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Abstract

In previous papers we have developed proof-theoretic techniques for extracting effective uni-
form bounds from large classes of ineffective existence proofs in functional analysis. ‘Uniform’
here means independence from parameters in compact spaces. A recent case study in fixed point
theory systematically yielded uniformity even w.r.t. parameters in metrically bounded (but non-
compact) subsets which had been known before only in special cases. In the present paper we
prove general logical metatheorems which cover these applications to fixed point theory as special
cases but are not restricted to this area at all. Our theorems guarantee under general logical
conditions such strong uniform versions of non-uniform existence statements. Moreover, they
provide algorithms for actually extracting effective uniform bounds and transforming the original
proof into one for the stronger uniformity result. Our metatheorems deal with general classes
of spaces like metric spaces, hyperbolic spaces, CAT(0)-spaces, normed linear spaces, uniformly
convex spaces as well as inner product spaces.

1 Introduction

The purpose of this paper is to establish a novel way of using proof theory to obtain new uniform
existence results in mathematics together with effective versions thereof. The results we are concerned
with in this paper belong to the area of analysis and, more specifically, nonlinear functional analysis.
However, we are confident that our approach can be used e.g. in algebra as well.

The idea of making mathematical use of proof theoretic techniques has a long history which goes back
to G. Kreisel’s program of ‘unwinding of proofs’ put forward in the 50’s (for more modern accounts
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see [42, 43]). The goal of this program is to systematically transform given proofs of mathematical
theorems in such a way that explicit quantitative data, e.g. effective bounds, are extracted which
were not visible beforehand. The main obstacle in reading off such information directly is usually
the use of ineffective ‘ideal’ elements in a proof. ‘Unwinding of proofs’ has had applications in e.g.
algebra ([8]), combinatorics ([2]) and number theory ([41, 45, 46]). In recent years, the present author
has developed systematically (under the name ‘proof mining’) proof theoretic techniques specially
designed for applications in analysis (see [28, 30, 32] and — for a survey — [39] and the articles cited
there). We have carried out major case studies in the areas of Chebycheff approximation ([28, 29]),
L;-approximation (with P. Oliva, [38]) and metric fixed point theory (partly with L. Leustean, [35,
36, 37]).

The applications are based on metatheorems of the following form (first established in [28]): Let X
be a Polish space and K a compact Polish space which are given in so-called standard representation
by elements of the Baire space INY and — for K — the space of functions f € INY, f < M bounded by
some fixed function M. Then one can extract from ineffective proofs of theorems of the form

Vo € XVy € K3z € NA(z, vy, 2),

where A is a purely existential formula (in representatives of z,y), effective uniform (on K) bounds
O(fy) on ‘327, ie.
Vo € XVy € K3z < ®(f,) Az, y, 2).

The crucial aspects in these applications are that

1) ®(f,) does not depend on y € K (‘uniformity w.r.t. K’) but only on — some representative
fr € NN of — 2,

2) the extracted ® will be of (usually low) subrecursive complexity (depending on the proof prin-
ciples used).

A discussion of the relevance of this setting for numerous problems in numerical functional analysis
is given in [39).

Whereas this covers the applications in approximation theory mentioned above, the applications in
metric fixed point theory in [35, 36, 37] have produced systematically results going far beyond what
is guaranteed by the existing metatheorems:

1) effective uniform bounds are obtained for theorems about arbitrary normed resp. so-called
hyperbolic spaces (no separability assumption or assumptions on constructive representability),

2) independence of the bounds from parameters y (‘uniformity in y’) from bounded subsets of
normed spaces resp. bounded hyperbolic spaces were obtained without any compactness
condition.

It is the last point which is most interesting: general compactness arguments can be used to infer the
existence of bounds which are uniform for compact spaces (and — under general conditions — even
their computability) so that in this case it mainly is the explicit construction of such bounds (of low
complexity) which is in question. For spaces which are not compact but only metrically bounded, by
contrast, there are no general mathematical reasons why even ineffectively such a strong uniformity
should hold. In fact, in the examples in metric fixed point theory we studied, only for special cases
such (ineffective) uniformity results were known before and they were obtained by non-trivial and
ad-hoc functional analytic techniques ([9, 12, 23]).



In this paper we prove new metatheorems which are strong enough to cover the main uniformity
results we got in the aforementioned case studies as special cases. Moreover, they guarantee a-priori
under rather general and easy to check logical conditions the existence of bounds which are uniform
on arbitrary bounded convex subsets of general classes of spaces such as metric spaces, hyperbolic
spaces, CAT(0)-spaces, normed linear spaces, uniformly convex normed spaces and inner product
spaces. The proofs of these metatheorems are based on novel extensions of the general proof theoretic
technique of functional interpretation which goes back to [14]. This provides our metatheorems with
algorithms to actually extract from given proofs of non-uniform existence theorems explicit effective
uniform bounds. These algorithms correspond directly to the extraction technique used in the concrete
examples in fixed point theory mentioned above.

The importance of the metatheorems is that they can be used to infer new uniform existence results
without having to carry out any actual proof analysis. In such applications, the proofs of the metathe-
orems (and the complicated proof theory used in them) can be treated as a ‘black box’. However, in
contrast to model-theoretic applications of logic to analysis (e.g. transfer principles in non-standard
analysis or model theoretic uses of ultrapowers, see also the discussion at the end of section 3 below),
one can also open that box and explicitly run the extraction algorithm. This algorithm not only will
extract an explicit effective bound (whose subrecursive complexity can be estimated already a-priorily
in terms of the proof principles used) but will also transform the original proof into a new one for
the stronger uniform bound which can again be written in ordinary mathematical terms and does not
need the metatheorem (nor other tools from logic) any longer for its correctness.

It is clear that such strong uniformity results as discussed above can hold only under certain condi-

tions: e.g. for concrete spaces like (C[0,1],] - ||co) one can easily construct counterexamples:
Let B denote the closed unit ball in (C[0,1], || - |leo). By the Weierstrafi approximation theorem we
have

1
Vf €B3n € IN(n encodes the coefficients of a polynomial p € Q[X] s.t. ||f — pllcc< 5),

but there is no uniform bound for n on the whole set B (consider e.g. f, := sin(nz)).

The reason why in the various examples from metric fixed point theory such uniformity results hold,
obviously has to do with the fact that only general algebraic or geometric properties of whole classes
of spaces (like: metric spaces, hyperbolic spaces, CAT(0)-spaces, normed linear spaces, uniformly
convex normed spaces, inner product spaces) are used but not genuinely analytical properties as e.g.
separability on which our counterexample is based upon.

It will turn out that the crucial condition on the properties permissible is that they can be expressed by
axioms which have a generalized Godel functional interpretation by so-called majorizable functionals
and which only involve majorizable functionals as constants (see section 4 for technical details). In a
setting suitably enriched by new constants, we can axiomatize the above mentioned classes of spaces
even by purely universal ‘algebraic’ axioms (modulo an explicit ‘analytical’ Cauchy-representation of
real numbers) so that this condition is satisfied for very simple reasons. It is the interface between
the algebraic structures and the real number representation which will need some subtle care.

We focus in this paper on the structures listed above. It is clear, however, that many other structures
(whose axioms may satisfy the logic condition mentioned above for more subtle reasons), e.g. further
mathematically enriched structures, can be treated as well.

In order to make the metatheorems as strong and easy to use for non-logicians as possible, we use
the deductive framework of classical analysis based on full dependent choice (which includes full
second-order arithmetic). Of course, in concrete proofs often only small fragments are needed, which



accounts for the low complexity of the bounds actually observed. However, using a strong formal
framework makes it easy to check the formalizability of proofs and thereby the applicability of the
metatheorems.

The paper is organized as follows: section 2 develops the logical setting in which our results are
formulated. The main metatheorems are stated in section 3 together with several applications. Section
4 is devoted to the proofs of the main results.

2 The formal framework

We now define our formal framework, the system A% of so-called (weakly extensional) classical analysis
and its extensions by built-in mathematical structures. A is formulated in the language of functionals
of finite type and consists of a finite type extension PA% of first order Peano arithmetic PA and the
axiom schema DC of dependent choice in all types which implies countable choice and hence arbitrary
comprehension over natural numbers. As a consequence of this, full second order arithmetic (in the
sense of [51]) is contained in A% (via the identification of subsets of IN with their characteristic
functions).

Definition 2.1 The set T of all finite types is defined inductively by the clauses
(1)0e T, (it) p,re T = (p—71)e T.

Abbreviation: We usually omit outermost parantheses for types. The type 0 — 0 of unary number
theoretic functions will often be denoted by 1.

Remark 2.2 Any type p # 0 can be written in the following normal form

p=p1— (p2—...(pr = 0)...)

which we usually abbreviate as
pr—+p2— ... = pr— 0.

