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Abstract. In this paper we present new qualitative and quantitative results on the

asymptotic behavior of solutions to a second order difference inclusion of accretive type

in Banach spaces. We also discuss variants of Pazy’s convergence condition, aiming at

generalizing that notion without requiring projections. Our results represent the first

applications of the proof mining paradigm to difference inclusions, and the idea has the

potential to extend to their continuous counterparts.
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1. Introduction

By a well-known result of Crandall and Liggett [15], if X is a Banach space, and

A ⊂ X ×X is m-accretive, then for any x ∈ D(A) and t ≥ 0, the limit

S(t)x := lim
n→∞

(I +
t

n
A)−nx (= lim

n→∞
Jnt/nx) (1.1)

exists, and generates a continuous semigroup of nonexpansive mappings on D(A). More-

over, for x ∈ D(A), the function S(t)x is Lipschitz continuous in t (on bounded subsets)

by the proof of [15, Theorem I].

The asymptotic behavior of nonexpansive semigroups is closely connected to the as-

ymptotic behavior of the solutions of particular differential equations. In fact, in a Banach

space X, the possible solution to the first order Cauchy problem{
u′(t) ∈ −Au(t), a.e. on R+,

u(0) = x ∈ D(A),
(1.2)

where A ⊆ X×X is accretive, forms a nonexpansive semigroup S(t) of mappings on D(A)

by the accretivity of A. If A is m-accretive, it is known from [15, Theorem II] and [12,

Theorem 2.1] that (1.2) has a strong solution if and only if S(t)x in (1.1) is differentiable

almost everywhere, and in this case it is the unique solution to (1.2). Moreover, if

X is reflexive, then Lipschitz continuous functions of a real variable with values in X

are differentiable almost everywhere by Kōmura’s theorem. In particular, when A is

m-accretive and X is reflexive, the function S(t)x, defined in (1.1) for x ∈ D(A), is

differentiable almost everywhere, so u(t) := S(t)x solves problem (1.2).
1
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It is known ([16]) that in the case in which C is a closed convex subset of a Hilbert space

H, the family nonexpansive semigroups S(t) can be put in one to one correspondence

in the sense of (1.1) with the family of maximal monotone operators A ⊆ H × H with

D(A) = C. In Hilbert spaces maximal monotone operators coincide with m-accretive

operators. For an extension in a Banach space X, we refer to [49, Theorem 3.4], where

C is a nonexpansive retract of X, and X is uniformly convex with a uniformly Gâteaux

differentiable norm.

Similarly, second order differential equations and inclusions of the form{
p(t)u

′′
(t) + r(t)u

′
(t) ∈ Au(t) + f(t), a.e. on R+,

u(0) = x, sup{‖u(t)‖ : t > 0} <∞
(1.3)

have been investigated for the existence and asymptotic behavior of solutions by many

authors in Hilbert and Banach spaces. The first results in this direction were proved by

Barbu [7, 8, 10] in Hilbert spaces for the case where p ≡ 1 and r, f ≡ 0. In particular, he

derived in view of [16, Theorem A2] a definition for the square root of a maximal monotone

operator A, identifying it as the unique maximal monotone operator corresponding, via

the exponential formula, to the semigroup generated by the solutions of (1.3). The

solutions of (1.3) in a more general setting provide a better definition for the square root

of A. Poffald and Reich [48] studied the same problem for the existence as well as the

asymptotic behavior of solutions in the form of generated semigroups in the Banach space

setting. Such problems together with some generalizations were investigated by many

authors. We refer the reader in particular to the books by Barbu [9, 10], as well as to the

references [11, 7, 8, 13, 14, 53, 54, 13, 39, 48, 1, 2, 3, 6, 40, 41, 19, 20, 26]. In particular,

for the existence and uniqueness of bounded solutions to the general differential equation

(1.3), we refer to [40] for the Hilbert space and to [26] for the Banach space case.

Additionally, second-order difference inclusions of the form{
ui+1 − (1 + θi)ui + θiui−1 ∈ ciAui + fi, i ∈ N∗,
u0 = x, sup{‖ui‖ : i > 0} <∞,

(1.4)

where A is a nonlinear accretive (m-accretive) operator in a Banach space X, ci > 0 and

θi > 0, correspond to the discrete version of the second-order evolution equation (1.3).

Roughly speaking, using the forward and backward Euler method to approximate the

first and second derivatives of u, we may use

u′(t) ≈ u(t)− u(t− h)

h
≈ un − un−1

h
,

u′′(t) ≈ u(t+ h)− u(t)− (u(t)− u(t− h))

h2
≈ un+1 − 2un + un−1

h2
,

and discrete versions of the coefficients in (1.3) to get

1

h2
(un+1 − (1 + (1 + hr̃n))un + (1 + hr̃n)un−1)

=
un+1 − 2un + un−1

h2
− r̃n

un − un−1

h
∈ c̃nAun + f̃n,
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which is equivalent to un+1 − (1 + θn)un + θnun−1 ∈ cnAun + fn, for θn = 1 + hr̃n.

Moro??anu [42] investigated the difference inclusion (1.4) for the existence and asymp-

totic behavior of solutions, and obtained the convergence of {ui} to an element of A−1(0),

whenever A is a maximal monotone operator in a Hilbert space, 0 ∈ R(A), θi ≡ 1 and

fi ≡ 0 (the homogeneous case). Investigations on the existence and asymptotic behavior

of solutions to (1.4) were followed by many authors; see e.g., [48, 50, 4, 21, 23, 25, 27, 28,

17, 18]. In general (1.4) has no solution even if A = 0, θi ≡ 1 and (fi)i≥1 ∈ `1(X); see [48].

Pazy [44] presented the notion of ‘convergence condition’ for a maximal monotone oper-

ator A in a Hilbert space H to assure the strong convergence of the semigroup generated

by A via the exponential formula to a zero of A. The strong convergence of the semigroup

generated by A via the exponential formula (1.1) was extended to Banach spaces which

are both uniformly convex and uniformly smooth by Nevanlinna and Reich in [43], by

adapting the Pazy’s convergence condition to such classes of Banach spaces. Since Pazy

introduced his ‘convergence condition’, this approach has been frequently used (1.3) and

(1.4) to investigate the strong convergence behavior of solutions. Very recently, Pinto and

Pischke [45] (see also [34]) provided quantitative information on the Pazy convergence

condition and extracted quantitative information on the results of Nevanlinna and Reich

[43] (and Xu [56] as well) for the strong convergence of the semigroup generated by A

via the exponential formula in uniformly convex and uniformly smooth Banach spaces.

In particular, in the general spirit of [31], they introduced a modulus for the convergence

condition of Pazy (and its extension by Nevanlinna and Reich) and obtained rates of

convergence which depend on this modulus. Moreover, Pischke [47] provided a quantita-

tive version of some result due to Poffald and Reich [48] for the second-order evolution

equation (1.3), for the case where p ≡ 1 and r, f ≡ 0, in uniformly convex and uniformly

smooth Banach spaces with a strongly monotone duality map, in the form of an effective

rate of convergence depending on a modulus of convergence condition. Quantitative ver-

sions of some asymptotic behavior results of almost-orbits of the solution semigroups are

also obtained in [45, 47], where in [47] even the qualitative convergence result is new.

The above-mentioned quantitative results were obtained within the proof-mining par-

adigm [30], where tools from mathematical logic are used to convert prima facie non-

quantitative proofs in such a way that new quantitative information can be extracted.

We note that, in general, computable rates of convergence are unattainable even for a

bounded monotone sequence in R. Considering this situation, Kohlenbach suggested in

[32] the following (noneffectively) equivalent but constructively weakened reformulation

of the Cauchy property of a sequence (xi) in normed spaces:

∀ε > 0 ∀g : N→ N ∃n ∈ N ∀i, j ∈ [n;n+ g(n)]
(
‖xi − xj‖ < ε

)
, (1.5)

with the aim of efficiently transforming other bounds in the premises of a specific case

study into a bound on ∃n ∈ N. Such a bound, which is a bound for Kreisel’s no-

counterexample interpretation [37, 38] of (1.5), is called a rate of metastability, since Tao
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[51, 52] calls an interval [n;n+g(n)] with the property in (1.5) an interval of metastability.

Interestingly, Φ(g, ε,K) := g̃(Kd1/εe)(0), where g̃(i) := i + g(i) and g̃(i)(0) denotes the i-

th iteration of g̃ starting with 0, is a rate of metastability for monotone sequences in

[0, K] ⊂ R (see, [30, Proposition 2.27]). The concept of metastability has been studied

within the proof mining program, based on variants of G??del’s functional interpretation

and transformation of moduli between different settings.

In this paper, we study and analyze the problem (1.4) in Banach spaces, presenting

new qualitative and quantitative results on the asymptotic behavior. We provide several

quantitative results concerning the strong convergence of the solutions to problem (1.4),

and discuss variants of the convergence condition - based on logical techniques from proof

mining - aiming at generalizing the notion without requiring the presence of a projection

map while ensuring their validity to the Yosida approximation. In the nonhomogeneous

case, by providing a quantitative estimate for the monotonicity of the duality map in

uniformly convex Banach spaces, we obtain a rate of convergence for the solution (un) of

the difference inclusion (1.4), depending on a Cauchy rate for the series
∑∞

i=1 hi‖fi‖ <∞,

and in the absence of a rate of convergence for this series, we obtain a rate of metastability.

Here, we focus on difference inclusions, as our central ideas are more clearly articulated in

the discrete setting. Nevertheless, the underlying principles have the potential to extend

to their continuous counterparts.

2. PRELIMINARIES

In this section, we recall notations, definitions, and preliminary facts from multi-valued

analysis which are used throughout the paper. Let X be a Banach space, X∗ be the dual

space of X and (·, ·) the pairing between X and X∗. X is called uniformly convex, if for

each ε > 0, there exists δ > 0 such that ‖(x + y)/2‖ ≤ 1 − δ, for each x, y ∈ X with

‖x‖, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε. In this case, a function δ : (0, 2] → (0, 1] is a modulus of

uniform convexity for X, if for all ε ∈ (0, 2] and x, y ∈ X,

‖x‖, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε ⇒ ‖x+ y

2
‖ ≤ 1− δ(ε). (2.1)

Let X and Y be two real Banach spaces. A multi-valued operator is a mapping A :

D(A) ⊆ X → 2Y (or a subset of X × Y ), where D(A) := {x ∈ X : Ax 6= ∅}, R(A) :=

∪{Ax : x ∈ D(A)} and G(A) := {(x, y) : x ∈ D(A), y ∈ Ax}. Sometimes, we identify

an operator with its graph and write (x, y) ∈ A instead of (x, y) ∈ G(A). The duality

mapping J from X into 2X
∗

is defined by J(x) = {x∗ ∈ X∗ : (x, x∗) = ‖x‖2 = ‖x∗‖2}, for

every x ∈ X. From the Hahn-Banach theorem, we get that J(x) 6= ∅ for each x ∈ X. A

Banach space X is said to be smooth if J is single-valued. In this case, the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

= (y, J(x))

exists, for each x, y ∈ S(X) = {x ∈ X : ‖x‖ = 1}. The space X is said to be uniformly

smooth if the limit is attained uniformly for x, y ∈ S(X).
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Lemma 2.1. (See [9]) Let X be a Banach space and let J : X → 2X
∗

be the normalized

duality mapping. Then:

(1) (x − y, jx − jy) ≥ (‖x‖ − ‖y‖)2, for all x, y ∈ X, jx ∈ J(x) and jy ∈ J(y), and

consequently J is monotone;

(2) ‖x‖2 − ‖y‖2 ≥ 2(x− y, jy), for all x, y ∈ X and jy ∈ J(y);

(3) (x, jy) ≤ ‖x‖‖y‖ ≤
1

2
‖x‖2 +

1

2
‖y‖2, for all x, y ∈ X and jy ∈ J(y).

The following lemma is well known.

Lemma 2.2. Let X be a smooth Banach space, and let C ⊆ X be a nonempty, closed,

and convex subset. Let x, z ∈ C. Then

‖x− z‖ = min
y∈C
‖x− y‖ ⇔ (y − z, J(x− z)) ≤ 0, ∀y ∈ C.

