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ABSTRACT. In this paper we present new qualitative and quantitative results on the
asymptotic behavior of solutions to a second order difference inclusion of accretive type
in Banach spaces. We also discuss variants of Pazy’s convergence condition, aiming at
generalizing that notion without requiring projections. Our results represent the first
applications of the proof mining paradigm to difference inclusions, and the idea has the

potential to extend to their continuous counterparts.
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1. INTRODUCTION

By a well-known result of Crandall and Liggett [I5], if X is a Banach space, and

A C X x X is m-accretive, then for any z € D(A) and ¢t > 0, the limit

S(t)z == lim (I + %A)-% (= Tim Jp,) (1.1)

n—o0 n—oo

exists, and generates a continuous semigroup of nonexpansive mappings on D(A). More-
over, for x € D(A), the function S(¢)x is Lipschitz continuous in ¢ (on bounded subsets)
by the proof of [I5, Theorem .

The asymptotic behavior of nonexpansive semigroups is closely connected to the as-
ymptotic behavior of the solutions of particular differential equations. In fact, in a Banach

space X, the possible solution to the first order Cauchy problem

{ u'(t) € ;ﬁu(t), a.e. on RT (1.2)

u(0) =z € D(A),

where A C X x X is accretive, forms a nonexpansive semigroup S(t) of mappings on D(A)
by the accretivity of A. If A is m-accretive, it is known from [I5] Theorem II] and [12]
Theorem 2.1] that has a strong solution if and only if S(¢)z in is differentiable
almost everywhere, and in this case it is the unique solution to . Moreover, if
X is reflexive, then Lipschitz continuous functions of a real variable with values in X
are differentiable almost everywhere by Komura’s theorem. In particular, when A is
m-accretive and X is reflexive, the function S(¢)z, defined in for z € D(A), is

differentiable almost everywhere, so u(t) := S(t)z solves problem ({1.2]).
1
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It is known ([16]) that in the case in which C'is a closed convex subset of a Hilbert space
H, the family nonexpansive semigroups S(t) can be put in one to one correspondence
in the sense of with the family of maximal monotone operators A C H x H with
D(A) = C. In Hilbert spaces maximal monotone operators coincide with m-accretive
operators. For an extension in a Banach space X, we refer to [49, Theorem 3.4], where
C is a nonexpansive retract of X, and X is uniformly convex with a uniformly Gateaux
differentiable norm.

Similarly, second order differential equations and inclusions of the form

{ p(u” () +r(t)u'(t) € Au(t) + f(t), a.e. on R*,

u(0) =z, sup{|lu(t)]| : t >0} < oo (1.3)

have been investigated for the existence and asymptotic behavior of solutions by many
authors in Hilbert and Banach spaces. The first results in this direction were proved by
Barbu [7, 8, [10] in Hilbert spaces for the case where p =1 and r, f = 0. In particular, he
derived in view of [16, Theorem A2] a definition for the square root of a maximal monotone
operator A, identifying it as the unique maximal monotone operator corresponding, via
the exponential formula, to the semigroup generated by the solutions of (1.3). The
solutions of in a more general setting provide a better definition for the square root
of A. Poffald and Reich [48] studied the same problem for the existence as well as the
asymptotic behavior of solutions in the form of generated semigroups in the Banach space
setting. Such problems together with some generalizations were investigated by many
authors. We refer the reader in particular to the books by Barbu [9, [10], as well as to the
references [111, [7, [8], 3], 14}, 53, B4 [13], 39], 48, 11, 2, [3, 6} 40l 41, 19, 20, 26]. In particular,
for the existence and uniqueness of bounded solutions to the general differential equation
(1.3), we refer to [40] for the Hilbert space and to [26] for the Banach space case.

Additionally, second-order difference inclusions of the form

{ Uiyl — (1 -+ Ql)ul + 9{&1;1 € ciAui + fi, 1€ N*,

. (1.4)
up = x, sup{||ul| :i >0} < oo,

where A is a nonlinear accretive (m-accretive) operator in a Banach space X, ¢; > 0 and
0; > 0, correspond to the discrete version of the second-order evolution equation ([1.3)).
Roughly speaking, using the forward and backward Euler method to approximate the

first and second derivatives of u, we may use
ult)—ult—h) up—up

!/
t) ~ ~
woon L Wt h) —u(t) = (u(t) —ult —h)) Ui — 2, + Up
U <t) ~ B2 ~ 12 ’
and discrete versions of the coefficients in (1.3)) to get
1

7z (U = (L4 (LA ) Jun + (14 A Jun-1)
Un4+1 — 2un + Up—1 ~ Up — Up

- n? T

L e & Auy + fo,



which is equivalent to w, 1 — (1 4 0,)u, + Opuy—1 € cyAu, + fr, for 6, =1+ hry,.
Moro??anu [42] investigated the difference inclusion for the existence and asymp-
totic behavior of solutions, and obtained the convergence of {u;} to an element of A~*(0),
whenever A is a maximal monotone operator in a Hilbert space, 0 € R(A), 6; = 1 and
fi = 0 (the homogeneous case). Investigations on the existence and asymptotic behavior
of solutions to were followed by many authors; see e.g., [48, 50, 4, 21], 23], 25] 27, 28],
17, [18]. In general has no solution even if A =0, §; = 1 and (/f;)i>1 € (*(X); see [48].
Pazy [44] presented the notion of ‘convergence condition’ for a maximal monotone oper-
ator A in a Hilbert space H to assure the strong convergence of the semigroup generated
by A via the exponential formula to a zero of A. The strong convergence of the semigroup
generated by A via the exponential formula was extended to Banach spaces which
are both uniformly convex and uniformly smooth by Nevanlinna and Reich in [43], by
adapting the Pazy’s convergence condition to such classes of Banach spaces. Since Pazy
introduced his ‘convergence condition’, this approach has been frequently used and
to investigate the strong convergence behavior of solutions. Very recently, Pinto and
Pischke [45] (see also [34]) provided quantitative information on the Pazy convergence
condition and extracted quantitative information on the results of Nevanlinna and Reich
[43] (and Xu [50] as well) for the strong convergence of the semigroup generated by A
via the exponential formula in uniformly convex and uniformly smooth Banach spaces.
In particular, in the general spirit of [31], they introduced a modulus for the convergence
condition of Pazy (and its extension by Nevanlinna and Reich) and obtained rates of
convergence which depend on this modulus. Moreover, Pischke [47] provided a quantita-
tive version of some result due to Poffald and Reich [48] for the second-order evolution
equation , for the case where p =1 and r, f = 0, in uniformly convex and uniformly
smooth Banach spaces with a strongly monotone duality map, in the form of an effective
rate of convergence depending on a modulus of convergence condition. Quantitative ver-
sions of some asymptotic behavior results of almost-orbits of the solution semigroups are
also obtained in [45, [47], where in [47] even the qualitative convergence result is new.
The above-mentioned quantitative results were obtained within the proof-mining par-
adigm [30], where tools from mathematical logic are used to convert prima facie non-
quantitative proofs in such a way that new quantitative information can be extracted.
We note that, in general, computable rates of convergence are unattainable even for a
bounded monotone sequence in R. Considering this situation, Kohlenbach suggested in
[32] the following (noneffectively) equivalent but constructively weakened reformulation

of the Cauchy property of a sequence (x;) in normed spaces:
Ve > 0Vg:N— N3n e NVi,j € [n;n+ gn)] (||z; — 2] <e), (1.5)

with the aim of efficiently transforming other bounds in the premises of a specific case
study into a bound on dn € N. Such a bound, which is a bound for Kreisel’s no-
counterexample interpretation [37, B8] of ([1.5)), is called a rate of metastability, since Tao
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[51),52] calls an interval [n; n+g(n)] with the property in an interval of metastability.
Interestingly, ®(g, ¢, K) := §EM1/D(0), where §(i) := i + g(i) and §(0) denotes the i-
th iteration of g starting with 0, is a rate of metastability for monotone sequences in
[0, K] C R (see, [30, Proposition 2.27]). The concept of metastability has been studied
within the proof mining program, based on variants of G?7del’s functional interpretation
and transformation of moduli between different settings.

In this paper, we study and analyze the problem in Banach spaces, presenting
new qualitative and quantitative results on the asymptotic behavior. We provide several
quantitative results concerning the strong convergence of the solutions to problem ([1.4)),
and discuss variants of the convergence condition - based on logical techniques from proof
mining - aiming at generalizing the notion without requiring the presence of a projection
map while ensuring their validity to the Yosida approximation. In the nonhomogeneous
case, by providing a quantitative estimate for the monotonicity of the duality map in
uniformly convex Banach spaces, we obtain a rate of convergence for the solution (u,) of
the difference inclusion (1.4), depending on a Cauchy rate for the series Y2 h;| fi|| < oo,
and in the absence of a rate of convergence for this series, we obtain a rate of metastability.
Here, we focus on difference inclusions, as our central ideas are more clearly articulated in
the discrete setting. Nevertheless, the underlying principles have the potential to extend

to their continuous counterparts.

2. PRELIMINARIES

In this section, we recall notations, definitions, and preliminary facts from multi-valued
analysis which are used throughout the paper. Let X be a Banach space, X* be the dual
space of X and (-, -) the pairing between X and X*. X is called uniformly convex, if for
each ¢ > 0, there exists 6 > 0 such that ||(x + y)/2| < 1 — 0, for each x,y € X with
l|lz]l, [|ly]| <1 and ||z — y|| > €. In this case, a function § : (0,2] — (0, 1] is a modulus of
uniform convexity for X, if for all € € (0,2] and z,y € X,

r+y
]l Iyl < Land [lz =yl 2 e = 5=l <1 d(e). (2.1)

Let X and Y be two real Banach spaces. A multi-valued operator is a mapping A :
D(A) C X — 2Y (or a subset of X x Y), where D(A) := {zx € X : Ax # 0}, R(A) :=
U{Az : x € D(A)} and G(A) := {(x,y) : © € D(A), y € Az}. Sometimes, we identify
an operator with its graph and write (z,y) € A instead of (z,y) € G(A). The duality
mapping J from X into 2% is defined by J(z) = {z* € X* : (z,2*) = ||z||* = ||2*|*}, for
every x € X. From the Hahn-Banach theorem, we get that J(z) # () for each z € X. A

Banach space X is said to be smooth if J is single-valued. In this case, the limit

et tyll — el _
tim L (g, ()

exists, for each z,y € S(X) = {x € X : ||z]| = 1}. The space X is said to be uniformly
smooth if the limit is attained uniformly for x,y € S(X).
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Lemma 2.1. (See [9]) Let X be a Banach space and let J : X — 2% be the normalized
duality mapping. Then:
(1) (x =y, Jo — gy) = (I=ll = [lyl})?, for all z,y € X, j, € J(x) and j, € J(y), and
consequently J is monotone;
(2) llzl* = llyll* = 2(= —1y,jy), f({T all v,y € X and j, € J(y);
(3) (. gy) < llzlllyll < 5l * + Sllyl®, for allw,y € X and j, € J(y).