Objects of type 0 denote (in the intended model) natural numbers. Objects of type p — 7 are
operations mapping objects of type p to objects of type 7. E.g. 0 — 0 is the type of functions
f:IN — IN and (0 — 0) — 0 is the type of operations F' mapping such functions f to natural
numbers, and so on.

We only include equality =g between objects of type 0 as a primitive predicate. Equality between
objects of higher types s =, t is a defined notion:!

s=pt =V, o alt (s(z, .. x) =0 t(, .. 2),

where
p=p1—p2—...pr = 0.

i.e. higher type equality is defined as extensional equality. An operation F' of type p — 7 is called
extensional if it respects this extensional equality, i.e. if

Va yf (x =, y — F(z) =; F(y)).

Here we write s(x1,...,zx) for (... (sz1)...z1) (see also below).



What we would like to have is an axiom stating that all functionals in our system are extensional.
This, however, would be too strong a requirement for the metatheorems we are aiming at and their
applications in functional analysis to hold. Instead we include a weaker quantifier-free so-called
extensionality rule due to [52]?

A()*)S:pt

AR T =

, where A is a quantifier-free formula.

The rule QF-ER allows to derive the equality axioms for type-0 objects
x =0y — t[z] = t[y]

but not for objects x,y of higher types (see [54],[18]).

The system A“ is defined as follows (further information can be found e.g. in [44]): on top of many-
sorted classical logic with variables z?,y?, 2#, ... for all types p € T and quantifiers over those we
have the following;:

Constants: O° (zero), S* (successor), IIF277# (projectors), X5, (combinators of type (§ — p —
7) = (6 = p) = 0 — 7), recursor constants R for simultaneous primitive recursion in all types (see
remark 2.3 below).

Terms: variables x” and constants ¢” of type p are terms of type p. If t*77 is a term of type p — 7
and s” a term of type p, then (¢s)” is a term of type 7. Instead of (... (¢s1)...s,) we usually write
t(s1,...,8,). Formulas are built up out of atomic formulas of the form s = ¢ by means of the logical
operators as usual.

Non-logical axioms and rules:

(i) Reflexivity, symmetry and transitivity axioms for =g,

(ii) usual successor axioms for S: S(x) =¢ S(y) = = =¢ y, S(x) #o 0,

(iii) axiom schema of complete induction
(IA) : A(0) AV2?(A(z) — A(S(z))) = V2 A(z),

where A(x) is an arbitrary formula of our language,

(iv) axioms for II, -, s , » and EB:
() Mty =, o,
(D) : Ssprwyz =, x2(yz) (207P77, 4070, 29),

BOyz=,y

R,(Sa%)yz =, 2(R,wyz)z,

(R) :

where p = p1,...,px, yi is of type p; and z; of type p1 — ... = pr — 0 — p;.

(v) quantifier-free extensionality rule QF-ER,

2We will see further below that the need to restrict the use of extensionality has a natural mathematical inter-
pretation. Moreover, working with the quantifier-free rule of extensionality will point us to the correct mathematical
conditions in our applications.



(vi) quantifier free axiom of choice schema in all types:
QF-AC : VadyAo(z,y) — IYVaAo(z,Y z),
where Ag is quantifier-free and z,y are tuples of variables of arbitrary types.
(vii) dependent choice DC:= {DC” : p €T} in all types, where
DC? : Va2l yP32P A(z,y, 2) — 37V Az, f(x), f(S(x))),
where A is an arbitrary formula and p an arbitrary type.

Remark 2.3 1) Our formulation of DC (first considered in [19] under the name (A.1))* combines
the usual formulation of dependent choice

Var3y" A(w,y) — VaPIfO7P[£(0) =, @ AV2"A(f(2), F(S(2)))]

and countable choice
V:EOEIypA(x,y) — EIfOHpVxOA(x, f(@)

which are both provable in A% (see [19] for details).

2) One can in fact reduce simultaneous primitive recursion in higher types to ordinary primitive
recursion in higher types. However, this is rather tedious (see [54]) and would cause further
problems in the extensions of A% to new types defined below, see remark 4.2. That’s why we
include constants for simultaneous recursion as primitives.

The purpose of the constants II, X is to achieve closure under functional abstraction:

Lemma 2.4 For every term ¢[x”]” one can construct in A% a term Ax”.t[x] of type p — 7 such that
AY F (AP t[z])(s”) =, t]s].
Proof: See [54]. .

We now aim at ‘adding’ abstract structures like general (classes of ) metric spaces (X, d) to A“ resulting
in an extension A“[X, d]. The idea is to have in addition to the type 0 another ground type X together
with variables zX,y~, 2X,... and quantifiers V2, 32X, where these variables are intended to vary
over the elements of the set X. We also add a new constant dx for the (pseudo-)metric to the system
with the usual axioms. In order to do so we first have to show how to introduce real numbers in A%,

where we follow [28]:

We introduce real numbers as Cauchy sequences of rational numbers with fixed Cauchy modulus 27".
To this end we first have to define the ordered field (®,+,-,0, 1, <) of rational numbers within .4“:
Rational numbers are represented as codes j(n,m) of pairs (n,m) of natural numbers (i.e. type-0

objects), where j is the Cantor pairing function: j(n, m) represents the rational number e ifnis

n+1
even, and the negative rational number — T otherwise. Since we use a surjective pairing function
7, each number can be conceived as code of a uniquely determined rational number. We define an

equality relation =q on the representatives of the rational numbers, i.e. on IN, to be

Jini Jing
_ 2 ) oo .
ny =@ Ny := = if jin1 and jang both are even
1=qQ N2 o + 1 Jams + 1 Jini Jan2

3See also [44] where our formulation of DC is called wAC.



and analogous in the remaining cases, where § = < is defined to hold if ad =¢ cb when bd > 0.

In order to express the statement that n represents the rational r, we write n =g (r) or simply n = (r).
Of course (-) is not a function of r since r possesses infinitely many representatives. Rational numbers
are, strictly, speaking equivalence classes on IN w.r.t. =q. By using only their representatives and =q
one can avoid formally introducing the set @ of all these equivalence classes.* On IN one can easily
define primitive recursive operations +q, -q and predicates <q, <q such that e.g. (r)+q (r2) =q (r3)
iff 1 + 7o = 73 for the rational numbers 71, ro, r3 which are represented by (r1), (r2), (r3) (analogous
for -q,<q,<q). The embedding of IN into @ can on the level of the codes be expressed by n —
ng := j(2n,0). One easily shows (within A“) that (N, +q, -q,0q, lg, <q) is an ordered field (which
represents (Q,+,-,0,1,<) in A%).

Each function f : IN — IN (i.e. each functional of type 1) can be interpreted as an infinite sequence
of codes of rationals and therefore as representative of an infinite sequence of rationals.

Real numbers are represented by functions f such that

() Vn(|f(n) —q f(n+1)|q < (2_”_1>), hence

¥nvk > m > n(|f(m) —q f(k)lo <q@ S5, (0) —o (i +Dlg <¢

552, 1f(1) —q F(i+ Dl < (27).
Each f which satisfies (x) therefore represents a Cauchy sequence of rationals with Cauchy modulus
27", In order to guarantee that each function f codes a real number, we introduce the following
construction (which easily can be carried out by a term in A“) :

(o) Flm) 1= L) 3V <n(1f(8) —q f(k+ Dl <a (277),
7700 for mink < n with| (k) —q f(; + D)o Zq (271) otherwise

f always satisfies (*). If (%) holds for f then Vn(f(n) =o ]?(n)) Thus each function f codes a unique
real number: the real number which is given by the Cauchy sequence coded by f In the other
direction, if f represents a Cauchy sequence of rationals with modulus 27", then g(n) := f(n + 1)
satisfies (%) and therefore represents the real number, given by f, in our sense. This shows that
nothing is lost by our restriction of sequences satisfying (). The construction f — fenables one to
reduce quantifiers ranging over IR to Vf! resp. 3f! without introducing any additional quantifiers.
On the representatives (in the sense above) of real numbers (i.e. on the functionals of type 1) f1, fo
we define an equivalence relation =R by

fi=wr fo:=Vn(filn+1) —q fa(n+Dlg <q 277)).

f1 =mr f2 holds iff f; and f5 represent the same real number (w.r.t. the usual identity relation on the
reals).
Whereas =g is decidable, the relation =R is not but is a I19-predicate.

fi<m f2 = Hn(J?Z(TH‘ 1) —q fl(”*’ 1) 2q <27n>) € XY,

fi <R fo:=(f2 <mr f1) € I1.

One easily defines functionals +R, —R, 'R®, | |r etc. on our codes of real numbers, which represent
the usual operations +, —, -, | - | etc. on IR: For example, define f; +r fo by

(fr +m fo) (k) i= fik +1) +q falk+1).

4In contrast to the representation of real numbers below we could constructively avoid to have many codes of a
rational number by taking the minimal code.