An operator A ⊆ X ×X is called accretive if ∀yi ∈ Axi, i = 1, 2,∃j ∈ J(x1 − x2) such

that (y1− y2, j) ≥ 0. The accretive operator A ⊆ X ×X is m-accretive if R(I +A) = X,

where I is the identity operator of X. It then follows that R(I + λA) = X, ∀λ > 0 (see,

e.g., [9]).

For an accretive operator A, the resolvent and the Yosida approximation of A are

defined by

Jλx = (I + λA)−1 x

and

Aλx =
I − Jλ
λ

x,

respectively, where x ∈ R (I + λA). Obviously,

Aλx = λ−1(x− Jλx) ∈ λ−1((I + λA)Jλx− Jλx) = AJλx. (2.2)

Moreover, Jλ is nonexpansive in the sense that ‖Jλx − Jλy‖ ≤ ‖x − y‖, for all x, y ∈
R (I + λA).

Lemma 2.3. (See [10]). Let A be an m-accretive operator in X ×X. Then

(1) ‖Jλx− Jλy‖ ≤ ‖x− y‖, for all x, y ∈ X;

(2) ‖Jλx− x‖ = λ‖Aλx‖ ≤ λ inf{‖y‖; y ∈ Ax}, for all x ∈ D(A);

(3) Aλ is m−accretive on X and ‖Aλx − Aλy‖ ≤ (2/λ)‖x − y‖, for all λ > 0 and

x, y ∈ X;

Lemma 2.4. ([28]) Let {ai} be a sequence of positive real numbers with Σ∞i=1a
−1
i =∞. If

{bi} is a bounded sequence, then lim infi→∞ ai(bi+1 − bi) ≤ 0.

Let us consider the second order difference equation (1.4), as well as the auxiliary

sequence (ai)i>1 given by

a0 = 1 , ai =
1

θ1θ2...θi
, i ≥ 1. (2.3)
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Observe that

aiθi = ai−1, i ≥ 1. (2.4)

We denote

hk := Σk
i=1

1

θkθk−1...θi
, ∀k ≥ 1. (2.5)

In this paper, we assume that the difference inclusion (1.4) has a solution for an initial

value u0 = x in X. For an existence result on the solution for (1.4) in Banach spaces, we

mention the following:

Theorem 2.5. [27, Theorem 4.4] Let X be a uniformly smooth and uniformly convex

Banach space. Let A ⊆ X×X be m−accretive with A−10 6= ∅ and ci, θi > 0,∀i ≥ 1, such

that
∑∞

i=1
1
hi

= ∞ holds. If (fi)i≥1 is a sequence in X satisfying Σ∞i=1hi‖fi‖ < ∞, then

(1.4) has a unique solution for every initial point x ∈ X.

Notation. To simplify the presentation of formulas, we will occasionally adopt the

following notational conventions throughout the paper.

• N := {0, 1, 2, . . . } and N∗ := {1, 2, . . . }.
• Expressions such as nN and xX indicate that n ∈ N and x ∈ X, respectively.

• fN→N denotes a function f : N→ N.

• (xi)
N→X denotes a sequence in X, i.e., a function from N to X.

3. A quantitative estimate for the monotonicity of the duality map

We recall the following interesting result that was proved by H.K. Xu [55]:

Proposition 3.1. (See [55, Corollary 3]) Let r > 0 and let X be a Banach space. Then

X is uniformly convex if and only if there exists a continuous, strictly increasing, and

convex function g : [0,∞)→ [0,∞), g(0) = 0, such that (x− y, jx− jy) > g(‖x− y‖), for

all x, y ∈ {z ∈ X : ‖z‖ ≤ r}, jx ∈ J(x) and jy ∈ J(y).

Since the proof given in [55] for Proposition 3.1 is nonconstructive, we present an

effective proof to compute such a function g in terms of a given modulus of uniform

convexity for X.

Lemma 3.2. Let X be a uniformly convex Banach space with a modulus of uniform

convexity δ. Then, for all x, y ∈ X with x 6= y and ‖x‖ ≥ ‖y‖, we have

2(‖x‖2 + ‖x‖‖y‖)δ(‖x− y‖
‖x‖

)− 2‖y‖(‖x‖ − ‖y‖) ≤ (x− y, jx − jy). (3.1)

Proof. Let x, y ∈ X with x 6= y and ‖x‖ ≥ ‖y‖. Obviously, ‖x‖ > 0. Defining ε :=

‖x− y‖/‖x‖, we have 0 < ε ≤ 2. Since −(x−y, jx−jy)+2‖x‖2 +2‖y‖2 = (x+y, jx+jy),
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we obtain

−1

‖x‖2
(x− y, jx − jy) + 2 + 2

‖y‖2

‖x‖2
=

1

‖x‖2
(x+ y, jx + jy)

≤ (
‖x+ y‖
‖x‖

)(
‖x‖+ ‖y‖
‖x‖

)

≤ 2(1− δ(ε))(1 +
‖y‖
‖x‖

).

Consequently,

2δ(ε)(1 +
‖y‖
‖x‖

) + 2(
‖y‖2

‖x‖2
− ‖y‖
‖x‖

) ≤ 1

‖x‖2
(x− y, jx − jy).

That is,

2(‖x‖2 + ‖x‖‖y‖)δ(ε) + 2(‖y‖2 − ‖x‖‖y‖) ≤ (x− y, jx − jy),

which is the desired inequality. �

Suppose that X is uniformly convex with a modulus δ : (0, 2] → (0, 1]. Then δ1 :

[0,∞)→ [0, 1] defined as

δ1(ε) := sup{δ(ε′)|0 < ε′ ≤ min{2, ε}}, δ1(0) := 0,

is an increasing modulus of uniform convexity. Thus, we may define

δ̃(ε) :=
1

2

∫ ε

0

δ1(t)dt, (3.2)

obtaining a continuous, strictly increasing, and convex function δ̃ : [0,∞)→ [0,∞) such

that

∀ε ≤ 2
(
δ̃(ε) ≤ δ1(ε)

)
. (3.3)

It is notable that, when restricted to (0, 2], both δ1 and δ̃ act as moduli of uniform

convexity for X. In fact, given ε ∈ (0, 2] and x, y ∈ X such that ‖x‖, ‖y‖ ≤ 1 and

‖x− y‖ ≥ ε, we have, for any 0 < ε′ ≤ ε, that ‖(x + y)/2‖ ≤ 1− δ(ε′) by (2.1). Taking

the infimum over 0 < ε′ ≤ ε, we then obtain ‖(x+y)/2‖ ≤ 1−δ1(ε). That is, δ1 restricted

to (0, 2] is a modulus of uniform convexity for X. Based on this and in view of (3.3), it

is clear that δ̃, when restricted to (0, 2], is also a modulus of uniform convexity for X.

It is worth noting that

δ̃(ε) ≥ 1

2

∫ ε

ε
3

δ1(t)dt ≥ ε

3
δ1(

ε

3
) ≥ ε

3
δ(min{2, ε

3
}).

Proposition 3.3. Let X be a uniformly convex Banach space with a modulus of uniform

convexity δ and let b > 0. Define g1 and g2 on R+ by g1(ε) = ( ε
2
δ1( ε

b
))2 and g2(ε) =

b2δ̃( ε
b
)2. Then, for all x, y ∈ Bb(0), jx ∈ Jx and jy ∈ Jy, we have

gi(‖x− y‖) ≤ (x− y, jx − jy), i = 1, 2. (3.4)

Remark 3.4. Throughout the paper, for the applications of Proposition 3.3, the convexity

of g2 does not need to be used, and we can use either g1 or g2.
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Proof. Let x, y ∈ Bb(0). Without loss of generality, we may assume x 6= y and ‖x‖ ≥ ‖y‖.
Let ε = ‖x− y‖. First, we show that

(‖x‖δ(ε/‖x‖))2 ≤ (x− y, jx − jy). (3.5)

We consider two cases:

Case 1: If (‖x‖2 + ‖x‖‖y‖)δ(ε/‖x‖) ≥ 2(‖x‖‖y‖− ‖y‖2), then in view of (3.1) we have

‖x‖2δ(ε/‖x‖)2 ≤ (‖x‖2 + ‖x‖‖y‖)δ(ε/‖x‖) ≤ (x− y, jx − jy).

Case 2: If (‖x‖2 + ‖x‖‖y‖)δ(ε/‖x‖) < 2(‖x‖‖y‖ − ‖y‖2), then ‖y‖ > 0, and that

(x− y, jx − jy) ≥ (‖x‖ − ‖y‖)2

> (
1

2‖y‖
(‖x‖2 + ‖x‖‖y‖)δ(ε/‖x‖))2

≥ (‖x‖δ(ε/‖x‖))2.

This completes the proof of (3.5). Now, replacing δ with δ1 in (3.5), since ‖x‖ ≥ ‖y‖ and

δ1 is increasing, we have

(x− y, jx − jy) ≥ (‖x‖δ1(ε/‖x‖))2

≥ (
‖x− y‖

2
δ1(ε/‖x‖))2 ≥ (

ε

2
δ1(ε/b))2.

Replacing δ with δ̃ in (3.5), and using the convexity of δ̃, we obtain

(x− y, jx − jy) ≥ (‖x‖δ̃(ε/‖x‖))2 = (b
‖x‖
b
δ̃(ε/‖x‖))2 ≥ (bδ̃(ε/b))2.

�

4. Convergence rates for the homogeneous case

The original formulation of the so-called ‘convergence condition’ is due to Pazy [44]:

A maximal monotone operator A ⊆ H ×H with C = A−10 6= ∅ satisfies the convergence

condition if, for all bounded sequences (xi, yi) ∈ A, the condition limi→∞(yi, J(xi −
PCxi)) = 0 implies that lim infi→∞ dist(xi, A

−10) = 0 (or, limi→∞ dist(xi, A
−10) = 0).

For a maximal monotone operator A in a Hilbert space, the zero set A−10 is a closed

and convex set, and hence the projection onto A−10 is well-defined. Pazy presented this

notion for a maximal monotone operator A in a Hilbert space H to assure the strong

convergence of the semigroup generated by A via the exponential formula to a zero of

A. The convergence condition is satisfied, for example, if A is the subdifferential of a

l.s.c. convex function ϕ ≥ 0 whose level sets are compact and minx∈H ϕ(x) = 0 (see Pazy

[44]). It is obvious that every strongly monotone operator A satisfies the convergence

condition.

We know that if C is a nonempty, closed and convex subset of a uniformly convex

Banach space X, and x ∈ X, then there exists a unique element z ∈ C such that
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dist(x,C) = ‖x− z‖. Denoting z = P (x), P is called the (nearest point) projection map

of the Banach space X onto C.

Moreover, by Lemma 2.2, if X is smooth, then z ∈ C is the nearest point projection

of x ∈ X onto C, if and only if

(y − z, J(x− z)) ≤ 0, ∀y ∈ C. (4.1)

It is known that if A ⊆ X ×X is m-accretive, then A is closed, and hence A−10 is closed

(see, e.g., [9]). Furthermore, if X is uniformly convex, then A−10 is closed and convex

since it is the fixed point set of any resolvent Jλ of A. It is worth pointing out that in

the case where X is a uniformly convex Banach space and A ⊆ X × X is m-accretive,

A−10 6= ∅ holds if and only if lim infλ→∞ ‖Jλx‖ < ∞ for some x ∈ X (see [29, Theorem

1]).

Definition 4.1. [43] Let X be smooth and uniformly convex, and A be m-accretive, and

assume that A−10 6= ∅. Let P : X → A−10 be the nearest point projection map onto the

(closed and convex) zero set of A. Then, A satisfies the convergence condition if, for all

bounded sequences (xi, yi) ∈ A, the condition limi→∞(yi, J(xi − Pxi)) = 0 implies that

limi→∞ ‖xi − Pxi‖ = 0.

Let X be a smooth and uniformly convex Banach space, and assume that A ⊆ X ×X
is m-accretive such that A−10 6= ∅. As mentioned, the nearest point projection map

P : X → A−10 of X onto A−10 is well-defined in this case, and the convergence condition

is equivalent to have:

∀KN ∀(xi)N→X ,(yi)N→X
(
∀i
(
(xi, yi) ∈ A ∧ ‖xi‖, ‖yi‖ ≤ K

)
∧ lim

i→∞
(yi, J(xi − Pxi)) = 0→ lim

i→∞
‖xi − Pxi‖ = 0

)
.