The following lemma is well known.

Lemma 2.2. Let X be a smooth Banach space, and let C' C X be a nonempty, closed,

and conver subset. Let v,z € C'. Then

lo =2l =minlls —y| & (y-2J@-2)<0, VyeC.
Yy

An operator A C X x X is called accretive if Vy; € Ax;, i = 1,2,3j € J(x; — z3) such
that (y1 — y2,7) > 0. The accretive operator A C X x X is m-accretive if R(I + A) = X
where [ is the identity operator of X. It then follows that R(I + AA) = X, VA > 0 (see,
e.g., [)).

For an accretive operator A, the resolvent and the Yosida approximation of A are
defined by

and

I—J,
A
respectively, where = € R (I + AA). Obviously,

A,\QS =

Az = A"Ha — o) e (I + M) Jyx — Jyx) = Adyz. (2.2)

Moreover, Jy is nonexpansive in the sense that ||Jyx — Jyy|| < ||z — y||, for all z,y €
R(I+ \A).

Lemma 2.3. (See [10]). Let A be an m-accretive operator in X x X. Then
(1) Iz = Jayll < lle = yll, for all z,y € X;
(2) [[Jax — z|| = M| Axz|| < XNinf{||y||; v € Az}, for all z € D(A);
(3) Ay is m—accretive on X and |[Axz — Ayyl| < (2/N)||lx — y||, for all A > 0 and
T,y € X;

Lemma 2.4. ([28]) Let {a;} be a sequence of positive real numbers with X2 a; " = oo. If

{b;} is a bounded sequence, then liminf; ., a;(b;1 — b;) <O0.

Let us consider the second order difference equation (1.4, as well as the auxiliary

sequence (a;);>1 given by

-1 = — P> 1. 2.3
o YT 0, 60 (2:3)
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Observe that

az-@z- = A;—1, 1 Z 1. (24)
We denote
1
hp =%F —— Vk>1. 2.
F =10, 0r 1.0, = (2:5)

In this paper, we assume that the difference inclusion ([1.4)) has a solution for an initial
value ug = x in X. For an existence result on the solution for (1.4 in Banach spaces, we

mention the following:

Theorem 2.5. [27, Theorem 4.4] Let X be a uniformly smooth and uniformly convex
Banach space. Let A C X x X be m—accretive with A=10 # 0 and ¢;,0; > 0,Vi > 1, such
that 3.2, h% = 00 holds. If (fi)i>1 is a sequence in X satisfying X2, hi|| fi|| < oo, then
has a unique solution for every initial point v € X.

Notation. To simplify the presentation of formulas, we will occasionally adopt the
following notational conventions throughout the paper.
e N:={0,1,2,...} and N*:={1,2,... }.
e Expressions such as n'¥ and z¥ indicate that n € N and = € X, respectively.
o NN denotes a function f: N — N.

o (z;)N7% denotes a sequence in X, i.e., a function from N to X.

3. A QUANTITATIVE ESTIMATE FOR THE MONOTONICITY OF THE DUALITY MAP

We recall the following interesting result that was proved by H.K. Xu [55]:

Proposition 3.1. (See [55, Corollary 3]) Let r > 0 and let X be a Banach space. Then
X is uniformly convex if and only if there exists a continuous, strictly increasing, and
conver function g : [0,00) — [0,00), g(0) = 0, such that (x —y, j. — jy) = g(|lz —yl|), for
alr,ye{ze X :|z|| <r} j. € J(x) and j, € J(y).

Since the proof given in [55] for Proposition is nonconstructive, we present an
effective proof to compute such a function ¢ in terms of a given modulus of uniform

convexity for X.

Lemma 3.2. Let X be a uniformly conver Banach space with a modulus of uniform

convezity 0. Then, for all z,y € X with x #y and ||z|| > ||ly||, we have

2(]|[1* + ||x|||!y||)5(%) = 2lylll=ll = llyl) < (= =y, = = 5y)- (3.1)

Proof. Let z,y € X with x # y and ||z|| > |ly||. Obviously, ||z|| > 0. Defining ¢ :=
lz = yll/l|]], we have 0 < e < 2. Since —(z =y, jz —Jjy) +2llz[* +2llylI* = (z+y, jo+Jy),



we obtain

1 o Yl S
(@ = Yo = Jy) 24 2 = s (T Y
||:v||2(x 9rde =) +2F (2 ||$||2(I+y‘7 2

Consequently,

PRI o
20(e)(1 + +2( — < (x—y’jx—] .
O 12D T2zl ™ el < T 2

That is,

2([l2l” + llzllyiDace) + 20lyl* = = lllyl) < (@ =y, Jo — 5y),
which is the desired inequality. O

Suppose that X is uniformly convex with a modulus § : (0,2] — (0,1]. Then &; :
[0, 00) — [0, 1] defined as

81(g) :=sup{d(¢)|0 < &’ <min{2,e}}, 4:(0) :=0,

is an increasing modulus of uniform convexity. Thus, we may define
~ 1 €
) =5 / 51()dt. (3.2)
0

obtaining a continuous, strictly increasing, and convex function ¢ : [0,00) — [0, 00) such
that

Ve <2 (6(c) < di(e)). (3.3)
It is notable that, when restricted to (0,2], both §; and 6 act as moduli of uniform
convexity for X. In fact, given ¢ € (0,2] and z,y € X such that ||z||,[y]] < 1 and
|z — y|| > e, we have, for any 0 < &’ < e, that ||(z +y)/2|| <1 —4(¢') by ([2.1). Taking
the infimum over 0 < &’ < ¢, we then obtain ||(z+y)/2|| < 1—4J:(¢). That is, d; restricted
to (0,2] is a modulus of uniform convexity for X. Based on this and in view of (3.3)), it
is clear that &, when restricted to (0,2], is also a modulus of uniform convexity for X.

It is worth noting that

5(e) > %/ St > 61(5) > So(min{2, 5)).

Wl ™

Proposition 3.3. Let X be a uniformly convex Banach space with a modulus of uniform
convegity 6 and let b > 0. Define g1 and g, on Ry by gi(e) = (501(5))* and go(e) =
625(%)2. Then, for all x,y € By(0), j, € Jx and j, € Jy, we have

gilllz =yl) < (& =y, 0z = Jy), 1 = 1,2. (3.4)

Remark 3.4. Throughout the paper, for the applications of Proposition [3.3], the convexity

of g5 does not need to be used, and we can use either g; or gs.
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Proof. Let x,y € B,(0). Without loss of generality, we may assume x # y and ||z|| > [|y||.
Let € = ||z — y||. First, we show that

(lzlloCe/l1z1D)* < (& =y, jo = ). (3.5)

We consider two cases:

Case L+ If ([l«]I* + [z lllylNs(e/ll=l)) = 2([ll[[[yll — ly[|*), then in view of (3.1) we have

lzlI*a(e/ll2l)* < (l=l* + lzHylDa(e/ N2 ]) < (@ =y, jo — dy)-

Case 2: If ([lz|* + [l llyIDa(e/ = ll) < 2(lllllyll = [[y[*), then [[y|] > 0, and that

(@ =y jo = Jy) = (2] = lyl)*
(2|| H(||$H2+HCU||||3/H) (e/l1z1))*
> (llzllae/l12))*.
This completes the proof of . Now, replacing § with ¢; in , since ||z]| > |ly|| and

01 is increasing, we have

(2= 9. = 3) = (e lou(e/ ol
> (95 a2 = (o

Replacing 6 with 6 in 1' and using the convexity of §, we obtain

||93||

(z = yJo = 4y) 2 (l2lld(e/2l))® = (b= =0(e/ llz]1))* > (bd(e/0))*.

4. CONVERGENCE RATES FOR THE HOMOGENEOUS CASE

The original formulation of the so-called ‘convergence condition’ is due to Pazy [44]:
A maximal monotone operator A C H x H with C' = A710 # () satisfies the convergence
condition if, for all bounded sequences (x;,y;) € A, the condition lim; .. (y;, J(z; —
Pow;)) = 0 implies that liminf; . dist(x;, A710) = 0 (or, lim, , dist(z;, A7'0) = 0).
For a maximal monotone operator A in a Hilbert space, the zero set A7'0 is a closed
and convex set, and hence the projection onto A0 is well-defined. Pazy presented this
notion for a maximal monotone operator A in a Hilbert space H to assure the strong
convergence of the semigroup generated by A via the exponential formula to a zero of
A. The convergence condition is satisfied, for example, if A is the subdifferential of a
l.s.c. convex function ¢ > 0 whose level sets are compact and min,cy ¢(x) = 0 (see Pazy
[44]). It is obvious that every strongly monotone operator A satisfies the convergence
condition.

We know that if C' is a nonempty, closed and convex subset of a uniformly convex

Banach space X, and z € X, then there exists a unique element z € C such that
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dist(z,C') = ||z — z||. Denoting z = P(z), P is called the (nearest point) projection map
of the Banach space X onto C.

