
Rates of convergence for splitting algorithms∗

Jacqueline Treusch and Ulrich Kohlenbach
Department of Mathematics

Technische Universität Darmstadt
Schlossgartenstraße 7, 64289 Darmstadt, Germany

jacqueline.treusch@gmx.de, kohlenbach@mathematik.tu-darmstadt.de

August 26, 2024

Abstract

We study the convergence of so-called splitting algorithms that compute zeros of sums A+ B of monotone
operators from a quantitative point of view under suitable uniform monotonicity assumptions which guaran-
tee their strong convergence. More precisely, we apply logic-based techniques from proof mining to construct
rates of the convergence for (i) Tseng’s algorithm, (ii) the forward-backward splitting algorithm, (iii) the
Douglas-Rachford splitting algorithm as well as its limiting case given by (iv) the Peaceman-Rachford algo-
rithm. In the latter case, we use a recent result due to Liu et al. together with a quantitative form of strong
nonexpansivity. The rates of convergence depend on moduli of uniform monotonicity for A and/or B or, in
the case of Tseng’s algorithm, just for A+ B and are (at least) as general as the original strong convergence
results.
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1 Introduction
This paper studies the convergence of so-called splitting algorithms that compute zeros of sums of monotone
operators from a quantitative point of view under assumptions which guarantee their strong convergence. More
precisely, we apply logic-based techniques from proof mining (see e.g. [6, 9]) to the convergence proofs of four
different splitting methods presented in [1, Chapter 26], namely, (i) Tseng’s algorithm, (ii) the forward-backward
splitting algorithm, (iii) the Douglas-Rachford splitting algorithm as well as its limiting case given by (iv) the
Peaceman-Rachford algorithm. The algorithms (i)-(iii) construct sequences (xn) for which, with the help of an
auxiliary sequence (zn), it is proven that xn − zn → 0 (asymptotic regularity). This is then used to show the
weak convergence of (xn) towards a solution x ∈zer(A+B). In a third step, these results are used to establish
under the additional assumption that one of the operators A,B is uniformly monotone, that (xn) strongly
converges towards the then unique solution x ∈zer(A+B). This last type of result is particularly amenable to
proof mining as from uniqueness statements one usually can extract so-called moduli of uniqueness which in
many cases can be combined with asymptotic regularity results to obtain effective and highly uniform rates of
convergence (see e.g. [6]). As discussed in [10], such moduli of uniqueness correspond, in the cases at hand,
to quantitative moduli for (generalized forms of) the uniform monotonicity of A or B. The construction of
rates of convergence depending on such moduli is, however, not trivial as even the strong convergence proofs
for the algorithms (i)-(iii) at least prima facie refer to the weak convergence results proved in the more general
case of monotone operators and - in some cases - due to the lack of monotonicity of the sequence (‖xn − x‖).
Nevertheless, we will be able to construct full rates of convergence for the algorithms (i)-(iii) in given moduli
of uniform monotonicity for A or B (in the case of (ii),(iii)) or just for A+B (in the case of (i)). Interestingly,
the strong convergence proof for (iv) as given in [1] - which does not proceed via a weak convergence result -
is inherently noneffective and - when logically analyzed - only gives rise to a so-called rate of metastability (for

∗This paper grew out of a Bachelor thesis [16] of the first author written under the supervision of the 2nd author except for
section 5.2 which is due to the 2nd author.

1



xn → x) in the sense of Tao [14, 15]. Only when both operators A,B are assumed to posses moduli of uniform
monotonicity, very recent results from [12], together with previous proof mining results due to the 2nd author
in [7], can be utilized to obtain a full rate of convergence for the Peaceman-Rachford algorithm. For each of
the algorithms treated, we will give brief discussions on how recent logical metatheorems of proof mining in the
context of (maximally) monotone operators in Hilbert space (see [13, 11] which in turn extend [5, 4]) explain
our rates of convergence from a qualitative point of you (w.r.t. the data used) as instances of general logical
phenomena.
While there are numerous results in the literature on rates of convergence for splitting methods in special cases
and under additional assumptions (see e.g. [1, Prop. 26.16] or Chapter 10 of [3]) our results are as general as
the original strong convergence theorems.

1.1 Basic Notions and Propositions
We first introduce some basic notation which will be used throughout this paper. In the following, (H, ‖ · ‖)
always describes a real Hilbert space with scalar product 〈·, ·〉 and 2H is the power set of H. The natural
numbers are denoted by N as usual and include 0, i.e., N = {0, 1, 2, . . .}.
The theorems that we consider involve set-valued operators. A set-valued operator A : H → 2H is an operator
that maps every point x in H to a subset Ax of H and is characterized by its graph

gra(A) := {(x, u) ∈ H×H : u ∈ Ax}.

Other useful notions for such operators are

• the domain of A, i.e., dom(A) := {x ∈ H : Ax 6= ∅},

• the range of A, i.e., ran(A) := A(H),

• and the set of zeros of A, i.e., zer(A) := A−10 = {x ∈ H : 0 ∈ Ax}.

Given the operators A : H → 2H and B : H → 2H, the sum A + B is defined by

A + B : H → 2H, x 7→ Ax+ Bx = {s+ t : s ∈ Ax, t ∈ Bx}.

Obviously gra(A + B) = {(x, u+ v) : (x, u) ∈ gra(A), (x, v) ∈ gra(B)} and dom(A + B) = dom(A) ∩ dom(B).
An important class of set-valued operators are those which are monotone.

Definition 1.1 (20.1 in [1]). An operator A : H → 2H is monotone if

∀(x, u), (y, v) ∈ gra(A)
(
〈x− y, u− v〉 ≥ 0

)
Definition 1.2 (20.20 in [1]). A monotone operator A : H → 2H is maximally monotone if for every (x, u) ∈
H×H

(x, u) ∈ gra(A) ⇔ ∀(y, v) ∈ gra(A)
(
〈x− y, u− v〉 ≥ 0

)
.

Remark 1.3. If A : H → 2H is (maximally) monotone and γ ∈ (0,∞), then γA is again (maximally) monotone.

We can also strengthen the notion of monotone operators to obtain uniformly monotone operators. Instead of
only requiring that the scalar product is greater than or equal to zero, we actually demand the scalar product to
have a proper distance to zero. This distance has to be quantifiable by a modulus. In [1], we have the following
definition:

Definition 1.4 (22.1(iii) in [1]). An operator A : H → 2H is uniformly monotone with function φ : [0,∞) →
[0,∞] if φ is increasing, vanishes only at 0 and

∀(x, u), (y, v) ∈ gra(A)
(
〈x− y, u− v〉 ≥ φ(‖x− y‖)

)
.

This notion of uniform monotonicity can be naturally localized to a subset C of the domain. Then the last
property of φ in Definition 1.4 only has to hold for x, y ∈ C.
One advantage of uniformly monotone operators is that they actually have at most one zero. In fact, this holds
for strictly monotone operators (see Proposition 23.35 in [1]) which is a weaker assumption on the operator
than uniform monotonicity.
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Proposition 1.5. Let A : H → 2H be uniformly monotone. Then zer(A) is at most a singleton.

For the extraction of rates of convergence later on, we need to convert such a given function φ using results
from [10] into a modulus Θ which is defined next. The following definition is based on Definition 9 in [10]. The
latter paper only treats operators that are uniformly monotone at zero. In this paper, on the other hand, we
are going to need such a modulus also for arbitrary pairs of arguments. We can extend the definition naturally
as follows:

Definition 1.6. An operator A : H → 2H is uniformly monotone with modulus of uniform monotonicity
Θ(·)(·) : N×N \{0} → N if

∀k ∈ N ∀K ∈ N \{0}∀(x, u), (y, v) ∈ gra(A)
(
‖x− y‖ ∈ [2−k,K]→ 〈x− y, u− v〉 ≥ 2−ΘK(k)

)
.

For the quantitative the analysis of Tseng’s algorithm we only need to assume the aforementioned weaker notion
(if zer(A) 6= ∅) of a modulus of uniform monotonicity at zero from [10]:

Definition 1.7 ([10]). A is uniformly monotone at x ∈ zer(A) with modulus Θ(·)(·) : N×N \{0} → N if

(2.2.1) ∀k ∈ N ∀K ∈ N \{0} ∀(y, u) ∈ gra(A + B)
(
‖x− y‖ ∈ [2−l,K]→ 〈y − x, u〉 ≥ 2−ΘK(k)

)
.

If A is uniformly monotone at some zero x, then this x is the only zero of A and so A is uniformly monotone
at any zero. Hence we can simply say ‘uniformly monotone at zero’ instead of ‘uniformly monotone at zero x’
(provided that zer(A) 6= ∅).
Let A be uniformly monotone with function ϕ, then

Θ(l) := min
n∈N

{
2−n ≤ ϕ

(
2−l
)}
.

is a modulus for A being uniformly monotone (and a-fortiori a modulus for A being uniformly monotone at
zero) which does not depend on K (using that ϕ is increasing).
In this paper, we will actually use our moduli always for some fixed K. This is because we will mostly treat
operators that are uniformly monotone on bounded subsets for which we can compute a suitable bound K.

Definition 1.8 (cf. 23.1 in [1]). Let A : H → 2H. The resolvent of A is defined to be the set-valued mapping
JA = (Id + A)−1.

Some useful statements regarding the resolvent, which follow directly from the definition, are summarized in
the next proposition.

Proposition 1.9 (23.2 in [1]). Let A : H → 2H, γ ∈ (0,∞) and x, p ∈ H. Then the following hold:

(i) dom(JγA) = ran(Id + γA) and ran(JγA) = dom(A).

(ii) p ∈ JγA x⇔ x ∈ p+ γAp⇔ x− p ∈ γAp⇔ (p, γ−1(x− p)) ∈ gra(A).

Definition 1.10 (4.1(i)+(ii) in [1]). Let D ⊆ H be nonempty. An operator T : D→ H is

(i) nonexpansive if it is Lipschitz-continuous with Lipschitz constant 1, i.e.,

∀x, y ∈ D
(
‖T x− T y‖ ≤ ‖x− y‖

)
.

(ii) firmly nonexpansive if

∀x, y ∈ D
(
‖T x− T y‖2 + ‖(Id− T )x− (Id− T )y‖2 ≤ ‖x− y‖2

)
.

Note that every firmly nonexpansive operator is in particular nonexpansive.

Proposition 1.11 (23.10 in [1]). Let A : H → 2H be monotone. Then JA = (Id + A)−1 : ran(Id+A)→ dom(A)
is a single valued firmly nonexpansive mapping. If A is maximally monotone, then ran(Id + A) = H and so JA
is a total mapping.
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For maximally monotone operators we are going to consider another single-valued operator based on the resol-
vent. The operator is the so-called reflected resolvent and is defined as follows:

Definition 1.12. For maximally monotone A : H → 2H and arbitrary γ ∈ (0,∞) the reflected resolvent RγA

is defined by

RγA : H → H, x 7→ 2 JγA x− x

RγA is nonexpansive (see Corollary 23.11(ii) in [1]).

