Using

(6.12) and (6.13), we have thus for any k ≥ ρ( ε
2(M0+1)

),

‖T kx− y‖ ≤ ‖T kx− 1

M0

M0−1∑
i=0

T i+kx‖+ ‖ 1

M0

M0−1∑
i=0

T i+kx− y‖

≤ 1

M0

M0−1∑
i=0

‖T kx− T i+kx‖+
ε

4
≤ 1

M0

M0−1∑
i=0

i
ε

2(M0 + 1)
+
ε

4
≤ ε

4
+
ε

4
=
ε

2
.

Therefore, we have proved that

∀n,m ≥ ρ(
ε

2(M0 + 1)
)
(
‖T nx− Tmx‖ ≤ ε

)
.
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�

Qualitatively, Theorem 6.3 is a witness for this: for a regular map T , (T nx) is asymp-

totically regular iff (T nx) is convergent!

Remark 6.4. The concept of asymptotic regularity for a mapping T : C → C appeared

in Browder and Petryshyn [8]: T is said to be asymptotically regular at x ∈ C, if

T n+1x − T nx → 0 as n → ∞. They showed [8, Theorem 5] that if E is a uniformly

convex Banach space and T is an averaged nonexpansive mapping on a closed convex

subset of E with Fix(T ) 6= ∅, then T is asymptotically regular at each point of C.

Remark 6.5. Strongly nonexpansive (SNE) mappings [11] on a subset of a Banach

space that possess a fixed point represent an interesting class of asymptotically regular

mappings. For SNE-mappings, a rate ρ : R∗+ → N as in Theorem 6.3 was computed

in [23] as ρ(d, ε) := dd/ω(d, ε)e depending on an SNE-modulus ω and d ≥ ‖x − p‖ for

some p ∈ Fix(T ). In particular, for λ-firmly nonexpansive mappings in uniformly convex

spaces, ω is computed in [23, Prop. 2.17] as ω(d, ε) := λ(1 − λ)η(ε/c) · ε, where η is a

modulus of uniform convexity. Note that ρ does not depend on x other than via d.

We recall that a mapping T : C → E is said to be affine if T (αx + (1 − α)y) =

αTx+ (1− α)Ty for all x, y ∈ C and α ∈ [0, 1].

Borzdyński and Wísnicki [7, Lemma 4.1] showed that an averaged affine self-map T

defined on a convex and bounded subset C of a Banach space is uniformly asymptotic

regular; i.e., limn supx∈C ‖T n+1x − T nx‖ = 0. More precisely, they showed that if T =
1
2
(I +S), where S is affine self-mapping on C, then supx∈C ‖T nx−T n+1x‖ ≤ an · diamC,

where

an :=

{
1

2n+1

(
n
k

)
, n = 2k,

1
2n+1

(2k)!
(k!)2 , n = 2k − 1.

(6.14)

By the Stirling’s approximation, it follows that an → 0. Let α : R∗+ → N be a rate of

convergence for an → 0. Then ρ(ε) := α(ε/D), for D ≥ diamC, is a rate of asymptotic

regularity for (T nx) for any x ∈ C. Consequently, the rate ρ in Theorem 6.3 can be

explicitly computed for T = 1
2
(I + S).

Example 6.6. Define the closed and convex subset C =
∏∞

i=1[0, 1/2] in E = (`∞, ‖ · ‖+),

where ‖(xi)‖+ := supi∈N∗ |x2i−1| + supi∈N∗ |x2i|. Then, C is not compact in the Banach

space E. Define T : C → C by

T (x1, x2, . . . , x2k−1, x2k, . . . ) = (x1,
1

2
x2

2, . . . , x2k−1,
1

2
x2

2k, . . . ).