Then f; +Rr fo =r f3 holds iff 1 + 2 = x3 for the real numbers z1, x5, x3 which are represented by
f1, f2, f3. +mr is a functional of type 1 — 1 — 1. In a similar way one defines —r and — somewhat
more complicated — ‘.

The embedding of @ into IR is on the level of representatives given as follows: If n = (r) codes the
rational number 7, then A\k.n represents r as a real number.

Put together we can express the embedding of IN into R by nr :=1 Ak’.ng. In particular, OR =
)\k.OQ, 1]R = )\kl@

IR denotes the set of all equivalence classes on the set of functions f w.r.t. =gr. As in the case of Q,
we use IR only informally and deal exclusively with the representatives and the operations defined on
them. (N™, +R, r,0R, IR, <R) is an Archimedean ordered field (provable in .A%), which represents
(R,+,-,0,1,<) in A“.

One easily verifies the following fact:

Lemma 2.5 A“ - Vk(|f —r A f(R)|r <m (277)).

Due to the fact that the Cantor pairing function satisfies j(n,m) >¢ n, m we get that for any number

theoretic function a':

(@(0) +1)q 2q [2(0)lq +¢ 1o
and hence (using lemma 2.5 with £ = 0 and the fact that a(0) =¢ «(0))

(a(0) + r >R |o|r

which we will use repeatedly in the proofs of the main results.
Each functional ®°~! can be conceived of as an infinite sequence of codes of real numbers and therefore
as a representative of a sequence of real numbers. We have the following Cauchy completeness:

Lemma 2.6 A“ V0" (Vn;m, k > n(|®(m) —r ®(k)|r <r (277)) —
379n(|(n) —m Sl <m (2))).
In fact, f can be defined as fk = ®(k+ 3)(k + 3).

Notation 2.7 For better readability we often simply write e.g. 27% in contexts like ‘... <q 27%’
instead of its (canonical) code as rational number j(2,2% —1). Similarly, we write ‘... <g 27 instead
of ... <mr Mn.j(2,2% 1), where An.j(2, 2% —1) is the canonical representative of 27 as a real number.

As we will mainly quantify over elements in the unit interval [0,1] we need the following effective

operation which reduces quantification over [0, 1] to quantification over IR and hence — by the repre-

sentation above — over type-1 objects (without introducing further quantifiers). In fact, only number

theoretic functions bounded by a fixed function N will be needed to represent all elements of [0, 1]:
#(n) := j(2ko,2""% — 1), where ko = maxk[m <q Z(n+2)].

Note that Az'.Z can easily be defined by a closed term in A%.

One easily verifies the following

Lemma 2.8 Provably in A%, for all z':

R SRZT <R IR = T=R 7z,
Ir <r 7 <R IR, % =r Z and
7 <1 N = An.j(2n3, 22 1),



In a similar way, one can represent not only IR but general Polish (complete separable metric) spaces
P by NY where instead of the rational numbers one now takes a countable dense subset P, of P.
Things are slightly more complicated as the metric already on P, will in general be real valued. A space
(P,d) is called A¥-definable if the restriction d. of d to the codes of elements of P, is represented by a
closed term of A which — provably in A% — is a pseudo-metric on these codes. Details can be found
in [28] (see also [1]). Compact Polish spaces K can be represented (similarly to the representation of
[0,1] above) in such a way that the representing functions f are all bounded by some fixed function
M € NN, K is A“ definable if both d. and M are given by A“-terms (again see [28],[1] for details).
Using this representation a statement of the kind (to be considered below)

(%) Vo € PYy € K(Vn € NA(z,y,n) > Vm € ]NB(x,y,m))
has — formalized in A% — the form
Valvy <, M(VnOA(x,y,n) — VmOB(x,y,m)),

where — if we write (x) — we always tacitly assume that A(z', y',n%) and
B(x',y, m%) are (when interpreted in S resp. S¥X)° extensional w.r.t. =p, =g

z1=pz2 N Y1 =k Y2 N A(z1,y1,n) = A(z2,y2,n)
(analogously for B(z,y,m)) and therefore really express statements about elements in P, K.

In the proof of the main theorems below we will need a semantical argument based on the following
(ineffective) construction which selects to a given z € [0, 00) a unique representative (z), € IN™ out
of all the representatives f € INY of z such that certain properties are satisfied (here and in the
next lemma and definition, [0, 00) refers to the ‘real’ space of all positive reals, i.e. not to the sets of
representatives, <; is pointwise order on IN™, and < the usual order on [0, 0)):

Definition 2.9 1) For z € [0,00) define (z), € NN by
(2)o(n) := j(2ko, 2"+ — 1),

where

2) M(b) := An.j(b2nT2 2+l — 1),

Lemma 2.10 1) If z € [0,00), then (z), is a representative of x in the sense of our representation
of real numbers carried out above.

2) If 2,y € [0,00) and = < y (in the sense of R), then (z)o <gr (y¥)o and also () <1 (y)o (i-e.
Vn € IN((2)o(n) < (y)o(1)))-

3) If b e IN and = € [0,b], then (z), <1 M(b).
4) z € [0,00), then (), is monotone, i.e. Vn € IN((x)o(n) <o (z)o(n + 1)).

5) M(b) is monotone, i.e. Vn € IN((M(b))(n) <o (M (b))(n +1)).

5See definition 3.2.



Proof: 1) Observe that (z), satisfies (*) and hence @) =1 (2)o.

2) Obvious from the definition of (z), and 1).

3) Here we use that the Cantor pairing function j is monotone in its arguments.

4) and 5) follow again by the monotonicity of j. o

Definition 2.11 (X, d, W) is called a hyperbolic space if (X, d) is a metric space and W : X x X x
[0,1] — X a function satisfying

(i) Va,y,2 € XVA € [0,1](d(z, W(z,y,))) < (1 — N)d(z, ) + Ad(z, 1)),
(i) Va,y € XVA1, Ao € [0, 1](d(W (2,5, A1), W (2,9, A2)) = [A1 — Aol - d(2, 7)),
(iii) Vo,y € XVA € [0, 1](W(z,y,\) = W(y,z,1 - X)),
(iv) Va,y,z,w € X, A € [0, 1](d(W(z, 2, \), W (y, w, \)) < (1 = N)d(z,y) + Ad(z,w)).
Definition 2.12 Let (X,d, W) be a hyperbolic space. The set
seg(z,y) == { W(z,y,A): A€ [0,1] }

is called the metric segment with endpoints z,y (condition (iii) ensures that seg(z,y) is an isometric
image of the real line segment [0, d(z,y)]).

Remark 2.13 If only condition (i) is satisfied, then (X,d, W) is a convex metric space in the sense
of Takahashi ([53]). (i)-(iii) together are equivalent to (X,d, W) being a space of hyperbolic type
in the sense of [12]. The condition (iv) (first considered as ‘condition IIT’ in [21]) is used in [49] to
define the class of hyperbolic spaces. That class contains all normed linear spaces and convex subsets
thereoff but also the open unit ball in complex Hilbert space with the hyperbolic metric as well as
Hadamard manifolds (see [13],[49],[50]) and CAT(0)-spaces in the sense of Gromov (see [5] and [24]).
The definition of ‘hyperbolic space’ as given in [49] is slightly more restrictive than ours since [49]
considers a metric space (X, d) together with a family M of metric lines (rather than metric segments)
so that hyperbolic spaces in that sense are always unbounded. Our definition (like the notion of space
of hyperbolic type from [12] and Takahashi’s notion of convex metric space) is in contrast to this
such that every convex subset of a hyperbolic space is itself a hyperbolic space. Moreover, using a
set M of segments has the consequence that in general it is not guaranteed (as in the case of metric
lines) that for u,v € seg(x,y) with (u,v) different from (z,y), seg(u,v) is a subsegment of seg(x,y)
unless M is closed under subsegments.® The theorems to which we will apply the metatheorems do
hold even for spaces of hyperbolic type and so in particular for our notion of hyperbolic spaces. The
reason we include condition (iv) is that this allows to formulate and to apply our metatheorems in the
most easy way avoiding certain technicalities (to be discussed further below) which have to do with
so-called extensionality conditions. It is for the same reason why it is convenient to have a notion of
hyperbolic space which is closed under convex subset formation.