Moreover, by Lemma [2.2] if X is smooth, then z € C' is the nearest point projection
of x € X onto C, if and only if

(y—2J(x—-2) <0, Vel (4.1)

It is known that if A C X x X is m-accretive, then A is closed, and hence A0 is closed
(see, e.g., [9]). Furthermore, if X is uniformly convex, then A7!0 is closed and convex
since it is the fixed point set of any resolvent J, of A. It is worth pointing out that in
the case where X is a uniformly convex Banach space and A C X x X is m-accretive,
A710 # 0 holds if and only if liminfy . ||Jyz|| < oo for some z € X (see [29, Theorem

1]).

Definition 4.1. [43] Let X be smooth and uniformly convex, and A be m-accretive, and
assume that A710 # (). Let P : X — A~'0 be the nearest point projection map onto the
(closed and convex) zero set of A. Then, A satisfies the convergence condition if, for all
bounded sequences (x;,y;) € A, the condition lim;_,o(y;, J(x; — Pz;)) = 0 implies that

lim; o ||z; — Px;|| = 0.

Let X be a smooth and uniformly convex Banach space, and assume that A C X x X
is m-accretive such that A7'0 # (. As mentioned, the nearest point projection map
P: X — A7'0 of X onto A0 is well-defined in this case, and the convergence condition

is equivalent to have:

VKNW¢J““(mW*X(W(@my0€f1AH%WH%HS}Q

(4.2)

A lim (y;, J(z; — P;)) = 0 — lim [|z; — Pz = 0)-
i—00 =00

Pinto and Pischke [45] showed that A satisfies the convergence condition if, and only if,

vﬂﬁﬁﬁanNVr&yX(Cay>efaAnwaM|sz<
(4.3)

1 1
—P < — — Pl < —— ).
M0 T = Po)) € 1 = o = Pall < 1 )

The same authors also introduced the following definition for a modulus for the conver-
gence condition (as well as, based on [24] [33], discussed logical metatheorems to guarantee

the extractability of a computable modulus):

Definition 4.2. A modulus for the convergence condition is a functional Q : N x N — N
satisfying that for any k, K € N: if (x,y) € A are such that ||z, ||y|]| < K, then

1 1
e - I — — Pzl < —— 4.4
ST = e Pl < (4.4)

(g I (& — Pa))| < P
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We prove a new quantitative result that incorporates the main idea of some previous
convergence results (e.g., [48, 23, [I7, [18]) under the convergence condition. Additionally,

we determine how the modulus for the convergence condition is reflected in the proof.

Theorem 4.3. Let X be a smooth and uniformly convexr Banach space, and assume that
A C X x X is m-accretive such that A710 # () and satisfies the convergence condition with
a modulus Q. Let (¢;) be bounded away from zero, (0;) be bounded with ).~ 0165...0; = oo,
and choose ky € N such that (¢;) C [1/ko,00) and (0;) C (0, ko]. Let by,by > 0, and let
po € A710, x € X with ||po]| < bo and ||z|| < by. If (w;) is a solution for the homogeneous
form of (i.e., f; =0) for initial point x, then we have:

1
Vk € NVn,m > u(Q(K, 2k + 1) + 1)(Hun — U || < k—+1>

2 2
with p(l) == [¢-1] forl € N, ¢ > %Hx — poll? (e.g., ¢ := %(bo +01)?), and K :=
2ko(1 + ko) [bo + b1 ].

Note that ¢ can be defined in terms of K, e.q. by ¢ := K?>.

Proof. Let P : X — A710 be the nearest point projection map of X onto A=10. We write

1
V; = —'<(Ui+1 — ’UHL) — Qz(ul - Uifl)) € Aui, Vi Z 1. (45)

(3

Note that, using , we have
(Pujp1 — (1 + 60;) Pu; + 0; Pu;_y, J(u; — Puy))
= (Puyy1 — Puy, J(u; — Pu;)) + 0;(Puj—y — Pu;, J(u; — Pu;)) <O0.
From the accretivity of A, , , , and Lemma , for all ¢ > 1, we have
0 <ci(vi, J(w; — Pu;)) = (wipr — (L4 0;)u; + Giuiq, J(w; — Pu;))
=(uiy1 — Pujrq, J(u; — Pw;)) — (14 60;)(w; — Puy, J(u; — Puy))
+ 0;(ui—1 — Pu;_1, J(u; — Puwy))
+ (Pujy1 — (1 + 0;) Pu; + 0;Pu;_1, J(u; — Puw;))

(4.6)

1 1
§§||Uz‘+1 — Puiq || + §||Uz‘ — Puil|* = (14 6;)||u; — Puy?

0; 0;
+ §HU¢_1 — Pui_1||2 + EHUI — PUZH2

1 0,
:§(|’Ui+l — Pui|)* = [Ju; — Pu;||*) — E(HUz‘ — Pug|]? = [lui—1 — Pui—]?).

Multiplying both sides of the above inequality by a; and summing up from ¢ = n to m,

we have
m o
0< Y ciai(vi, J(u; — Puy)) < — Ul = P [|* = [t — Pupl|*)

Ay
e (Jun — PunH2 — [Jun—1 — Pun,1|‘2).




11

Taking liminf as m — oo, by using our assumption and Lemma we get, for all n,

0 < ciai(vi, I (i — Pug)) < o (ftnes — P [P — [lun — Pu?): (4.7)

This implies that ||u; — Pu;|| is non-increasing. That is,

Furthermore, by repeating the above argument with an arbitrary p € A710 replacing Pu;

for every i, we obtain

00 P
0< ZCiai(Uia J(u; —p)) < (|- — pH2 — |, — pHQ), (4.9)
which implies in turn that, for all p € A710,
Vi([luis — pll < llws —pll) (4.10)
In particular, we obtain
Vi([[wisa —poll < llz — poll)- (4.11)

Thus, we have ||u; — po|| < ||z]| + ||pol|, leading to the following bound for (u;):
Vi(llwll < llzll + 2[lpoll).- (4.12)
Combining and , and using the assumptions, we also have
il < 2ko(1 + ko) 2] + Ipol)). (4.13)

At this stage, by dividing both sides of the inequality (4.7]) by a,,_1 and summing up from

n =1 to oo, we have

1 1 , 1 )
D2 cigg g Wi (i = Pui)) < Sllug = Puo|l* = 5lw = P, (4.14)

ili1...0,

We also know that

220200 vz,J(ui—Pui))

n=1 i1=n
> i(vi, J Pul)) > ¢i(vg, J(u; — Puy)) i (v, J(u; — Puy))
Z:: 991 . +§ 0.0, 1.0 Zﬂ 991 O
Ly (o, J P>>+<1 LY, (s — Pus))
—C1\U u — )Co (VU Uy — U
91 1 1, 1 92 9201 2\ U2, 2 2
1 1 1
o (g oo ——— ) (U, J (U, — Puy,)) +

em emem—l em T 0291

= Z R Cin (Vs J (U, — Piy,)).

3
I

(4.15)
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The latter equality, along with (4.14]) and the assumption (¢;) C [1/ko, 00), yields

= k
> B (O, T (i, = Pity)) < 3“”:5 — Px|?. (4.16)
m=1
Thus
> (W, Ity = Puy)) < e = Paff?, (4.17)
m=1

since hy, > 1/60,, > 1/ky.
Claim. Taking pu(l) := [¢ -], where
k2 k2
¢z e =pl* = S lle — Palf?,
we have:

The proof of the claim easily follows from , by contradiction.

Now, let K > 2ko(1+ko)[(||x||+]|pol])]. Then, for any k, by taking ! := Q(K,2k + 1) + 1
in (4.18), we may choose some natural number ny with 0 < ny < p(Q(K, 2k +1) + 1)
such that (v,y, J(Uny — Py, )) < m
the definition of €2, we now deduce that ||un, — Pun,| < 5. From this and (4.8), it

Wi € N*3n < (1) ((0n, J (un — Puuy)) < %). (4.18)

In view of (4.12)) and (4.13)), and considering

ht2
follows that, for all n > pu(QUK,2k+ 1)+ 1), ||u, — Pu,| < ﬁ Consequently, by
[@.10),
1
et =l < [t = Prnll + [lun = Pl < 2l — Punll < =7
for all n > p(Q(K,2k+ 1)+ 1) and m € N. O

Remark 4.4. (For logicians). The rate in Theorem does not depend on a rate of
divergence for Y >°, 616,...0; = co. This fact can be logically explained as follows: the

divergence is only used to proof the purely universal version of (4.7) where instead of

(4.7) one states

k
Uy
Vk(ZCiai(vi, J(u; — Pu;)) < 5 ! (|tn-1 — Ptn_1||* — ||ttn — Pun||2)),

which could be added as an axiom for the extraction of the rate. Note that also in (4.16))
and (4.17) one never needs these sums to actually converge but only that their partial

sums are bounded by the quantities given.

It is also noteworthy that the smoothness and uniform convexity of X are not explicitly
manifested in the extracted rate presented in Theorem [4.3| in the sense that the rate
extracted does not depend on moduli of uniform convexity or uniform smoothness for X.
This observation is logically discussed in Remark at the end of this section. This
also raises the question of whether the result can be further improved in this aspect.
Through inspection of the classic proof presented above, we realize that the nearest point

projection map P : X — A7!0 should be well-defined, since it exists in the premise



13

of the convergence condition. So, it is natural to maintaining these assumptions: A is
m-accretive, X is smooth and uniformly convex; these are the standard assumptions to
define a projection on the zeros of an operator in literature. Apart from being used in

the convergence condition, we also applied the particular property of the projections
Vo,z€ X(z=Px - Vye A0, (y—z,J(z—2)) <0), (4.19)

which holds for closed convex sets in smooth and uniformly convex Banach spaces. This

property has been applied to guarantee that

Based on the above discussion, at first glance, it seems that there is not much possibility
of further generalizing the result to more general Banach spaces, even under different
assumptions on the coefficients. Despite this, by inspecting the proof presented above,
we are able to extract additional constructive data:

It is worth noting first that the proof relies on particular selections Pu; of the elements
of A=10. For (Pu,), there is a bound depending on a bound K > 2||z|| + |[po| for (u;)

(see(4.12)). In fact,
1Pusll < flus = poll + llusll < 2lwill + llpoll < 2K + |lpol| < 3K (4.20)

One of the key goals in the proof of Theorem is to show (4.18]), which involves finding
a computable bound for n in the sentence
1
vl € N*3n((vn, J (un — Puy)) < 7) (4.21)
By analyzing the above proof, we will see (in Theorem and Corollary [4.15]) that,
without using any property of the projection P, it is possible, under slightly different
assumptions on the coefficients, to show that for each [ € N* there is some n with a
computable bound such that for all p € A0 with ||p|| < 3K,

(vns I (U — p)) < % (4.22)

which includes (4.21)) in view of (4.20]). If (4.20) is proven, it follows that, in this case,

the projection P serves exclusively to define the formal convergence condition and does
not play a significant role in calculations.