Definition 1.13 (4.10 and 4.33 in [1]). Let D be a nonempty subset of H, and let T : D → H.

a) Let α ∈ (0, 1) and let T be nonexpansive. Then T is α-averaged if there exists a nonexpansive operator
R : D → H such that T = (1− α)Id + αR.

b) Let β ∈ (0,∞). Then T is β-cocoercive if

∀x, y ∈ D
(
〈x− y, T x− T y〉 ≥ β‖T x− T y‖2

)
.

Definition 1.14. Let D 6= ∅ be a subset of H and let (xn)n∈N be a sequence in H. Then (xn)n∈N is Fejér-
monotone with respect to D if

∀x ∈ D ∀n ∈ N (‖xn+1 − x‖ ≤ ‖xn − x‖) .

Theorem 1.15 (Groetsch, 5.15 in [1]). Let D be a nonempty closed convex subset of H, let T : D → D be a
nonexpansive operator such that Fix(T ) 6= ∅, let (λn)n∈N be a sequence in [0, 1] such that

∑
n∈N λn(1−λn) =∞,

and let x0 ∈ D. Set

∀n ∈ N
(
xn+1 = xn + λn(T xn − xn)

)
.

Then the following hold:

(i) (xn)n∈N is Fejér-monotone with respect to Fix(T ).

(ii) (T xn − xn)n∈N converges strongly to 0.

In addition to Theorem 1.15 itself, we will also need some facts used in its proof: For the proof of (i) the
nonexpansiveness of T is used to show statement (5.16) in [1] which asserts that for all y ∈ Fix(T ) we have

(1.15.1) ∀n ∈ N
(
‖xn+1 − y‖2 ≤ ‖xn − y‖2 − λn(1− λn)‖T xn − xn‖2

)
.

This already proves (i) since the subtracted term on the right is always positive.
The inequality (1.15.1) is then used in the proof of (ii) to establish

(1.15.2)
∑
n∈N

λn(1− λn)‖T xn − xn‖2 ≤ ‖x0 − y‖2.

By assumption, we have
∑
n∈N λn(1− λn) =∞ and therefore lim inf

n→∞
‖T xn − xn‖ = 0. By (5.17) in [1]

(1.15.3) ∀n ∈ N
(
‖T xn+1 − xn+1‖ ≤ ‖T xn − xn‖

)
holds which then yields T xn − xn → 0.

2 Tseng’s Splitting Algorithm
The first theorem we are going to analyze is the convergence of Tseng’s Splitting Algorithm. This algorithm
finds zeros of the sum of two operators where one is maximally monotone and the other is single-valued and
Lipschitz-continuous on a suitable subset. Each iteration consists of four computation steps: two forward, one
backward and one projection step.
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Theorem 2.1 (Tseng’s Algorithm, 26.17 in [1]). Let D ⊆ H be nonempty, let C ⊆ D be closed and convex, and
let β ∈ (0,∞). Assume that A : H → 2H is a maximally monotone operator with dom(A) ⊆ D and B : H → 2H

is a monotone operator which is single-valued on D and 1
β -Lipschitz continuous relative to C ∪ dom(A) and that

A+ B is maximally monotone. Now suppose C ∩ zer(A + B) 6= ∅ and let x0 ∈ C and γ ∈ (0, β). For n ∈ N we
set

yn = xn − γBxn,
zn = JγAyn,

rn = zn − γBzn,
xn+1 = PC

(
xn − yn + rn

)
,

where PC is the metric projection onto C.
Then the following hold:

(i) (xn − zn)n∈N converges strongly to 0.

(ii) Suppose that A or B is uniformly monotone on every nonempty bounded subset of dom(A). Then (xn)n∈N
and (zn)n∈N converge strongly to the unique point in C ∩ zer(A + B).

Theorem 26.17 in [1] has the assumption that A + B is maximally monotone. As we will see, we do not need
this assumption to prove the statements in Theorem 2.1. It is used in [1] to show the additional assertion
that (xn)n∈N and (zn)n∈N converge weakly toward a point in C ∩ zer(A + B). This weak convergence is then
used in the proof of Theorem 2.1(ii) to show the boundedness of a specific subset of dom(A). We will show
this boundedness in another way in order to quantify it and avoid the assumption of maximal monotonicity of
A + B. Furthermore, we will avoid the definition of the subset D in the following theorems. We can instead
claim B to be single-valued and 1

β -Lipschitzian on C ∪ dom(A) since we are only going to use the property on
this subset of D.

2.1 Extracting Rates of Convergence and Metastability
We first consider the situation in which A or B is additionally uniformly monotone on every bounded subset of
dom(A). Then A + B is also uniformly monotone on those subsets as we will see in the next remark. Therefore,
we can apply Proposition 1.5 and get a unique x ∈ C ∩ zer(A + B).

Remark 2.2 (Modulus of Uniform Monotonicity). Let A,B : H → 2H be monotone operators defined as in
Tseng’s Algorithm and C be a closed and convex subset of H such that C∩zer(A + B) 6= ∅ holds. We consider an
arbitrary subset S ⊆ dom(A). First, we want to argue that if A or B is uniformly monotone on S then A + B is as
well. Let φ be the function from the definition of uniform monotonicity for A or B on S as described in Definition
1.4. Let s, t ∈ S and (s, u), (t, v) ∈ gra(A + B). Then, by definition of A + B, there are ua ∈ A(s), va ∈ A(t) and
ub ∈ B(s), vb ∈ B(t) such that ua + ub = u and va + vb = v hold. We obtain

〈s− t, u− v〉 = 〈s− t, ua + ub − va − vb〉 = 〈s− t, ua − va〉+ 〈s− t, ub − vb〉 ≥ φ(‖s− t‖)

since one of the scalar products is ≥ φ(‖s− t‖) (depending on which operator is uniformly monotone) and the
other one is ≥ 0 (because both are monotone). This shows that A + B is uniformly monotone on S with the
same function φ.

For the convergence of (xn)n∈N in Tseng’s Algorithm we actually only need the uniform monotonicity of A + B
on one specific bounded subset of H. By the comment made after Definition 1.7, we may assume the existence
of some modulus Θ of uniform monotonicity with property (2.2.1). In the premise of the next theorem we only
demand such a Θ with a suitably chosen K. In the proof of the theorem we will then show that this K is
actually suitable.

Theorem 2.3. Let C ⊆ H be nonempty, closed and convex and let β ∈ (0,∞). Assume that A : H → 2H is
a maximally monotone operator and B : H → 2H a monotone operator which is single-valued and 1

β -Lipschitz
continuous on C∪dom(A). Let C be such that C∩zer(A + B) 6= ∅. Take x0 ∈ C, γ ∈ (0, β) and x ∈ C∩zer(A + B).
Let the sequences (xn)n∈N and (zn)n∈N be defined as in Theorem 2.1. Assume that b ∈ N is such that β ≤ b
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and k ∈ N, k ≥ 1 is such that 1
k ≤ γ ≤ β − 1

k (witnessing the strict inequalities in γ ∈ (0, β)). Let d,M ∈ N be
such that

‖x0 − x‖ ≤ d ∧ ‖x0 − z0‖ ≤ M.

Assume we have some modulus Θ of uniform monotonicity at the zero x for the operator A + B on the bounded
subset D := {zn : n ∈ N}, i.e.

(♦1) ∀l ∈ N ∀y ∈ D∀(y, u) ∈ gra(A + B)
(
‖x− y‖ ∈ [2−l,M + 5d]→ 〈y − x, u〉 ≥ 2−Θ(l)

)
.

Then (xn) converges to x with the following rate of convergence.

∀l ∈ N∀n ≥ ϕ(d, b, k,Θ,M, l)
(
‖xn − x‖ < 2−l

)
,

where

ϕ(d, b, k,Θ,M, l) :=

⌈
d2b2k2

3(ε(d, k,Θ,M, l))2

⌉
,

ε(d, k,Θ,M, l) := min

{
2−(l+1),

2−Θ(l+1)

2k · (M + 5d)

}
.

Proof. Let l ∈ N be arbitrary. Because d, b, k,M, l and Θ are fixed throughout the proof, we will write ϕ for
ϕ(d, b, k,Θ,M, l) and ε for ε(d, k,Θ,M, l) from now on. Utilizing the bounds for γ and β, we obtain the following
estimate:

γ2

β2
≤

(β − 1
k )2

β2
=
β2 − 2β

k + 1
k2

β2
= 1− 2

βk
+

1

k2β2

and so

(2.3.1) 1− γ2

β2
≥ 1−

(
1− 2

kβ
+

1

k2β2

)
=

2

kβ
− 1

k2β2
=

2kβ − 1

k2β2
≥

4k · 1
k − 1

k2b2
=

3

k2b2
> 0.

The following inequality is shown in (26.71) in [1]:

(2.3.2) ∀n ∈ N
(
‖xn+1 − x‖2 ≤ ‖xn − x‖2 − (1− γ2

β2
)‖xn − zn‖2

)
.

Since
(
1− γ2

β2

)
> 0 holds by (2.3.1), one of the consequences of this statement is the monotonicity of (‖xn−x‖)n∈N:

(2.3.3) ∀n ∈ N∀m ≤ n (‖xn − x‖ ≤ ‖xm − x‖ ≤ ‖x0 − x‖).

We now show that D is bounded and compute a bound N such that ‖x − y‖ ≤ N holds for all y ∈ D. Since
zn = JγA yn ∈ dom(A) holds for all n ∈ N and x ∈ dom(A) is true, D is a subset of dom(A). We use that A, and
therefore also γA, is maximal monotone. Thus, by Proposition 1.11, JγA : H → H is nonexpansive. Since B is
Lipschitz-continuous on {xn}n∈N ⊆ C, we get for all n ∈ N

‖zn − x‖ = ‖JγAyn − x‖ = ‖ JγA yn − JγA y0 + JγA y0 − x0 + x0 − x‖
≤ ‖ JγA yn − JγA y0‖+ ‖ JγA y0 − x0‖︸ ︷︷ ︸

=‖z0−x0‖

+ ‖x0 − x‖

(2.3.5) ≤ ‖yn − y0‖+ M + d = ‖xn − γBxn − x0 + γBx0‖+ M + d

≤ ‖xn − x0‖+ γ‖Bxn − Bx0‖+ M + d ≤ (1 +
γ

β
)‖xn − x0‖+ M + d

≤ 2‖xn − x+ x− x0‖+ M + d ≤ 2‖xn − x‖+ M + 3d

(2.3.3)

≤ 2‖x0 − x‖+ M + 3d ≤ M + 5d.
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So we have shown that M + 5d was suitably chosen in the property (♦1) of the modulus Θ.
Another consequence of (2.3.2) is the following statement:

(2.3.4) ∀n ∈ N ∀m ≤ n

(
n∑

i=m

‖xi − zi‖2 ≤
‖x0 − x‖2

1− γ2

β2

)
.