Then, for 0 < δ ≤ 1/2, we have

Fδ(T ) = [0,
1

2
]× [0, 1− (1− 2δ)

1
2 ]× [0,

1

2
]× [0, 1− (1− 2δ)

1
2 ]× · · · , (6.15)

and

Fix(T ) = [0,
1

2
]× {0} × [0,

1

2
]× {0} × · · · .
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It is straightforward to show that the function φ : (0,∞)→ (0,∞) defined as

φ(ε) :=
1

2
(1− ((1− ε)+)2),

where (1 − ε)+ := max{0, (1 − ε)}, is a modulus of regularity for T with respect to

Fix(T ). In fact, it suffices to note that, in view of (6.15), ‖x− Tx‖ < φ(ε) implies that

dist(x, F ix(T )) < 1− (1− 2φ(ε))
1
2 , and the inequality 1− (1− 2φ(ε))

1
2 ≤ ε is equivalent

to φ(ε) ≤ 1
2
(1− ((1− ε)+)2).

Furthermore, T n is of type (γ) for all n, where γ is the identity map. Let x = (xi), y =

(yi) ∈ C and 0 ≤ λ ≤ 1. Then, the equality

‖λTx+ (1− λ)Ty − T (λx+ (1− λ)y)‖

=
1

2
sup
i∈N∗
|λx2

2i + (1− λ)y2
2i − (λx2i + (1− λ)y2i)

2| = sup
i∈N∗

λ(1− λ)

2
(x2i − y2i)

2

and the inequality

‖Tx− Ty‖ =
1

2
sup
i∈N∗
|x2

2i− y2
2i|+ sup

i∈N∗
|x2i−1− y2i−1| ≤

1

2
sup
i∈N∗
|x2i− y2i|+ sup

i∈N∗
|x2i−1− y2i−1|

imply

‖λTx+ (1− λ)Ty − T (λx+ (1− λ)y)‖+ ‖Tx− Ty‖

≤ sup
i∈N∗

λ(1− λ)

2
(x2i − y2i)

2 +
1

2
sup
i∈N∗
|x2i − y2i|+ sup

i∈N∗
|x2i−1 − y2i−1|

≤ sup
i∈N∗
|x2i − y2i|+ sup

i∈N∗
|x2i−1 − y2i−1| = ‖x− y‖.

That is, T is of type (id), and therefore T n is of type (id) for each n, by [34, Corollary

2.4] stating that if T is a mapping of type (γ), then T n is of type (nγ( t
n
)).

Finally, we obtain a rate of convergence for Cesàro means of affine mappings in terms of

a rate of regularity. While this result can be obtained directly as a corollary of Theorem

6.2, we provide a direct proof to avoid reliance on other rates.

Proposition 6.7. Suppose that C ⊆ Bb/2(0) is a nonempty, closed and convex subset of a

Banach space E, and let T : C → C be an affine nonexpansive mapping with Fix(T ) 6= ∅.
Let φ : (0,∞) → (0,∞) be a modulus of regularity for T . Set Sn := 1

n

∑n−1
i=0 T

i. Then,

we have

∀ε > 0∀x ∈ C∀m,n ≥ d
2(d b

φ(ε/8)
e − 1)b

ε
e
(
‖Sn(x)− Sm(x)‖ ≤ ε

)
.

Moreover, limSn(x) ∈ Fix(T ).

Proof. Given ε > 0, let n0 := d b
φ(ε/8)

e. Since T is affine, it follows that T ( 1
n

∑n−1
i=0 T

ix) =
1
n

∑n−1
i=0 T

ix+ 1
n
(T nx− x). Thus, we have, for all x ∈ C and n ≥ n0,

‖T (Sn(x))− Sn(x)‖ ≤ b

n
≤ φ(

ε

8
).
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and consequently,

dist(Sn(x), f(T )) ≤ ε

8
,

Let x ∈ C, and pick f ∈ F (T ) with ‖Sn0(x)− f‖ ≤ ε/4. From Lemma 5.2, we may write

for any n ≥ 1,

Sn(x) =
1

n

n−1∑
i=0

T ix =
1

n

n−1∑
i=0

1

n0

n0−1∑
j=0

T j+ix+
1

nn0

n0−1∑
i=1

(n0 − i)(T i−1x− T n+i−1x).

Using the latter equation and the affiness of T , we have for n ≥ d2(n0−1)b
ε
e,

‖Sn(x)− f‖ ≤ 1

n

n−1∑
i=0

‖T i( 1

n0

n0−1∑
j=0

T jx)− f‖+
(n0 − 1)b

2n

≤ ‖ 1

n0

n0−1∑
j=0

T jx− f‖+
(n0 − 1)b

2n
≤ ε

4
+
ε

4
=
ε

2
.