Note that in the definition of the convergence condition the assumptions of the uniform
convexity of X and of the m-accretivity (instead of only ‘accretivity’) of A C X x X are
used just to define the nearest point projection map P over A~'0. On the other hand,
the computability of the projection P depends on the complexity of A~10.

Here, we suggest a more general variant of the convergence condition, without using a

projection:

Definition 4.5. Let X be a smooth Banach space and A C X x X be an (accretive)

operator with A710 # (). Then, A satisfies the generalized convergence condition if, for
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all bounded sequences (x;,y;) € A, the condition lim; . (y;, J(z; — p)) = 0, uniformly on
bounded subsets of A7!0, implies that lim; ., dist(z;, A710) = 0.

For each ¢ € N, denote Z, := {p € A7'0: ||p|| < ¢}. The generalized convergence

condition is equivalent to have:

VRV () 7 () (W(?Ji € Awi Allail], lyill < K)
(4.23)
AV (lim sup |(y;, J(z; — p))| = 0) — lim dist(z;, A7'0) = 0),

1—00 pEZg 1—00

which obviously is implied by the convergence condition; i.e.,
The convergence condition = The generalized convergence condition.

The main point is that the generalized convergence condition can be formulated in situa-
tions where the standard convergence condition cannot, and the implication above applies
only to the case in which Py exists.

We prove the following lemma.

Lemma 4.6. Let X be a smooth Banach space and A C X x X be an operator with
A0 #£ (0. For each ¢ € N, let Z, := {p € A0 : ||p|| < £}. Then, the following
statements are equivalent:

(i) A satisfies the generalized convergence condition;

(ii)

VEN, KN 3nN vt N ImN v (e N ()N <Vi(($i, yi) € AN ||| |yl < K)

(4.24)
1
¢N — < dist A7) < —— )
A (s L. o = )| € i) = it A70) < )
(ii)
VEN, KN 3t N ey X ((x,y) c ANz, vl < K
1 1 (4.25)
— < - dist(x. A710) < —— ).
A (s (. G = ) € ) > distln A70) < )

Proof. To establish (i) = (ii), assume by contradiction that (4.24) is not true. Then for
some k, K € N; we have

w3 3, () (Vi) € ANl ] < )

(4.26)

AV (sup |(Ygee), I (2g0) — p))| < L) A dist(z,,, A710) > L)

PEZ, n -+ 1 k + 1

From the above assertion, for any n € N we first choose g, : N — N, and then for
m = gn(n), we choose sequences (zI',yl") € A with ||z?|], ||y < K such that

1
VN (su monsJxt oy — < ,
(peng ’(ygn(ﬁ) ( gn(£) p)l < ot 1)
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and .
: n —1
dlSt(xgn(n)ﬂ A O) > /{j——f—]_

Consequently,
lim sup [ (y, (o), J (24, ) = P))I =0,
" pez,

uniformly in ¢ € N. However, the sequence (dist(z, ), A~10)) is bounded away from zero.
This contradicts the generalized convergence condition. To show that (ii) = (i), suppose
that (z;) and (y;) are sequences in X such that, for all ¢, (z;,vy;) € A, ||z, [|v:]| < K for
some K € N, and

lim sup |(y;, J(z; — p))| =0, (4.27)

71— 00 pEZ@
for all £ € N. For a given k € N, choose n as defined in (4.24). Then in view of (4.27)) we
may define a function g : N — N such that, for all £ € N,

su s J (T g0y — < .
pegl(yg@) (zg0) — )| < e

Now, applying , we deduce that there exists some m € N such that
1

dist(z,,, A710) < Pl (4.28)
For any my € N, repeating the above argument for the shifted sequences (x;1.,,) and
(Yi+m,) instead of (z;) and (y;), we conclude the existence of some m > mg with property
(4.28). That is, liminf,, dist(z,,, A=10) = 0. This concludes that A satisfies the general-
ized convergence condition. We now prove that (iii) = (i): Let K € N, and assume that
(x;) and (y;) are sequences in X with ||z;||, ||v:]| < K, (x;,y;) € A, and that holds
for all £ € N. Let k € N and take ng and ¢ as in . Let ig be so large that

Vi > io( sup |(yi, J(z; — p))| < )- (4.29)

pEZ@O No + 1

Then, (4.25) gives dist(x;, A7'0) < 1/(k + 1) for all i > ig. That is, lim; dist(z;, A7'0) =
0. To establish (i) = (iii), suppose (4.25) would be false; i.e.,

Ve, K € NVn, £ € N Japp, yos € X((In,z,yn,e) & AN |znll llvnell < K

' X (4.30)
A's .ty J (Tno — < —— Adist(zp, A7N0) > —— ).
S (0 = )] < =g Aistl, A70) > )
Define z,, := x,,,, and ¥, := yp . Then,
V¢ € N( lim sup |(gn, J(Zn — p))| = 0). (4.31)
nﬁoopezé
Indeed, given m € N, using (4.30)), we have that for any n > max{m, ¢},
1 1
su ~na‘]jjn_ < su ~n7‘]3~jn_ = su nanxnn_ < < .
pegl(y (Zn—p))| pegl(y (Zn—p))| p€£|(y, @nn=p)l < =7 < 2y
(4.32)

However, assumption (i), together with (4.31)), implies that lim,, ., dist(z,,,, A710) = 0,
which contradicts (4.30)). d
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Remark 4.7. (For logicians). Note, by Lemma that (4.25)) is essentially a uniform

version of the property

VX oy VEN InN N ((x,y) €A

1 { (4.33)
J(x —p))| £ ——) — dist(z, A" —
A (s I o = ] < ) = st A710) < ).
which can readily be seen to be equivalent to
Vot y ¥ ((x, y) € ANVpe A70((y, J(x —p)) =0) >z € A—lO). (4.34)

The premise of (4.34) holds true, for instance, when z € A710 and y = 0.
The nonuniform version (4.33)) of (4.25)) takes the form of a universal/existential for-

1

—7 can be replaced by

mula. In fact, sup,.z, |(y, J(z —p))| <

" (xa(p;0) =r O A flpll < 1= [(y, J (= p)| <2 ——),

where it is rewritten in prenex normal form as a universally quantified formula (taking
into account the hidden quantifiers in <g and <g). Moreover, dist(z, A710) < 1/(k + 1)
can be replaced by

32X (xa(2,0) =n O A ||z — 2| <g 1/(k + 1)),

which is a purely existential formula. Formalizing them in the language of the systems
used in the logical metatheorems due to the first author in [24, B3], and also in [46],
one may use the metatheorems in [24], 33|, 46] to extract a uniform bound on ‘In, /",
depending on a bound for (z,y) € A and suitable majorizing data of the other parameters
involved from proofs of that can be carried out in these systems.

Motivated by the preceding discussion and in light of the previous lemma (and the
monotonicity of the quantifiers ‘In, I’ by which bounds are actually witnesses), we propose

the following moduli for the generalized convergence condition.

Definition 4.8. A I-modulus for the generalized convergence condition is a function

w: N x N — N such that

ka,KN,xX,yX(m,y) e ANzl Iyl < K
(4.35)

A( sup [(y, J(x—p))| < !

1
< ——) — dist(z, A7) < —)
PEZ (K k) W(Kv k) + 1) ( )

T k+1

Remark 4.9. Note also that “Vk, K are monotone in (4.25)) and so it would be equivalent
to formulate the modulus as a unary function w(NV) satisfying (4.25) for all k, K < N.

In light of (4.24]), we propose an alternative modulus for the generalized convergence

condition, to be carried out comparable to (4.35):



17

Definition 4.10. A II-modulus for the generalized convergence condition is a pair (€2, ®)
of functionals of the forms Q : N x N — N and ® : N x NN — N satisfying

Vk’N,KN, gN—>N, (xi)NaX’ <yi)N—>X

1
() € ANl sl < K N “PIs amhT
(v2(<xl,yz> € ANzl ol < K) AVE(sup [(ygio, I (20 =PI < qrey 1)
1
— Im < (K, k), g) (dist(mm,A_lo) < k—+1))
(4.36)

Proposition 4.11. Let w satisfy ({{-3%). Then, Q := w, ®(r,g) := g(r) define a II-
modulus satisfying .

Proof. Let k, K, g, (x;) and (y;) be as in (4.36)), and assume the premise of (4.36]). Then
for ¢ := w(K, k) one in particular has

W T (o~ 2| < 1
su I (g0 — < = .
pez, AT TP E QIR 1 WK ) T 1
Hence by (4.35)), applied to y := y,(¢) and x := x4, one gets

1

diSt(.Tg(g),A_IO) < kj——H_

So (4.36)) is satisfied with
m = g(l) = g(w(K, k) = g(QUK, k) = ®(QK, k), 9).
O

Remark 4.12. In the proof of “(ii) = (i)” in Lemma [4.6, one can assume that g is strictly
increasing. Hence, we can weaken “Vg” in (4.24]) and (4.36) to such functions g. For

simplicity, we denote such functions by g .

The converse of proposition also holds. More precisely, we show that from a pair
(Q, ®) of functionals satisfying (4.36]), one can construct a modulus w satisfying (4.35]),

utilizing a bound b > ||z|| for some z € A710.

Proposition 4.13. Let (2, ®) be a pair of functionals satisfying ({4.36), and let b > ||z||
for some z € A710, then

w(K, k) = max{Q(max{K, b}, k), (Q(max{ K, b}, k),id)}
defines a I-modulus for the generalized convergence condition in the sense of .