(4.2)

Pinto and Pischke [45] showed that A satisfies the convergence condition if, and only if,

∀kN, KN ∃nN ∀xX , yX
(

(x, y) ∈ A ∧ ‖x‖, ‖y‖ ≤ K

∧ |(y, J(x− Px))| ≤ 1

n+ 1
→ ‖x− Px‖ ≤ 1

k + 1

)
.

(4.3)

The same authors also introduced the following definition for a modulus for the conver-

gence condition (as well as, based on [24, 33], discussed logical metatheorems to guarantee

the extractability of a computable modulus):

Definition 4.2. A modulus for the convergence condition is a functional Ω : N×N→ N
satisfying that for any k,K ∈ N: if (x, y) ∈ A are such that ‖x‖, ‖y‖ ≤ K, then

|(y, J(x− Px))| ≤ 1

Ω(K, k) + 1
⇒ ‖x− Px‖ ≤ 1

k + 1
. (4.4)
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We prove a new quantitative result that incorporates the main idea of some previous

convergence results (e.g., [48, 23, 17, 18]) under the convergence condition. Additionally,

we determine how the modulus for the convergence condition is reflected in the proof.

Theorem 4.3. Let X be a smooth and uniformly convex Banach space, and assume that

A ⊆ X×X is m-accretive such that A−10 6= ∅ and satisfies the convergence condition with

a modulus Ω. Let (ci) be bounded away from zero, (θi) be bounded with
∑∞

i=1 θ1θ2...θi =∞,

and choose k0 ∈ N such that (ci) ⊂ [1/k0,∞) and (θi) ⊂ (0, k0]. Let b0, b1 > 0, and let

p0 ∈ A−10, x ∈ X with ‖p0‖ ≤ b0 and ‖x‖ ≤ b1. If (ui) is a solution for the homogeneous

form of (1.4) (i.e., fi ≡ 0) for initial point x, then we have:

∀k ∈ N ∀n,m ≥ µ(Ω(K, 2k + 1) + 1)

(
‖un − um‖ ≤

1

k + 1

)
with µ(l) := dc̃ · le for l ∈ N, c̃ ≥ k2

0

2
‖x − p0‖2 (e.g., c̃ :=

k2
0

2
(b0 + b1)2), and K :=

2k0(1 + k0)db0 + b1e.
Note that c̃ can be defined in terms of K, e.g. by c̃ := K2.

Proof. Let P : X → A−10 be the nearest point projection map of X onto A−10. We write

vi :=
1

ci
((ui+1 − ui)− θi(ui − ui−1)) ∈ Aui, ∀i ≥ 1. (4.5)

Note that, using (4.1), we have

(Pui+1 − (1 + θi)Pui + θiPui−1, J(ui − Pui))

= (Pui+1 − Pui, J(ui − Pui)) + θi(Pui−1 − Pui, J(ui − Pui)) ≤ 0.
(4.6)

From the accretivity of A, (4.5), (1.4), (4.6), and Lemma 2.1, for all i ≥ 1, we have

0 ≤ci(vi, J(ui − Pui)) = (ui+1 − (1 + θi)ui + θiui−1, J(ui − Pui))

=(ui+1 − Pui+1, J(ui − Pui))− (1 + θi)(ui − Pui, J(ui − Pui))

+ θi(ui−1 − Pui−1, J(ui − Pui))

+ (Pui+1 − (1 + θi)Pui + θiPui−1, J(ui − Pui))

≤1

2
‖ui+1 − Pui+1‖2 +

1

2
‖ui − Pui‖2 − (1 + θi)‖ui − Pui‖2

+
θi
2
‖ui−1 − Pui−1‖2 +

θi
2
‖ui − Pui‖2

=
1

2
(‖ui+1 − Pui+1‖2 − ‖ui − Pui‖2)− θi

2
(‖ui − Pui‖2 − ‖ui−1 − Pui−1‖2).

Multiplying both sides of the above inequality by ai and summing up from i = n to m,

we have

0 ≤
m∑
i=n

ciai(vi, J(ui − Pui)) ≤
am
2

(‖um+1 − Pum+1‖2 − ‖um − Pum‖2)

− an−1

2
(‖un − Pun‖2 − ‖un−1 − Pun−1‖2).
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Taking liminf as m→∞, by using our assumption and Lemma 2.4, we get, for all n,

0 ≤
∞∑
i=n

ciai(vi, J(ui − Pui)) ≤
an−1

2
(‖un−1 − Pun−1‖2 − ‖un − Pun‖2). (4.7)

This implies that ‖ui − Pui‖ is non-increasing. That is,

∀i
(
‖ui+1 − Pui+1‖ ≤ ‖ui − Pui‖

)
. (4.8)

Furthermore, by repeating the above argument with an arbitrary p ∈ A−10 replacing Pui

for every i, we obtain

0 ≤
∞∑
i=n

ciai(vi, J(ui − p)) ≤
an−1

2
(‖un−1 − p‖2 − ‖un − p‖2), (4.9)

which implies in turn that, for all p ∈ A−10,

∀i
(
‖ui+1 − p‖ ≤ ‖ui − p‖

)
(4.10)

In particular, we obtain

∀i
(
‖ui+1 − p0‖ ≤ ‖x− p0‖

)
. (4.11)

Thus, we have ‖ui − p0‖ ≤ ‖x‖+ ‖p0‖, leading to the following bound for (ui):

∀i
(
‖ui‖ ≤ ‖x‖+ 2‖p0‖

)
. (4.12)

Combining (4.5) and (4.11), and using the assumptions, we also have

∀i
(
‖vi‖ ≤ 2k0(1 + k0)(‖x‖+ ‖p0‖)

)
. (4.13)

At this stage, by dividing both sides of the inequality (4.7) by an−1 and summing up from

n = 1 to ∞, we have

∞∑
n=1

∞∑
i=n

ci
1

θiθi−1...θn
(vi, J(ui − Pui)) ≤

1

2
‖u0 − Pu0‖2 =

1

2
‖x− Px‖2. (4.14)

We also know that
∞∑
n=1

∞∑
i=n

ci
1

θiθi−1...θn
(vi, J(ui − Pui))

=
∞∑
i=1

ci(vi, J(ui − Pui))
θiθi−1...θ1

+
∞∑
i=2

ci(vi, J(ui − Pui))
θiθi−1...θ2

+ · · ·+
∞∑
i=m

ci(vi, J(ui − Pui))
θiθi−1...θm

+ · · ·

=
1

θ1

c1(v1, J(u1 − Pu1)) + (
1

θ2

+
1

θ2θ1

)c2(v2, J(u2 − Pu2))

+ · · ·+ (
1

θm
+

1

θmθm−1

+ · · ·+ 1

θm · · · θ2θ1

)cm(vm, J(um − Pum)) + · · ·

=
∞∑
m=1

hmcm(vm, J(um − Pum)).

(4.15)
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The latter equality, along with (4.14) and the assumption (ci) ⊂ [1/k0,∞), yields

∞∑
m=1

hm(vm, J(um − Pum)) ≤ k0

2
‖x− Px‖2. (4.16)

Thus
∞∑
m=1

(vm, J(um − Pum)) ≤ k2
0

2
‖x− Px‖2, (4.17)

since hm ≥ 1/θm ≥ 1/k0.

Claim. Taking µ(l) := dc̃ · le, where

c̃ ≥ k2
0

2
‖x− p0‖2 ≥ k2

0

2
‖x− Px‖2,

we have:

∀l ∈ N∗∃n ≤ µ(l)
(
(vn, J(un − Pun)) ≤ 1

l

)
. (4.18)

The proof of the claim easily follows from (4.17), by contradiction.

Now, letK ≥ 2k0(1+k0)d(‖x‖+‖p0‖)e. Then, for any k, by taking l := Ω(K, 2k + 1) + 1

in (4.18), we may choose some natural number n0 with 0 < n0 ≤ µ(Ω(K, 2k + 1) + 1)

such that (vn0 , J(un0−Pun0)) ≤ 1
Ω(K,2k+1)+1

. In view of (4.12) and (4.13), and considering

the definition of Ω, we now deduce that ‖un0 − Pun0‖ ≤ 1
2k+2

. From this and (4.8), it

follows that, for all n ≥ µ(Ω(K, 2k + 1) + 1), ‖un − Pun‖ ≤ 1
2k+2

. Consequently, by

(4.10),

‖um+n − un‖ ≤ ‖um+n − Pun‖+ ‖un − Pun‖ ≤ 2‖un − Pun‖ ≤
1

k + 1
,

for all n ≥ µ(Ω(K, 2k + 1) + 1) and m ∈ N. �

Remark 4.4. (For logicians). The rate in Theorem 4.3 does not depend on a rate of

divergence for
∑∞

i=1 θ1θ2...θi = ∞. This fact can be logically explained as follows: the

divergence is only used to proof the purely universal version of (4.7) where instead of

(4.7) one states

∀k
( k∑
i=n

ciai(vi, J(ui − Pui)) ≤
an−1

2
(‖un−1 − Pun−1‖2 − ‖un − Pun‖2)

)
,

which could be added as an axiom for the extraction of the rate. Note that also in (4.16)

and (4.17) one never needs these sums to actually converge but only that their partial

sums are bounded by the quantities given.

It is also noteworthy that the smoothness and uniform convexity of X are not explicitly

manifested in the extracted rate presented in Theorem 4.3 in the sense that the rate

extracted does not depend on moduli of uniform convexity or uniform smoothness for X.

This observation is logically discussed in Remark 4.16 at the end of this section. This

also raises the question of whether the result can be further improved in this aspect.

Through inspection of the classic proof presented above, we realize that the nearest point

projection map P : X → A−10 should be well-defined, since it exists in the premise
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of the convergence condition. So, it is natural to maintaining these assumptions: A is

m-accretive, X is smooth and uniformly convex; these are the standard assumptions to

define a projection on the zeros of an operator in literature. Apart from being used in

the convergence condition, we also applied the particular property of the projections

∀x, z ∈ X
(
z = Px↔ ∀y ∈ A−10, (y − z, J(x− z)) ≤ 0

)
, (4.19)

which holds for closed convex sets in smooth and uniformly convex Banach spaces. This

property has been applied to guarantee that

(Pui+1 − (1 + θi)Pui + θiPui−1, J(ui − Pui)) ≤ 0. (See (4.6))

Based on the above discussion, at first glance, it seems that there is not much possibility

of further generalizing the result to more general Banach spaces, even under different

assumptions on the coefficients. Despite this, by inspecting the proof presented above,

we are able to extract additional constructive data:

It is worth noting first that the proof relies on particular selections Pui of the elements

of A−10. For (Pui), there is a bound depending on a bound K̃ ≥ 2‖x‖ + ‖p0‖ for (ui)

(see 4.12). In fact,

‖Pui‖ ≤ ‖ui − p0‖+ ‖ui‖ ≤ 2‖ui‖+ ‖p0‖ ≤ 2K̃ + ‖p0‖ ≤ 3K̃. (4.20)

One of the key goals in the proof of Theorem 4.3 is to show (4.18), which involves finding

a computable bound for n in the sentence

∀l ∈ N∗ ∃n
(
(vn, J(un − Pun)) ≤ 1

l

)
. (4.21)

By analyzing the above proof, we will see (in Theorem 4.14 and Corollary 4.15) that,

without using any property of the projection P , it is possible, under slightly different

assumptions on the coefficients, to show that for each l ∈ N∗ there is some n with a

computable bound such that for all p ∈ A−10 with ‖p‖ ≤ 3K̃,

(vn, J(un − p)) ≤
1

l
, (4.22)

which includes (4.21) in view of (4.20). If (4.20) is proven, it follows that, in this case,

the projection P serves exclusively to define the formal convergence condition and does

not play a significant role in calculations.

Note that in the definition of the convergence condition the assumptions of the uniform

convexity of X and of the m-accretivity (instead of only ‘accretivity’) of A ⊆ X ×X are

used just to define the nearest point projection map P over A−10. On the other hand,

the computability of the projection P depends on the complexity of A−10.

Here, we suggest a more general variant of the convergence condition, without using a

projection:

Definition 4.5. Let X be a smooth Banach space and A ⊆ X × X be an (accretive)

operator with A−10 6= ∅. Then, A satisfies the generalized convergence condition if, for
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all bounded sequences (xi, yi) ∈ A, the condition limi→∞(yi, J(xi− p)) = 0, uniformly on

bounded subsets of A−10, implies that limi→∞ dist(xi, A
−10) = 0.