We now can finally confirm ϕ as the rate of convergence. First, we want to prove that there is some n̄ ≤ ϕ such
that ‖xn̄ − zn̄‖ < ε holds. Assume on the contrary that ‖xi − zi‖ ≥ ε holds for all i ≤ ϕ. Then

ϕ∑
i=0

‖xi − zi‖2 ≥ (ϕ+ 1)ε2 > ϕε2 =

⌈
d2b2k2

3ε2

⌉
· ε2 ≥ d2k2b2

3
≥ ‖x0 − x‖2

3
k2b2

(2.3.1)

≥ ‖x0 − x‖2

1− γ2

β2

which contradicts (2.3.4). Hence, we can fix some n̄ ≤ ϕ such that ‖xn̄ − zn̄‖ < ε holds. We define un :=
γ−1(xn−zn)+(Bzn−Bxn) and utilize the Lipschitz-continuity of B to find a bound for ‖un‖. By the definition
of (xn)n∈N and (zn)n∈N we have {xn}n∈N ⊆ C and {zn}n∈N ⊆ ran JγA = dom(A). Therefore, B is 1

β -Lipschitz
continuous on {xn}n∈N ∪ {zn}n∈N and we deduce:

(2.3.6) ∀n ∈ N
(
‖un‖ = ‖γ−1(xn − zn) + (Bzn − Bxn)‖ ≤

( 1

γ
+

1

β

)
‖xn − zn‖

)
.

By assumption, we have that 0 ∈ (A + B)(x). Moreover, γ−1(xn − zn) − Bxn = γ−1(xn − γBxn − zn) =
γ−1(yn−zn) holds for all n ∈ N by definition as well. We can apply Proposition 1.9(ii) and obtain γ−1(yn−zn) =
γ−1(yn − JγA yn) ∈ Azn for all n ∈ N. Hence, we have un = γ−1(xn − zn) − Bxn + Bzn ∈ (A + B)zn for all
n ∈ N. Now we can use (2.3.6) and the modulus Θ to estimate ‖zn̄ − x‖. Using the assumptions on ε, γ and β,
we first obtain:

‖un̄‖
(2.3.6)

≤
( 1

γ
+

1

β

)
‖xn̄ − zn̄‖ <

( 1

γ
+

1

β

)
ε ≤ 2γ−1 · 2−Θ(l+1)

2k · (M + 5d)
≤ 2k · 2−Θ(l+1)

2k · (M + 5d)
=

2−Θ(l+1)

M + 5d

and, therefore,
(M + 5d) · ‖un̄‖ < 2−Θ(l+1).

Applying the Cauchy-Schwartz inequality, we get

〈zn̄ − x, un̄〉 ≤‖zn̄ − x‖‖un̄‖
(2.3.5)

≤ (M + 5d) · ‖un̄‖ < 2−Θ(l+1).

This implies

‖zn̄ − x‖ < 2−(l+1)

by (♦1) since ‖zn̄ − x‖ > M + 5d is not possible by (2.3.5). Putting everything together, we get

‖xn̄ − x‖ ≤ ‖xn̄ − zn̄‖+ ‖zn̄ − x‖ < ε+ 2−(l+1) ≤ 2−(l+1) + 2−(l+1) = 2−l.

For n ≥ ϕ it follows now easily that ‖xn − x‖ ≤ ‖xn̄ − x‖ < 2−l holds by (2.3.3) since we have n ≥ ϕ ≥ n̄.

Corollary to the proof: If we take as an additional input L > 1 with 1
L ≤ 1 − γ2

β2 we can rewrite ϕ as

ϕ =

⌈
d2L

(ε(d,k,Θ,M,l))2

⌉
which is numerically better than our previous rate if β is large compared to γ.

We can now use this result to also obtain a rate of convergence for (xn − zn)n∈N. Note that this rate heavily
depends on the modulus Θ of uniform monotonicity and, therefore, does not hold for the general case of Theorem
2.1(i).

Corollary 2.4. Under the assumptions of Theorem 2.3 the following holds

∀l ∈ N ∀n ≥ ϕ(d, b, k,Θ,M,m(l, k, b))
(
‖xn − zn‖ < 2−l

)
with ϕ as before and

where

m(l, k, b) :=
⌈
l + log2(kb)− log2(

√
3)
⌉
.
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Proof. Let n ≥ ψ(d, b, k,Θ,M,m(l, k, b)) be arbitrary. By Theorem 2.3 and definition of ψ we know that
‖xn − x‖ < 2−m(l,k,b) holds. We can apply (2.3.2) to obtain

‖xn− zn‖
(2.3.2)

≤ ‖xn − x‖
(1− γ2

β2 )
1
2

(2.3.1)

≤ ‖xn − x‖(
3

k2b2

) 1
2

< 2−dl+log2(kb)−log2(
√

3)e · kb√
3
≤ 2−l · 2− log2(kb) · 2log2(

√
3) · kb√

3
= 2−l.

Corollary to the proof: Again, if we use an additional input L > 1 with 1
L ≤ 1− γ2

β2 we can replace m(l, k, b))

by m(l, L) := dl +
√
Le.

Remark 2.5. (i) In Theorem 2.3 we can assume the inequality

(2.3.2) ∀n ∈ N
(
‖xn+1 − x‖2 ≤ ‖xn − x‖2 − (1− γ2

β2
)‖xn − zn‖2

)
.

instead of assuming that B is monotone. This is based on the fact that, once we require A + B to be
uniformly monotone with modulus Θ, the monotonicity of B is only used to show this inequality.

(ii) We have now found a rate of convergence for (xn)n∈N in Theorem 2.3. In Theorem 2.1(ii) there is also
mention of the convergence of the sequence (zn)n∈N toward the same point x. We can now easily obtain
a rate of convergence for this by putting together Theorem 2.3 and Corollary 2.4. Let ϕ(d, b, k,Θ,M, l) be
defined as in Theorem 2.3 and ψ(d, b, k,Θ,M, l) be defined as in Corollary 2.4. Then by an easy triangle
inequality we obtain

∀l ∈ N ∀n ≥ ϕ̃(d, b, k,Θ,M, l)
(
‖zn − x‖ < 2−l

)
for ϕ̃(d, b, k,Θ,M, l) := max{ϕ(d, b, k,Θ,M, l + 1), ψ(d, b, k,Θ,M, l + 1)}.

We now want to take another look at the convergence of (xn−zn)n∈N. As mentioned, the rate of convergence in
Corollary 2.4 for this sequence heavily depends on the modulus Θ of uniform monotonicity, which we assumed
for A + B. By Theorem 2.1(i), however, the convergence is shown without this additional assumption using the
inequality (2.3.2). More precisely, the derived statement (2.3.4) shows that for arbitrary ε > 0 there can only
be finitely many i ∈ N such that ‖xi−zi‖ ≥ ε holds. However, it does not indicate for which i ∈ N this happens
for the last time. If (‖xn − x‖)n∈N converges towards 0, we can proceed as in Corollary 2.4 to obtain a rate of
convergence for (xn− zn)n∈N. However, without the uniform monotonicity of A + B we can in general not show
the convergence of (xn)n∈N. Since (xn − zn)n∈N itself is in general not monotone, we can only extract a rate of
metastability for this sequence instead of a rate of convergence in that case. The concept of ‘metastability’ for
the convergence of ‖xn − zn‖ → 0 refers to the (nonconstructively equivalent) reformulation as

∀l ∈ N ∀g : N→ N ∃n ∈ N ∀i ∈ [n, n+ g(n)]
(
‖xi − zi‖ < 2−l

)
,

where [n, n+ g(n)] := {i ∈ N : n ≤ i ≤ n+ g(n)}.
By a rate of metastability we mean a bound on ‘∃n’. Since the metastable form of convergence implies the
convergence only noneffectively, it in general is not possible to effectively convert a rate of metastability into a
rate of convergence. For the history of the concept of metastability, which goes back to G. Kreisel in 1951, was
used in proof mining since 2004 and was rediscovered by T. Tao in 2007 under the name ‘metastability’, see [9].
The following theorem proves a rate of metastability for (xn − zn)n∈N.

Theorem 2.6. Let C ⊆ H nonempty, closed and convex and let β ∈ (0,∞). Assume that A : H → 2H is a
maximally monotone operator and B : H → 2H a monotone operator which is single-valued and 1

β -Lipschitz
continuous on C∪dom(A). Let C be such that C∩zer(A + B) 6= ∅. Take x0 ∈ C, γ ∈ (0, β) and x ∈ C∩zer(A + B)
and let k, b, d,M be as before.
Then (xn − zn)n∈N converges strongly to 0 with the following rate of metastability

∀l ∈ N ∀g : N→ N ∃n ≤ g̃
(
d d2k2b2·22l

3 e
)
(0)∀i ∈ [n, n+ g(n)]

(
‖xi − zi‖ < 2−l

)
,

where g̃(n) := n+ g(n) + 1.
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Proof. By (2.3.3) and the assumption that ‖x0 − x‖ ≤ d holds, (‖xn − x‖2)n∈N is a nondecreasing sequence in
[0, d2]. We can therefore use Proposition 2.27 and Remark 2.29.1) in [6] to obtain the following statement:

(†) ∀δ > 0 ∀g : N→N ∃n ≤ φ(g, δ, d)∀i ∈ [n, n+ g(n)]
(
|‖xi − x‖2 − ‖xi+1 − x‖| < δ

)
with φ(g, δ, d) := g̃(dd2·δ−1e)(0) and g̃(n) := n+ g(n) + 1.

Moreover, we can use (2.3.1) and (2.3.2) to estimate

‖xn − zn‖2 ≤
k2b2

3

(∣∣‖xn − x‖2 − ‖xn+1 − x‖2
∣∣)

for all n ∈ N. The rate of metastability in (†) can now be converted into one for (‖xn − zn‖)n∈N by setting

δ := 3·2−2l

k2b2 . More precisely, we get for all l ∈ N that there is an m ≤ g̃
(
d d2k2b2·22l

3 e
)
(0) such that

‖xi − zi‖2 ≤
k2b2

3
|‖xi − x‖2 − ‖xi+1 − x‖2| <

k2b2

3
δ = 2−2l

holds for all i ∈ [m,m+ g(m)].

2.2 Discussion of the Results (for logicians)
As mentioned in the introduction, general logical metatheorems can be used to guarantee in advance the
possibility of extracting uniform effective bounds from proofs, in particular, in the context of nonlinear analysis
and to explain their dependence on rather few data. We briefly indicate this for Theorem 2.3 (the other results
can be treated similarly). Metatheorems for nonexpansive and Lipschitzian operators in Hilbert space and
abstract convex subsets have been developed in [5, 4] (see also [6]) and have been extended to cover maximally
monotone set-valued operators and their sums in [13, 11] (in the case at hand we do not need the bound ξ used
in [11] to treat A + B as B - essentially - is single valued). For Tseng’s algorithm we also need a constant PC of
type H → H for the metric projection onto C and add the axioms

(i) ∀x, y ∈ H
(
χC(y) = 0→ ‖PC(x)− x‖ ≤ ‖y − x‖

)
,

(ii) ∀x ∈ H
(
χC(PC(x)) = 0

)
.

Such a projector is majorizable as described in the introduction of [8] and it is justified in the intended inter-
pretation if C additionally is assumed to be closed (which we could but do not need to formalize as it is only
used in connection with PC). The operator B is formalized as a single-valued operator on H which is assumed
to be (1/β)-Lipschitzian on C ∪ dom(A). Given the operator in the theorem its interpretation is

B̄ : H → H, B̄(x) =

{
Bx if x ∈ C ∪ dom(A),
0 otherwise.