Proof. Consider b € N such that b > ||z|| for some z € A710. For any K € N, we define
Ky = max{ K, b}. Let (Q, ®) satisfy (4.306).
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Claim. (4.36)) implies the seemingly stronger form
VkNaKNa gﬁﬁNa (xi)N%X7 (yi)NHX 3¢ < (I)(Q(Kbv k)a g/)

1
(e A sl < Q(K, k) + 1
(i) € AN Lol ol < 55) A (509 000 0~ DD < g 57)
WO, A0 < ) ).
(4.37)

To prove the claim, let k£, K € N, let g : N — N be a strictly increasing function, and let
(x;), (y;) be given such that

Vi((zi,5:) € AN i, llyill < Ks),

and
1
VI < N :=Q(QKy, k), ,J < — ). 4.38
<N = 9K K9 [0 e ~ D) € ) (439)
Define
2 ) i< g(N),
e z, otherwise,
and
) ye, i < g(N),
Yn = 0, otherwise.

Note that (z;,7;) € A and ||Z;|], ||7:]] < Kp. Then, (4.38) implies that

1
Ve € N( sup |[(Yge), J(T < — ),
(p&l%“yg(z) J (2 g(e) — p))| < (Kb,k:)+1)

since for £ < N, we have g(I) < g(INV) and so Z40) = Z(0), Ug¢) = Yg(e), While for £ > N
we have ¢g(¢) > g(N), and thus
1
su Uo(r), J (X = sup |(0, J(z — =0< —.
sup (70, (o = 2] = 599 (0.2 =) =0 € oy
Hence, by (4.36]), and using that g(N) > N as g is strictly increasing,
1
Im < ®(QUK,, k), g) (dist(zy,, A710) = dist(Z,,, A70) < k—+1)'
—_——
N
The proof of the claim is now complete.
Now, let k, K € N, and define w(K, k) := max{Q(Ky, k), P(Q(Ky, k),id)}. Let (x,y) €
Awith [Joll Jyll < K and

su ,J(x — <
s I =PI S

Thus, we have for ¢ < ®&(Q(K,, k), id),

sup |(y, J(z —p))| < (4.39)

pEZ, WK k)+ 1~ QUK k) +1
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Then, (4.39) is the premise of (4.37) with x; := z, y; := vy, for all i, and g := id. Thus,
(4.37) implies that dist(z, A7'0) < =5. Therefore, (4.35)) holds for such w and we have
thus completed the proof. l

Theorem 4.14. Let X be a smooth Banach space, and assume that A C X x X is
accretive such that A='0 #£ (). Let (0, ®) be a II-modulus of the generalized convergence

condition for A as in (4.30). Let > 61605...0, = oo. Suppose that for some kg € N*,
i=1
(cia;) C [1/kg,00) and (a;) C (0,ko]. Let by,by > 0, and let po € A0, x € X with

lpoll < by and ||z|| < by. If (u;) is a solution for the homogeneous form of (L.4) for initial
point x, then we have:

1
i € N, 2 @K 4h+3)9) (i — ol < 1 )

with K = [4k2(by + bo)] + 1, g : N — N defined by g(0) = us(QUK,4k + 3)), and
y _ k2
pe : N — N defined by py(k) :== (1 + k) [30(61 + 0)?].

Proof. In view of (1.4), we may write
1

Ui s = g((“iﬂ — ;) — 03(u; — ui—1))
i (4.40)
= —(ai(uipr —w) — i1 (s — wiy)) € Awg, Vi > 1.

From the accretivity of A and Lemma , for all p € A710 and 7 > 1, we have
0 <ci(vi, J(ui — p)) = (wig1 — (1 + 0;)w; + Oui—1, J(u; — p))
=(uiy1 — p, J (i = p)) — (1 + 6:)|lui — p||* + 0i(uiy — p, J (u; — p))

1 1
<Gl = pl* + Sl = plI* = (1 + 6) Jw; — p|?

+ i = pl* + 2 s = pl
1 2 2 0i 2 2
=5 ([uirr = plI” = llus = pII") = 5 (llui = pII” = llwis = pIF).
Multiplying both sides of the above inequality by a; and summing up from ¢ = n to m,
we have
m am
0<> ciaivi, J(ui = p)) < = (lwmsr =PI = [l = pII”)

Ap—1

(lwn = pII* = llwn—r = pII*).
Taking liminf as m — oo, by using our assumption and Lemma [2.4] we get, for all n,

Ap—1
2

0 <Y ciaivi, J(u; =) < =5 ([wnr = plI* = un = pl)- (4.41)
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Thus, by the assumptions, we deduce
0< Y (v, J(ui —p)) < f(l!un_l =l = llun = pl*). (4.42)

Thus, for any p € A10,
Vi(Jluis1 — pll < |lwi — pll). (4.43)
In particular, for the fixed py € A710, we have ||Ju; — po|| < ||z|| + ||po||, leading to the

following bounds for (u;) and (v;):
Vi(luill < Il + 2llpoll and [Jvi]| < 4k5(I|[| + [lpoll)- (4.44)

Taking K := [4k3(b1 + bo)] + 1, we have

Vi ([Jugl], [Jvs]| < K). (4.45)
Now, choose an arbitrary £ € N. For any p € Z,={p€ A7'0: |p|| < ¢} and i € N, let
ko 2 ko 2

Qp = ?HuZ —p||* and L, := [?(HxH + 0)7]. (4.46)

Then, for all p € Z, and ¢ € N, we have
it 1p S Q5 p S L@. (447)

In view of (4.42)), we know that

0<> (vi, J(ui = p)) < Qo1 p — . (4.48)

Claim. Let sy : N — N be defined by (k) := (1+k)Lg, and let 5;,, == (v;, J(u;—p)) >
0. Then, p, defines a rate of uniform convergence on Z, for the sequence (3;,); towards
0:

In view of , we know that

0 S Z Bm, S Op—1,p — Qpp- (449)

1=n
On the other hand, from a;11, < a;, < Ly, it is easy (by contradiction) to prove that
for all p € Z, and ke N,

In < pe(k) (no1p — Ay < 1—1-#/%) (4.50)
This along with implies that for such n,
VEENVpE€ Zi( D> Bip <D Bip <1y — 0y < 1%%). (4.51)
i=pe(k) =
Consequently,
Vi, 0 € NVi > (k) Vp € Z¢(Bip < 1%;). (4.52)

This completes the proof of the claim.
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Now, let k € N, and define k := Q(K, 4k + 3) with K as in (4.45). Then, by (4.52), we

have, for all £ € N, p € Z, and i > p,(k),
(vi, J(ui = p)) = Bip < = Lo ! : (4.53)
E+1 QK 4k+3)+1
At this stage, defining g : N — N by ¢g(¢) := (K, 4k + 3)), we conclude in view of
(4.53)) and definition of ® that there exists m < ®(Q(K,4k + 3), g) such that
1
4k +4

dist(t,,, A710) <

Pick some p € A~10 with

1
2k +2°

This, along with (4.43)), implies that for all i > ®(Q(K, 4k + 3), g):

1
2k +2°

Consequently, for all m,n > ®(Q(K, 4k + 3), g),

dist (up, A70) < |lum — P|| <

lus — Bl <

1
m_ng m_~ n_~<—-
i = ol < lem = Bl + = ] <

O

Note that compared to Theorem [£.3] the above theorem neither uses that X is uni-

formly convex nor that A is m-accretive (but only that it is accretive).

Corollary 4.15. With the same assumptions as in Theorem ifw:NxN—= N is
a I-modulus of the generalized convergence condition for A as in , then we have:

k2 1
vk € NVn,m = (1+w(K, 4k + 3)) [ (o] + w(K, 4k + 3))° (Hun — | < m)

Proof. Let w : NxN — N be a modulus satisfying (4.35)). Utilizing Proposition[d.11]  :=
w, ®(r,g) := g(r) define a II-modulus (€2, ®) for the generalized convergence condition.
Then, in view of Theorem [4.14] we obtain the rate ®(Q(K, 4k +3), g) with K = [4k3 (b +
bo)] +1, 9 N %QN defined by ¢(¢) := ue(QUK,4k +3)), and p, : N — N defined by

pe(k) == (1 + /%)(’Z-O(bl +¢)?]. Then,
O(QK, 4k + 3), g) = g(QUEK, 4k + 3))

= (1+ Q(K, 4k + 3)) (%(bl + QK 4k + 3))*]

— (1 +w(K, 4k +3)) (%3(111 +w(K, 4k + 3))2).
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Remark 4.16. (For logicians). As mentioned, the uniform convexity and smoothness of
the Banach space X are not directly reflected in the extracted rate obtained in Theorem
[4.3] More precisely, the rate does not depend on a modulus of convexity, nor does it
depend on a modulus of uniform smoothness???or, equivalently, on a modulus for the
norm-to-norm continuity of the duality map J on bounded sets. Logical metatheorems
typically upgrade smoothness to uniform smoothness together with a modulus. However,
J can also by hardwired into logical metatheorems by adding a constant Jy of type

1(X)(X), where 1 is the type N — N, and the purely universal axiom
(Jx) = Vo, y* (Ixaw =g [|l2]% A [xzele <w ||zllx = ylx
A Val,ﬁl,uX,UX(JXx(a RUFx B rV) =k @ JJxru+g [ R Jxxv))

to the formal framework from Kohlenbach [30] (see Kohlenbach and Leustean [35] for
details).

This axiom clearly holds when Jy is interpreted in a smooth Banach space as the single-
valued normalized duality map J. The proof above only uses (Jx) but not the axiom
(Jx,wx) (also found in [35]) which states that wy is a modulus of uniform continuity on
bounded sets of Jx.

Moreover, the uniform convexity in Theorem [4.3] is only used to guarantee that the
nearest point projection map P : X — A710 be well-defined. Such a function, however,
can be directly hardwired as a new constant P of type X (X) with the following universal

axiom (see also [40]):
vz X, y* ((xa(y,0) =0 0 = (y — Pz, Jx(z — Pz)) <g 0) A xa(Pz,0) = 0).