For each ` ∈ N, denote Z` := {p ∈ A−10 : ‖p‖ ≤ `}. The generalized convergence

condition is equivalent to have:

∀KN ∀(xi)N→X , (yi)N→X
(
∀i(yi ∈ Axi ∧ ‖xi‖, ‖yi‖ ≤ K)

∧ ∀`N
(

lim
i→∞

sup
p∈Z`

|(yi, J(xi − p))| = 0
)
→ lim

i→∞
dist(xi, A

−10) = 0

)
,

(4.23)

which obviously is implied by the convergence condition; i.e.,

The convergence condition ⇒ The generalized convergence condition.

The main point is that the generalized convergence condition can be formulated in situa-

tions where the standard convergence condition cannot, and the implication above applies

only to the case in which PC exists.

We prove the following lemma.

Lemma 4.6. Let X be a smooth Banach space and A ⊆ X × X be an operator with

A−10 6= ∅. For each ` ∈ N, let Z` := {p ∈ A−10 : ‖p‖ ≤ `}. Then, the following

statements are equivalent:

(i) A satisfies the generalized convergence condition;

(ii)

∀kN, KN ∃nN ∀gN→N ∃mN ∀(xi)N→X , (yi)N→X
(
∀i
(
(xi, yi) ∈ A ∧ ‖xi‖, ‖yi‖ ≤ K

)
∧ ∀`N

(
sup
p∈Z`

|(yg(`), J(xg(`) − p))| ≤
1

n+ 1

)
→ dist(xm, A

−10) ≤ 1

k + 1

)
;

(4.24)

(iii)

∀kN, KN ∃nN, `N ∀xX , yX
(

(x, y) ∈ A ∧ ‖x‖, ‖y‖ ≤ K

∧
(

sup
p∈Z`

|(y, J(x− p))| ≤ 1

n+ 1

)
→ dist(x,A−10) ≤ 1

k + 1

)
.

(4.25)

Proof. To establish (i) ⇒ (ii), assume by contradiction that (4.24) is not true. Then for

some k,K ∈ N, we have

∀nN ∃gN→N ∀mN ∃(xi)N→X , (yi)N→X
(
∀i
(
(xi, yi) ∈ A ∧ ‖xi‖, ‖yi‖ ≤ K

)
∧ ∀`N

(
sup
p∈Z`

|(yg(`), J(xg(`) − p))| ≤
1

n+ 1

)
∧ dist(xm, A

−10) >
1

k + 1

)
.

(4.26)

From the above assertion, for any n ∈ N we first choose gn : N → N, and then for

m = gn(n), we choose sequences (xni , y
n
i ) ∈ A with ‖xni ‖, ‖yni ‖ ≤ K such that

∀`N
(

sup
p∈Z`

|(yngn(`), J(xngn(`) − p))| ≤
1

n+ 1

)
,
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and

dist(xngn(n), A
−10) >

1

k + 1
.

Consequently,

lim
n

sup
p∈Z`

|(yngn(`), J(xngn(`) − p))| = 0,

uniformly in ` ∈ N. However, the sequence (dist(xngn(n), A
−10)) is bounded away from zero.

This contradicts the generalized convergence condition. To show that (ii)⇒ (i), suppose

that (xi) and (yi) are sequences in X such that, for all i, (xi, yi) ∈ A, ‖xi‖, ‖yi‖ ≤ K for

some K ∈ N, and

lim
i→∞

sup
p∈Z`

|(yi, J(xi − p))| = 0, (4.27)

for all ` ∈ N. For a given k ∈ N, choose n as defined in (4.24). Then in view of (4.27) we

may define a function g : N→ N such that, for all ` ∈ N,

sup
p∈Z`

|(yg(`), J(xg(`) − p))| ≤
1

n+ 1
.

Now, applying (4.24), we deduce that there exists some m ∈ N such that

dist(xm, A
−10) ≤ 1

k + 1
. (4.28)

For any m0 ∈ N, repeating the above argument for the shifted sequences (xi+m0) and

(yi+m0) instead of (xi) and (yi), we conclude the existence of some m ≥ m0 with property

(4.28). That is, lim infm dist(xm, A
−10) = 0. This concludes that A satisfies the general-

ized convergence condition. We now prove that (iii) ⇒ (i): Let K ∈ N, and assume that

(xi) and (yi) are sequences in X with ‖xi‖, ‖yi‖ ≤ K, (xi, yi) ∈ A, and that (4.27) holds

for all ` ∈ N. Let k ∈ N and take n0 and `0 as in (4.25). Let i0 be so large that

∀i ≥ i0
(

sup
p∈Z`0

|(yi, J(xi − p))| <
1

n0 + 1

)
. (4.29)

Then, (4.25) gives dist(xi, A
−10) ≤ 1/(k + 1) for all i ≥ i0. That is, limi dist(xi, A

−10) =

0. To establish (i) ⇒ (iii), suppose (4.25) would be false; i.e.,

∃k,K ∈ N ∀n, ` ∈ N ∃xn,`, yn,` ∈ X
(

(xn,`, yn,`) ∈ A ∧ ‖xn,`‖, ‖yn,`‖ ≤ K

∧ sup
p∈Z`

|(yn,`, J(xn,` − p))| ≤
1

n+ 1
∧ dist(xn,`, A

−10) >
1

k + 1

)
.

(4.30)

Define x̃n := xn,n and ỹn := yn,n. Then,

∀` ∈ N
(

lim
n→∞

sup
p∈Z`

|(ỹn, J(x̃n − p))| = 0
)
. (4.31)

Indeed, given m ∈ N, using (4.30), we have that for any n ≥ max{m, `},

sup
p∈Z`

|(ỹn, J(x̃n−p))| ≤ sup
p∈Zn

|(ỹn, J(x̃n−p))| = sup
p∈Zn

|(yn,n, J(xn,n−p))| ≤
1

n+ 1
≤ 1

m+ 1
.

(4.32)

However, assumption (i), together with (4.31), implies that limn→∞ dist(xn,n, A
−10) = 0,

which contradicts (4.30). �
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Remark 4.7. (For logicians). Note, by Lemma 4.6, that (4.25) is essentially a uniform

version of the property

∀xX , yX ∀kN ∃nN, `N
(

(x, y) ∈ A

∧
(

sup
p∈Z`

|(y, J(x− p))| ≤ 1

n+ 1

)
→ dist(x,A−10) <

1

k + 1

)
,

(4.33)

which can readily be seen to be equivalent to

∀xX , yX
(

(x, y) ∈ A ∧ ∀p ∈ A−10
(
(y, J(x− p)) = 0

)
→ x ∈ A−10

)
. (4.34)

The premise of (4.34) holds true, for instance, when x ∈ A−10 and y = 0.

The nonuniform version (4.33) of (4.25) takes the form of a universal/existential for-

mula. In fact, supp∈Z`
|(y, J(x− p))| ≤ 1

n+1
can be replaced by

∀pX
(
χA(p, 0) =N 0 ∧ ‖p‖ <R l→ |(y, J(x− p))| ≤R

1

n+ 1

)
,

where it is rewritten in prenex normal form as a universally quantified formula (taking

into account the hidden quantifiers in <R and ≤R). Moreover, dist(x,A−10) < 1/(k + 1)

can be replaced by

∃zX(χA(z, 0) =N 0 ∧ ‖x− z‖ <R 1/(k + 1)),

which is a purely existential formula. Formalizing them in the language of the systems

used in the logical metatheorems due to the first author in [24, 33], and also in [46],

one may use the metatheorems in [24, 33, 46] to extract a uniform bound on ‘∃nN, `N’,

depending on a bound for (x, y) ∈ A and suitable majorizing data of the other parameters

involved from proofs of (4.33) that can be carried out in these systems.

Motivated by the preceding discussion and in light of the previous lemma (and the

monotonicity of the quantifiers ‘∃n, l’ by which bounds are actually witnesses), we propose

the following moduli for the generalized convergence condition.

Definition 4.8. A I-modulus for the generalized convergence condition is a function

ω : N× N→ N such that

∀kN,KN, xX , yX
(

(x, y) ∈ A ∧ ‖x‖, ‖y‖ ≤ K

∧
(

sup
p∈Zω(K,k)

|(y, J(x− p))| ≤ 1

ω(K, k) + 1

)
→ dist(x,A−10) ≤ 1

k + 1

)
.

(4.35)

Remark 4.9. Note also that “∀k,K” are monotone in (4.25) and so it would be equivalent

to formulate the modulus as a unary function ω(N) satisfying (4.25) for all k,K ≤ N .

In light of (4.24), we propose an alternative modulus for the generalized convergence

condition, to be carried out comparable to (4.35):
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Definition 4.10. A II-modulus for the generalized convergence condition is a pair (Ω,Φ)

of functionals of the forms Ω : N× N→ N and Φ : N× NN → N satisfying

∀kN,KN, gN→N, (xi)
N→X , (yi)

N→X(
∀i
(
(xi, yi) ∈ A ∧ ‖xi‖, ‖yi‖ ≤ K

)
∧ ∀`N

(
sup
p∈Z`

|(yg(`), J(xg(`) − p))| ≤
1

Ω(K, k) + 1

)
→ ∃m ≤ Φ(Ω(K, k), g)

(
dist(xm, A

−10) ≤ 1

k + 1

))
.

(4.36)

Proposition 4.11. Let ω satisfy (4.35). Then, Ω := ω, Φ(r, g) := g(r) define a II-

modulus satisfying (4.36).

Proof. Let k, K, g, (xi) and (yi) be as in (4.36), and assume the premise of (4.36). Then

for ` := ω(K, k) one in particular has

sup
p∈Z`

|(yg(`), J(xg(`) − p))| ≤
1

Ω(K, k) + 1
=

1

ω(K, k) + 1
.

Hence by (4.35), applied to y := yg(`) and x := xg(`), one gets

dist(xg(`), A
−10) ≤ 1

k + 1
.

So (4.36) is satisfied with

m := g(`) = g(ω(K, k)) = g(Ω(K, k)) = Φ(Ω(K, k), g).

�

Remark 4.12. In the proof of “(ii)⇒ (i)” in Lemma 4.6, one can assume that g is strictly

increasing. Hence, we can weaken “∀g” in (4.24) and (4.36) to such functions g. For

simplicity, we denote such functions by g↗.

The converse of proposition 4.11 also holds. More precisely, we show that from a pair

(Ω,Φ) of functionals satisfying (4.36), one can construct a modulus ω satisfying (4.35),

utilizing a bound b ≥ ‖z‖ for some z ∈ A−10.

Proposition 4.13. Let (Ω,Φ) be a pair of functionals satisfying (4.36), and let b ≥ ‖z‖
for some z ∈ A−10, then

ω(K, k) := max{Ω(max{K, b}, k),Φ(Ω(max{K, b}, k), id)}

defines a I-modulus for the generalized convergence condition in the sense of (4.35).

Proof. Consider b ∈ N such that b ≥ ‖z‖ for some z ∈ A−10. For any K ∈ N, we define

Kb := max{K, b}. Let (Ω,Φ) satisfy (4.36).
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Claim. (4.36) implies the seemingly stronger form

∀kN,KN, gN→N
↗ , (xi)

N→X , (yi)
N→X ∃` ≤ Φ(Ω(Kb, k), g↗)(

∀i
(
(xi, yi) ∈ A ∧ ‖xi‖, ‖yi‖ ≤ Kb

)
∧
(

sup
p∈Z`

|(yg↗(`), J(xg↗(`) − p))| ≤
1

Ω(Kb, k) + 1

)
→ ∃m ≤ Φ(Ω(Kb, k), g↗)

(
dist(xm, A

−10) ≤ 1

k + 1

))
.

(4.37)

To prove the claim, let k,K ∈ N, let g : N→ N be a strictly increasing function, and let

(xi), (yi) be given such that

∀i
(
(xi, yi) ∈ A ∧ ‖xi‖, ‖yi‖ ≤ Kb

)
,

and

∀` ≤ N := Φ(Ω(Kb, k), g)
(

sup
p∈Z`

|(yg(`), J(xg(`) − p))| ≤
1

Ω(Kb, k) + 1

)
. (4.38)

Define

x̃n :=

{
xn, if n ≤ g(N),

z, otherwise,

and

ỹn :=

{
yn, if n ≤ g(N),

0, otherwise.