This operator B̄ is in general not monotone but the monotonicity of B is used only to prove the inequality (2.3.2)
and to make sure that A + B is uniformly monotone if A is uniformly monotone. The modulus Θ of uniform
monotonicity with property (♦1) ensures the uniform monotonicity of A + B directly. Therefore, we actually
do not need to incorporate the monotonicity of B if we assume (2.3.2) to be true. This means that we can
introduce B by a constant B for a single-valued operator instead of introducing the set-valued operator B whose
Lipschitz-property is only specified on C ∪ dom(A) and whose intended interpretation is given by B̄. Lastly, the
sum of A and B can be incorporated with the help of [11] by adding constants and axioms as described in section
2(d). In the following, let χA+B(x, ·) be the constant for the characteristic function of (A + B)(x) for x ∈ H.
Now we can express Theorem 2.3 with the help of the introduced constants in a form where we can apply the
logical metatheorems. These metatheorems require the axioms in the premise of a statement to be universal.
Therefore, we note that the axiom (♦1) in Theorem 2.3 is actually of the right form (provided that we reformulate
it in an inessential way by replacing [2−l,M + 5d] by (2−l,M + 5d + 1)). Thus, we can ensure the uniform
monotonicity of A + B in the following expression by including this axiom in the premise which in the formal
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setting of the aforementioned logical metatheorems reads as follows:

(F)



∀l, b, k ∈ N,Θ ∈ NN ∀γ, β ∈ [0, b]∀x, x0 ∈ H

(
k ≥ 1 ∧ 1

k ≤ γ ≤ β −
1
k ∧ χA+B(x, 0) = 0 ∧ χC(x) = 0 ∧ (♦1)

∧∀z, z′, v, v′ ∈ H

((
χC(z) = 0 ∨ χA(z, v) = 0

)
∧
(
χC(z′) = 0 ∨ χA(z′, v′) = 0

)
→ ‖Bz − Bz′‖ ≤ 1

β ‖z − z
′‖

)

∧∀n ∈ N

(
‖xn+1 − x‖2 ≤ ‖xn − x‖2 −

(
1− γ2

β2

)
‖xn − zn‖2

)
∧ χC(x0) = 0 −→ ∃m ∈ N ‖xm − x‖ < 2−l

)
,

where the constructions of the sequences (xn), (yn), (zn), (rn) are explicitly hardwired into the formal system
using the recursor constants.
Note that the existence of a bound on ∃m ∈ N is enough to show that the sequence converges since (‖xn−x‖)n∈N
is monotone.
The expressions in the premise of (F) are all universal and the conclusion is existential and so the aforementioned
logical metatheorems can be applied for the extraction of an effective uniform bound on ‘∃m ∈ N’ which only
depends on l, b, k,Θ, a norm bound d ≥ ‖x−x0‖, ‖x0‖ and majorizing data for JγA and γB (in fact for B which
then via the upper bound b on γ also yields a majorant for γB). As shown in [13] and [5], resp., such majorants
can be obtained from upper bounds on the displacements ‖ JγA(s)− s‖ and ‖γB(t)− t‖ of JγA and γB in some
points s, t (and hence - by the Lipschitz properties of these mappings - in all points). As our Theorem 2.3 shows
we, in the special case at hand, only need this in the weak form of the bound M ≥ ‖x0 − z0‖ which is definable
in such data and d via

‖x0 − z0‖ = ‖ JγA(x0 − γBx0)− x0‖ ≤ ‖ JγA(x0 − γBx0)− (x0 − γBx0)‖+ ‖γBx0 − x0‖+ ‖x0‖.

Moreover, given M, we only need an upper bound on ‖x− x0‖ but not an additional upper bound on ‖x0‖.
In the previous part we did not only give rates of convergence and metastability for Tseng’s Algorithm but also
had some noteworthy results regarding the premises of the algorithm. More precisely, some of the assumptions
in the theorem can be chosen weaker and we still get the same (strong) convergence statements. We had
already seen that we do not need the operator A + B to be maximally monotone to show the strong convergence
statements of Tseng’s Algorithm (Theorem 26.17 in [1]). Another observation, which we already mentioned
briefly in Remark 2.5(i), regards the monotonicity of the operator B. Instead of the assumption that B is
monotone, we can actually suppose that the inequality

(2.3.2) ∀n ∈ N
(
‖xn+1 − x‖2 ≤ ‖xn − x‖2 −

(
1− γ2

β2

)
‖xn − zn‖2

)
holds. Note that in the proof of Theorem 26.17 in [1] it is shown that this inequality holds in particular if B is
monotone.
Finally, there is one last observation we can make. For the strong convergence of the sequence (xn)n∈N toward
the unique point in C∩zer(A + B) Theorem 2.1 assumed additionally that either A or B are uniformly monotone
on every bounded subset of dom(A). We have seen that we can instead require the sum A + B of these operators
to be uniformly monotone with modulus Θ with property (♦1) on the specific subset {zn}n∈N of dom(A) which
by Remark 2.2 is a consequence of the original assumption.

3 Forward-Backward Splitting Algorithm
Next we are going to consider an algorithm which works in a very similar setting as Tseng’s Splitting Algorithm.
We impose a cocoercivity condition on one of the operators which allows us to have less computations in each
iteration. The resulting algorithm is known as a forward-backward algorithm that alternates an explicit step
using the cocoercive operator with an implicit resolvent step involving the second operator.

Theorem 3.1 (Forward-Backward Algorithm, 26.14 in [1]). Let β ∈ (0,∞) and γ ∈ (0, 2β) and set δ = 2− γ
2β .

Assume that A : H → 2H is a maximally monotone operator and B : H → H is a β-cocoercive operator and
suppose zer(A + B) 6= ∅. Furthermore, let (λn)n∈N ⊆ [0, δ] be a sequence such that

∑
n∈N λn(δ − λn) = ∞ and

let x0 ∈ H. For n ∈ N we set

yn = xn − γBxn,
xn+1 = xn + λn(JγA yn − xn).
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Then the following hold:

(i) Let x ∈ zer(A + B). Then (Bxn)n∈N converges strongly to the unique dual solution Bx.

(ii) Suppose that one of the following holds:

a) A is uniformly monotone on every nonempty bounded subset of dom(A).
b) B is uniformly monotone on every nonempty bounded subset of H.

Then (xn)n∈N converges strongly to the unique point in zer(A + B).

As for Tseng’s Algorithm, we omit a statement which is proven in Theorem 26.14 in [1] regarding the weak
convergence of (xn)n∈N towards a point in zer(A + B). This weak convergence is used in the proof of Theorem
3.1(ii) afterwards to show the boundedness of specific subsets. We will show this again in another way to be
able to quantify it and to avoid using this weak convergence.

3.1 Extracting Rates of Convergence
First, we want to find a rate of convergence for (Bxn −Bx)n∈N. Looking at the proof for Theorem 3.1(i) in [1],
we observe that the convergence of this sequence is shown with the help of another sequence which involves an
operator T defined by T := JγA ◦(Id− γB). We construct a rate of convergence for (Txn − xn)n∈N and convert
it into one for (Bxn − Bx)n∈N afterwards. The following theorem gives such a rate for (Txn − xn)n∈N.

Theorem 3.2. Let β ∈ (0,∞), γ ∈ (0, 2β) and set δ = 2 − γ
2β . Assume that A : H → 2H is a maximally

monotone operator and B : H → H is a β-cocoercive operator and suppose zer(A + B) 6= ∅. Furthermore,
let (λn)n∈N ⊆ [0, δ] be a sequence such that

∑
n∈N λn(δ − λn) = ∞. Define T := JγA ◦(Id − γB) and take

x0 ∈ H and x ∈ zer(A + B). Let the sequences (xn)n∈N and (yn)n∈N be defined as in Theorem 3.1. Assume that
b, k, d ∈ N, k ≥ 1 are such that

β ≤ b ∧ 1

k
≤ γ ≤ 2β − 1

k
∧ ‖x0 − x‖ ≤ d.

Furthermore, let m : N→ N be a rate of divergence for
∑
n∈N λn(δ − λn) =∞, i.e.

∀L ∈ N

(
m(L)∑
n=0

λn(δ − λn) ≥ L

)
.

Then the following holds

∀ε > 0 ∀n ≥ ϕ(ε, d, b, k,m)
(
‖Txn − xn‖ < ε

)
,

where

ϕ(ε, d, b, k,m) := m̃

(
d2 + 1

(1 + 1
2kb )2 · ε2

)
, m̃(s) := m

(⌈(
2− 1

2kb

)2

· s
⌉)

.

Proof. With the bounds for γ and β we get the following estimates for δ:

(3.2.1) δ = 2− γ

2β
≤ 2−

1
k

2b
= 2− 1

2bk
< 2,

(3.2.2) δ = 2− γ

2β
≥ 2−

2β − 1
k

2β
= 2− 1 +

1

2βk
≥ 1 +

1

2bk
> 1.

We define the operator R := (1− δ)Id + δT on H and the sequence (µn)n∈N := ( 1
δλn)n∈N ⊂ [0, 1]. As in [1], one

shows that Theorem 1.15 can be applied Theorem to R and (µn)n∈N using that xn + µn(Rxn − xn) = xn+1.
Since we have x ∈ zer(A + B) by assumption and zer(A + B) = Fix(R) (which follows from Prop. 26.1(iv)(a) in
[1]), we can use (1.15.2) to obtain

(3.2.3) ∀m ∈ N
( m∑
n=0

µn(1− µn)‖Rxn − xn‖2 ≤ ‖x0 − x‖2
)
.
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Moreover, by (1.15.3) we know that (‖Rxn − xn‖)n∈N is monotone:

(3.2.4) ∀n ∈ N
(
‖Rxn+1 − xn+1‖ ≤ ‖Rxn − xn‖

)
.

We also note that we have by definition:

(3.2.5) ∀n ∈ N
(
Rxn − xn = (1− δ)xn + δTxn − xn = δ(Txn − xn)

)
.

Now we have everything in place to confirm ϕ(ε, d, b, k,m) as the rate of convergence for (Txn − xn)n∈N. Let
ε > 0 be arbitrary. To prove our statement let us assume that for all n ≤ ϕ(ε, d, b, k,m) we have ‖Txn−xn‖ ≥ ε.
Because d, k, b,m and ε are fixed throughout the proof, we will write ϕ for ϕ(ε, d, b, k,m) from now on. We first
show the following:

(3.2.6) ∀s ≥ 0

(
m̃(s)∑
n=0

µn(1− µn) ≥ s

)
.

Using (3.2.1), we get

m̃(s)∑
n=0

µn(1− µn) =

m̃(s)∑
n=0

1

δ
λn(1− 1

δ
λn) =

1

δ2

m̃(s)∑
n=0

λn(δ − λn)

≥ 1(
2− 1

2bk

)2 m̃(s)∑
n=0

λn(δ − λn)
Def. m̃
≥

⌈(
2− 1

2bk

)2

· s
⌉

(
2− 1

2bk

)2 ≥ s.