The premise formalizes that y is a zero of A. Similarly, the second conjunct formalizes
that Px is a zero of A. This axiom clearly holds when in a uniformly convex Banach
space the constant P is interpreted as the metric projection onto A7'(0) while x4 is
interpreted as the characteristic function of (the graph of) A.

Both P and Jx are easily majorizable. For P, we have ||Px| < ||z|| + ||z — po/|, since
|z — Pz|| < ||z — pol|. The majorizability of Jx is discussed in detail on page 3454 of
[35]. Hence the bound guaranteed to be extractable from a proof formalized in a logical
framework based on the above axioms will be true in any Banach space which is smooth
and uniformly convex but will not depend on any moduli for (uniform) smoothness or
uniform convexity.

This treatment suffices, as neither the extensionality of P (i.e., z =x y — Px =x Py)
nor that of J is invoked in proof of Theorem[4.3] If those had been used, this would require
a quantitative treatment of extensionality for P, respectively J, and hence modululi of
(uniform) continuity on bounded sets for P and J, respectively. For P, this would
require a modulus of uniform convexity for X. In the case of J, one would either need to
stipulate this directly via axiom (Jx,wx) as presented in [35], or alternatively, axiomatize
the uniform smoothness of X with a modulus 7 (as on page 3456 in [35]), from which

then a modulus wy can be computed according to [35, Proposition 2.5].
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5. MobpuLI OF THE CONVERGENCE CONDITION: FURTHER GENERALIZATION AND
COMPARISONS

The Yosida approximation is a powerful tool for studying the existence and asymptotic
behavior of solutions to difference and differential inclusions governed by monotone (ac-
cretive) operators. For a Hilbert space H, if A C H x H is maximal monotone, A~10 # (),
and A satisfies the convergence condition, then the Yosida approximation A, satisfies the
convergence condition. Pazy [44] proved this result as follows:

let (z;) be a bounded sequence in H and P be the projection onto the closed convex
subset A710. Let lim; o (Axx;, 7, — Px;) = 0. Then,

(Axzi, 2; — Px;) = (Axag, Jax; — Pxy) + M| Axa]|? (5.1)

implies that lim; o ||2; — Jyz;i|| = lim; 00 A|Arz;]| = 0 and lim; oo (Arzy, Jryx; — Pz;) =0
since (Ayx;, Jar; — Pxz;) > 0. By the convergence condition assumption on A, the con-
tinuity of P, and the property Ayz; € AJyz;, we deduce that lim; . ||x; — Px;|| =
lim; o || Jaz; — Pzl = 0.

Question: If X is a smooth and uniformly convex Banach space, and A C X x X
is m-accretive, satisfying the ‘convergence condition” and A0 # (), does the Yosida
approximation A, satisfy the ‘convergence condition’?

The above-mentioned argument lacks the capacity for generalization to Banach spaces,
since the equality corresponding to in Banach spaces requires the linearity of the
duality mapping. Therefore, the above question remains open. However, for the case of

the ‘generalized convergence condition’ (Definition , we obtain the following result.

Proposition 5.1. Let X be a smooth Banach space, and assume that A C X x X is
an accretive operator such that A7'0 # (. If A satisfies the generalized convergence

condition, then its Yosida approximation Ay does as well.

Proof. Let A > 0. For all sequences (z;) in R(I + AA) and (p;) C A0, we have (using
Lemma [2.1(1))
(Axwi, J (i — i) = (Anwi, J (Dazi — pi))
+ (A)\Ii, J(J)\l‘z — Di + )\A)\IZ) — J(J)ﬂ?z — p1)>
> (Aszi, J(Ias — i) + A7 ([ D = pi+ Al = |z = pil))?,
(5.2)

where Jy, is the resolvent of A. Now, let (z;) be a bounded sequence in R(/+\A) such that

(Aaz;) is bounded, and also assume that for all bounded sequences (p;) in A,'0 = A710,

lim (Axzy, J(z; — p;)) = 0. (5.3)

1—00

We need to show that lim, ., dist(z;, A7'0) = 0.
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We note that, for any x € R(I + AA), we have Ayz € AJyx (see (2.2))). Thus
(Axz;, J(Jyx; — pi)) > 0, and hence in view of (5.2)) and (5.3) we deduce
lim (Ayz;, J(Jyx; — pi)) = 0. (5.4)
1—00
Since the sequences (Jyx;) and (Ayx;) with (Jyx;, Axx;) € A are bounded and {p;} is an
arbitrary bounded sequence in A~10, the generalized convergence condition for A implies
that

lim dist(Jyz;, A'0) = 0.

i—>00
Now, for any n € N, we choose some p, € A~'0 with
1
n+1

| Ix2p — Pl < dist(Jyzn, A10) +
Thus, for the bounded sequence (p;) in A~'0, we have
le)rglo |z — pi]| < le)rglo dist(Jyz;, A710) = 0. (5.5)
From this, and by considering p; instead of p; in and , we conclude that
lim [|Ayz;|| = 0. (5.6)
i—o0

Therefore, by (5.5) and (5.6)), we have

lim dist(2;, A7'0) < lim ||z; — p;|| = lim || Jaz; + Mz — pif| = 0,
71— 00 21— 00

i—00

as desired. 0

Remark 5.2. If A C H x H is maximal monotone and A0 # (), where H is a Hilbert

space, then the following are equivalent:

(i) A, satisfies the convergence condition;
(ii) A, satisfies the generalized convergence condition;
(iii) for any bounded sequence (z;), lim; s || Axzs]| = 0 — lim;_,o dist(z;, A710) = 0.
It suffices to note that for all bounded sequences (z;) C H and (p;) C A0, since
(Axzi, Jaz; —pi) > 0 and

(Axzy, zy — pi) = (Axwy, g — pi) + )\HAA%‘”Qa (5.7)
we have lim; o (Axz;, x; — p;) = 0 if and only if lim;_, || Axz;]| = 0.

Motivated by Remark (iii), and for reasons that will become clear in the next

section, we introduce a weaker notion of the convergence condition.

Definition 5.3. Let A be a nonlinear set-valued operator in a Banach space X with
0€ R(A) (i.e., A710 # (). We say that A satisfies the ‘convergence condition type’ if for

any bounded sequence (z,) in D(A), we have:

lim dist (0, Aw,) = 0 — lim dist(x,,, A'0) = 0. (5.8)
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From the definitions, it follows for smooth Banach spaces that:
Generalized convergence condition (Def. = Convergence condition type (Def. .

Remark 5.4. If the nearest point projection P onto A7'0 is well-defined (e.g., when X
is smooth and uniformly convex, and A is m-accretive), then ([5.8) is easily seen to be

equivalent to

lim || A°2,|| = 0 — lim ||z, — Px,|| =0, (5.9)
n n
where A%z is the unique element in Az with minimum norm.

Remark 5.5. (For logicians). It is easy to show that the convergence condition type (5.8)

is equivalent to the following property:

1 1
VEN, KN 3ntaX v ((z,y) € AN |Jz]| S K Ayl < ] — dist(z, A710) < k—+1)
(5.10)
In fact, ((5.10)) is the uniform version of the property
1 1
v,y VEN 3ot ((z,y) € AN |yl < ] — dist(x, A710) < k——H)’ (5.11)
which is equivalent (using extensionality) to the trivial implication
Vz € D(A)(0 € Az — z € A10). (5.12)

Without extensionality (5.11)) is equivalent to

1 1
X XN N < X -l < —— .
Vo y* VEN InM (2, y) € ANyl < e — 3" ((p,0) € AN||z—p[| < k+1))7 (5.13)

where ‘( e )’ is an 3-formula. Hence if 1) is provable in formal systems which have
a bound extraction metatheorem, one can extract from the proof a bound on (and hence
a witness for) ‘In™” which only depends on k and a norm bound K > ||z|| (note that

w.l.o.g. we may assume that ||y|| < 1). This suggests the next definition.
We know define a modulus for the convergence condition type:

Definition 5.6. A modulus for the convergence condition type of A is a function €2 :
N x N — N such that

1
Vk‘N,KN,a:X,yX((x,y) eEAN|z|| < KAyl < — dist(z, A7'0) < —)

1
Q(k, K) + 1

k‘

Here, we examine the consistency of the Yosida approximation with respect to the

notion of convergence condition type (Definition [5.3)).

Proposition 5.7. Let A be an accretive operator in a Banach space X with A='0 # ().
If A satisfies the convergence condition type, then so does its Yosida approximation Ay.

The converse also holds, provided that A is additionally m-accretive.
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Proof. Let A > 0, and let (x,,) be a bounded sequence in R(I+AA) such that lim,, || Ayx,| =
0. From Az, € AJyx,, we the have lim, dist(0, AJyz,) = 0. Since (Jyx,) is bounded
and A satisfies the convergence condition type, we deduce that lim,, dist(Jyx,, A~10) = 0.
Now, we may choose a sequence (p,) in A710 = A'0 with lim,, || Jyz,, — pn|| = 0. Then,
lim,, ||z, —pn|| = 0 since ||z, —p,|| < [NAxznl| + || JaTn —pnl|. Thus, lim, dist(x,, A710) =
0, and therefore A, satisfies the convergence condition type. For the converse, assume
that A is m-accretive and that its Yosida approximation A, satisfies the convergence
condition type. We show that A does as well. Let (x,) be a bounded sequence in D(A)
such that lim, dist(0, Az,,) = 0. By Lemma (2), [|Axz,|| < dist(0, Az,,). Thus,
lim, ||Axz,| = 0, and by assumption, lim, dist(z,, A~'0) = lim, dist(z,, 4;'0) = 0,
which completes the proof.
O

We recall the notion of the modulus of regularity, which was originally introduced in
[36].

Definition 5.8. Let (M, d) be a metric space and F' : M — R be a mapping with zer F' =
{r € M : F(x) =0} # 0. Fixing z € zerF and r > 0, we say that ¢ : (0,00) — (0,00)
is a modulus of regularity for F' w.r.t. zerF and B(z,r), if for all e > 0 and = € B(z,7)

we have the following:
|F(z)] < ¢(e) = dist(z, zerF') < e.