Note that (x̃i, ỹi) ∈ A and ‖x̃i‖, ‖ỹi‖ ≤ Kb. Then, (4.38) implies that

∀` ∈ N
(

sup
p∈Z`

|(ỹg(`), J(x̃g(`) − p))| ≤
1

Ω(Kb, k) + 1

)
,

since for ` ≤ N , we have g(l) ≤ g(N) and so x̃g(`) = xg(`), ỹg(`) = yg(`), while for ` > N ,

we have g(`) > g(N), and thus

sup
p∈Z`

|(ỹg(`), J(x̃g(`) − p))| = sup
p∈Z`

|(0, J(z − p))| = 0 ≤ 1

Ω(Kb, k) + 1
.

Hence, by (4.36), and using that g(N) ≥ N as g is strictly increasing,

∃m ≤ Φ(Ω(Kb, k), g)︸ ︷︷ ︸
N

(
dist(xm, A

−10) = dist(x̃m, A
−10) ≤ 1

k + 1

)
.

The proof of the claim is now complete.

Now, let k,K ∈ N, and define ω(K, k) := max{Ω(Kb, k),Φ(Ω(Kb, k), id)}. Let (x, y) ∈
A with ‖x‖, ‖y‖ ≤ K and

sup
p∈Zω(K,k)

|(y, J(x− p))| ≤ 1

ω(K, k) + 1
.

Thus, we have for ` ≤ Φ(Ω(Kb, k), id),

sup
p∈Z`

|(y, J(x− p))| ≤ 1

ω(K, k) + 1
≤ 1

Ω(Kb, k) + 1
. (4.39)
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Then, (4.39) is the premise of (4.37) with xi := x, yi := y, for all i, and g := id. Thus,

(4.37) implies that dist(x,A−10) ≤ 1
k+1

. Therefore, (4.35) holds for such ω and we have

thus completed the proof. �

Theorem 4.14. Let X be a smooth Banach space, and assume that A ⊆ X × X is

accretive such that A−10 6= ∅. Let (Ω,Φ) be a II-modulus of the generalized convergence

condition for A as in (4.36). Let
∞∑
i=1

θ1θ2...θi = ∞. Suppose that for some k0 ∈ N∗,

(ciai) ⊂ [1/k0,∞) and (ai) ⊂ (0, k0]. Let b0, b1 > 0, and let p0 ∈ A−10, x ∈ X with

‖p0‖ ≤ b0 and ‖x‖ ≤ b1. If (ui) is a solution for the homogeneous form of (1.4) for initial

point x, then we have:

∀k ∈ N ∀n,m ≥ Φ(Ω(K, 4k + 3), g)

(
‖un − um‖ ≤

1

k + 1

)
with K := d4k2

0(b1 + b0)e + 1, g : N → N defined by g(`) := µ`(Ω(K, 4k + 3)), and

µ` : N→ N defined by µ`(k̃) := (1 + k̃)dk
2
0

2
(b1 + `)2e.

Proof. In view of (1.4), we may write

vi : =
1

ci
((ui+1 − ui)− θi(ui − ui−1))

=
1

ciai
(ai(ui+1 − ui)− ai−1(ui − ui−1)) ∈ Aui, ∀i ≥ 1.

(4.40)

From the accretivity of A and Lemma 2.1, for all p ∈ A−10 and i ≥ 1, we have

0 ≤ci(vi, J(ui − p)) = (ui+1 − (1 + θi)ui + θiui−1, J(ui − p))

=(ui+1 − p, J(ui − p))− (1 + θi)‖ui − p‖2 + θi(ui−1 − p, J(ui − p))

≤1

2
‖ui+1 − p‖2 +

1

2
‖ui − p‖2 − (1 + θi)‖ui − p‖2

+
θi
2
‖ui−1 − p‖2 +

θi
2
‖ui − p‖2

=
1

2
(‖ui+1 − p‖2 − ‖ui − p‖2)− θi

2
(‖ui − p‖2 − ‖ui−1 − p‖2).

Multiplying both sides of the above inequality by ai and summing up from i = n to m,

we have

0 ≤
m∑
i=n

ciai(vi, J(ui − p)) ≤
am
2

(‖um+1 − p‖2 − ‖um − p‖2)

− an−1

2
(‖un − p‖2 − ‖un−1 − p‖2).

Taking liminf as m→∞, by using our assumption and Lemma 2.4, we get, for all n,

0 ≤
∞∑
i=n

ciai(vi, J(ui − p)) ≤
an−1

2
(‖un−1 − p‖2 − ‖un − p‖2). (4.41)
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Thus, by the assumptions, we deduce

0 ≤
∞∑
i=n

(vi, J(ui − p)) ≤
k2

0

2
(‖un−1 − p‖2 − ‖un − p‖2). (4.42)

Thus, for any p ∈ A−10,

∀i
(
‖ui+1 − p‖ ≤ ‖ui − p‖

)
. (4.43)

In particular, for the fixed p0 ∈ A−10, we have ‖ui − p0‖ ≤ ‖x‖ + ‖p0‖, leading to the

following bounds for (ui) and (vi):

∀i
(
‖ui‖ ≤ ‖x‖+ 2‖p0‖ and ‖vi‖ ≤ 4k2

0(‖x‖+ ‖p0‖
)
. (4.44)

Taking K := d4k2
0(b1 + b0)e+ 1, we have

∀i
(
‖ui‖, ‖vi‖ < K

)
. (4.45)

Now, choose an arbitrary ` ∈ N. For any p ∈ Z` = {p ∈ A−10 : ‖p‖ ≤ `} and i ∈ N, let

αi,p :=
k2

0

2
‖ui − p‖2 and L` := dk

2
0

2
(‖x‖+ `)2e. (4.46)

Then, for all p ∈ Z` and i ∈ N, we have

αi+1,p ≤ αi,p ≤ L`. (4.47)

In view of (4.42), we know that

0 ≤
∞∑
i=n

(vi, J(ui − p)) ≤ αn−1,p − αn,p. (4.48)

Claim. Let µ` : N→ N be defined by µ`(k̃) := (1+k̃)L`, and let βi,p := (vi, J(ui−p)) ≥
0. Then, µ` defines a rate of uniform convergence on Z` for the sequence (βi,p)i towards

0:

In view of (4.42), we know that

0 ≤
∞∑
i=n

βi,p ≤ αn−1,p − αn,p. (4.49)

On the other hand, from αi+1,p ≤ αi,p ≤ L`, it is easy (by contradiction) to prove that

for all p ∈ Z` and k̃ ∈ N,

∃n ≤ µ`(k̃)
(
αn−1,p − αn,p ≤

1

1 + k̃

)
. (4.50)

This along with (4.49) implies that for such n,

∀k̃ ∈ N ∀p ∈ Z`
( ∞∑
i=µ`(k̃)

βi,p ≤
∞∑
i=n

βi,p ≤ αn−1,p − αn,p ≤
1

1 + k̃

)
. (4.51)

Consequently,

∀k̃, ` ∈ N ∀i ≥ µ`(k̃)∀p ∈ Z`
(
βi,p ≤

1

1 + k̃

)
. (4.52)

This completes the proof of the claim.
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Now, let k ∈ N, and define k̃ := Ω(K, 4k + 3) with K as in (4.45). Then, by (4.52), we

have, for all ` ∈ N, p ∈ Z` and i ≥ µ`(k̃),

(vi, J(ui − p)) = βi,p ≤
1

k̃ + 1
=

1

Ω(K, 4k + 3) + 1
. (4.53)

At this stage, defining g : N → N by g(`) := µ`(Ω(K, 4k + 3)), we conclude in view of

(4.53) and definition of Φ that there exists m ≤ Φ(Ω(K, 4k + 3), g) such that

dist(um, A
−10) ≤ 1

4k + 4
.

Pick some p̃ ∈ A−10 with

dist(um, A
−10) ≤ ‖um − p̃‖ <

1

2k + 2
.

This, along with (4.43), implies that for all i ≥ Φ(Ω(K, 4k + 3), g):

‖ui − p̃‖ <
1

2k + 2
.

Consequently, for all m,n ≥ Φ(Ω(K, 4k + 3), g),

‖um − un‖ ≤ ‖um − p̃‖+ ‖un − p̃‖ <
1

k + 1
.

�

Note that compared to Theorem 4.3, the above theorem neither uses that X is uni-

formly convex nor that A is m-accretive (but only that it is accretive).

Corollary 4.15. With the same assumptions as in Theorem 4.14, if ω : N × N → N is

a I-modulus of the generalized convergence condition for A as in (4.35), then we have:

∀k ∈ N ∀n,m ≥ (1 + ω(K, 4k + 3))dk
2
0

2
(‖x‖+ ω(K, 4k + 3))2e

(
‖un − um‖ ≤

1

k + 1

)
with K = d4k2

0(b1 + b0)e+ 1.

Proof. Let ω : N×N→ N be a modulus satisfying (4.35). Utilizing Proposition 4.11, Ω :=

ω, Φ(r, g) := g(r) define a II-modulus (Ω,Φ) for the generalized convergence condition.

Then, in view of Theorem 4.14, we obtain the rate Φ(Ω(K, 4k+3), g) with K = d4k2
0(b1 +

b0)e + 1, g : N → N defined by g(`) := µ`(Ω(K, 4k + 3)), and µ` : N → N defined by

µ`(k̃) := (1 + k̃)dk
2
0

2
(b1 + `)2e. Then,

Φ(Ω(K, 4k + 3), g) = g(Ω(K, 4k + 3))

= (1 + Ω(K, 4k + 3))dk
2
0

2
(b1 + Ω(K, 4k + 3))2e

= (1 + ω(K, 4k + 3))dk
2
0

2
(b1 + ω(K, 4k + 3))2e.

�
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Remark 4.16. (For logicians). As mentioned, the uniform convexity and smoothness of

the Banach space X are not directly reflected in the extracted rate obtained in Theorem

4.3. More precisely, the rate does not depend on a modulus of convexity, nor does it

depend on a modulus of uniform smoothness???or, equivalently, on a modulus for the

norm-to-norm continuity of the duality map J on bounded sets. Logical metatheorems

typically upgrade smoothness to uniform smoothness together with a modulus. However,

J can also by hardwired into logical metatheorems by adding a constant JX of type

1(X)(X), where 1 is the type N→ N, and the purely universal axiom

(JX) :≡ ∀xX , yX
(
JXxx =R ‖x‖2

X ∧ |JXxx|R ≤R ‖x‖X ·R ‖y‖X
∧ ∀α1, β1, uX , vX

(
JXx(α ·R u+X β ·R v) =R α ·R JXxu+R β ·R JXxv

))
to the formal framework from Kohlenbach [30] (see Kohlenbach and Leusţean [35] for

details).

This axiom clearly holds when JX is interpreted in a smooth Banach space as the single-

valued normalized duality map J . The proof above only uses (JX) but not the axiom

(JX , ωX) (also found in [35]) which states that ωX is a modulus of uniform continuity on

bounded sets of JX .

Moreover, the uniform convexity in Theorem 4.3 is only used to guarantee that the

nearest point projection map P : X → A−10 be well-defined. Such a function, however,

can be directly hardwired as a new constant P of type X(X) with the following universal

axiom (see also [46]):

∀xX , yX
(
(χA(y, 0) =0 0→ (y − Px, JX(x− Px)) ≤R 0) ∧ χA(Px, 0) =0 0

)
.

The premise formalizes that y is a zero of A. Similarly, the second conjunct formalizes

that Px is a zero of A. This axiom clearly holds when in a uniformly convex Banach

space the constant P is interpreted as the metric projection onto A−1(0) while χA is

interpreted as the characteristic function of (the graph of) A.

Both P and JX are easily majorizable. For P , we have ‖Px‖ ≤ ‖x‖+ ‖x− p0‖, since

‖x − Px‖ ≤ ‖x − p0‖. The majorizability of JX is discussed in detail on page 3454 of

[35]. Hence the bound guaranteed to be extractable from a proof formalized in a logical

framework based on the above axioms will be true in any Banach space which is smooth

and uniformly convex but will not depend on any moduli for (uniform) smoothness or

uniform convexity.