Therefore, for all n,m ≥ d2(n0−1)b
ε
e, ‖Sn(x)−Sm(x)‖ ≤ ‖Sn(x)−f‖+‖Sm(x)−f‖ ≤ ε. �

Remark 6.8. The existence of a modulus of regularity φ for T in the above results is

not redundant. In fact, for C :=
∏

i∈N[0, 1] ⊆ `∞, which is not compact in `∞, we define

T : C → C by

T (x1, x2, · · · ) := (λ1x1, λ2x2, · · · ),

where (λi) is a sequence with 0 < λi < 1 and limi→∞ λi = 1. It is easy to check that T is

affine (and hence of type (γ)), Fix(T ) = {0} and

F 1
n
(T ) =

∞∏
i=1

([0,
1

n(1− λi)
] ∩ [0, 1]).

Hence T does not admit a modulus of regularity. For x = (1, 1, · · · ) ∈ C, since limi→∞ λi =

1, we see that

‖ 1

n

n−1∑
i=0

T ix‖ = sup
k

(
1

n

n−1∑
i=0

λik) = 1.

Consequently, (Sn(x)) fails to converge since a limit would have to be a fixed point of T

while Fix(T ) = {0}.

7. Effective rates for averaged Mann type iterations

7.1. Rates of asymptotic regularity and convergence.

Definition 7.1. A function D : N→ N is a rate of divergence for a series
∑∞

i=1 ai, where

(ai) ⊂ R+, if

∀n ∈ N
(D(n)∑

i=0

ai ≥ n

)
.



30 ULRICH KOHLENBACH† AND SHAHRAM SAEIDI‡

Remark 7.2. Let (αi) ⊂ [0, 1] and
∑∞

i=0(1− αi) =∞. It is known that 1− x ≤ e−x for

all x ∈ R. Thus αi ≤ e−(1−αi), and hence

m+n∏
i=m

αi = αmαm+1 · · ·αm+n ≤ e−
∑m+n
i=m (1−αi).

Now suppose that D is a rate of divergence for
∑∞

i=0(1−αi) =∞. Let ε > 0 and m ∈ N.

Then, for each n ∈ N with n+m ≥ D(|dln(ε−1) +
∑m−1

i=0 (1− αi)e|), we have

m+n∏
i=m

αi ≤ e−
∑m+n
i=0 (1−αi)e

∑m−1
i=0 (1−αi) ≤ e−|dln(ε−1)+

∑m−1
i=0 (1−αi)e|e

∑m−1
i=0 (1−αi)

≤ e−(ln(ε−1)+
∑m−1
i=0 (1−αi))e

∑m−1
i=0 (1−αi) = e− ln(ε−1) = ε.

Thus, D̃ : N× (0,∞)→ N defined by

D̃(m, ε) := |D(|dln(ε−1) +
m−1∑
i=0

(1− αi)e|)−m|

is a rate of convergence for
∏∞

i=0 αi = 0 in the sense that:

∀ε > 0∀m ∈ N
(m+D̃(m,ε)∏

i=m

αi ≤ ε
)
. (7.1)

C.f. [26, Lemma 5.2].

We will need the following lemma.

Lemma 7.3. Suppose that γ ∈ Γ and C ⊂ Bb/2(0) is a nonempty, closed and convex

subset of a Banach space E. Let F be a family of mappings from C to C of type (γ)

having a modulus θ : (0,∞)→ (0,∞) of convex regularity. Let (αn) ⊂ [0, 1) be such that∑∞
n=1(1−αn) =∞ with a rate of divergence D. Given ε > 0, set τ̃(ε) := min{θ( ε

3
), ε

6b
, ε},

p(ε) := d 2b
τ̃(ε)2 e, and ∆(ε) = min{ ε

3
, γp(ε)−1(2τ̃(ε)2

4p(ε)
)}. Then for any x1 ∈ C and T : C → C

in F , defining

xn+1 = αnxn + (1− αn)Sn(xn), (Sn :=
1

n

n−1∑
i=0

T i)

we have

‖Txn − xn‖ ≤ ε,

∀n ≥ ω(b, γ, θ,D, ε) := |D(|dln(4b
ε

) +
∑d b

∆(θ( ε2 ))
e−1

i=0 (1− αi)e|)− d b
∆(θ( ε

2
))
e|+ 1.