This proves (3.2.6). By assumption, we have ‖Rxn−xn‖
(3.2.5)

= δ‖Txn−xn‖
(3.2.2)

≥ (1+ 1
2bk )‖Txn−xn‖ ≥ (1+ 1

2bk )·ε
for all n ≤ ϕ. Using the definition of ϕ, we get the following estimate

ϕ∑
n=0

µn(1− µn)‖Rxn − xn‖2 ≥
(

1 +
1

2bk

)2

· ε2

ϕ∑
n=0

µn(1− µn)

(3.2.6)

≥
(

1 +
1

2bk

)2

· ε2 · (d2 + 1)(
1 + 1

2kb

)2 · ε2
= d2 + 1

> d2 ≥ ‖x0 − x‖2

which contradicts (3.2.3).
Thus, there has to be some n̄ ≤ ϕ such that ‖Txn̄ − xn̄‖ < ε holds. Now let n > n̄ be arbitrary. We apply the
monotonicity of (‖Rxn − xn‖)n∈N to obtain

‖Txn − xn‖
(3.2.5)

=
1

δ
‖Rxn − xn‖

(3.2.4)

≤ 1

δ
‖Rxn̄ − xn̄‖ = ‖Txn̄ − xn̄‖ < ε.

In particular, ‖Txn − xn‖ < ε holds for all n ≥ ϕ.

This rate of convergence can now be converted into a rate of convergence for (Bxn−Bx)n∈N by applying a fact
from [1].

Theorem 3.3. Under the same assumptions as in Theorem 3.2 the following holds

∀ε > 0 ∀n ≥ ψ(ε, d, b, k,m)
(
‖Bxn − Bx‖ < ε

)
,

where

ψ(ε, d, b, k,m) := ϕ
( ε2

3dk2
, d, b, k,m

)
, with ϕ as in Theorem 3.2.
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Proof. Again consider T := JγA ◦(Id− γB). The following inequality is proven as (26.56) in [1]:

(3.3.1) ∀n ∈ N
(
‖Bxn − Bx‖2 ≤ 3

γβ
‖x0 − x‖‖Txn − xn‖

)
.

Let ε > 0 and n ≥ ψ(ε, d, b, k,m) be arbitrary. We have ‖Txn − xn‖ < ε2

3dk2 by Theorem 3.2. Using (3.3.1), we
conclude

‖Bxn − Bx‖2 ≤ 3

γβ
‖x0 − x‖‖Txn − xn‖ ≤

3d
1
k ·

1
k

· ‖Txn − xn‖ < 3dk2 · ε2

3dk2
= ε2.

Theorem 3.4. Under the same assumptions as in Theorem 3.2 and M ≥ ‖x0 − Tx0‖ we obtain the following:

(a) Assume we have some modulus ΘA of uniform monotonicity for the operator A on the bounded subset
D := {JγA yn}n∈N ∪ {x}, i.e., such that

(♦2) ∀l ∈ N∀y ∈ D∀(x, u), (y, v) ∈ gra(A)
(
‖x− y‖ ∈ [2−l,M + d]→ 〈x− y, u− v〉 ≥ 2−ΘA(l)

)
.

Then the following holds

∀l ∈ N∀n ≥ τA(l,ΘA, d, b, k,M,m)
(
‖xn − x‖ < 2−l

)
,

where

τA(l,ΘA, d, b, k,M,m) := max

{
ψ
(2−ΘA(l+1)

2(M + d)
, d, b, k,m

)
, ϕ

( 2−ΘA(l+1)

2k(M + d)
, d, b, k,m

)
, ϕ

(
2−(l+1), d, b, k,m

)}
with ψ,ϕ as in Theorem 3.3.

(b) Assume we have some modulus ΘB of uniform monotonicity for the operator B on the bounded subset
D̃ := {xn}n∈N ∪ {x}, i.e., such that

(♦′2) ∀l ∈ N ∀y ∈ D̃
(
‖x− y‖ ∈ [2−l, d]→ 〈x− y,Bx− By〉 ≥ 2−ΘB(l)

)
.

Then the following holds

∀l ∈ N∀n ≥ τB(l,ΘB, d, b, k,m)
(
‖xn − x‖ < 2−l

)
,

where

τB(l,ΘB, d, b, k,m) := ψ
(2−ΘB(l)

d
, d, b, k,m

)
with ψ as in Theorem 3.3.

Proof. We observe that, as in the proof of Theorem 3.2, we can argue that Theorem 1.15 is applicable to
R := (1− δ)Id + δT and (µn)n∈N := ( 1

δλn)n∈N. This gives us the Fejér-monotonicity of (xn)n∈N with respect to
Fix(R) = zer(A + B). By x ∈ zer(A + B), we, in particular, have

(3.4.1) ∀n ∈ N
(
‖xn+1 − x‖ ≤ ‖xn − x‖

)
.

Furthermore, by (3.2.4) and (3.2.5) we get the monotonicity of the sequence (‖Txn − xn‖)n∈N:

(3.4.2) ∀n ∈ N
(
‖Txn+1 − xn+1‖ ≤ ‖Txn − xn‖

)
.

(a): We define zn := JγA yn and note that zn = JγA(xn − γBxn) = Txn holds for all n ∈ N. We want to show
that D is bounded first. For arbitrary n ∈ N we obtain

(3.4.3) ‖zn − x‖ = ‖Txn − xn + xn − x‖ ≤ ‖Txn − xn‖+ ‖xn − x‖
≤ ‖Tx0 − x0‖+ ‖x0 − x‖ ≤ M + d.
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This shows, in particular, the boundedness of D and that we chose M + d appropriately in the property (♦2) of
the modulus ΘA.
We apply the Cauchy-Schwartz inequality to obtain the following:

〈zn − x, γ−1(xn − zn)− Bxn − (−Bx)〉 ≤ ‖zn − x‖‖γ−1(xn − zn)− Bxn + Bx‖
(3.4.3)

≤ (M + d)
(
γ−1‖xn − Txn‖+ ‖Bxn − Bx‖

)
≤ k(M + d)‖xn − Txn‖+ (M + d)‖Bxn − Bx‖.

From now on let l ∈ N be arbitrary and assume n ≥ τA(l,ΘA, d, b, k,M,m). By Theorem 3.2 and Theorem 3.3
respectively, we know that

‖xn − Txn‖ <
2−ΘA(l+1)

2k(M + d)
and ‖Bxn − Bx‖ < 2−ΘA(l+1)

2(M + d)

hold. Thus, we obtain

(3.4.4) 〈zn − x, γ−1(xn − zn)− Bxn − (−Bx)〉 < k(M + d) · 2−ΘA(l+1)

2k(M + d)
+ (M + d) · 2−ΘA(l+1)

2(M + d)
= 2−ΘA(l+1).

By assumption, it holds that x ∈ zer(A + B) which yields −Bx ∈ A(x). Moreover, we have xn−γBxn−zn = yn−
JγA yn for all n ∈ N. Proposition 1.9(ii) now implies yn−JγA yn ∈ γA(JγA yn) and thus γ−1(xn−zn)−Bxn ∈ Azn
for all n ∈ N. Therefore, we can use the property (♦2) of our modulus ΘA on (3.4.4) and conclude ‖zn − x‖ <
2−(l+1). By Theorem 3.2 and the definition of τA(l,ΘA, d, b, k,M,m) we also have that ‖Txn − xn‖ < 2−(l+1)

holds. Hence, we can conclude for n ≥ τA(l,ΘA, d, b, k,M,m)

‖xn − x‖ ≤ ‖xn − zn‖+ ‖zn − x‖ = ‖Txn − xn‖+ ‖zn − x‖ < 2−(l+1) + 2−(l+1) = 2−l.

(b): By (3.4.1) it holds that

∀n ∈ N (‖xn − x‖ ≤ ‖x0 − x‖ ≤ d) .

Hence D̃ is bounded and d was chosen suitably in the property (♦′2) of the modulus ΘB. By Cauchy-Schwartz,
we get

〈xn − x,Bxn − Bx〉 ≤ ‖xn − x‖‖Bxn − Bx‖ ≤ d‖Bxn − Bx‖.

From now on let l ∈ N be arbitrary and n ≥ τB(l,ΘB, d, b, k,m). By Theorem 3.3, we know that ‖Bxn −Bx‖ <
2−ΘB(l)

d holds. Thus,

〈xn − x,Bxn − Bx〉 < d · 2−ΘB(l)

d
= 2−ΘB(l).

Finally, we apply the property (♦′2) of the modulus ΘB to conclude ‖xn − x‖ < 2−l.

Remark 3.5. Note that, if the operator B is uniformly monotone, the rate of convergence τB does not depend
on M. This means we do not actually need an estimate for ‖Tx0 − x0‖ in that case.

3.2 Discussion of the Results (for logicians)
We now analyze our results for the Forward-Backward Algorithm like we did for the results for Tseng’s Algorithm.
We are going to discuss Theorem 3.4 exemplary. The other results can be treated analogously again. The
treatment of A,B and A + B is similar to the case of Tseng’s algorithm. The uniform monotonicity of the
operator A or B respectively will again be ensured by a universal premise. This universal premise is (♦2) if A
is uniformly monotone or (♦′2) if B is uniformly monotone (again, we have to reformulate these premises - in
an obviously inessential way - by replacing e.g. ‖x− y‖ ∈ [2−l,M + d] by ‖x− y‖ ∈ (2−l,M + d+ 1) in order to
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make them purely universal). We express Theorem 3.4(a) similar to the expression of Tseng’s Algorithm in the
following way:

∀l, b, k ∈ N ∀m,Θ ∈ NN ∀β ∈ [0, b]∀γ ∈ [0, 2b]∀x, x0 ∈ H ∀δ ∈ [0, 2] ∀(λn)n∈N ∈ [0, 2]N(
k ≥ 1 ∧ 1

k ≤ γ ≤ 2β − 1
k ∧ δ =R 2− γ

2β ∧ χA+B(x, 0) = 0 ∧ (♦2) ∧ ∀n ∈ N
(
0 ≤R λn ≤R δ

)
∧

∀L ∈ N

(
m(L)∑
n=0

λn(δ − λn) ≥ L

)
∧ ∀x, y ∈ H

(
〈x− y,Bx− By〉 ≥ β‖Bx− By‖2

)
→ ∃m ∈ N ‖xm − x‖ < 2−l

)
,

where, again, the definition of (xn) is explicitly hardwired via the recursor constant in our system.
By the aforementioned logical metatheorems, we can extract an effective uniform bound on ‘∃m’ which only
depends on l, b, k,m,ΘA, some d ≥ ‖x− x0‖, ‖x0‖ and majorizing data for JγA and B.1 Analogously, we could
express Theorem 3.4(b) by exchanging (♦2) with (♦′2). As in the case of Tseng’s Algorithm, the existence of
a bound on some m ∈ N, such that ‖xm − x‖ < 2−l holds, is enough to show the convergence of the sequence
(xn)n∈N since we have the monotonicity shown in (3.4.1). Also, similarly to the case of Tseng’s Algorithm, the
majorizing data for JγA and B turned out - in the special situation at hand - to be only needed in the weak
form of an upper bound M ≥ ‖x0 − Tx0‖ and it has been sufficient to assume that d ≥ ‖x− x0‖.

4 Douglas-Rachford Splitting Algorithm
The following algorithm works in a setting that is a bit different to the ones for Tseng’s Algorithm and the
Forward-Backward Algorithm. We now demand both operators to be maximally monotone and use their
resolvents in the iterations. However, we do not impose any further constraints like Lipschitz-continuity or
cocoercivity on the operators which both may be set-valued.