This treatment suffices, as neither the extensionality of P (i.e., x =X y → Px =X Py)

nor that of J is invoked in proof of Theorem 4.3. If those had been used, this would require

a quantitative treatment of extensionality for P , respectively J , and hence modululi of

(uniform) continuity on bounded sets for P and J , respectively. For P , this would

require a modulus of uniform convexity for X. In the case of J , one would either need to

stipulate this directly via axiom (JX , ωX) as presented in [35], or alternatively, axiomatize

the uniform smoothness of X with a modulus τ (as on page 3456 in [35]), from which

then a modulus ωX can be computed according to [35, Proposition 2.5].
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5. Moduli of the Convergence Condition: Further Generalization and

Comparisons

The Yosida approximation is a powerful tool for studying the existence and asymptotic

behavior of solutions to difference and differential inclusions governed by monotone (ac-

cretive) operators. For a Hilbert space H, if A ⊆ H×H is maximal monotone, A−10 6= ∅,
and A satisfies the convergence condition, then the Yosida approximation Aλ satisfies the

convergence condition. Pazy [44] proved this result as follows:

let (xi) be a bounded sequence in H and P be the projection onto the closed convex

subset A−10. Let limi→∞(Aλxi, xi − Pxi) = 0. Then,

(Aλxi, xi − Pxi) = (Aλxi, Jλxi − Pxi) + λ‖Aλxi‖2 (5.1)

implies that limi→∞ ‖xi−Jλxi‖ = limi→∞ λ‖Aλxi‖ = 0 and limi→∞(Aλxi, Jλxi−Pxi) = 0

since (Aλxi, Jλxi − Pxi) ≥ 0. By the convergence condition assumption on A, the con-

tinuity of P , and the property Aλxi ∈ AJλxi, we deduce that limi→∞ ‖xi − Pxi‖ =

limi→∞ ‖Jλxi − PJλxi‖ = 0.

Question: If X is a smooth and uniformly convex Banach space, and A ⊆ X × X

is m-accretive, satisfying the ‘convergence condition’ and A−10 6= ∅, does the Yosida

approximation Aλ satisfy the ‘convergence condition’?

The above-mentioned argument lacks the capacity for generalization to Banach spaces,

since the equality corresponding to (5.1) in Banach spaces requires the linearity of the

duality mapping. Therefore, the above question remains open. However, for the case of

the ‘generalized convergence condition’ (Definition 4.5), we obtain the following result.

Proposition 5.1. Let X be a smooth Banach space, and assume that A ⊆ X × X is

an accretive operator such that A−10 6= ∅. If A satisfies the generalized convergence

condition, then its Yosida approximation Aλ does as well.

Proof. Let λ > 0. For all sequences (xi) in R(I + λA) and (pi) ⊂ A−10, we have (using

Lemma 2.1(1))

(Aλxi, J(xi − pi)) = (Aλxi, J(Jλxi − pi))

+ (Aλxi, J(Jλxi − pi + λAλxi)− J(Jλxi − pi))

≥ (Aλxi, J(Jλxi − pi)) + λ−1(‖Jλxi − pi + λAλxi‖ − ‖Jλxi − pi‖)2,

(5.2)

where Jλ is the resolvent of A. Now, let (xi) be a bounded sequence in R(I+λA) such that

(Aλxi) is bounded, and also assume that for all bounded sequences (pi) in A−1
λ 0 = A−10,

lim
i→∞

(Aλxi, J(xi − pi)) = 0. (5.3)

We need to show that limi→∞ dist(xi, A
−10) = 0.
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We note that, for any x ∈ R(I + λA), we have Aλx ∈ AJλx (see (2.2)). Thus

(Aλxi, J(Jλxi − pi)) ≥ 0, and hence in view of (5.2) and (5.3) we deduce

lim
i→∞

(Aλxi, J(Jλxi − pi)) = 0. (5.4)

Since the sequences (Jλxi) and (Aλxi) with (Jλxi, Aλxi) ∈ A are bounded and {pi} is an

arbitrary bounded sequence in A−10, the generalized convergence condition for A implies

that

lim
i→∞

dist(Jλxi, A
−10) = 0.

Now, for any n ∈ N, we choose some p̃n ∈ A−10 with

‖Jλxn − p̃n‖ < dist(Jλxn, A
−10) +

1

n+ 1
.

Thus, for the bounded sequence (p̃i) in A−10, we have

lim
i→∞
‖Jλxi − p̃i‖ ≤ lim

i→∞
dist(Jλxi, A

−10) = 0. (5.5)

From this, and by considering p̃i instead of pi in (5.3) and (5.2), we conclude that

lim
i→∞
‖Aλxi‖ = 0. (5.6)

Therefore, by (5.5) and (5.6), we have

lim
i→∞

dist(xi, A
−10) ≤ lim

i→∞
‖xi − p̃i‖ = lim

i→∞
‖Jλxi + λAλxi − p̃i‖ = 0,

as desired. �

Remark 5.2. If A ⊆ H × H is maximal monotone and A−10 6= ∅, where H is a Hilbert

space, then the following are equivalent:

(i) Aλ satisfies the convergence condition;

(ii) Aλ satisfies the generalized convergence condition;

(iii) for any bounded sequence (xi), limi→∞ ‖Aλxi‖ = 0 → limi→∞ dist(xi, A
−10) = 0.

It suffices to note that for all bounded sequences (xi) ⊂ H and (pi) ⊂ A−10, since

(Aλxi, Jλxi − pi) ≥ 0 and

(Aλxi, xi − pi) = (Aλxi, Jλxi − pi) + λ‖Aλxi‖2, (5.7)

we have limi→∞(Aλxi, xi − pi) = 0 if and only if limi→∞ ‖Aλxi‖ = 0.

Motivated by Remark 5.2 (iii), and for reasons that will become clear in the next

section, we introduce a weaker notion of the convergence condition.

Definition 5.3. Let A be a nonlinear set-valued operator in a Banach space X with

0 ∈ R(A) (i.e., A−10 6= ∅). We say that A satisfies the ‘convergence condition type’ if for

any bounded sequence (xn) in D(A), we have:

lim
n

dist(0, Axn) = 0→ lim
n

dist(xn, A
−10) = 0. (5.8)



25

From the definitions, it follows for smooth Banach spaces that:

Generalized convergence condition (Def. 4.5)⇒ Convergence condition type (Def. 5.3).

Remark 5.4. If the nearest point projection P onto A−10 is well-defined (e.g., when X

is smooth and uniformly convex, and A is m-accretive), then (5.8) is easily seen to be

equivalent to

lim
n
‖A0xn‖ = 0→ lim

n
‖xn − Pxn‖ = 0, (5.9)

where A0x is the unique element in Ax with minimum norm.

Remark 5.5. (For logicians). It is easy to show that the convergence condition type (5.8)

is equivalent to the following property:

∀kN, KN ∃nN∀xX , yX
(
(x, y) ∈ A ∧ ‖x‖ ≤ K ∧ ‖y‖ ≤ 1

n+ 1
→ dist(x,A−10) ≤ 1

k + 1

)
.

(5.10)

In fact, (5.10) is the uniform version of the property

∀xX , yX ∀kN ∃nN((x, y) ∈ A ∧ ‖y‖ ≤ 1

n+ 1
→ dist(x,A−10) ≤ 1

k + 1

)
, (5.11)

which is equivalent (using extensionality) to the trivial implication

∀x ∈ D(A)
(
0 ∈ Ax→ x ∈ A−10

)
. (5.12)

Without extensionality (5.11) is equivalent to

∀xX , yX ∀kN ∃nN((x, y) ∈ A∧‖y‖ ≤ 1

n+ 1
→ ∃pX((p, 0) ∈ A∧‖x−p‖ ≤ 1

k + 1
)
)
, (5.13)

where ‘
(
. . .
)
’ is an ∃-formula. Hence if (5.13) is provable in formal systems which have

a bound extraction metatheorem, one can extract from the proof a bound on (and hence

a witness for) ‘∃nN’ which only depends on k and a norm bound K ≥ ‖x‖ (note that

w.l.o.g. we may assume that ‖y‖ ≤ 1). This suggests the next definition.

We know define a modulus for the convergence condition type:

Definition 5.6. A modulus for the convergence condition type of A is a function Ω :

N× N→ N such that

∀kN, KN, xX , yX
(
(x, y) ∈ A ∧ ‖x‖ ≤ K ∧ ‖y‖ ≤ 1

Ω(k,K) + 1
→ dist(x,A−10) ≤ 1

k + 1

)
.

(5.14)

Here, we examine the consistency of the Yosida approximation with respect to the

notion of convergence condition type (Definition 5.3).

Proposition 5.7. Let A be an accretive operator in a Banach space X with A−10 6= ∅.
If A satisfies the convergence condition type, then so does its Yosida approximation Aλ.

The converse also holds, provided that A is additionally m-accretive.
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Proof. Let λ > 0, and let (xn) be a bounded sequence inR(I+λA) such that limn ‖Aλxn‖ =

0. From Aλxn ∈ AJλxn, we the have limn dist(0, AJλxn) = 0. Since (Jλxn) is bounded

and A satisfies the convergence condition type, we deduce that limn dist(Jλxn, A
−10) = 0.

Now, we may choose a sequence (pn) in A−10 = A−1
λ 0 with limn ‖Jλxn − pn‖ = 0. Then,

limn ‖xn−pn‖ = 0 since ‖xn−pn‖ ≤ ‖λAλxn‖+‖Jλxn−pn‖. Thus, limn dist(xn, A
−10) =

0, and therefore Aλ satisfies the convergence condition type. For the converse, assume

that A is m-accretive and that its Yosida approximation Aλ satisfies the convergence

condition type. We show that A does as well. Let (xn) be a bounded sequence in D(A)

such that limn dist(0, Axn) = 0. By Lemma 2.3 (2), ‖Aλxn‖ ≤ dist(0, Axn). Thus,

limn ‖Aλxn‖ = 0, and by assumption, limn dist(xn, A
−10) = limn dist(xn, A

−1
λ 0) = 0,

which completes the proof.

�

We recall the notion of the modulus of regularity, which was originally introduced in

[36].

Definition 5.8. Let (M,d) be a metric space and F : M → R be a mapping with zerF =

{x ∈ M : F (x) = 0} 6= ∅. Fixing z ∈ zerF and r > 0, we say that φ : (0,∞) → (0,∞)

is a modulus of regularity for F w.r.t. zerF and B(z, r), if for all ε > 0 and x ∈ B(z, r)

we have the following:

|F (x)| < φ(ε)⇒ dist(x, zerF ) < ε.

In the following, we show that a modulus Ω : N×N→ N for the convergence condition

type of an accretive operator A transfers to a modulus of regularity φ : (0,∞)→ (0,∞)

for the absolute value of its Yosida approximation |Aλ|, where |Aλ|(x) := ‖Aλ(x)‖ for

x ∈ R(I + λA). Conversely, if A is additionally m-accretive, a modulus of regularity for

|Aλ| yields a modulus for the convergence condition type of A.

Theorem 5.9. Let A be an accretive operator in a Banach space X with A−10 6= ∅.
Then:

(1) If Ω : N×N→ N is a modulus for the convergence condition type of A, then for any

z ∈ A−10 and r > 0, φz,r : (0,∞)→ (0,∞) defined by φz,r(ε) := (1 + Ωλ(dε−1e+

1, ‖z‖+ r))−1, where Ωλ(k,K) := max{(2k + 2)dλe, 1 + Ω(2k + 1, K + dλe)} − 1,

is a modulus of regularity for |Aλ| : R(I + λA) → R w.r.t. zer|Aλ| = A−10 and

B(z, r) ∩R(I + λA).

(2) Conversely, if A is additionally m-accretive and |Aλ| admits a modulus of regu-

larity φz,r for any z ∈ zer|Aλ| and r > 0, then one can extract a modulus Ω for

the convergence condition type of A by defining Ω(k,K) := dφz,K+d‖z‖e(
1

k+1
)e−1.

The proof of Theorem 5.9 is preceded by two supporting lemmas. The first lemma

presents a quantitative refinement of Proposition 5.7:

Lemma 5.10. Let A be an accretive operator in a Banach space X with A−10 6= ∅. Then:
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(1) If Ω is a modulus for the convergence condition type of A, then Ωλ : N× N → N
defined by

Ωλ(k,K) := max{(2k + 2)dλe, 1 + Ω(2k + 1, K + dλe)} − 1, (5.15)

is a modulus for the convergence condition type of the Yosida approximation Aλ.