As we just discussed, every CAT(0)-space (X, d) is a hyperbolic space (with W defined by the unique
geodesic path in X connecting two points x,y € X). Since every hyperbolic space in particular is a
geodesic space (in the sense of [5]), it follows from [5](p.163) that a hyperbolic space is a CAT(0)-space
if and only if it satisfies the so-called CN-inequality

ON - VY, yo,y1,y2 € X (d(yo, 1) = 5d(y1,y2) = d(yo, y2) =
: d 2 < ld 2 ld 2 ld 2
(ﬂUayO) =3 (xayl) + 2 (Jj,y2) 4 (ylayQ) )

6As a consequence of this we cannot derive (iv) from the special case for A := % as in the setting of [49] (which

follows [22] rather than [12]) and therefore we formulate (iv) for general A € [0, 1].
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of Bruhat and Tits ([7], see also [24]).
The theories AY[X,d], AY[X,d, W] and A“[X,d, W, CAT(0)] :
AY[X, d] results by
(i) extending A“ to the set TX of all finite types over the two ground types 0 and X, i.e.
O,XETX, p,TeTXép—H'ETX

(in particular, the constants II, ;, %5, -, R, and there defining axioms and the schemes IA,
QF-AC, DC and the rule QF-ER are now taken over the extended language),

(ii) adding a constant Ox of type X,
(iii) adding a constant bx of type 0,
(iv) adding a new constant dx of type X — X — 1 together with the axioms

(1) va* ( x(z,2) =R OR),

(2) V¥, y¥ (dx(2,y) =R dx(y,2)),

(3) Vo, y*, 2% (dx (z,2) <m dx(2,y) +r dx (y,2)),

(4) v (dX(a: y) <R (bx)r(:=1 M\k".5(2bx,0)).

Still only equality at type 0 is a primitive predicate. X =x y~ is defined as dx(z,y) =r OR.
Equality for complex types is defined as before as extensional equality using =g and =x for the base
cases.

AY[X, d, W] results from A“[X,d] by adding a new constant Wx of type X — X — 1 — X together
with the axioms

(5) VaX, yX, 2XVA (dx (2, Wx (2,9, 1) <R (Ir —r Ndx (2, 7) +Rr Ax(2,9)),

(6) Vo X,y VAL M (dx (Wx (2,4, M), Wx (2,9, X2)) =R [\ —R Ao|r & dx(2,9)),

(7) \V/mX’ yXVAl (WX (337 Y, 5‘) =X WX (ya z, (1IR R 5‘)))7
(8) VxXa yXa ZXa an )‘1 (dX (WX (.T, Z, 5\)7 WX(% w, 5‘)) SIR (1IR — R j‘)dX (.’17, y) +]R 5\d)((za ’UJ)) .

AY[X, d, W, CAT(0)] results from A“[X,d, W] by adding as further axiom the formalized form of the
following (formally stronger) quantitative version CIN* of the CN-inequality

ON* - { Y, y1,Yy2, 2 € XVe € Qi(max(d(z,yl),d(z,yg)) < %d(yl,yg)(l +e)—
- d(l‘, Z)2 < %d(x7y1)2 + %d(l‘,yg)Q - id(yhyQ)z + Qd(xv W(yly Y2, %))51/17112 (6) + 52/17212 (5)2)7

where &y, 4, () == 2d(y1,y2) Ve +e.
CN* holds in every CAT(0)-space since it follows from CN and the following lemma due to [5] (p.
286):

Lemma 2.14 Let (X,d, W) be a CAT(0)-space. Then for all y1,y2,2 € X and ¢ € Q7 the following
holds

—_
=

max(d(z,y1),d(z,y2)) < =d(y1,y2)(1 + &) = d(z, W (y1, y2, %)) §d(y1,y2)\/ €2 +e.

[\
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In contrast to CN which — due to the equality between real numbers in the premise — is not purely
universal, the (formalization of) version CN* is (which will be used in the proof of theorem 3.7.3)
below) since <€ %9. CN* in turn implies CN since the error term tends to zero as € does (note that
in the case where y; = y2, CN is trivial). Hence CN* characterizes the subclass of CAT(0)-spaces
among all hyperbolic spaces just as well as CIN.

Remark 2.15 The additional axioms of A“[X,d] express (modulo our representation of IR sketched
above) that dx represents a pseudo-metric d (on the universe the type-X variables are ranging over)
which is bounded by bx.” Hence dx represents a (bx-bounded) metric on the set of equivalence
classes generated by =x. Rather than having to form such equivalence classes explicitly, we can talk
about X,y but have to make sure that e.g. functionals fX =% respect this equivalence relation, i.e.

VX Xz =x y — f(z) =x f(y))

in order to be entitled to refer to f as representing a function X — X. It is important to observe
that due to our weak (quantifier-free) rule of extensionality we in general only can infer from a proof
of s =x t that f(s) =x f(t). This restriction on the availability of extensionality is crucial for our
results to hold (see the discussion at the end of section 3). However, we will be able to deduce from
the mathematical properties of the functionals occurring in our applications sufficient extensionality:
firstly, note that A“[X,d] proves that

Vo ag,ut s ys (21 =x T Ayt =x Yo — dx (21,91) =R dx (z2,12)).
Secondly, the Wx-axioms (6), (8) imply that Wx is uniformly continuous in all arguments and hence
the extensionality of Wy, i.e. for all 3%, x5, yi¥, ya, AL, AL
v1=x T2 Ay =x y2 A A1 =R A2 = Wx (21,51, M) =x Wx (22,12, Aa).

Hence (5)-(8) in fact express (modulo the representation of IR and [0, 1]) that Wx represents a function
W : X x X x[0,1] — X which makes the bounded metric space induced by d into a bounded hyperbolic
space. We always assume X to be non-empty by including a constant Ox of type X .5

For the proof of our metatheorem below it will be of crucial importance that the axioms (1)-(8) are
all purely universal (recall that =y, =g, <r€ I19).

Remark 2.16 1) As before we can define A-abstraction in A“[X, d] and

A“[X, d, W].
2) Every type p € TX can be written as p = p; — ... — px — 7 where 7 = 0 or 7 = X. We define

07 := APt .. vpR .00 resp. 07 := Ao, ... vpF 0.

Notation 2.17 Following [49] we often write ‘(1 — N)a @ Ay’ for ‘W (z,y, \)’.

Definition 2.18 1) Let (X, d) be a metric space. A function f : X — X is called nonexpansive
(short: ‘f n.e.”) if

o,y € X (d(f(2), f(y)) < d(x,y)).

2) ([23]) Let (X,d,W) be a hyperbolic space. A function f : X — X is called directionally
nonexpansive (short: ‘f d.n.e.”) if

Va € XVy € seg(x, f(x))(d(f(x), f(y) < d(z,y)).

"Note that (1) — (3) imply that VaX,yX (dX(J:,y) >R O]R).

8The reason why we denote this constant (which represents some arbitrary element of X) by ‘zero’ is that we use it
in remark refrem.2.14.2) (in the same way is 0° is used for the old types) to construct for each type a specific closed
term of that type. In the case of normed linear spaces to be treated further below it will actually denote the 0-vector.
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3 The main results

A bounded hyperbolic space is a hyperbolic space (X,d, W) where (X, d) is a bounded metric space,
i.e. for some K € IN: d(z,y) < K for all z,y € X.

Definition 3.1 Let X be a non-empty set. The full set-theoretic type structure S¥-% := <S/’>peTX
over IN and X is defined by
So=IN, Sx:=X, Sr, =5

Here Sf* is the set of all set-theoretic functions S; — S,.

Definition 3.2 We say that a sentence of L£(A“[X,d,W]) holds in a bounded hyperbolic space
(X,d, W) if it holds in the models® of A“[X,d, W] obtained by letting the variables range over the
appropriate universes of the full set-theoretic type structure S¥X with the set X as the universe for
the base type X, Ox is interpreted by an arbitrary element of X, bx is interpreted as some integer
upper bound (also denoted ‘b’) for d, Wx (z,y, \!) is interpreted as W (z,y,r5), where r5 € [0,1] is
the unique real number represented by A' and dx is interpreted as dx (z,) := (d(z,y))o, where (),
refers to the construction in definition 2.9.

Notation 3.3 For better readability we write when we want to express that a sentence A holds in
(X,d, W) usually in A ‘d(z,y) < 27 or VA € [0,1](W(x,y,\) = ...) instead of ‘dx(z,y) < 27%’
or YA'(Wx(z,y,\) =x ...) etc. Only when the syntactical form of A as a formal sentence of
L(A“[X,d, W]) matters we have to spell out the precise formal representation.

Definition 3.4 Between functionals x*,y” of type p € T we define a relation <, by induction on p

as follows:
x <oy :=x < y for the usual (prim.rec.) order on IN

T <por Y = V2P (2(2) <7 y(2)).

Definition 3.5 We say that a type p € TX has degree 1if p =0 — ... — 0 (including p = 0). p has
degree (0,X)if p=0—... =0 — X (including p = X). A type p € TX has degree (1, X) if it has
the form 71 — ... = 7, = X (including p = X), where 7; has degree 1 or (0, X).

Definition 3.6 A formula F is called V-formula (resp. 3-formula) if it has the form F' = VaZF,;(a)
(resp. F' = 3a2F,¢(a)) where F,; does not contain any quantifier and the types in o are of degree 1
or (1,X).