Proof. Given ε > 0, let N := d b
∆(θ( ε

2
))
e. In view of Theorem 5.7 and Lemma 5.10 applied

to yi := T ix, we have

∀n ≥ N∀x ∈ C
(
‖Sn(x)− T (Sn(x))‖ ≤ θ(

ε

2
)

)
.

Then, picking

k > D̃(N,
ε

4b
) = |D(|dln(

4b

ε
) +

N−1∑
i=0

(1− αi)e|)−N |,
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we have by Remark 7.2,
N+k−1∏
i=N

αi ≤
ε

4b
.

We write

xN+k = (
N+k−1∏
i=N

αi)xN + (1−
N+k−1∏
i=N

αi)yk,

where

yk =
1

1−
∏N+k−1

i=N αi
(
N+k−2∑
j=N

(
N+k−1∏
i=j+1

αi)(1− αj)Sj(xj) + (1− αN+k−1)SN+k−1(xN+k−1)).

From
N+k−2∑
j=N

((
N+k−1∏
i=j+1

αi)(1− αj)) + (1− αN+k−1) = 1−
N+k−1∏
i=N

αi,

we have

yk ∈ co{Sn(xn) : n ≥ N} ⊆ coFθ( ε
2

)(T ) ⊆ F ε
2
(T ).

Morover,

‖xN+k − yk‖ = (
N+k−1∏
i=N

αi)‖xN − yk‖ ≤
ε

4b
b =

ε

4
.

Consequently,

‖TxN+k − xN+k‖ ≤ ‖TxN+k − Tyk‖+ ‖Tyk − yk‖+ ‖yk − xN+k‖

≤ 2‖xN+k − yk‖+ ‖Tyk − yk‖ ≤ 2
ε

4
+
ε

2
= ε.

�

Theorem 7.4. Suppose that γ ∈ Γ, and C ⊆ Bb/2(0) is a nonempty, closed and convex

subset of a Banach space E. Let (αn) ⊆ [0, 1) be such that
∑∞

n=1(1 − αn) = ∞ with a

rate of divergence D. Let T : C → C be a mapping of type (γ) with Fix(T ) 6= ∅. Let

φ : (0,∞)→ (0,∞) be a modulus of regularity for T , and set θ(t) := φ( t
2
). Then, defining

xn+1 = αnxn + (1−αn)Snxn, (xn) is asymptotically regular with a rate of ω(b, γ, θ,D, ε),

as well as (xn) converges to a fixed point of T with a rate of convergence ω(b, γ, θ,D, φ( ε
2
)).

Proof. By Lemma 4.2, θ is a modulus of convex regularity for F = {T}. Thus the rate

ω defined in Lemma 7.3 is also a rate for asymptotic regularity of (xn). Now, it suffices

to apply [28, Theorem 4.1] to deduce the second part of the theorem, since (xn) is Fejér

monotone w.r.t. Fix(T ). �

Open question: Without the presence of a rate of divergence D, is it possible to

obtain a rate of metastability from the above result?

By Lemma 2.3, for the case where C is additionally compact and E is strictly convex,

every nonexpansive mapping T : C → C is of type (γ), for some γ ∈ Γ. Hence, we

conclude the following corollary of Theorem 7.4:
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Corollary 7.5. Let C ⊆ Bb/2(0) be a nonempty, compact and convex subset of a strictly

convex Banach space E. Let (αn) ⊆ [0, 1) be such that
∑∞

n=1(1− αn) =∞ with a rate of

divergence D. Let T : C → C be a nonexpansive mapping with a modulus of regularity

φ : (0,∞)→ (0,∞). Define γ ∈ Γ as in Lemma 2.3, and set θ(t) := φ( t
2
). Then, defining

xn+1 = αnxn + (1−αn)Snxn, (xn) is asymptotically regular with a rate of ω(b, γ, θ,D, ε),

as well as (xn) converges to a fixed point of T with a rate of convergence ω(b, γ, θ,D, φ( ε
2
)).