(2) Conversely, if A is additionally m-accretive and Ω is a modulus for the convergence

condition type of Aλ, it follows that Ω is likewise a modulus for the convergence

condition type of A.

Proof. Let Ω be a modulus for the convergence condition type of A. Suppose that Ωλ is

defined as in (5.15). Consider k,K ∈ N, and let x ∈ R(I + λA) such that ‖x‖ ≤ K and

‖Aλx‖ ≤
1

1 + Ωλ(k,K)
. (5.16)

Thus,

‖Jλx‖ ≤ ‖x‖+ λ‖Aλx‖ ≤ K +
λ

1 + Ωλ(k,K)
≤ K + dλe. (5.17)

In view of (5.16) and (5.15), we have

‖Aλx‖ ≤
1

1 + Ω(2k + 1, K + dλe)
. (5.18)

Since Aλx ∈ AJλx, it follows from (5.17), (5.18) and the definition of Ω, that

dist(Jλx,A
−10) ≤ 1

2k + 2
. (5.19)

From (5.16) and (5.15), we also have

‖Aλx‖ ≤
1

(2k + 2)dλe
. (5.20)

Now, combining (5.19) and (5.20), we obtain

dist(x,A−10) = dist(λAλx+ Jλx,A
−10) ≤ λ‖Aλx‖+ dist(Jλx,A

−10) ≤ 1

k + 1
.

This completes the proof of (1). To prove (2), assume that A is m-accretive. Then, by

Lemma 2.3, ‖Aλx‖ ≤ dist(0, Ax) for each x ∈ D(A). This inequality implies that any

modulus Ω for the convergence condition type of Aλ also serves as a modulus for the

convergence condition type of A. �

The proof of the following lemma is straightforward and is therefore omitted.

Lemma 5.11. Let Ã : D(Ã)→ X be a single-valued operator such that Ã−10 6= ∅. Then:

(1) Let Ω be a modulus of convergence condition type for Ã. Fixing z ∈ zerÃ and

r > 0, the function φz,r(ε) := (1 + Ω(dε−1e + 1, ‖z‖ + r))−1 defines a modulus of

regularity for |Ã| : D(Ã) → R w.r.t. zerÃ and B(z, r) ∩ D(Ã), where |Ã|(x) :=

‖Ã(x)‖.
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(2) Conversely, if φz,r : (0,∞) → (0,∞) is a modulus of regularity for |Ã| w.r.t.

zer|Ã| and B(z, r) ∩ D(Ã), where z ∈ zerF and r > 0, then the functional

Ω : N× N→ N, defined by

Ω(k,K) := dφz,K+d‖z‖e(
1

k + 1
)e−1, (5.21)

is a modulus of convergence condition type for Ã.

Here is the proof of Theorem 5.9 using Lemmas 5.10 and 5.11:

Proof of Theorem 5.9.

Let Ω : N × N → N be a modulus for the convergence condition type of A. By Lemma

5.10, Ωλ defined in (5.15) is a modulus for the convergence condition type of the Yosida

approximation Aλ. Since Aλ is single-valued, Lemma 5.11 implies that for any z ∈ zerA
and r > 0, the function φz,r(ε) := (1 + Ωλ(dε−1e + 1, ‖z‖ + r))−1 defines a modulus of

regularity for |Aλ| : R(I+λA)→ R w.r.t. zerA and B(z, r)∩R(I+λA). This completes

the proof of (1). Now, assume that A is m-accretive and |Aλ| admits a modulus of

regularity φz,r for any z ∈ zer|Aλ| and r > 0. Then, by Lemma 5.11, the functional Ω

defined by (5.21) is a modulus of convergence condition type for Aλ. It then follows from

Lemma 5.10 that Ω is also a modulus for the convergence condition type of A, thereby

completing the proof of (2). �

Let C be a closed convex subset of a Banach space X. Consider a mapping T : C → X

with Fix(T ) 6= ∅, and define F : C → R by F (x) = ‖x−Tx‖. Let z ∈ Fix(T ) and r > 0.

Similarly, a modulus of regularity for T with respect to Fix(T ) and B(z, r) is defined as

a modulus of regularity for F with respect to zerF and B(z, r).

Remark 5.12. If C is additionally locally compact (e.g., if dimX <∞), T is continuous,

z ∈ Fix(T ), and r > 0, then T has a modulus of regularity with respect to Fix(T ) and

B(z, r) (see [36, Corollary 3.5]).

Remark 5.13. Let A be an accretive operator in a Banach space X with A−10 6= ∅. Since

Jλ : R(I + λA) → X is nonexpansive, Fix(Jλ) = A−10 = A−1
λ 0, and λAλ = I − Jλ,

it follows that for z ∈ Fix(Jλ) and r > 0, φ is a modulus of regularity for Jλ w.r.t

Fix(T ) and B(z, r) if and only if λ−1φ is a modulus of regularity for |Aλ| w.r.t A−10

and B(z, r) ∩ R(I + λA). Therefore, we may apply Theorem 5.9 to transfer a modulus

of regularity for Jλ into a modulus of convergence condition type for A, and vice versa.

Specifically, when dimX <∞ and A is m-accretive, Remark 5.12 ensures that A possesses

a modulus of convergence condition type.

6. Rates of Metastability and Convergence for Nonhomogeneous

Difference Inclusions

In this section, we establish quantitative results on the strong convergence of solutions

to the nonhomogeneous problem (1.4) for an accretive A in Banach spaces which are
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uniformly convex. We also assume either ∀i(0 < θi ≤ 1) or ∀i(1 ≤ θi). It is worth noting

that the strong convergence of solutions to (1.4) in the nonhomogeneous case has been

investigated in the literature under the two scenarios for (θi) mentioned above (see, e.g.,

[5, 23, 22, 27]). In fact, unlike the homogeneous case, constructing monotone sequences

using the products of coefficients θi is essential due to the absence of the monotone

property ‖ui+1 − p‖ ≤ ‖ui − p‖, p ∈ A−10, in the nonhomogeneous case.

In this case, the proof procedure relies on establishing the property

∀k ∈ N ∃n ∈ N ∃v ∈ Aun(‖v‖ ≤ 1

k + 1
),

which serves as the premise of the ‘convergence condition type’ (Definition 5.3). There-

fore, considering these separate cases for θi allows us to apply the ‘convergence condition

type,’ which is the most general condition, encompassing both the standard convergence

condition and the generalized convergence condition.

To proceed, we first establish the following lemmas.

Lemma 6.1. Let X be a Banach space, and let (fi) be a sequence in X. Then, for any

n ≥ 1,
∞∑
i=n

∞∑
k=i

‖fk‖
θkθk−1...θi

≤
∞∑
i=n

hi‖fi‖, (6.1)

where hk :=
∑k

i=1

1

θkθk−1...θi
and θi > 0.

Proof. By the proof of Lemma 3.3 in [18], we have

∞∑
i=n

∞∑
k=i

‖fk‖
θkθk−1 · · · θi

=
1

θn
‖fn‖+ (

1

θn+1

+
1

θn+1θn
)‖fn+1‖

+ (
1

θn+2

+
1

θn+2θn+1

+
1

θn+2θn+1θn
)‖fn+2‖+ · · ·+ (

n+m∑
i=n

1

θn+m...θi
)‖fn+m‖+ · · · .

Then, (6.1) follows immediately from
∑n+m

i=n

1

θn+m...θi
≤ hn+m. �

Lemma 6.2. Let X be a Banach space and let A ⊆ X × X be an accretive operator

such that A−10 6= ∅. Let p0 ∈ A−10 and x ∈ X. Let
∑∞

i=1 θ1θ2...θi = ∞. Suppose

that
∑∞

i=1 hi‖fi‖ < C, and let (ui) be a solution for (1.4) with the initial point x. Then

(ui) ⊂ Bb(0), for b ≥ ‖x‖+ 2‖p0‖+ C.

Proof. Since p0 ∈ A−10, by the accretivity of A and (1.4), we have

(ui+1 − (1 + θi)ui + θiui−1 − fi, j(ui − p0)) ≥ 0, ∀i ≥ 1. (6.2)

Then, it is easy to check that we have

(‖ui+1 − p0‖ − ‖ui − p0‖)− θi(‖ui − p0‖ − ‖ui−1 − p0‖) + ‖fi‖ ≥ 0,
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for all i ≥ 1. Therefore

‖ui − p0‖ − ‖ui−1 − p0‖

≤ 1

θi
(‖ui+1 − p0‖ − ‖ui − p0‖) +

‖fi‖
θi

≤ 1

θi+1θi
(‖ui+2 − p0‖ − ‖ui+1 − p0‖) +

‖fi+1‖
θi+1θi

+
‖fi‖
θi

...

≤ 1

θi+j · · · θi+1θi
(‖ui+j+1 − p0‖ − ‖ui+j − p0‖) +

i+j∑
k=i

‖fk‖
θkθk−1 · · · θi

= a−1
i−1ai+j(‖ui+j+1 − p0‖ − ‖ui+j − p0‖) +

i+j∑
k=i

‖fk‖
θkθk−1 · · · θi

,

for all i ≥ 1, j ≥ 0. Taking liminf as j → ∞, by
∞∑
i=1

a−1
i = ∞, (1.4) and Lemma 2.4, we

obtain for all i ≥ 1,

‖ui − p0‖ − ‖ui−1 − p0‖ ≤
∞∑
k=i

‖fk‖
θkθk−1...θi

. (6.3)

Thus, by (6.1), we have

‖um − p0‖ ≤ ‖u0 − p0‖+
m∑
i=1

∞∑
k=i

‖fk‖
θkθk−1...θi

< ‖x− p0‖+ C, ∀m ≥ 1. (6.4)

This completes the proof. �

Lemma 6.3. Let X be a uniformly convex Banach space with a modulus of uniform

convexity δ, and let A ⊆ X×X be accretive such that A−10 6= ∅. Let
∑∞

i=1 θ1θ2...θi =∞.

Let p0 ∈ A−10 and x ∈ X. Suppose that
∑∞

i=1 hi‖fi‖ < C, and let (ui) be a solution for

(1.4) with the initial point x. Let b ≥ ‖x‖+ 2‖p0‖+ C and g̃(ε) = b2δ̃( ε
b
)2 on R+. Then

(1) If ∀i(0 < θi ≤ 1), then Σ∞i=1g̃(‖ui − ui−1‖) < 3b2.

(2) If ∀i(1 ≤ θi), then Σ∞i=1g̃(ai−1‖ui − ui−1‖) < 3b2.

Proof. First note that using (6.2) we have

(ui+1 − ui, j(ui − p0))− θi(ui − ui−1, j(ui − p0))− (fi, j(ui − p0)) ≥ 0, ∀i. (6.5)

We prove (1). As in the proof of [18, Lemma 3.2], one shows, using Proposition 3.3

and Lemma 6.2, that

Σ∞i=kg̃(‖ui − ui−1‖) ≤ −(uk − uk−1, j(uk−1 − p0)) + Σ∞i=k
ai
ak−1

‖fi‖‖ui − p0‖.

Therefore, from (6.4) and since ak−1 ≥ 1, we obtain

Σ∞i=kg̃(‖ui − ui−1‖) < 2b2 + bΣ∞i=khi‖fi‖ < 2b2 + bC ≤ 3b2.
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We now prove (2). We assume ∀i(1 ≤ θi). Thus ∀i(ai ≤ 1) and so for all i, j, we have

aiuj ∈ Bb(0). Thus, applying Proposition 3.3, we have

(ai−1ui − ai−1ui−1, j(ai−1(ui − p0))− j(ai−1(ui−1 − p0))) ≥ g̃(ai−1‖ui − ui−1‖),

for all i. That is,

ai−1(ui − ui−1, j(ui − p0))− ai−1(ui − ui−1, j(ui−1 − p0)) ≥ a−1
i−1g̃(ai−1‖ui − ui−1‖), (6.6)

for all i. On the other hand, multiplying both sides of (6.5) by ai, we have

ai(ui+1 − ui, j(ui − p0))− ai−1(ui − ui−1, j(ui − p0))− ai(fi, j(ui − p0)) ≥ 0, (6.7)

for all i. Combining (6.7) and (6.6), we deduce

a−1
i−1g̃(ai−1‖ui − ui−1‖) ≤ ai(ui+1 − ui, j(ui − p0))

− ai−1(ui − ui−1, j(ui−1 − p0))− ai(fi, j(ui − p0)).
(6.8)

Now, summing up from i = k to m and using again Lemma 2.1 (2), we arrive at

Σm
i=ka

−1
i−1g̃(ai−1‖ui − ui−1‖) ≤

am
2

(‖um+1 − p0‖2 − ‖um − p0‖2)

− ak−1(uk − uk−1, j(uk−1 − p0)) + Σm
i=kai‖fi‖‖ui − p0‖.