Theorem 3.7 1) Let o, p be types of degree 1 and 7 be a type of degree (1, X).
Let s be a closed term of A“[X, d] and By(x?,y”, 2™, u’) (C5(x7,y”,27,v°)) be a V-formula
containing only x,y, z, u free (resp. a I-formula containing only z,y, z, v free).
If
VaoVy <, s(x)Vz" (VuOBv(x, y, z,u) — °C5(x,y, z,v))

is provable in A¥[X, d], then one can extract a computable functional
®:S, x N — IN such that for all z € S, and all b € IN

Vy Sp 8(1’)VZT [vu < q)(xab) Bv(lC,y,Z,U) — Jv < (I)(xab) Cg(l’,y,Z,U)]

holds in any (non-empty) metric space (X, d) whose metric is bounded by b € IN (with ‘bx’
interpreted by ‘b’).

The computational complexity of ® can be estimated in terms of the strength of the A“-principle
instances actually used in the proof (see remark 3.8 below).

9We use here the plural since the interpretations of 0x and bx are not uniquely determined.
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2) For bounded hyperbolic spaces (X,d, W) statement ‘1)’ holds with ‘A¥[X,d, W], (X,d, W)’
instead of ‘A¥[X,d], (X, d)’.

3) If the premise is proved in ‘A*[X,d, W, CAT(0)], instead of ‘A¥[X,d, W], then the conclusion
holds in all b-bounded CAT(0)-spaces.

Instead of single variables x, ¥, z, u, v we may also have finite tuples of variables z,y, z, u, v as long as
the elements of the respective tuples satisfy the same type restrictions as z, v, z, u, v.

Moreover, instead of a single premise of the form “Vu®By(z,y, z,u)’ we may have a finite conjunction
of such premises.

Remark 3.8 The proof of theorem 3.7 actually provides an extraction algorithm for ®. The func-
tional ® can always be defined in the calculus T4+BR of so-called bar recursive functionals, where
T refers to Godel’s primitive recursive functionals T' ([14]) and BR refers to Spector’s schema of
bar recursion ([52]). However, for concrete proofs usually only small fragments of A“[X,d, W] (cor-
responding to fragments of A“) will be needed to formalize the proof. In a series of papers we
have calibrated the complexity of uniform bounds extractable from various fragments of A% (see e.g.
[31],[32]). In particular, it follows from these results that a single use of sequential compactness (over
a sufficiently weak base system) only gives rise to at most primitive recursive complexity in the sense
of Kleene (often only simple exponential complexity) and this corresponds exactly to the complexity
of the bounds obtained in [35],[37](see applications 3.14,3.16 below and [39] for a general discussion).
In many cases (e.g. if instead of sequential compactness only Heine-Borel compactness is used relative
to weak arithmetic reasoning) even bounds which are polynomial in the input data can be obtained

([31))-

Remark 3.9 1) The most important aspect of theorem 3.7 is that the bound ®(x,b) does not
depend on y, z nor does it depend on X, d or W.

2) Theorem 3.7 holds also for convex metric spaces (resp. spaces of hyperbolic type) if in AY[X, d, W]
the Wx-axioms (6) — (8) (resp. (8)) are dropped. However, then the extensionality of Wy is no
longer provable so that one has to rely on the weak rule of quantifier-free extensionality instead
which makes it harder to verify whether a given proof can in fact be formalized in such a setting.
In the absence of (6), we extend the existing rule QF-ER by

Ay — st =R t!

+ ~ _
(+) Ao = Wx(z,y,5) =x Wx(z,y,t)

(Ao quantifier-free)

to have also for the scalar at least weak extensionality of W (Ag is quantifier-free). Note that
the ‘official’ equality relation for type-1-objects is =; so that (4) is not covered by QF-ER. The
proofs of the main results also hold with this extended form of QF-ER. In the presence of (6),
(+) is, of course, redundant.

Notation 3.10 Let f: X — X, then Fiz(f) ={z € X | z = f(2)}.

Corollary 3.11 1) Let P (resp. K) be a A“-definable Polish space (resp. compact Polish space)
and By(z', y!, 2, f,u),C3(zt, yt, 2, f,v) be as in the previous theorem.
If A¥[X,d, W] proves that

Vo € PYy € KV2X, fX7%( fne AFiz(f)#0AVueNBy — Jv e INCy),
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then there exists a computable functional ®1~970 (on representatives  : IN — IN of elements
of P) such that for all z € NN, b € IN

Vy € KVz € XVf: X — X( f ne AVu < ®(z,b) By - Jv < ®(x,b) C3)
holds in any hyperbolic space (X, d, W) whose metric is bounded by b.

2) An analogous result holds if ‘f n.e.” is replaced by ‘f d.n.e’.
Similarly for A¥[X,d], (X, d).

Remark 3.12 Remark 3.8 applies to corollary 3.11 as well.
Proof: 1) The statement provable by assumption in A“[X,d, W] can be written as
Vo € PYy € KV, w™, fX7%( fne Af(w)=x wAVYueNBy— JveNCs),

‘f(w) =x w’ can be written as ‘Vk°(dx (w, f(w)) <m 27%)" where ‘dx (w, f(w)) <r 27%” and ‘f n.e.’
are V-formulas. Moreover, using the representation of P (resp. K) in A“ quantification over x € P
(resp. y € K) is expressed as quantification over all #! (all 4! < M for some closed function term
M).'® Hence by theorem 3.7 there is a functional ® such that for all z € P,b € N, if (z) € NV
represents r then

Vy € KVz,we XVf: X - X
{ ( fne Adw, f(w)) <2720 Ay < @((z),b) By — Jv < ((z),b) C1)

holds in any b-bounded hyperbolic space (X,d, W), where ®({x),b) depends on the representative
() e NN of 2 € P.
By theorem 1 in [12] we have (since X is a bounded hyperbolic space),

Vn € NJw € X (d(w, f(w)) <27").

Hence the corollary follows.
2) follows like 1) observing that ‘f directionally nonexpansive’ is — formalized in L(A*[X,d, W]) — a
V-formula as well, namely

Vo XA (dx (f(2), fWx (z, f(2),N)) <m dx (v, Wx (2, f(z),N))).
_|

Remark 3.13 Perhaps the most remarkable aspect of corollary 3.11 is that the restriction in the
premise to functions f having a fixed point can be removed from the proof of the conclusion. This is
significant since it is well-known that unless the space X has special geometric properties (e.g. being
uniformly convex), nonexpansive selfmappings (not even of closed bounded convex subsets of Banach
spaces) in general do not have a fixed point, whereas they do have approximate fixed points. Since the
corollary (see its proof) reduces the assumption of a fixed point to that of approximate fixed points,
the assumption becomes vacuous. In [36] we showed how to achieve such a reduction in the concrete
case of a proof due to Groetsch [16]. In application 3.31 below we see that this can can be subsumed
under the general metatheorems proved in this paper.

10For details concerning such representations see [28].
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Application 3.14 Let (X, d, W) be a bounded hyperbolic space.
Let k € IN, k> 1 and (Ay)new C [0,1 — 7] with ic: An = 00 and define for f: X — X,z € X the
Krasnoselski-Mann iteration starting from x by =
o =2, Tpy1 = (1= Ap)Zpn ® A f(2n).
In [12](Theorem 1) the following is proved!!
Vee X, f: X — X( f nonexpansive — nlgrolo d(xn, f(x,)) = O).

The proof given in [12] can easily be formalized in A“[X,d, W] (see the discussion below). As an
application of corollary 3.11 we immediately obtain the following much stronger uniform version (see
the discussion below):

There exists (under the same assumptions on (A,)) for any I,b € IN an n € IN such that

Vm > nVx € XVf: X — X( f nonexpansive — d(2m, f(zm)) <279

holds in any b-bounded hyperbolic space (X,d, W) (i.e. the convergence d(zy, f(z,)) — 0 is uniform
in z, f and — except for b — in (X, d, W)).
Moreover, the convergence depends on (\,,) only via k and a function o : IN — IN such that Vm €
a(m)
IN(m < Y A;) and n is given by a computable functional ®(k, o, b,1) in k, «, b, .
i=0
Proof: As mentioned already, A*[X,d, W] proves the following (formalized version of Theorem 1 in

[12]): if & > 1,A?)", ot IN — IN are such that

- 1 -
(%) VTLE]N()\n S]Rl_z/\nSIR /\i),
i=0
aln) _ -
where > \; represents the corresponding summation of the real numbers in [0, 1] represented by A;,
i=0

then
Vi e N, X, fX*X( f nonexpansive — In € WN(dx (Tn, f(zn)) <m 2_l)),
where (%)’ is a V-formula and ‘dx (2, f(2,)) < 27" is a I-formula. By our representation of [0, 1]

(lemma 2.8) we can assume that Ay <¢-1 An.N'. Hence (the proof of)'? corollary 3.11 yields the
existence of a computable functional ®(k, «,b,1) such that for n := ®(k, o, b, 1)

Y(Am) C [0,1]%°Ve € XVf: X — X((*) A fne. — d(zy, f(z,)) <279

holds in any b-bounded hyperbolic space (X, d, W).
One easily shows (see [12]) that (d(zy, f(2n)))nen is a non-increasing sequence. Hence d(zy,, f(zy)) <
2= implies that

Vm > n(d(@m, f(zm)) <271,

which finishes the proof. —

HFor the case of normed linear spaces X and bounded convex subsets C C X this result is already due to [20]. [12]
even treats spaces of hyperbolic type.