Theorem 4.1 (Douglas-Rachford Algorithm, 26.11 in [1]). Assume that A : H → 2H and B : H → 2H

are maximally monotone operators such that zer(A + B) 6= ∅. Let (λn)n∈N ⊆ [0, 2] be a sequence such that∑
n∈N λn(2− λn) =∞. Moreover, let γ ∈ (0,∞) and y0 ∈ H. For n ∈ N we set

xn = JγB yn,

zn = JγA(2xn − yn),

yn+1 = yn + λn(zn − xn).

Then the following hold:

(i) (xn − zn)n∈N converges strongly to 0.

(ii) Suppose that one of the following holds:

a) A is uniformly monotone on every nonempty bounded subset of dom(A).

b) B is uniformly monotone on every nonempty bounded subset of dom(B).

Then (xn)n∈N and (zn)n∈N converge strongly to the unique point in zer(A + B).

There are some weak convergences which are additionally shown in Theorem 26.11 in [1]. They are used in the
proof of Theorem 4.1(ii) to establish the boundedness of certain sets. As in the sections before, we will quantify
these boundedness statements without using these weak convergences.

4.1 Extracting Rates of Convergence
In a first step, we are going to find a rate of convergence for (xn − zn)n∈N. Let x ∈ zer(A + B). By Proposition
26.1(iii)(b) in [1] we have that zer(A + B) = JγB(Fix(RγA RγB)) and so there is some y ∈ Fix(RγA RγB) such that
x = JγB y holds.

1The bound ξ required in [11] in the treatment of A+ B is again not needed since B is single-valued.

15



Theorem 4.2. Assume that A : H → 2H and B : H → 2H are maximally monotone operators such that
zer(A + B) 6= ∅. Let (λn)n∈N ⊆ [0, 2] be a sequence such that

∑
n∈N λn(2 − λn) = ∞. Moreover, let γ ∈ (0,∞)

and take y0 ∈ H and x ∈ zer(A + B). Let the sequences (xn)n∈N, (yn)n∈N and (zn)n∈N be defined as in Theorem
4.1. Assume that y ∈ Fix(RγA RγB) is such that x = JγB y and d ∈ N is such that

‖y0 − y‖ ≤ d.

Furthermore, let m : N→ N be such that

∀L ∈ N

(
m(L)∑
n=0

λn(2− λn) ≥ L

)
.

Then the following holds

∀ε > 0 ∀n ≥ ϕ(ε, d,m)
(
‖xn − zn‖ < ε

)
, where ϕ(ε, d,m) := m̃

(
d2 + 1

4ε2

)
, m̃(s) := m

(⌈
4s
⌉)
.

Proof. We define T := JγA RγB +Id− JγB. Note that by definition we then have for all n ∈ N:

(4.2.1) zn − xn = JγA(2xn − yn)− xn = JγA(2 JγB yn − yn)− JγB yn = Tyn − yn.

From [1][Prop.4.31] we now that R := RγA RγB = 2T − Id and R is nonexpansive. As in [1], one shows that
Theorem 1.15 is applicable to R, (µn) := ( 1

2λn) and (yn) since y0 ∈ H and

yn + µn(Ryn − yn) = yn +
1

2
λn((2Tyn − yn − yn) = yn + λn(Tyn − yn)

(4.2.1)
= yn + λn(zn − xn) = yn+1

holds for all n ∈ N . Because of y ∈ Fix(RγA RγB) = Fix(R), we can use (1.15.2) to obtain:

(4.2.2) ∀m ∈ N
( m∑
n=0

µn(1− µn)‖Ryn − yn‖2 ≤ ‖y0 − y‖2
)
.

Furthermore, by (1.15.3) we get the monotonicity of (‖Ryn − yn‖)n∈N:

(4.2.3) ∀n ∈ N
(
‖Ryn+1 − yn+1‖ ≤ ‖Ryn − yn‖

)
.

Because of R = 2T− Id, we have

(4.2.4) ∀n ∈ N
(
Ryn − yn = 2Tyn − yn − yn = 2(Tyn − yn)

)
.

Let ε > 0 be arbitrary. From now on we write ϕ for ϕ(ε, d,m) since the parameters are fixed throughout the
proof. Assume that for all n ≤ ϕ we have ‖Tyn − yn‖ ≥ ε. For arbitrary s ≥ 0, we get

m̃(s)∑
n=0

µn(1− µn) =

m̃(s)∑
n=0

1

2
λn(1− 1

2
λn) =

1

4

m(d4se)∑
n=0

λn(2− λn) ≥ d4se
4
≥ s.

Moreover, for all n ≤ ϕ we have ‖Ryn − yn‖ = 2‖Tyn − yn‖ ≥ 2ε. Combining these things, we get

ϕ∑
n=0

µn(1− µn)‖Ryn − yn‖2 ≥ 4ε2

ϕ∑
n=0

µn(1− µn)
Def. ϕ
≥ 4ε2 · d

2 + 1

4ε2
= d2 + 1 > d2 ≥ ‖y0 − y‖2

which contradicts (4.2.2). Hence, there has to be some n̄ ≤ ϕ such that ‖Tyn̄ − yn̄‖ < ε holds. We obtain for
n > n̄ with the monotonicity of (‖Ryn − yn‖)n∈N

‖Tyn − yn‖
(4.2.4)

=
1

2
‖Ryn − yn‖

(4.2.3)

≤ 1

2
‖Ryn̄ − yn̄‖ = ‖Tyn̄ − yn̄‖ < ε.

Thus, ‖zn − xn‖
(4.2.1)

= ‖Tyn − yn‖ < ε holds for all n ≥ ϕ.
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Now let us consider again the additional assumption that either A or B is uniformly monotone on a suitable
bounded subset of its domain:

Theorem 4.3. Let A,B, (λn), γ, y0, y, x, (xn), (yn), (zn), k, d,m be as in Theorem 4.2 and set T := JγA RγB +Id−
JγB. Let M ∈ N be such that ‖Ty0 − y0‖ ≤ M.

(a) Assume that we have some modulus ΘA of uniform monotonicity for the operator A on the bounded subset
D := {zn}n∈N ∪ {x}, i.e., such that

(♦3) ∀l ∈ N∀y ∈ D ∀(x, u), (y, v) ∈ gra(A)
(
‖x− y‖ ∈ [2−l,M + d]→ 〈x− y, u− v〉 ≥ 2−ΘA(l)

)
.

Then the following holds

∀l ∈ N∀n ≥ ψ(l,ΘA, k, d,M,m)
(
‖zn − x‖ < 2−l

)
,

where

ψ(l,ΘA, k, d,M,m) := ϕ
( 2−ΘA(l)

k(M + d)
, d,m

)
,

ϕ(ε, d,m) := m̃

(
d2 + 1

4ε2

)
, m̃(s) := m

(⌈
4s
⌉)
.

(b) Assume that we have some modulus ΘB of uniform monotonicity for the operator B on the bounded subset
D̃ := {xn}n∈N ∪ {x}, i.e., such that

(♦′3) ∀l ∈ N ∀y ∈ D̃ ∀(x, u), (y, v) ∈ gra(B)
(
‖x− y‖ ∈ [2−l, d]→ 〈x− y, u− v〉 ≥ 2−ΘB(l)

)
.

Then the following holds

∀l ∈ N ∀n ≥ ψ(l,ΘB, k, d,M,m)
(
‖xn − x‖ < 2−l

)
,

where ψ is as in (a).

Proof. As in the proof of Theorem 4.2, we can argue that Theorem 1.15 is applicable to R := RγA RγB =
2T − Id and (µn)n∈N := ( 1

2λn)n∈N. This gives us the Fejér-monotonicity of (yn)n∈N with respect to Fix(R) =
Fix(RγA RγB). Hence, for arbitrary y ∈ Fix(RγA RγB) we have

(4.3.1) ∀n ∈ N
(
‖yn+1 − y‖ ≤ ‖yn − y‖

)
.

Moreover, by (4.2.3) and (4.2.4) we get the monotonicity of (‖Tyn − yn‖)n∈N:

(4.3.2) ∀n ∈ N
(
‖Tyn+1 − yn+1‖ ≤ ‖Tyn − yn‖

)
.

By the proof of (26.10) in [1], we conclude that (x, γ−1(x − y)) ∈ gra(A) and (x, γ−1(y − x)) ∈ gra(B). We
define u := γ−1(y − JγB y) and, hence, get (x, u) ∈ gra(B) and (x,−u) ∈ gra(A). Furthermore, we define
wn := γ−1(2xn−yn−zn) and un := γ−1(yn−xn) for all n ∈ N. By definition, we know that zn = JγA(2xn−yn)
and xn = JγB yn hold for all n ∈ N. We can apply Proposition 1.9(ii) to obtain (zn, wn) = (zn, γ

−1(2xn − yn −
zn)) ∈ gra(A) and (xn, un) = (xn, γ

−1(yn − xn)) ∈ gra(B) for all n ∈ N.
(a): We first want to show that D is actually a bounded subset. For this we consider the following estimate for
all n ∈ N:

‖zn − x‖ ≤ ‖zn − xn‖+ ‖xn − x‖
(4.2.1)

= ‖Tyn − yn‖+ ‖ JγB yn − JγB y‖
≤ ‖Ty0 − y0‖+ ‖yn − y‖ ≤ M + ‖y0 − y‖ ≤ M + d.
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Therefore, D is bounded. It also shows that M + d is suitably chosen in the property (♦3) of the modulus ΘA.
Since y ∈ Fix(RγA RγB) holds, we can estimate:

‖wn + γ−1(y − xn)‖ = γ−1‖2xn − yn − zn + y − xn‖ = γ−1‖xn − zn + y − yn‖

(4.3.4)
(4.2.1)

≤ γ−1
(
‖Tyn − yn‖+ ‖yn − y‖

) (4.3.1),(4.3.2)

≤ γ−1
(
‖Ty0 − y0‖+ ‖y0 − y‖

)
(4.3.1)

≤ k(M + d).

Moreover, we have the following equality for all n ∈ N which is shown in (26.43) in [1].

(4.3.5) 〈zn − x,wn + u〉+ 〈xn − x, un − u〉 = 〈zn − xn, wn + γ−1(y − xn)〉.

Using the monotonicity of B and the Cauchy-Schwartz inequality, we obtain the following

〈zn − x,wn − (−u)〉 ≤ 〈zn − x,wn + u〉+ 〈xn − x, un − u〉
(4.3.5)

= 〈zn − xn, wn + γ−1(y − xn)〉

≤ ‖zn − xn‖‖wn + γ−1(y − xn)‖
(4.3.4)

≤ k(M + d)‖zn − xn‖.

From now on let l ∈ N be arbitrary and n ≥ ψ(l,ΘA, k, d,M,m). By Theorem 4.2 and the definition of ψ, we
know that ‖zn − xn‖ < 2−ΘA(l)

k(M+d) holds and therefore also

〈zn − x,wn + u〉 < k(M + d) · 2−ΘA(l)

k(M + d)
= 2−ΘA(l).