7.2. Rates of metastability per uniform Fejér monotonicity.

Definition 7.6. [27, Definition 4.6]. Let T : C → C, (xn) ⊆ C, AFk := F1/k(T ) and

F := Fix(T ). Then (xn) is said to be uniformly Fejér monotone w.r.t. F if, for all

r, n,m ∈ N,

∃k ∈ N∀p ∈ C
(
p ∈ AFk → ∀l ≤ m(‖xn+l − p‖ < ‖xn − p‖+

1

r + 1
)

)
and any upper bound χ(n,m, r) of “ ∃k ∈ N ” is called a modulus of (xn) being uniformly

Fejér monotone w.r.t. F .

Lemma 7.7. Let T : C → C be nonexpansive, (αn) ⊆ [0, 1], and

xn+1 = αnxn + (1− αn)Snxn, (Sn :=
1

n

n−1∑
i=0

T i).

Then, χ(n,m, r) = m(n+m)(r+1) is a modulus of (xn) being uniformly Fejér monotone

w.r.t. Fix(T ).

Proof. Let p ∈ C. Since ‖T ip− p‖ ≤ ‖T ip−T i−1p‖+ · · ·+ ‖Tp− p‖ ≤ i‖Tp− p‖, we get

‖Sn(p)−p‖ = ‖ 1

n

n−1∑
i=0

(T ip−p)‖ ≤ 1

n

n−1∑
i=0

‖T ip−p‖ ≤ 1

n

n−1∑
i=0

i‖Tp−p‖ =
1

2
(n−1)‖Tp−p‖,

and thus

‖xn+1 − p‖ ≤ αn‖xn − p‖+ (1− αn)‖Sn(xn)− Sn(p)‖+ (1− αn)‖Sn(p)− p‖

≤ ‖xn − p‖+ ‖Sn(p)− p‖ ≤ ‖xn − p‖+
1

2
(n− 1)‖Tp− p‖.

Now, by induction, we get

‖xn+m − p‖ ≤ ‖xn − p‖+
1

2
((n− 1) + n+ · · ·+ (n+m− 2))‖Tp− p‖

= ‖xn − p‖+
1

2
(mn+

(m− 2)(m− 1)

2
− 1)‖Tp− p‖

< ‖xn − p‖+m(n+m)‖Tp− p‖.

This completes the proof. �

As mentioned, for a sequence (xn) in E, any bound ϕ : (0,∞)× NN → N such that

∀k ∈ N ∀g : N→ N ∃N ≤ ϕ(ε, g) ∀i, j ∈ [N,N + g(N)](‖xi − xj‖ ≤
1

k + 1
)
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is called a rate of metastability (see, e.g., [24]).

In the following we study the metastability based on [27].

Definition 7.8. [27] An approximate F -point bound for (xn) is any Φ : N→ N satisfying

∀k ∈ N ∃N ≤ Φ(k) (xN ∈ AFk).

If Φ is an approximate F -point bound for (xn), then

ΦM : N→ N, ΦM(k) := max{Φ(m)| m ≤ k},

is monotone nondecreasing and again an approximate F -point bound for (xn).

In our situation, we deal with an asymptotically regular sequence (xn), AFk = F1/k(T ),

and Φ is even a rate of asymptotic regularity for (xn).

Remark 7.9. Under the assumptions of Lemma 7.3, Φ(k) := ω(b, γ, θ,D, 1/k) is a rate of

asymptotic regularity (or, an approximate Fix(T )-bound) for (xn) which is independent

of T .

Theorem 7.10. Suppose that E is a Banach space, and C ⊆ Bb/2(0) is a nonempty

convex compact subset of E with a I-modulus of total boundedness α. Let γ ∈ Γ and define

θ : (0,∞) → (0,∞) by θ(t) := γ p̃(t/3p̃+1), where p̃ ∈ N is such that 2p̃ ≥ α(2d3/te) + 1.