12The proof shows that the only fact about the Polish space K used is that it can be represented by functions bounded
by some fixed function M which for [0,1]°° follows immediately from our representation of [0, 1]. Instead we also could
have used corollary 3.11 directly by referring to the standard representation of [0, 1]*° as a A“-definable compact Polish
space w.r.t. the product metric (see [51]).
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Remark 3.15 In [37](cor.3.15,rem.3.13,3.25) the following explicit bound ®(k, e, b,1) is constructed
(see also the discussion below)

D(k,a,b,1) :=a([2b-exp(k(M +1))] — 1, M)), where
M = (1+2b)-2Y @(0,n) :=a(0,n),a(i +1,n) := &(@(i,n),n), with
a(i,n) =i+ at(i,n), where a*(i,n) := m%x[a(n +3)—7+1].

This bound actually holds even for spaces of hyperbolic type in the sense of [12].
For b-bounded convex subsets of normed spaces this bound was already extracted in [35].
If instead of « one is given a function o’ satisfying
i+a(i,n)—1
Vi,n € N(a(i,n) < a(i+1,n) An < Z As)

then one can replace ot by o/.

Application 3.14 continued:

Corollary 3.11 not only allows one to get a uniform bound on existential quantifiers in the conclusion
but also on universal quantifiers occurring in implicative premises (as we used already for eliminating
the assumption ‘Fiz(f) # 0’). In application 3.14 such a premise is ‘f is nonexpansive’ which can be
written as

ViV ys (dx (f(n), f(y2)) <k (14277 'r dx (y1,42)),

where Vyi<, v (dx (f(y1), f(y2)) <m (1 +27%) -r dx(y1,y2)) itself is a V-formula. Moreover, we can
even treat the fact that (z,) is defined to satisfy

(%) o =, Tpt1 = (1 — Ap)xn @ A f(zn)

as an assumption on some new parameter (z(.y) of type 0 — X which is of degree (1, X) so that our
bounds are uniform in (z(.)). (%) can be written as

(#%) Vi, n(dx (20, 2) <m 277 Adx (Tni1, (1 — Ap)Tn & A f(z0)) <m 277),
where dx (70, 7) <R 277 Adx (Tni1, (1 — A\a)Tn @ A\ f(20)) <R 277 is a V-formula.

Hence we get in total:
There exists a computable functional ®(k,a,b,l) such that for all a € IN,k,b,l € IN,k > 1 the
following holds: Let (\,) be any sequence in [0, 1] which satisfies

¥m € N\, € [0,1 —

(X,d,W) be any b-bounded hyperbolic space, z € X, f : X — X and (x(,)) be any sequence in X
such that

Yy, g2 € X(d(f(y1), f(y2) < (1+27E00) d(yr, o))

and
Vn < ®(k, a,b,1)(d(z0, ), d(@pi1, (1 — \p)Tn ® A f () < 27 20D,

then
Im < (k, o, b, 1) (d(@m, f ) < 271).
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So in order to achieve an approximate fixed point property along (z,,) it is sufficient that f is approx-
imately nonexpansive and x,41 is close to (1 — A,)x, ® A, f(x,) where a bound on the allowed error
terms is given by ®.

Discussion: Application 3.14, in particular, yields Theorem 2 in [12] as an immediate consequence of
our theorem 3.7 and the already mentioned Theorem 1 in [12], whereas [12] uses a functional analytic
embedding argument: Theorem 2 of [12] states that (under the conditions on ()\,) as in application
3.14) for any fixed bounded hyperbolic space the convergence d(x,, f(z,)) — oo is uniform in the
starting point x and the nonexpansive function f: X — X.

The proof of Theorem 1 given in [12] can be formalized already in a small fragment of A¥[X,d, W].
The formalization is particularly simple if one observes that the main part of the proof consists of
establishing a certain inequality which is purely universal and therefore can be taken as an implicative
assumption without changing the overall logical form of the statement. Hence it is not even necessary
to verify whether this inequality actually is provable in A¥[X,d, W] (see [38] for a discussion of this
point).

Extensionality issues of the kind discussed above do not occur since the extensionality of W and
d trivially follows from the (X,d, W)-axioms and the extensionality of f follows from its assumed
nonexpansivity so that, indeed, every nonexpansive object fX7X of type X — X defines a function
f+ X—-X.

As mentioned before, the proof of theorem 3.7 provides an algorithm for actually extracting an explicit
uniform rate of convergence ®. In [35] (for the case of convex subsets of normed linear spaces) and
in [37] (for hyperbolic spaces) this has been carried out by analysing the proof in [4] for a general-
ization of the (non-uniform) convergence results of [20] and [12] to the case of unbounded convex
sets resp. hyperbolic spaces.'® The bound obtained in the general cases yielded when specialized to
the bounded case the rate of convergence stated in remark 3.15 and similar rates with even stronger
uniformity features: it suffices to assume that there exists a point * € X whose iteration sequence is
bounded rather than to assume that the whole space X is bounded (see [36],[37]). Moreover, carry-
ing out the extraction algorithm transforms the proof of non-uniform convergence from [12],[4] into
a new one for the correctness of the uniform rate of convergence which can again be formulated in
ordinary mathematical terms without any reference to logical metatheorems. The relevance of such
metatheorems as theorem 3.7 and its application 3.14 is that they provide in this and other cases
an a-priori guarantee under easy to check logical conditions that such uniform and computable
convergence rates exist already prior to any actual proof analysis.

The proof in [12](Theorem 1) of the (non-uniform) convergence d(x,, f(z,)) — 0 easily extends to the
larger class of directionally nonexpansive mappings introduced in [23] (see [23],[37]). Hence (see appli-
cation 3.16 below) corollary 3.11.2 implies (for bounded X) the uniformity of the convergence even in
this general setting. This gives an explanation (in general logical terms) why the direct construction
in [37], obtained by logical analysis of that extension of the proof from [12] (in the modified form of
[4]) of an explicit uniform rate of convergence was possible. Prior to [37], only the ineffective uniform
convergence in z, f for the case of constant A, := A € (0,1) and in the setting of bounded convex
subsets of normed linear spaces was known due to [23], where a novel functional analytic embedding
technique was used.

Application 3.16 Let (X,d, W) be a bounded hyperbolic space.
A“[X,d, W] proves that for all k € IN, k > 1 and (A)new C [0,1— 3] with > A, = oo the following
n=0

I3 The proof given in [4] is based on a small modification of the proof in [12] for the bounded case.
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holds

vaX, fXHX( f directionally nonexpansive — lim dx (@, f(z,)) = 0).
n—oo

Hence (under the same assumptions on (A, )) there exists for any I,b € IN an n € IN such that
Vm >nVx € XVf: X — X( f dir. nonexpansive — d(zp, f(z,)) <27

holds in any b-bounded hyperbolic space (X,d, W) (i.e. the convergence d(x,, f(x,)) — 0 is uniform
in z, f and — except for b — in (X, d, W)).
Moreover, the convergence depends on ()\,,) only via k and a function o : IN — IN such that Vm €
a(m)
IN(m < > \;) and n is given by a computable functional ®(k,a,b,1) in k, «, b, 1.
i=0

As in application 3.14, it suffices to assume f to be approximately directional nonexpansive:

Yy € XVz € seg(y, f(y) (d(f(y), f(2)) < (1 —27FE@0h) 4y, 2))

to obtain an n < ®(k, a, b, 1) such that d(x, f(z,)) < 27
However, in contrast to the situation in application 3.14 we cannot weaken the requirement that

To =T, Tpt+1 = (1 - )\n)xn 2 )‘nf(xn>
to an approximate form (see the discussion below).

Proof: Exactly as the proof of application 3.14. Since f is only assumed to be directionally nonex-
pansive, we cannot derive full extensionality of f but have to rely on the quantifier-free extension-
ality rule. That rule, however, is sufficient to formalize the adaptation of the proof of theorem 1
from [12] given in [37]: inspection of the proof shows that extensionality of f is only used to prove
dx (f(xn), f(@nt1)) <mr dx(Zn,Zns1) which follows from the directional nonexpansivity of f and
f(@ns1) =x fF(Wx(@n, f(n), An)). The latter can be proved in A“[X,d, W] from the provable (by
the explicit recursive definition of (z,,)) fact that z,41 =x Wx (@, f(zn), S\n) by an application of
QF-ER. 4

Remark 3.17 In [37] it is shown that the bound mentioned already in remark 3.15 actually also
holds for directionally nonexpansive mappings.