Since ‖zn − x‖ ≤ M + d holds, we can use (♦3) to obtain ‖zn − x‖ < 2−l.
(b): The proof works rather similar to (a). The boundedness of D̃ follows from the following estimate:

‖xn − x‖ = ‖ JγB yn − JγB y‖ ≤ ‖yn − y‖
(4.3.1)

≤ ‖y0 − y‖ ≤ d.

Again this also shows that d is chosen suitably in the property (♦′3) for the modulus ΘB. Moreover, we can
estimate

(4.3.6) ‖un + γ−1(zn − y)‖ = γ−1‖yn − xn + zn − y‖ = γ−1‖zn − xn + yn − y‖
(4.3.4)

≤ k(M + d).

Similar to (4.3.5), we have the following equality for all n ∈ N (cf. (26.44) in [1]):

(4.3.7) 〈xn − x, un − u〉+ 〈zn − x,wn + u〉 = 〈xn − zn, un + γ−1(zn − y)〉.

Now, using the monotonicity of A and the Cauchy-Schwartz inequality, we obtain

〈xn − x, un − u〉 ≤ 〈xn − x, un − u〉+ 〈zn − x,wn + u〉 (4.3.7)
= 〈xn − zn, un + γ−1(zn − y)〉

≤ ‖zn − xn‖‖un + γ−1(zn − y)‖
(4.3.6)

≤ k(M + d)‖zn − xn‖.

Let l ∈ N be arbitrary and n ≥ ψ(l,ΘB, k, d,M,m). We know that ‖zn − xn‖ < 2−ΘB(l)

k(M+d) holds by Theorem 4.2
and the definition of ψ. Hence,

〈xn − x, un − u〉 < k(M + d)
2−ΘB(l)

k(M + d)
= 2−ΘB(l).

Since ‖xn − x‖ ≤ d holds, we can apply the property (♦′3) to obtain ‖xn − x‖ < 2−l.

Remark 4.4. In the case where A is uniformly monotone on every bounded subset of dom(A), we have now
shown a rate of convergence for (zn)n∈N. In Theorem 4.1(ii), it is mentioned that (xn)n∈N converges to the
same point x ∈ zer(A + B). We can obtain a rate of convergence for that by using the triangle inequality to
obtain ‖xn − x‖ ≤ ‖xn − zn‖+ ‖zn − x‖ and then combining Theorem 4.2 and Theorem 4.3(a).
Similarly, we get a rate of convergence for (zn)n∈N in the case that B is uniformly monotone on every bounded
subset of dom(B) by using the triangle inequality and then combining Theorem 4.2 and Theorem 4.3(b).
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4.2 Discussion of the Results (for logicians)
The treatment of the operators and their resolvents is similar to the previous algorithms. However, this time
we cannot argue via the monotonicity of (‖xm − x‖). In fact, we need to apply metatheorems twice to get,
combined, an explanation for Theorem 4.3. First, we apply (a suitable version) of the logical metatheorems to

∀l ∈ N∀m,ΘA ∈ NN ∀x, y0 ∈ H∀(λn)n∈N ∈ [0, 2]N ∀γ ∈ [0,∞)∀k ∈ N \{0}(
γ ≥R

1
k ∧ ∀n ∈ N

(
0 ≤R λn ≤R 2

)
∧ ∀L ∈ N

(∑m(L)
n=0 λn(2− λn) ≥ L

)
∧ χA+B(x, 0) = 0

→ ∃m ∈ N ‖zm − xm‖ < 2−l

)
,

to extract an effective bound ϕ(l) on ‘∃m’ which, by the monotonicity of (‖zm − xm‖), is a rate of convergence
for ‖zm−xm‖ → 0. Here, again, the definitions of (xn), (yn), (zn) are explicitly hardwired by a recursor constant
into the formal system. We then extract - under the additional assumption of (♦3) (which again is stated with
the open interval (2−l,M + d + 1) to make it purely universal) - from the proof that

‖zm − xm‖ = 0→ ‖zm − x‖ = 0,

which prenexes into
∀l ∈ N ∃j ∈ N (‖zm − xm‖ ≤ 2−j → ‖zm − x‖ < 2−l),

a bound α(l) (and hence a witness) for ∃j depending on l (but not on m as the proof only uses that (zm, wm) ∈
gra(A) and (xm, um) ∈ gra(B) and certain boundedness facts). If now n ≥ α(ϕ(l)), then ‖zn−x‖ < 2−l. This rate
of convergence is a-priorily guaranteed (by the aforementioned metatheorems) to depend only on l,m,ΘA, k,
some upper bound d ≥ ‖x‖, ‖x−y0‖, an upper bound for γ and the bound ξ from the treatment of A + B in [11]
as well as majorizing data for A,B. In the special case at hand, the use of ξ, the majorizing data for A,B and
the upper bound on γ and d is only made implicitly in stipulating that we have bounds d ≥ ‖y0 − y‖ (for some
y as in the quantitative version of the theorem which does not occur in the theorem itself) and M ≥ ‖Ty0− y0‖
which can be computed in these data using - in the case of d ≥ ‖y0 − y‖ - the bound ξ on (x, x− y) ∈ gra(γA)
and (x, y − x) ∈ gra(B) and (x, 0) ∈ gra(γA + B) (together with [1][(26.10)]) and - for M - the estimate

‖Ty0 − y0‖ = ‖ JγA(RγB y0) + y0 − JγB y0 − y0‖ ≤ ‖ JγA(RγB y0)− y0‖+ ‖ JγB y0 − y0‖
≤ ‖ JγA(RγB y0)− RγB y0‖+ ‖RγB y0 − y0‖+ ‖ JγB y0 − y0‖
= ‖ JγA(RγB y0)− RγB y0‖+ 3‖ JγB y0 − y0‖.

Theorem 4.3(b) is treated similarly.

5 Peaceman-Rachford Splitting Algorithm
The last algorithm we are going to treat is the so-called Peaceman-Rachford Algorithm. It is regarded as a kind
of limiting case of the Douglas-Rachford Algorithm where λn = 2 holds for all n ∈ N.

Theorem 5.1 (Peaceman-Rachford Algorithm, 26.13 in [1]). Assume that A : H → 2H and B : H → 2H are
maximally monotone operators such that B is uniformly monotone and zer(A + B) 6= ∅. Let γ ∈ (0,∞), y0 ∈ H,
and x ∈ zer(A + B) be the unique zero of zer(A + B). For n ∈ N we set

xn = JγB yn,

zn = JγA(2xn − yn),

yn+1 = yn + 2(zn − xn).

Then (xn)n∈N converges strongly to x.

Note that yn+1 = RγA RγB yn.
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5.1 Extracting a Rate of Metastability
The convergence of (xn)n∈N is proven in as (26.52) in [1] with the following inequality:

∀n ∈ N
(
‖yn+1 − y‖2 ≤ ‖yn − y‖2 − 4γφ(‖xn − x‖)

)
for y ∈ FixRγA RγB. We use (a suitable reformulation of) this inequality to prove a statement which shows
that ‖xn − x‖ ≥ ε can only be true finitely many times for arbitrary ε > 0. This does, however, not give any
information on when this will happen for the last time. The inequality above does not show whether or not the
sequence (‖xn − x‖)n∈N itself is monotone. Hence, instead of a rate of convergence we can only extract a rate
of metastability for the Peaceman-Rachford Algorithm from the proof given in [1]. We will do this in the next
theorem.
Again, we need some y ∈ Fix(RγA RγB) in the following theorem. As for Theorem 4.2, we can argue that this
exists since zer(A + B) is nonempty by assumption and zer(A + B) = JγB(Fix(RγA RγB)) holds by Proposition
26.1(iii)(b) in [1]. For an x ∈ zer(A + B) we, therefore, have some y ∈ Fix(RγA RγB) such that x = JγB y holds.

Theorem 5.2. Assume that A : H → 2H and B : H → 2H are maximally monotone operators. Let γ ∈ (0,∞),
y0 ∈ H and x ∈ zer(A + B). Let the sequence (xn)n∈N be defined as in Theorem 5.1. Assume y ∈ Fix(RγA RγB)
is such that x = JγB y and k, d ∈ N, k ≥ 1 are such that

γ ≥ 1

k
∧ ‖y0 − y‖ ≤ d.

Furthermore, let Θ be a modulus of uniform monotonicity for the operator B, i.e., such that

(♦4) ∀l ∈ N ∀(s, u), (t, v) ∈ gra(B)
(
‖s− t‖ ∈ [2−l, d]→ 〈s− t, u− v〉 ≥ 2−Θ(l)

)
.

Then we get a rate of metastability for the sequence (xn)n∈N, i.e.,

∀l ∈ N ∀g : N→ N∃n ≤ φ(l, g, d, k,Θ) ∀i ∈ [n, n+ g(n)]
(
‖xn − x‖ < 2−l

)
,

where φ(l, g, d, k,Θ) := g̃(dp(l,d,k,Θ)e)(0) with g̃(n) := n+ g(n) + 1, p(l, d, k,Θ) :=
d2k

4
· 2Θ(l).

Proof. Let l ∈ N and g : N→ N be arbitrary.
For all n ∈ N we can use the (proof of the) estimate (26.52) in [1] and obtain the following

‖yn+1 − y‖2 ≤ ‖yn − y‖2 − 4〈JγB yn − JγB y, yn − y〉+ 4‖ JγB yn − JγB y‖2

(5.2.1) = ‖yn − y‖2 − 4〈JγB yn − JγB y, yn − y〉+ 4〈JγB yn − JγB y, JγB yn − JγB y〉
= ‖yn − y‖2 − 4〈JγB yn − JγB y, (yn − JγB yn)− (y − JγB y)〉
= ‖yn − y‖2 − 4γ〈JγB yn − JγB y, γ

−1(yn − JγB yn)− γ−1(y − JγB y)〉.

Furthermore, by the same estimate and the monotonicity of B (together with Proposition 1.9(ii)) we obtain the
monotonicity of (‖yn − y‖)n∈N, i.e.,

(5.2.2) ∀n ∈ N
(
‖yn+1 − y‖ ≤ ‖yn − y‖

)
.

Since we have ‖y0− y‖ ≤ d by assumption, (‖yn− y‖2)n∈N is a nondecreasing sequence in [0, d2]. We can apply
Proposition 2.27 and Remark 2.29.1) of [6] and obtain the following statement:

(†) ∀δ > 0∀g : N→ N ∃n ≤ψ(g, δ, d)∀i ∈ [n, n+ g(n)]
(∣∣‖yi − y‖2 − ‖yi+1 − y‖2

∣∣ < δ
)

with ψ(g, δ, d) := g̃(dd2·δ−1e)(0).

In particular, for δ̄ := 2−Θ(l) · 4
k there is an m ≤ g̃(dd2·2Θ(l)· k4 e)(0) = φ(l, g, d, k,Θ) such that

(5.2.3) ∀i ∈ [m,m+ g(m)]
(∣∣‖yi − y‖2 − ‖yi+1 − y‖2

∣∣ < 2−Θ(l) · 4

k

)
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holds. For all i ∈ [m,m+ g(m)] we can estimate

〈JγB yi − JγB y, γ
−1(yi − JγB yi)− γ−1(y − JγB y)〉

(5.2.1)

≤ 1

4γ

(
‖yi − y‖2 − ‖yi+1 − y‖2

)
(5.2.4) ≤ k

4

∣∣‖yi − y‖2 − ‖yi+1 − y‖2
∣∣

(5.2.3)
<

k

4
· 2−Θ(l) · 4

k
= 2−Θ(l).