(6.9)

Taking liminf, as m→∞, and using Lemma 2.4, we obtain

Σ∞i=ka
−1
i−1g̃(ai−1‖ui − ui−1‖) ≤ −ak−1(uk − uk−1, j(uk−1 − p0)) + Σ∞i=kai‖fi‖‖ui − p0‖.

Since ∀i(ai ≤ 1) in this case, we deduce

Σ∞i=kg̃(ai−1‖ui − ui−1‖) ≤ Σ∞i=ka
−1
i−1g̃(ai−1‖ui − ui−1‖)

≤ −ak−1(uk − uk−1, j(uk−1 − p0)) + Σ∞i=kai‖fi‖‖ui − p0‖ < 2b2 + bΣ∞i=khi‖fi‖ < 3b2.

�

Theorem 6.4. Let X be a uniformly convex Banach space with a modulus of uniform

convexity δ, and assume that A ⊆ X × X is accretive such that A−10 6= ∅ and satisfies

the convergence condition type with a modulus Ω. Let p0 ∈ A−10, x ∈ X and k0 ∈ N. Let∑∞
i=1 θ1θ2...θi = ∞, (aici), (ci) ⊆ [1/k0,∞), and let (ui) be a solution for (1.4) with the

initial point x. Assume that ∀i(0 < θi ≤ 1) or ∀i(1 ≤ θi). If
∞∑
i=1

hi‖fi‖ < C ∈ N, then the

following holds:

∀kN ∀fN→N ∃n ≤ Ψ(k, f, C, δ,Ω, x, p0)∀i, j ∈ [n;n+ f(n)]

(
‖ui − uj‖ <

1

k + 1

)
,

where Ψ(k, f, C, δ,Ω, x, p0) := Φ(h, k, C) + Γ(k), Φ(h, k, C) := h̃(C(4k+4))(0), h̃(n) :=

n + h(n), h(n) := Γ(k) + max{f(i); n < i ≤ n + Γ(k)}, g̃(t) = b2δ̃( t
b
)2 on R+, b ≥

‖x‖+ 2‖p0‖+ C, µ̃(ε) := d7b2

ε
e on R+ \ {0}, and

Γ(k) := µ̃(min{ 1

3k0(1 + Ω(4k + 4, dbe))
, g̃(

1

3k0(1 + Ω(4k + 4, dbe))
)}). (6.10)
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Moreover,

∀kN ∀fN→N ∃n ≤ Ψ(k, f, C, δ,Ω, x, p0)∀i ∈ [n;n+ f(n)]

(
dist(ui, A

−10) <
1

2k + 2

)
.

(6.11)

Consequently, (ui) converges to an element of A−10.

Proof. From (1.4), we have

vi :=
1

ci
((ui+1 − ui)− θi(ui − ui−1)− fi) ∈ Aui, ∀i ≥ 1. (6.12)

In view of (2.4), we get

vi =
1

ciai
(ai(ui+1 − ui)− ai−1(ui − ui−1)− aifi). (6.13)

For ε > 0, define µ̃(ε) := d7b2

ε
e.

Claim 1: If ∀i(0 < θi ≤ 1), then

∀k̃ ∈ N ∀ε > 0∃n
(
k̃ < n ≤ k̃ + µ̃(ε) ∧ g̃(‖un+1 − un‖) + g̃(‖un − un−1‖) + ‖fn‖ < ε

)
.

(6.14)

Suppose that ∀i(0 < θi ≤ 1). Then
∞∑
i=1

‖fi‖ ≤
∞∑
i=1

hi‖fi‖ < C. We know from Lemma

6.3 (1) that

Σ∞i=1

(
g̃(‖ui+1 − ui‖) + g̃(‖ui − ui−1‖) + ‖fi‖

)
< 3b2 + 3b2 + C ≤ 7b2.

This implies the claim, since otherwise there exists ε > 0 such that

εd7b
2

ε
e = εµ̃(ε) ≤ Σ∞i=1

(
g̃(‖ui+1 − ui‖) + g̃(‖ui − ui−1‖) + ‖fi‖

)
< 7b2,

which is a contradiction.

Claim 2: If ∀i(1 ≤ θi), then

∀k̃ ∈ N ∀ε > 0 ∃n(
k̃ < n ≤ k̃ + µ̃(ε) ∧ g̃(an‖un+1 − un‖) + g̃(an−1‖un − un−1‖) + an‖fn‖ < ε

)
.

(6.15)

Suppose that ∀i(1 ≤ θi). Then
∑∞

i=1 ai‖fi‖ ≤
∑∞

i=1 hi‖fi‖ < C. We know from Lemma

6.3 (2) that Σ∞i=1

(
g̃(ai‖ui+1−ui‖)+ g̃(ai−1‖ui−ui−1‖)+ai‖fi‖

)
< 7b2. Now we can repeat

the argument used for Claim 1 to complete the proof of Claim 2.

At this stage, let ξ > 0 and let ε := min{ ξ
3k0
, g̃( ξ

3k0
)} in (6.14) and (6.15). By straight

calculations, we have from (6.14) and (6.15):

∀i(0 < θi ≤ 1)→ ∀k̃ ∈ N ∀ξ > 0∃k̃ < n ≤ k̃ + µ̃(min{ ξ

3k0

, g̃(
ξ

3k0

)})(
‖un+1 − un‖+ ‖un − un−1‖+ ‖fn‖ <

ξ

k0

)
,

(6.16)
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and

∀i(1 ≤ θi)→ ∀k̃ ∈ N ∀ξ > 0 ∃k̃ < n ≤ k̃ + µ̃(min{ ξ

3k0

, g̃(
ξ

k0

)})(
an‖un+1 − un‖+ an−1‖un − un−1‖+ an‖fn‖ <

ξ

k0

)
.

(6.17)

Now assume either ∀i(0 < θi ≤ 1), or ∀i(1 ≤ θi). Combining (6.12) and (6.16) for the

case ∀i(0 < θi ≤ 1), as well as combining (6.13) and (6.17) when ∀i(1 ≤ θi), we have

∀k̃ ∈ N ∀ξ > 0 ∃k̃ < n ≤ k̃ + µ̃(min{ ξ

3k0

, g̃(
ξ

3k0

)})
(
‖vn‖ < ξ

)
. (6.18)

Now, choose arbitrary k ∈ N and f : N→ N. Taking

ξ :=
1

1 + Ω(4k + 4, dbe)

in (6.18), and denoting

Γ(k) := µ̃(min{ 1

3k0(1 + Ω(4k + 4, dbe))
, g̃(

1

3k0(1 + Ω(4k + 4, dbe))
)}),

we have

∀k̃ ∈ N ∃k̃ < n ≤ k̃ + Γ(k)

(
‖vn‖ <

1

1 + Ω(4k + 4, dbe)

)
. (6.19)

Define h(n) := Γ(k) + max{f(i); n < i ≤ n+ Γ(k)}, h̃(n) := n+ h(n), and

Φ(h, k, C) := h̃(C(4k+4))(0).

On the other hand, defining Ri :=
∞∑
k=i

‖fk‖
θkθk−1...θi

and using Lemma 6.1, we have:

∞∑
i=1

Ri =
∞∑
i=1

∞∑
k=i

‖fk‖
θkθk−1...θi

≤
∞∑
i=1

hi‖fi‖ < C. (6.20)

At this stage, using the metastability of bounded monotone sequences (see, e.g., [30,

Proposition 2.27] for details), we can choose some n0 ∈ N such that

n0 ≤ Φ(h, k, C) ∧ ∀i, j ∈ [n0;n0 + h(n0)]
(
i < j →

j∑
s=i+1

Rs <
1

4k + 4

)
, (6.21)

and then using (6.19), we may choose ñ0 ∈ N such that n0 < ñ0 ≤ n0 + Γ(k) and

‖vñ0‖ <
1

1 + Ω(4k + 4, dbe)
. (6.22)

Note that, defining Ψ(k, f, C, δ,Ω, x, p0) := Φ(h, k, C) + Γ(k),

n0 < ñ0 ≤ n0 + Γ(k) ≤ Ψ(k, f, C, δ,Ω, x, p0),

and since

ñ0 +f(ñ0) ≤ n0 +Γ(k)+f(ñ0) ≤ n0 +Γ(k)+max{f(i); n0 < i ≤ n0 +Γ(k)} = n0 +h(n0),
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we deduce

[ñ0; ñ0 + f(ñ0)] ⊂ [n0;n0 + h(n0)]. (6.23)

Moreover, since vñ0 ∈ A(uñ0) and ‖uñ0‖ ≤ dbe, we conclude by (6.22) and the property

of Ω,

dist(uñ0 , A
−10) <

1

4k + 4
. (6.24)

Thus, we may choose some p̃0 ∈ A−10 such that

‖uñ0 − p̃0‖ <
1

4k + 4
. (6.25)

By the same line of reasoning in (6.3) and (6.4), we derive

‖un+m − p̃0‖ ≤ ‖un − p̃0‖+
n+m∑
i=n+1

Ri. (6.26)

Thus, in view of (6.21), (6.23) and (6.25), we obtain for all i ∈ [ñ0; ñ0 + f(ñ0)],

‖ui − p̃0‖ < ‖uñ0 − p̃0‖+
1

4k + 4
<

1

2k + 2
.

This proves (6.11). Moreover, for any k ∈ N and f : N → N, we have found some

ñ0 ≤ Ψ(k, f, C, δ,Ω, x, p0) such that for all i, j ∈ [ñ0; ñ0 + f(ñ0)],

‖ui − uj‖ ≤ ‖ui − p̃0‖+ ‖uj − p̃0‖ <
1

k + 1
.

This completes the proof. �

Definition 6.5. We say that β : N → N is a Cauchy rate for a series
∞∑
n=1

αn < ∞ with

αn ≥ 0, if

∀k,m
( β(k)+m∑
n=β(k)

αn ≤
1

k + 1

)
.

In the presence of a Cauchy rate β for the series
∞∑
i=1

hi‖fi‖ < ∞, we obtain, as a

corollary of Theorem 6.4, a Cauchy rate for the solution (ui) of the difference inclusion

(1.4), depending on β.

Corollary 6.6. Under the same assumptions as in Theorem 6.4, if
∑∞

i=1 hi‖fi‖ converges

with a Cauchy rate β : N→ N, then the following holds:

∀kN ∀n,m ≥ β(4k + 3) + Γ(k)
(
‖un − um‖ <

1

k + 1

)
,

where Γ(k) is defined as in (6.10).

Proof. Choose an arbitrary k ∈ N, and define Γ(k) as in (6.10). In view of (6.19), there

exists some β(4k + 3) < n0 ≤ β(4k + 3) + Γ(k) such that

‖vn0‖ <
1

1 + Ω(4k + 4, dbe)
. (6.27)
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In veiw of (6.27), the property of Ω implies that

dist(un0 , A
−10) <

1

4k + 4
.

In particular, we may choose some pn0 ∈ A−10 such that

‖un0 − pn0‖ <
1

4k + 4
. (6.28)

From (6.28), and using (6.3), (6.1) and definition of β, we have for each m ∈ N∗,

‖un0+m − pn0‖ ≤ ‖un0 − pn0‖+

n0+m∑
i=n0+1

∞∑
k=i

‖fk‖
θkθk−1 · · · θi

<
1

4k + 4
+

∞∑
i=n0+1

hi‖fi‖ ≤
1

4k + 4
+

∞∑
i=β(4k+3)

hi‖fi‖ ≤
1

2k + 2
.

Consequently, for all n ≥ β(4k + 3) + Γ(k), we have

‖un − pn0‖ <
1

2k + 2
,

and, in turn, for such n and for all m ∈ N, it follows that

‖un+m − un‖ ≤ ‖un+m − pn0‖+ ‖un − pn0‖ <
1

k + 1
.

�
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[11] H. Brézis, Equations d’evolution du second ordre associees a des operateurs monotones (in French),

Israel J. Math. 12 (1972) 51-60.
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