Discussion: Since the need to use the quantifier-free rule of extensionality in the proof above requires
To =X Ty Tn4+l =X (]- - S\n)mn @ 5\nf(fl:n)

to be proved rather than assumed as a hypothesis on some parameter z(, we have to define in
A“[X,d, W] the sequence (z,) explicitly by recursion from z, f, Ay by means of an appropriate
recursor operator of A¥[X,d, W]. As a result we cannot treat the recursive equations as implicative
assumptions and therefore cannot relax the equality by an approximate equality as in application
3.14. In logical terms this corresponds to the fact that the system A“[X, d, W] is not closed under the
deduction theorem for axioms which are used to prove premises of the quantifier-free extensionality
rule (see [33]). Rather than being a disadvantage of the logical approach this restriction is necessary
which can be explained in ordinary mathematical terms as follows: the need to establish ‘enough
extensionality’ to formalize the proof prevents us from permitting an error term in the Krasnoselski-
Mann iteration which in general would be incorrect as f can even be discontinuous outside of line
segments seg(z, f(z)) (see [37] for an example).
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Remark 3.18 In this paper we do not consider the condition of completeness on metric spaces since
it is never needed in our applications. Let us, however, indicate how we could treat the subclasses of
complete metric and hyperbolic spaces in our setting. Within A“[X| d] one can introduce the comple-
tion of X by considering all Cauchy sequences (z,) C X with fixed Cauchy modulus. Quantification
over such sequences reduces to quantification over all elements 7% of type 0 — X (without chang-
ing the logical complexity) by adapting the construction Z from [28] (used there for Polish spaces)
which has the properties that

1) If Vn € N(dx (z(n),z(n+ 1)) <gr (5-27"71)), then Vn(z(n) =x z(n)),
2) For all 2°7% : Vn € N(dx(Z(n),Z(n+ 1)) <g (7-27""1).
¥ can be defined in A“[X,d] as follows

Z(n) := { z(n), if Vk < n([dx (z(k), z(k +1))](k+ 1) <q (6-27F1)),
’ x(k) for the least k < n s.t. —[...] otherwise.

So quantification Vo € X A(x) over the completion X of X is expressed as Va?=X A(Z), where A is
an X-extensional property

V"X 07 (=5 y A Az) = A(y)).

Here R
=3y =dx(2,y) =R Or,

where
dx ("%, 427 %)(n) =0 [dx (&(n +5),§(n + 5))](n + 5)

is the extension of dx to X.
A function F': X — X is given by an = ;-extensional functional f of type 0—-X)—»0—X.

We now discuss the case of (real)** normed linear spaces (X, ||-||) and bounded convex subsets C' C X.
Things are more complicated here as C' itself is not a normed space. One way to cover this situation
would be to use the characterization due to [47] of convex subsets of normed spaces in the setting
of convex metric spaces in terms of further conditions on the function W. The additional conditions

needed are
(I) that convex combinations do not depend on the order in which they are carried out and
(IT) that the distance is homothetic.

In [47] it is proved that if X is a convex metric space satisfying (I),(II),!> then there is an isometry
from X onto a convex subset of some normed space E which preserves convex combinations. Over
the W-axioms (i)-(iv) one can formulate (I),(II) equivalently as purely universal conditions. So by
just adding these conditions, our proof of theorem 3.7 extends without any change to this setting.
However, the construction of the supporting space F is quite complicated and F is not fully uniquely
determined by C. Moreover, a metatheorem covering normed linear spaces rather than only bounded

For simplicity we restrict ourselves in this paper to linear spaces over IR. However, we don’t expect any significant
problems in covering the complex case as well.
15Tn the presence of (I),(IT), the conditions (ii)-(iv) become derivable.
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convex subsets can be expected to have many more applications then the ones in fixed point theory
treated in this paper. We first prove a metatheorem for general normed spaces which shows that
(under logical conditions similar to the ones in theorem 3.7) one can get bounds uniform in norm-
bounded parameters. This setting already allows us to establish uniformity for bounded closed balls.
In a further theorem we will then ‘add’ an arbitrary bounded convex subset via its characteristic
function. Here we will have again to consider extensionality issues as we only can stipulate weak
extensionality for that characteristic function. Nevertheless, our theorem covers an application to a
theorem of [16] obtained in [36].

The theory A“[X, || - ||]:
AY[X, ]| - ||] results from A% by

(i) extending A“ as before to the larger set TX of all finite types over the two ground types 0 and
X,

(ii) adding constants Ox, 1x of type X,

(iii) adding new constants +x of type X — X — X, —x of type X — X, -x of type 1 = X — X,
Il - |lx of type X — 1 together with the axioms (writing as usual x +x y,  —x v, ||| x and
a-x x (or even ax) for +x(z,v), +x(z,—xy), || |x(z) and - x (o, x)):

(0) The (purely universal) vector space axioms for +x, —x, -x,0x, formulated with the
equality relation =x between objects of type X as defined below,

(1
(2
(3

(4) Vo', 2%, y* (laz —x ayllx =r |elr ‘® |2 —x yllx),
(

(

(

)V (Hx —x zl|x =R Or),

) v

)V

)

5) Ya! »ﬂl Y (laz —x Bzllx =r o —r Blr & [l2]x),
)V

) v

) v

v (lz —x yllx =r ly —x zllx),

Xy %, 2N (|2 —x 2llx <r 2 —x yllx +r Iy —x 2llx),

6) Vo X, yX uX o ([(z +x y) —x (uw+x v)|x <k [z —x ullx +r Iy —x vllx),
7 (||( z) —x (=xy)lx =r llz —x ylx),
(8 v (lzlx —w= lylxIr <m llz —x yllx)-
Still only equality at type 0 is a primitive predicate.
X =x y¥ is defined as lz —x yllx =r Om. Equality for complex types is defined as before as

extensional equality using =y and =x.

Remark 3.19 A remark similar to remark 2.15 applies here: The additional axioms of A“[X, || - ||]
express (modulo our representation of IR and [0, 1] sketched above) that:

1) (X,+x,—x,0x) is a (real) linear space with a pseudo-norm || - || x

2) 1y is an element of norm 1 in X .16

16 This is equivalent to stating that the normed space is non-trivial, i.e. contains an element x whose norm is strictly
positive. We then can define 1x := Telx H for such an z to get an element of norm 1.

21



The reason for the somewhat non-standard set of axioms (0) — (8) is as follows: since the only
equality relation =x we have for X-objects is defined in terms of +x,—x,| - ||x we have to prove
that it is reflexive, symmetric and transitive and that the vector space operations and the norm are
=x-extensional. The equality axioms follow immediately from (1) — (3).

(4), (5) imply the extensionality of the scalar product

va1)617xX’yX(a - R B/\J) =X Y = ar =x By)
(6), (7) imply the extensionality of +x and —x
VxX,yX,uX,vX(ac =xUANY=xv—=>T+xy=x u+x v)
VmX,yX(x =x Y = —XxT =Xx —Xy).
(8) yields the extensionality of || - || x
VX, y¥ (2 =x y = [lz]lx =r [lylx)-

Hence || - || x is a norm on the set of equivalence classes generated by =x and we can now prove all
the usual basic vector space laws and properties of the norm. In particular, the usual axioms for the
norm are derivable. Conversely, the axioms (0) — (8) all hold in any (real) normed linear space.

An alternative (but equivalent) approach would be to have just the usual norm axioms and to prove
first the =x-properties and the axioms (0) — (8) relying heavily on the extensionality rule QF-ER
extended by
AO —s=Rrt
Ao —>VxX(s~Xac =x1-x l‘)

(Ao quantifier-free)

which does not follow from QF-ER as the ‘official’ equality relation for type-1 objects is =3 .

As before we don’t form = y-equivalence classes explicitly, but talk about xzX,yX together with
requirements that e.g. functionals fX =% respect this equivalence relation, i.e.

V:L’X,yx(x =xy— f(z) =x f(y))

in order to be entitled to refer to f as denoting a function X — X. Also as before it is important to
observe that due to our weak (quantifier-free) rule of extensionality we in general only can infer from
a proof of s =x t that f(s) =x f(¢). This restricted form of extensionality is crucial for our results
to hold (see the discussion at the end of this section).

The theory A“[X, || - |, 7] results from A¥[X,| - ||] by adding a new constant n* of type 1 together
with the axiom (writing more short || - || instead of || - || x)

T+xy

O, (el ol <t [ S5 w20 eyl <mh).