In the following, we show that a modulus €2 : Nx N — N for the convergence condition
type of an accretive operator A transfers to a modulus of regularity ¢ : (0,00) — (0, 00)
for the absolute value of its Yosida approximation |A,|, where |A,|(z) = ||Ax(x)]|| for
x € R(I + M\A). Conversely, if A is additionally m-accretive, a modulus of regularity for

|A,| yields a modulus for the convergence condition type of A.

Theorem 5.9. Let A be an accretive operator in a Banach space X with A0 # ().
Then:

(1) If Q : NxN — N is a modulus for the convergence condition type of A, then for any
z€ A0 andr >0, ¢, : (0,00) = (0,00) defined by ¢, () := (1 +([e 1]+
LIzl + 7)Y, where Q\(k, K) := max{(2k + 2)[A\],1+ Q(2k + 1, K + [\])} — 1,
is a modulus of reqularity for |Ay| : R(I + MA) — R w.r.t. zer|Ay] = A7'0 and
B(z,7) N R(I + \A).

(2) Conversely, if A is additionally m-accretive and |A,| admits a modulus of requ-
larity ¢, for any z € zer|Ax| and r > 0, then one can extract a modulus S for

the convergence condition type of A by defining Q(k, K) := fgbz,KH”Zm(k—ilﬂ*l

The proof of Theorem [5.9] is preceded by two supporting lemmas. The first lemma
presents a quantitative refinement of Proposition [5.7}

Lemma 5.10. Let A be an accretive operator in a Banach space X with A=10 # 0. Then.:
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(1) If Q is a modulus for the convergence condition type of A, then Q) : N x N — N
defined by

Oa(k, K) = max{(2k + 2)[A\],1+ Q(2k + 1, K + [A\])} — 1, (5.15)

18 a modulus for the convergence condition type of the Yosida approximation Ay.
(2) Conversely, if A is additionally m-accretive and ) is a modulus for the convergence
condition type of Ay, it follows that € is likewise a modulus for the convergence

condition type of A.

Proof. Let €2 be a modulus for the convergence condition type of A. Suppose that €2 is
defined as in (5.15]). Consider k, K € N, and let = € R(I + AA) such that ||z|| < K and

1

Ayl < —————. 1
14l € T (5.16)
Thus,
< A <K+ -—F——<K . 1
Il < ol + Adnell < K + gy < K+ ] (517)
In view of (5.16]) and (5.15)), we have
1
A < ) 5.18
Il < T aer Tk + oy (5.18)
Since Ayx € AJyz, it follows from (5.17)), ((5.18) and the definition of €, that
1
i A7) < . 1
dist(Jyz, A70) < ST (5.19)
From (j5.16)) and ([5.15)), we also have
1
Azl € ——mM—. 2
Now, combining (5.19)) and (5.20)), we obtain
1
dist(x, A710) = dist(AAyz + Jyo, A710) < \||Asz|| + dist(Jyz, A710) < g

This completes the proof of (1). To prove (2), assume that A is m-accretive. Then, by
Lemma [2.3] ||Axz|| < dist(0, Az) for each € D(A). This inequality implies that any
modulus 2 for the convergence condition type of Ay also serves as a modulus for the

convergence condition type of A. O

The proof of the following lemma is straightforward and is therefore omitted.

Lemma 5.11. Let A : D(A) — X be a single-valued operator such that A=10 # (). Then.:

(1) Let Q be a modulus of convergence condition type for A. Fizing z € zerA and
r > 0, the function ¢,.(c) := (1 +Q([e™ ']+ 1, ||zl + )" defines a modulus of
reqularity for |A| : D(A) — R w.r.t. zerA and B(z,r) N D(A), where |A|(z) :=
1A
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(2) Conversely, if ¢., : (0,00) — (0,00) is a modulus of regularity for |A| w.r.t.
zer|A| and B(z,v) N D(A), where z € zerF and r > 0, then the functional
Q:Nx N — N, defined by

1
Qk,K) := ¢z x4 1)21n(

k—Hﬂ*l, (5.21)

is a modulus of convergence condition type for A.

Here is the proof of Theorem [5.9 using Lemmas and [5.11}
Proof of Theorem [5.9.

Let © : N x N — N be a modulus for the convergence condition type of A. By Lemma
, Q) defined in is a modulus for the convergence condition type of the Yosida
approximation Ay. Since A, is single-valued, Lemma [5.11] implies that for any z € zer A
and r > 0, the function ¢,,(¢) := (1 + U ([e7'] + 1,||2z]| + 7))~" defines a modulus of
regularity for |Ay] : R(I+AA) — R w.r.t. zerA and B(z,7) N R(I + \A). This completes
the proof of (1). Now, assume that A is m-accretive and |A,| admits a modulus of
regularity ¢, , for any z € zer|A,| and r > 0. Then, by Lemma the functional Q
defined by is a modulus of convergence condition type for Ay. It then follows from
Lemma that  is also a modulus for the convergence condition type of A, thereby
completing the proof of (2). O

Let C be a closed convex subset of a Banach space X. Consider a mapping 7' : C' = X
with Fiz(T) # (), and define F : C — R by F(z) = ||z —Tz||. Let z € Fixz(T) and r > 0.
Similarly, a modulus of regularity for 7' with respect to Fiz(T) and B(z,r) is defined as

a modulus of regularity for F' with respect to zerF and B(z,r).

Remark 5.12. If C' is additionally locally compact (e.g., if dimX < o), T is continuous,
z € Fiz(T), and r > 0, then T" has a modulus of regularity with respect to Fiz(T) and
B(z,7) (see [36, Corollary 3.5]).

Remark 5.13. Let A be an accretive operator in a Banach space X with A710 # (. Since
Jy : R(I + AA) — X is nonexpansive, Fiz(J,) = A710 = A'0, and M, = I — J,,
it follows that for z € Fiz(Jy) and r > 0, ¢ is a modulus of regularity for J, w.r.t
Fiz(T) and B(z,r) if and only if A™'¢ is a modulus of regularity for |Ay| w.r.t A~10
and B(z,7) N R(I + AA). Therefore, we may apply Theorem [5.9] to transfer a modulus
of regularity for J, into a modulus of convergence condition type for A, and vice versa.
Specifically, when dimX < oo and A is m-accretive, Remark[5.12 ensures that A possesses

a modulus of convergence condition type.

6. RATES OF METASTABILITY AND CONVERGENCE FOR NONHOMOGENEOUS
DIFFERENCE INCLUSIONS

In this section, we establish quantitative results on the strong convergence of solutions

to the nonhomogeneous problem (|1.4)) for an accretive A in Banach spaces which are
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uniformly convex. We also assume either Vi(0 < 6; < 1) or Vi(1 < 6;). It is worth noting
that the strong convergence of solutions to ([1.4])) in the nonhomogeneous case has been
investigated in the literature under the two scenarios for (6;) mentioned above (see, e.g.,
[5, 23] 22, 27]). In fact, unlike the homogeneous case, constructing monotone sequences
using the products of coefficients 6; is essential due to the absence of the monotone
property |luiy1 — p|| < |lus — pl|, p € A0, in the nonhomogeneous case.

In this case, the proof procedure relies on establishing the property

Vk € Ndn € N3v € Au,(|jv ),

+
which serves as the premise of the ‘convergence condition type’ (Definition [5.3). There-

fore, considering these separate cases for #; allows us to apply the ‘convergence condition
type,” which is the most general condition, encompassing both the standard convergence
condition and the generalized convergence condition.

To proceed, we first establish the following lemmas.

Lemma 6.1. Let X be a Banach space, and let (f;) be a sequence in X. Then, for any
n>1,

33 g <3 bl (6.

i=n k=
k 1

L0 and 6, > 0.
=190 .0,

where hy ==Y

Proof. By the proof of Lemma 3.3 in [I8], we have

1
EZEZQk”ﬁ” T Ifall+ G+ =l

i=n k= n+1
1 1 1 n+m
(9n+2 6n+29n+1 9n+26n+19n)‘|f +2H Z 9n+m i Hf + H
1
Then, ‘D follows immediately from ZZ":*T:” R < hom- 0
n+m---Yq

Lemma 6.2. Let X be a Banach space and let A C X x X be an accretive operator
such that A'0 # 0. Let po € A7'0 and v € X. Let Y oo 610s...0; = co. Suppose
that Y2, hi|lfill < C, and let (w;) be a solution for (1.4) with the initial point . Then
(ui) € By(0), for b= |[z|| + 2[|pol| + C

Proof. Since py € A710, by the accretivity of A and (1.4]), we have
Then, it is easy to check that we have

(luiva = poll = llui = poll) = Oilllus — poll = [lwiy = poll) + [Ifill = 0,
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for all 7 > 1. Therefore

llui = poll = llui—1 — poll
1 L]
< e—i(HUiH = poll = llui — poll) + o
1 [ fisall ISl
< . g4 —
< ggrlusss = poll = s = pol) + 221+ 22
i+j
1 |1/l
< - M —
- 9i+j...0i+19i(”u7'+]+1 po” Huz"!‘] p0‘|)+§9k9k19l
i+
= a; 0 ([t — poll — |luirs — poll) + Zj: w7
1— J J J eke 92
for all > 1,5 > 0. Taking liminf as 7 — oo, by Z a; = 00, ) and Lemma , we
obtain for all i > 1, .
| /i
7 - i— < 6.3
o~ poll = lfui-1 — pol Z T (63)
Thus, by (6.1)), we have
fk
[tm — poll < lluo — poll + ZZ 0.0 H H < |lx —poll +C, ¥Ym > 1. (6.4)
=1 k=i
This completes the proof. O

Lemma 6.3. Let X be a uniformly conver Banach space with a modulus of uniform
convezity 0, and let A C X x X be accretive such that A~10 # 0. Let Y ;2 01605...0; = 0o
Let py € A7'0 and x € X. Suppose that y .o, hil|fill < C, and let (u;) be a solution for
with the initial point x. Let b > ||z|| + 2||pol| + C and g(e) = b25(%)2 on R,. Then
(1) IfVi(0 < 6; < 1), then 3°,G(|Ju; — u;_1]|) < 3b%.
(2) If Vi(1 < 6;), then 33°,G(a;_1||u; — ui_1]]) < 3b%