Recall that we have (JγB yi, γ
−1(yi − JγB yi)) ∈ gra(B) for all i ∈ [m,m + g(m)] and (JγB y, γ

−1(y − JγB y)) ∈
gra(B) by Proposition 1.9(ii). Furthermore, we can estimate

‖ JγB yn − JγB y‖ ≤ ‖yn − y‖
(5.2.2)

≤ ‖y0 − y‖ ≤ d

for all n ∈ N. Therefore, we can apply the property (♦4) of Θ to (5.2.4). In conclusion, we found an m ≤
φ(l, g, d, k,Θ) such that for all i ∈ [m,m+ g(m)] it holds that

‖xi − x‖ = ‖ JγB yi − JγB y‖ < 2−l.

In contrast to the Douglas-Rachford Algorithm, we can only find a rate of metastability for the Peaceman-
Rachford Algorithm from the proof in [1]. This is even though the iterations of both algorithms are defined
almost identically. However, we are now in the degenerate case of the Krasnsoselski-Mann iteration to which
Groetsch’s theorem can no longer be applied. The different proof strategy in [1], however, is inherently noneffec-
tive as the convergence of the sequence (‖yn − y‖)n∈N is established by appealing to the monotone convergence
principle which only admits a metastable quantitative version.

5.2 Extracting a Rate of Convergence
In this section we show how recent results of [12] combined with results due to the 2nd author can be used to
obtain an effective rate of convergence for the Peaceman-Rachford algorithm if one additionally assumes that
the operator A is uniformly monotone as well with a modulus of uniform monotonicity.

Definition 5.3 ([2]). Let X be a Banach space and S ⊆ X. A nonexpansive mapping T : S → X is called
strongly nonexpansive (SNE) if for all sequences (xn), (yn) in S the following implication is true:

if (xn − yn) is bounded and ‖xn − yn‖ − ‖Txn − Tyn‖ → 0, then (xn − yn)− (Txn − Tyn)→ 0.

Lemma 5.4 ([7]). A mapping T : S → X is strongly nonexpansive iff T satisfies

(∗)
{
∀c ∈ N \{0}, k ∈ N ∃n ∈ N ∀x, y ∈ S(

‖x− y‖ ≤ c ∧ ‖x− y‖ − ‖Tx− Ty‖ < 2−n → ‖(x− y)− (Tx− Ty)‖ < 2−k
)
.

Definition 5.5 ([7]). A function ω : N2 → N witnessing ‘∃n’ in (∗) above, i.e.

(∗∗)
{
∀c ∈ N \{0}, k ∈ N ∀x, y ∈ S(
‖x− y‖ ≤ c ∧ ‖x− y‖ − ‖Tx− Ty‖ < 2−ω(c,k) → ‖(x− y)− (Tx− Ty)‖ < 2−k

)
,

is called an SNE-modulus of T .

By the above lemma, T : S → X is strongly nonexpansive iff it possesses an SNE-modulus.
The next lemma is a quantitative version of [12][Theorem 8.1(i)(c)]:

Lemma 5.6. Let H be a Hilbert space and A,B : H → 2H be maximally monotone operators which are uniformly
monotone with a common modulus of uniform monotonicity ΘK and γ ≥ 2−l. Then RγA RγB : H → H is strongly
nonexpansive with

ω(l, c, k) := Θc(k + 2) + dlog2 ce+ l − 1

as a modulus of strong nonexpansivity.
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Proof. First note that γA is uniformly monotone with modulus Θl,c(k) := Θc(k) + l.
Claim: −RγA (and analogously −RγB) is strongly nonexpansive with modulus

ω′(l, c, k) := Θc(k + 1) + dlog2 ce+ l − 1.

Proof of Claim: By ‘(4)’ in [12] we have that

(+) gra(γA) =

{
1

2
(x+ RγA x, x− RγA x) : x ∈ H

}
.

Now assume that c ≥ 1 and for x, y ∈ H that

‖x− y‖ ≤ c and ‖x− y‖ − ‖(−RγA)x− (−RγA)y‖ < 2−ω
′(l,c,k).

Then (using that a 7→ a2 is Lipschitz continuous on [0, c] with Lipschitz constant 2c and the nonexpansivity of
RγA)

‖x− y‖2 − ‖RγA x− RγA y‖2 < 2c · 2−ω
′(l,c,k) ≤ 2−Θl,c(k+1)+2.

Thus
〈 12 (x+ RγA x)− 1

2 (y + RγA y), 1
2 (x− RγA x)− 1

2 (y − RγA y)〉
= 1

4 〈(x− y) + (RγA x− RγA y), (x− y)− (RγA x− RγA y)〉

= 1
4

(
‖2(x−y)‖2

4 +
‖2(RγA x−RγA y‖2

4

)
= 1

4

(
‖x− y‖2 − ‖RγA x− RγA y‖2

)
< 2−Θl,c(k+1).

Hence, by (+) and the definition of Θl,c

1

2
‖(x− y)− ((−RγA)x− (−RγA)y)‖ =

∥∥∥∥1

2
(x+ RγA x)− 1

2
(y + RγA y)

∥∥∥∥ < 2−k−1

using that ∥∥∥∥1

2
(x+ RγA x)− 1

2
(y + RγA y)

∥∥∥∥ ≤ 1

2
‖x− y‖+

1

2
‖RγA x− RγA y‖ ≤ ‖x− y‖ ≤ c.

Thus
‖(x− y)− ((−RγA)x− ((−RγA)y)‖ < 2−k

which concludes the proof of the Claim.
Now consider x, y ∈ H with ‖x− y‖ ≤ c and

‖x− y‖ − ‖RγA RγB x− RγA RγB y‖ =

‖x− y‖ − ‖(−RγB)x− (−RγB)y‖︸ ︷︷ ︸
≥0

+ ‖RγB x− RγB y‖ − ‖(−RγA) RγB x− (−RγA) RγB y‖︸ ︷︷ ︸
≥0

< 2−ω(l,c,k) = 2−ω
′(l,c,k+1).

Then by the Claim

‖(x− y) + (RγB x− RγB y)‖ = ‖(x− y)− ((−RγB)x− (−RγB)y)‖ < 2−k−1

and likewise
‖(RγB x− RγB y) + (RγA RγB x− RγA RγB y)‖ < 2−k−1

and so
‖(x− y)− (RγA RγB x− RγA RγB y)‖
≤ ‖(x− y) + (RγB x− RγB y)‖+ ‖(RγB x− RγB y) + (RγA RγB x− RγA RγB y)‖ < 2−k

which finishes the proof of the lemma.

Together with [7][Theorem 2.8] one obtains

Proposition 5.7. Let yn+1 := RγA RγB yn and d ≥ ‖y0 − y‖, d ≥ 1 for some y ∈ Fix(RγA RγB). Then

∀k ∈ N ∀n ≥ 2ω(l,d,k)+dlog2 de (‖yn+1 − yn‖ < 2−k
)
.
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Let
T := JγA RγA +Id− JγB = JγA(2 JγB−Id) + Id− JγB .

Then by [1][Proposition 4.31(i)]

2T− Id = (2 JγA−Id)(2 JγB−Id) = RγA RγB, i.e. T =
RγA RγB +Id

2

and so
‖RγA RγB y − y‖ < 2−k+1 → ‖Ty − y‖ =

1

2
‖RγA RγB y − y‖ < 2−k.

Thus we obtain the

Corollary 5.8. Let y0 ∈ H, γ ∈ (0,∞) and A,B : H → 2H be maximally monotone operators which are
uniformly monotone with a common modulus ΘK of uniform monotonicity, where K can be taken as the fixed
number d, where d ≥ ‖y0 − y‖, d ≥ 1 for some y ∈ Fix(RγA RγB). Let (xn), (yn), (zn) be defined as in the
Peaceman-Rachford algorithm.
Then

∀k ∈ N ∀n ≥ 2ω(l,d,k−1)+dlog2 de = 2ω
′(l,d,k)+dlog2 de (‖zn − xn‖ < 2−k

)
.

Proof. This follows from zn − xn = Tyn − yn, yn+1 = RγA RγB yn and the comment above via Proposition
5.7.

Theorem 5.9. Let A,B : H → 2H be maximally monotone operators which are uniformly monotone with a
common modulus ΘK of uniform monotonicity (where K can be taken as d below). Let γ ≥ 2−l, y0 ∈ H and
x ∈ zer(A + B) and (xn), (yn) be defined as in the Peaceman-Rachford algorithm. Let y ∈ Fix(RγA RγB) be such
that x = JγB y and ‖y0 − y‖ ≤ d and ‖Ty0 − y0‖ ≤ M, where d,M ≥ 1. Then we have the following rate of
convergence for (xn) towards x :

∀k ∈ N ∀n ≥ Ψ(k, d, l,Θd,M)
(
‖xn − x‖ < 2−k

)
,

where
Ψ(k, d, l,Θd,M) := 2ω

′(l,d,Θd(k)+l+dlog2(M+d)e)+dlog2 de.

Proof. The result follows from the proof of the quantitative convergence result of the Douglas-Rachford algo-
rithm given in Theorem 4.3(b) when stipulating that λn := 2 for all n ∈ N observing that the condition made
there that

∑
λn(2− λn) =∞ (which rules out this choice) is only used to obtain the rate ϕ of convergence for

‖zn− xn‖ → 0 in Theorem 4.2 which - by Corollary 5.8 - we can replace by the rate given in that corollary.

5.3 Discussion of the Results (for logicians)
The treatment of the operators A,B,A + B is as in the case of the Douglas-Rachford algorithm. However, in
the case of Theorem 5.2 neither would it be sufficient to just extract a bound on ∃n (‖xn − x‖ < 2−l) as in the
case of Tseng’s and the forward-backward algorithm (due to the lack of monotonicity) nor can we decompose
the proof into two separate statements of the form ∀∃ to which metatheorems then are applicable as in the case
of the Douglas-Rachford algorithm (due to the missing asymptotic regularity result ‖xn − zn‖ → 0). Since the
convergence statement is of the form ∀∃∀ via

(∗) ∀k ∈ N ∃n ∈ N ∀m ≥ n (‖xm − x‖ ≤ 2−k),

which is not allowed in the logical metatheorems (for theories based on full classical logic), we have to replace
(∗) by its (noneffectively) equivalent metastable formulation

∀k ∈ N ∀g : N→ N∃n ∈ N ∀i ∈ [n, n+ g(n)]
(
‖xn − x‖ < 2−k

)
which (disregarding the bounded quantifier ‘∀i ∈ [n, n+ g(n)]’) is of the form ∀∃.
The logical analysis in section 5.2 follows directly that of the Douglas-Rachford algorithm except that the rate
of asymptotic regularity for the Krasnoselski-Mann iteration used in the latter is now replaced by an asymptotic
regularity result for strongly nonexpansive mappings in the former case (whose logical underpinning is explained
in [7]).
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