Let (αn) ⊆ [0, 1) and
∑∞

n=1(1 − αn) = ∞ with a rate of divergence D. Let k ∈ N and

g : N→ N. Define

Φ(k) := max{ω(b, γ, θ,D, 1/m)| m ≤ k}

with ω defined in Lemma 7.3. Define

χ(n,m, k) := m(n+m)(k + 1), χg(n, k) := χ(n, g(n), k),

χMg (n, k) := max{χg(i, k)| i ≤ n},

P := β(4k + 3),

Ψ0(0, k, g,Φ) := 0,

Ψ0(n+ 1, k, g,Φ) := Φ(χMg (Ψ0(n, k, g,Φ), 4k + 3)).

Now define Ψ(k, g, b, γ, β) := Ψ0(P, k, g,Φ). Then

∃N ≤ Ψ(k, g, b, γ, β) ∀i, j ∈ [N,N + g(N)] (‖xi − xj‖ ≤
1

k + 1
),

for any sequence (xn) defined by

xn+1 = αnxn + (1− αn)Snxn, (7.2)

where T : C → C is a mapping of type (γ).

Proof. The proof is a direct consequence of [27, Theorem 5.1], in view of Remark 7.9,

and Lemmas 4.11, 7.3 and 7.7. In fact, by Lemma 4.11, θ(t) := γ p̃(t/3p̃+1), where p̃ ∈ N
is such that 2p̃ ≥ α(2d3/te) + 1, is a modulus of convex regularity for the family of

mappings on C of type (γ). Now, we may apply Lemma 7.3 to get ω(b, γ, θ,D, 1/k) with
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the property ‖Txn − xn‖ ≤ 1/k for all n ≥ ω(b, γ, θ,D, 1/k), hence for all n ≥ Φ(k),

and for any (xn) defined in (7.2) with any T : C → C of type (γ). On the other hand,

χ(n,m, k) is a modulus of (xn) being uniformly Fejér monotone as shown in Lemma 7.7.

The result follows now as a consequence of [27, Theorem 5.1]. �

Remark 7.11. If E is additionally strictly convex, we may replace γ(t) in Theorem

7.10 with the one defined in Lemma 2.3, and in this case the result is valid for every

nonexpansive mapping.

7.3. Rates of metastability per a modulus of uniqueness. Let T : C → C be a

mapping having at most one fixed point; i.e.,

∀p1, p2 ∈ C
(
p1 = Tp1 ∧ p2 = Tp2 → p1 = p2

)
.

Then, in view of [22], T is said to have uniformly at most one fixed point with modulus

of uniqueness ω̃ : (0,∞)→ (0,∞), if

∀ε > 0∀p1, p2 ∈ C
(
‖p1 − Tp1‖, ‖p2 − Tp2‖ ≤ ω̃(ε)→ ‖p1 − p2‖ ≤ ε

)
. (7.3)

If T is continuous and C is compact there always exists such a modulus ω̃. See [22] for

more details. In [29], a class of nonexpansive operators for which a modulus of uniqueness

can be computed is described.

Using a modulus of uniqueness, we obtain the following result without any assumption

on the coefficients (αn).

Theorem 7.12. Suppose that γ ∈ Γ and C ⊂ Bb/2(0) is a nonempty, closed and convex

subset of a Banach space E. Let F be a family of mappings from C to C of type (γ)

having a modulus of convex regularity θ : (0,∞)→ (0,∞) and a modulus of uniqueness ω̃ :

(0,∞)→ (0,∞). Let (αn) ⊂ [0, 1) be arbitrary. Given ε > 0, set τ̃(ε) := min{θ( ε
3
), ε

6b
, ε},

p(ε) := d 2b
τ̃(ε)2 e, and ∆(ε) = min{ ε

3
, γp(ε)−1(2τ̃(ε)2

4p(ε)
)}. Then for any x0 ∈ C and T in F ,

defining

xn+1 = αnxn + (1− αn)Sn(xn),

we have

∀ε > 0∀g : N→ N∃N ≤ Ψ(ε, g, b, γ, θ, β) ∀i, j ∈ [N,N + g(N)]
(
‖xi − xj‖ ≤ ε

)
,

where Ψ(ε, g, b, γ, θ, β) = d b
∆(θ(ω̃( ε

4
)))
e + h̃(2k̃+1)(0) for k̃ ∈ N with 2−k̃ < ε

2b
, h̃(n) :=

n+ h(n), and h(n) := ∆(θ(ω̃( ε
4
))) + max{g(n), g(n+ ∆(θ(ω̃( ε

4
))))}.