Proof. First note that using (6.2)) we have
(wiyr — g, j(wi — po)) — Oi(ws — wi—1, j(ui — po)) — (fi, j(wi — po)) =20,  Vi.  (6.5)

We prove (1). As in the proof of [I8, Lemma 3.2], one shows, using Proposition
and Lemma [6.2] that

0o~ . o @
E2kg(lwi — wical]) < —(wr — wp—1, j(ug—1 — po)) + X2y, I[lwi — poll-
Therefore, from (/6.4]) and since a;_; > 1, we obtain
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We now prove (2). We assume Vi(1 < 6;). Thus Vi(a; < 1) and so for all 4, j, we have
a;uj € By(0). Thus, applying Proposition , we have
(aic1ui — aiqui1, j(ai—1(u; — po)) — jlai—1(wi—1 — po))) > glaiallui — uia)),
for all 7. That is,
ai—1(wi — w1, j (Ui — po)) — @i—1(u; — wi—1, j(ui—1 — po)) = @i__llg(aileui —u;—1||), (6.6)
for all . On the other hand, multiplying both sides of by a;, we have
ai(ui—l-l - Uz’J(Uz‘ - po)) - ai—l(ui - Uz’—l,j(uz‘ - po)) - Cli(fi,j(uz' —po)) >0, (6-7)
for all 7. Combining and , we deduce
a; g(aiol|u; — uisal]) < ai(wipr — wi, j(w — po)) 6.8)
— a;1(ui — i1, j(wio1 — po)) — ai(fi, j(ui — po)).

Now, summing up from ¢ = k to m and using again Lemma (2), we arrive at

(||Um+1 —poH2 [|tm —P0||2)
2 (6.9)

— ap—1(up — up—1, j(up—1 — po)) + Xt aill fillllwi — pol|-

Y a; 19(“1 1”“1_“2 1”)

Taking liminf, as m — oo, and using Lemma [2.4] we obtain

S pai i g(aim flui = wima|]) < —ag— (u — w1, 5 (wr—1 — po)) + SZpail fillllus — po-
Since Vi(a; < 1) in this case, we deduce
524G (aiallus — uial]) < E2pa glaioa |lus — uia])
< =g (g — w, J(ur-1 — po)) + B gaill fillllui — poll < 20% + b2 | fill < 30°.
(]

Theorem 6.4. Let X be a uniformly convex Banach space with a modulus of uniform

convexity 8, and assume that A C X x X is accretive such that A=*0 # 0 and satisfies

the convergence condition type with a modulus Q2. Let py € A7'0, v € X and ko € N. Let

Yoo 0105...0; = 00, (a;c;), (¢;) C [1/ko,00), and let (u;) be a solution for (1.4) with the

initial point x. Assume that Vi(0 < 0; < 1) orVi(1 <0;). If i hill fill < C € N, then the
i=1

following holds:
1
VR S < Wk 1,00 O ) Vi € i+ 100 (s = il < 57 ),

where U(k, f,C.0,Q,x,py) = ®(h,k,C) + T(k), ®(h,k,C) := hCE+D(0), h(n) =
n+ h(n), h(n) = T(k) + max{f(i); n < < n+T(k)}, §(t) = b?3(})> on Ry, b >
]| + 2llpol| + C., file) == [Z] on R\ {0}, and

1 i 1
oL+ 0k 40 SR T 0@k 4. 07))

(k) := f(min{ ). (6.10)
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Moreover,

1
VENY N 30 < Wk, f,C,6,Q, 2,p0) Vi € [n;n + f(n)] (dz’st(ui,A_lO) < )

2k +2
(6.11)
Consequently, (u;) converges to an element of A=10.
Proof. From (|1.4), we have
1
In view of (2.4), we get
1
vi = —(@i(uir1 — w;) — a1 (i — wim1) — a,fi). (6.13)

For € > 0, define fi(e) := (7—2’21
Claim 1: If Vi(0 < 0; < 1), then

Vk € NVe > OEIn(/;: <n <k+e) AG([tngr — ) + G(Jttn — o)) + I full < €).
(6.14)

Suppose that Vi(0 < 6; < 1). Then > ||fill < > hillfill < C. We know from Lemma
i=1 =1
6.3 (1) that
221 (Uluirr = will) + g([Jus — wia ) + 1 fil]) < 36% + 30° + C < 7%

This implies the claim, since otherwise there exists € > 0 such that

v* N o [~ N
el—1 = eile) < 21 (9(lwira — will) + g(llws —wiall) + [1fil]) < 707,

which is a contradiction.
Claim 2: If Vi(1 < 6;), then
Vi € NVe > 03n

(k< n <k fale) Aglanllunss = wnll) + G(an—1Jun — wsl)) + anl full <e€).
(6.15)

Suppose that Vi(1 < 6;). Then Y 2, a;l| fill <> ooy hill fi]| < C. We know from Lemma
m (2) that 322, (g(ai|lwirt —wil) + Glai—1||u; —wi—a]]) +ail| fil ) < 7b%. Now we can repeat
the argument used for Claim 1 to complete the proof of Claim 2.

At this stage, let £ > 0 and let € := min{fﬂ,g(%)} in (6.14) and (6.15]). By straight

calculations, we have from ((6.14)) and (6.15)):

Vi(0 < 6; < 1) = Vk € NVE > 03k < n < k + fi(min{

£
3_]€0’g(

§
(Hun+1 — Un” + ”Un - Un—lH + anH < k_O )

§

TR

(6.16)
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and

V(l<9)—>‘v’kJEN‘V’§>03/€<n</’<:—|—u(mur1{S

3ko’ o=

¢
=)

(anuunﬂ - Gt — s |+ aullfull < 5).
(6.17)

Now assume either Vi(0 < 6; < 1), or Vi(1 < ;). Combining (6.12)) and (6.16) for the
case Vi(0 < §; < 1), as well as combining (6.13) and (6.17) when V@(l < 6;), we have

Dl <€).  (618)

Vk € NV > 03k <n < /2+ﬂ(mm{;70,§(3—,%

Now, choose arbitrary £k € N and f : N — N. Taking

B 1
§= 1+ Q(4k + 4, [b])

in (6.18)), and denoting

['(k) := fi(min{ ! !

S+ 0@E 4107 SR 2@k £ 4 ])

)});

we have

VEe NIk <n< /2;+r(k)<|\vnu < 1+Q<4k1+4 W))' (6.19)

Define h(n) := (k) + max{f(i); n <i <n+I(k)}, h(n) :==n+ h(n), and
®(h, k, C) = AU+ (),

On the other hand, defining R; := > M and using Lemma , we have:
k=1 Qkﬁk_lﬂ
S f
> n- Zzgk il Zhlllel <c (6.20)
i=1 k=i

At this stage, using the metastability of bounded monotone sequences (see, e.g., [30,

Proposition 2.27] for details), we can choose some ng € N such that

1
4k + 4

J
no < ®(h,k,C) Vi, j € [ng;no+ h(no)l(i <j— > R.< ), (6.21)

s=i+1
and then using (6.19), we may choose 7y € N such that ng < 1y < ng + I'(k) and
1
1+ Q(4k + 4, [b])
Note that, defining W (k, f,C,d,Q, z,po) := ®(h, k,C) + T'(k),

[[v, || < (6.22)

No < 77L0 S No + F(k) S \Il(kvf7 Ca 5,@,1’,])0),
and since

no+ f(no) <ng+T(k)+ f(ng) < ng+T(k)+max{f(i); ng <i<ng+T(k)} =no+h(ng),
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we deduce
[720; 70 + f(70)] C [10; 10 + h(ng)]. (6.23)

Moreover, since v;, € A(ugz,) and |luz,|| < [b], we conclude by (6.22]) and the property
of €,

(mquA4m<4éi4 (6.24)
Thus, we may choose some py € A710 such that
Juno = foll < 7 (6.2
By the same line of reasoning in (6.3)) and , we derive
n+m
[t = Boll < flun = Boll + Y R (6.26)
i=n+1
Thus, in view of (6.21), and (6.25)), we obtain for all i € [fig; 7o + f(10)],
1 1

i = Doll < [[ung — P < :
s = poll < lluag = Poll + =7 < 5575

This proves . Moreover, for any £ € N and f : N — N, we have found some
ng < V(k, f,C, 8,9, x,po) such that for all i, 7 € [ng;ng + f(720)],
o = sl < s = oll + gy = i)l < -
k+1
This completes the proof. Il

Definition 6.5. We say that § : N — N is a Cauchy rate for a series »_ «,, < oo with

. n=1
a, >0, if

o0
In the presence of a Cauchy rate § for the series ) h;||fi]| < oo, we obtain, as a
i=1

corollary of Theorem a Cauchy rate for the solution (u;) of the difference inclusion
(1.4), depending on /.

Corollary 6.6. Under the same assumptions as in Theorem[6.4) if Y2, kil fil| converges

with a Cauchy rate 5 : N — N, then the following holds:
1
VEN Vi, m > B4k + 3) + D(k) (|Jun — un| < ——),

k+1
where T'(k) is defined as in (6.10).

Proof. Choose an arbitrary k € N, and define I'(k) as in (6.10). In view of (6.19)), there
exists some B(4k 4+ 3) < ng < f(4k + 3) + T'(k) such that
1

lowoll < T om0

(6.27)
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In veiw of (6.27)), the property of €2 implies that

1
4k +4°

dist(u,,, A710) <

In particular, we may choose some p,, € A~'0 such that

— . .2
s = Bl < (6.2
From ([6.28)), and using (6.3]), (6.1) and definition of 3, we have for each m € N*,
l 1<l = bl + 3 >
ung—i—m pno uno pno ekek L ‘9
i=no+1 k=
1
hill fi illfill < :
4k+4+ Z Il < 4k+4+ Z hillfil < 5555
i=B(4h+3)
Consequently, for all n > 8(4k + 3) +I'(k), we have
[t — Dol < 2% 12’
and, in turn, for such n and for all m € N, it follows that
s = )l < s = gl + i = | < =
O
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