Remark 7.13. When T has a fixed point, the modulus of uniqueness ω̃ becomes also

a modulus of regularity for T . Therefore, according to Lemma 4.2, θ(t) := ω̃(t/2) is a

modulus of convex regularity.

Proof. Given ε > 0, let ε̃ := ω̃( ε
4
) and M := d b

∆(θ(ε̃))
e. In view of Theorem 5.7 and Lemma

5.10, we have

∀n ≥M∀x ∈ C
(
‖Sn(x)− T (Sn(x))‖ ≤ θ(ε̃)

)
.
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We write

xM+k = (
M+k−1∏
i=M

αi)xM + (1−
M+k−1∏
i=M

αi)yk,

where

yk =
1

1−
∏M+k−1

i=M αi
(
M+k−2∑
j=M

((
M+k−1∏
i=j+1

αi)(1− αj)Sj(xj)) + (1− αM+k−1)SM+k−1(xM+k−1)).

We have then

yk ∈ co{Sn(xn) : n ≥M} ⊆ coFθ(ε̃)(T ) ⊆ Fε̃(T ) = Fω̃( ε
4

)(T ).

Hence, ‖yi − yj‖ ≤ ε
4
, for all i, j. Now, choose an arbitrary g : N → N. Choose k̃ ∈ N

such that 2−k̃ ≤ ε
2b

. Define h(n) := M + max{g(n), g(n+M)}, h̃(n) := n+ h(n), and

Φ(h, k̃) := h̃(2k̃+1)(0).

Let ak :=
∏M+k−1

i=M αi for k ≥ 1. At this stage, using the metastability of bounded

monotone sequences (see, e.g., [21, corollary 2.28 ] for details), we can choose some

n0 ∈ N such that

n0 ≤ Φ(h, k̃) ∧ ∀i, j ∈ [n0;n0 + h(n0)]
(
|ai − aj| < 2−k̃

)
. (7.4)

Consequently, for i, j ∈ [n0;n0 + h(n0)], we have

‖xM+i − xM+j‖ ≤ |ai − aj|‖xM‖+ ‖(1− ai)yi − (1− aj)yj‖

≤ |ai − aj|‖xM‖+ ‖yi − yj‖+ ai‖yi − yj‖+ |ai − aj|‖yj‖

< b2−k̃ + 2‖yi − yj‖ <
ε

2
+
ε

2
= ε.

(7.5)

Note that [M + n0;M + n0 + g(n0 + M)] ⊂ [n0;n0 + h(n0)]. Thus for all i, j ∈ [M +

n0;M + n0 + g(M + n0)] we have ‖xi− xj‖ < ε. Therefore, by taking Ψ(ε, g, b, γ, θ, β) :=

M + Φ(h, k̃), we obtain the desired result. �

References

[1] F. Amini, S. Saeidi, Concepts of almost periodicity and ergodic theorems in locally convex spaces, J.

Fixed Point Theory Appl. (2023) 25:78.

[2] S. Atsushiba, W. Takahashi, A nonlinear strong ergodic theorem for nonexpansive mappings with

compact domains, Math. Japonica., 52 (2000) 183–195.

[3] J. Avigad, P. Gerhardy, H. Towsner, Local stability of ergodic averages, Transactions of the American

Mathematical Society 362 (2010) 261–288.

[4] J.B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de

Hilbert, C.R. Acad. Sci. Paris Ser. A-B 280 (1975) 1511–1514.

[5] A. Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. Amer.

Math. Soc. 13 (1962) 329–334.

[6] A. Beck, On the strong law of large numbers, Ergodic Theory, Academic Press, New York, 1963.
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