Remark 3.20 (9) expresses that 7 is a modulus of uniform convexity of X which normally is formu-
lated as follows:

" T+ - -
(9%) V™ y VR ([l lyll <m 1w A X yH >r1-27"" 5 o —x yl| <m 27").
(9*) trivially implies (9). Conversely, A“[X,|| - ||,n] proves (9*) with 7(k) := n(k) + 1 using the
continuity of the norm and the scalar product which can be derived in A“[X, ||-||]. The reason why we

use the formulation (9) is that it is logically equivalent to a purely universal statement since <g€ 39
and <ge I9.
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The theory AY[X,(-,-)] results from A“[X, ] - |] by adding the so-called parallelogram law as a
further axiom (10) to (1) — (8)

(10) Yo,y (2 +x yllx 4w 2z —x yllx =r 2r ® (2% +r lyl%),

where (-)? is a functional of type 1 — 1 which represents on the representations of real numbers the
function = — 22 on IR.

It is well-known that a norm satisfying (10) allows one to define an inner product function (-,-) :
X x X — IR: define a new functional (-, ) x of type X — X — 1 by (writing (z,y)x for (-, ") x(z,v)):

(0 4y =1 ()m m (e wlBe —m le —x ).

(+,-)x represents an inner product on the space (of =x-equivalence classes of) X and the norm || - ||x
can be recovered from (-, -)x in the usual way

(+4) llzllx == sqrt({z, z)x),

where sqrt! =1 represents the square root function IRy — IR, on the representation of IR (which can
easily be defined by a closed term of A“).

Conversely, whenever a norm || - || is given by a (real valued) inner product via (++) then the norm
satisfies (10) and the inner product can be recovered from that norm by (+). The proofs of these facts
are all completely elementary (see e.g. [55]) and can be easily carried out in our formal setting. Hence
A“[X, (-, -)] contains a proper axiomatization of the notion of a real inner product space (pre-Hilbert
space).

Definition 3.21 We say that a sentence of L(A“[X, || - ||]]) holds in a nontrivial (real) normed linear
space (X, ||-||) if it holds in the models'” of A“[X, ||-||] obtained by letting the variables range over the
appropriate universes of the full set-theoretic type structure S¥X with the sets X, N as the universes
for the base types X and 0, where Ox is interpreted by zero vector 0% of the linear space X, 1x by
some vector @ € X with |la|| = 1, +x is interpreted as addition in X, —x is the inverse of x w.r.t. +
in X, -x is interpreted as Ao € NN, z € X.r, - , where r, is the unique real number represented by
« and ‘- refers to the scalar multiplication in the IR-linear space X. Finally, || - || x is interpreted by
Az € X.(||z]])o, where (1), for r € Ry as in definition 2.9.

In A[X, || - ||] we can extend the relation x <, y from types p € T to p € T*:
Definition 3.22 For functionals z*,y” of type p € TX define x <,y by
r<oy =z <y,

r<xy:=|z|x <m [lyllx,
T <,y =2 (2(2) < y(2)).

Remark 3.23 <x is not a partial order since it is not antisymmetric.

Theorem 3.24 1) Let o be of degree 1 and p be of degree 1 or (1, X). s is a closed term of type
o — p and By, C3 are as in theorem 3.7.
If
VzoVy <, s(z)(VuOBv(z, y,u) — WC5(x, y,v))

17 Again we strictly speaking have to use the plural since the interpretation of 1x is not uniquely determined. What
is meant is that the sentence holds no matter how one interprets 1x as long as it is interpreted by an element having
norm 1.
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is provable in A“[X, | - ||], then one can extract a computable functional ® : S, — IN such that
for all z € S,
Yy <, s(z) [Vu < ®(z) By(z,y,u) — Fv < &(x) C3(x, y,v)}

holds in any non-trivial (real) normed linear space (X, | - ||).
The computational complexity of ® can be estimated in terms of the strength of the A“-principle
instances actually used in the proof (3.8 above applies as well, see also remark 3.26 below).

2) For uniformly convex normed linear spaces (X, || - ||,) with modulus of convexity n statement
‘1)” holds with A“[X, |||, n] and (X, ||-||,n) instead of A“[X, ||-||]] and (X, ||-]|). Now n := ®(z,n)
is given by a computable functional ® in z and a modulus of uniform convexity n of (X, || -|)
(which interprets the constant ‘n’).

Analogously for (real) inner product spaces (X, (-,-))
The comments about tuples and finite conjunctions of premises hold here as well.

18

Corollary 3.25 Let C3 be as in theorem 3.24. If
VxOVyX(HyHX <gr lg — EivOCg(:r,y,v))
is provable in A“[X, || - ||], then one can extract a computable function ® : IN — IN such that
Vo € Ny € X (|lyl| <1 — Fv < ®(x) C3(z,y,v))
holds in every non-trivial (real) normed linear space (X, || - ||).

Proof: Follows from theorem 3.24 with s := Az.1x since |ly|]|x <r lgr can be expressed as y <x 1lx.
4|

Remark 3.26 Theorem 3.24 also applies to the case where 27 has a type o of degree (0, X) in the
following way: let us first assume that 0 = X. Quantification over all X can be written as ‘Vk'Vz <y
(k)r-x1x’ so that theorem 3.24 yields a computable functional ®(k) in k. This can be transformed into
a functional ®(x) in z if we have an operation M : X — IN such that M(z) > ||z||. Even for effective
normed spaces (X, || - ||) like IR such an M will not be computable as a function on X (for X = R
the computability of M would imply its continuity and hence M would be constant). However, it will
usually be computable in a representative f, € INN of z in the sense of the standard representation
of Polish spaces as discussed further above. So for computationally meaningful (separable) normed
spaces, there will be a computable M? (usually of low complexity) such that M(f,) > ||z| whenever
fz 1s a representative of € X and we can take ®(M(f,)).

For 0 = 0 — X we can write quantification over 2°~% in the form Vg'Vz <¢_x Mk.(9(k))R -x 1x’
and theorem 3.24 yields a computable ®(g) in g. Using M we can replace g in ®(g) by Ak. M (fyx))-

The theory A“[X, | - ||,C]:
AYIX, | ||, C] results from A“[X, | - ||] by adding new constants by of type 0, cx of type X and x¢
of type X — 0 together with the axioms

(11) VaX(xc(x) =0 0 = [Jz]lx <r (bx)r(=1 Ak.j(2bx,0°)),

(12) Vz*,y*, ol (xc () =0 xc(y) =0 0 = xc (1 —r @) x T4+x & x y) =0 0),

8Inner product spaces are uniformly convex with modulus (expressed in terms of ¢ € (0, 2] rather than 27%) n(e) :=
1—(1- (/2022

24



(13) xe(ex) =0 0.
The theories A“[X, || - ||,n, C] and A“[X, (-,+), C] are defined analogously.

Note that although the vector space operations and || - || x are provably extensional (w.r.t. =x,=R),
the characteristic function x¢ is not. However, by QF-ER we have the following weak form of yc-
extensionality
Ao —s=xt

Ao — xco(s) =0 xc(t)
(see also the discussion at the end of this section).
The axioms (11) —(13) express that the set C' := {z € X|3y € X (r =x yAxc(y) =¢ 0} is a non-empty
b-bounded convex subset of X.

for quantifier-free Ag

In the following ‘Vz® A(zx)’, V17 A(f)’, VfX7C A(f) and ‘VfC7C A(f) abbreviate

VX (xc(zX) =0 0 — A(x)),

VX (VY (xe(f ( )) =0 0) = A(f)),
VX=X gvyi xc(f(y)) =0 0) = A(f)) and

VX=X (Vg ) =0 0 = xc(f(x)) =0 0) — A(f)),

@), i xe(@) =00
where f(z) = cx, otherwise.

Analogously for the corresponding 3-quantifiers with ‘A’ instead of ‘—’.

This extends to types of degree (1, X, C) where p is of degree (1, X, C) if it has the form 7 — ... —
T, — C, where 7; has degree 1,7, = X or 1; = C.

Remark 3.27 If one defines
P =onx 87 =¥ (xe(@) = 0= flo) =x g(@))
then for all X=X ¢X—=X the following provably holds
f=cox fand f=cx g+ f=xox7.
Remark 3.28 Note that for p of degree (1, X, C) a quantifier ‘Va*’ abbreviates
va? (B(x) —...),

where p’ is is the type of degree (1, X) resulting from p by replacing everywhere ‘C’ by ‘X’ and B is
(logically equivalent to) a V-formula.

For f€=¢ (ie. for fX=X satisfying VaX (xo(x) =0 0 = xc(f(z)) =0 0)) ‘f nonexpansive’ is the
V-formula
v,y (xe(x) =0 0 =0 xc(y) = /(@) —x fW)llx <w [z —x ylx).

Definition 3.29 We say that a sentence A holds in the non-trivial real normed linear space (X, || -||)
and the non-empty bounded convex subset C' C X if in addition to the requirements in definition 3.21
we stipulate that y¢ is interpreted as the characteristic function for C, cx by some arbitrary element
in C and bx by some integer b € IN with b > ||z|| for all z € C.
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Theorem 3.30 1) Let o be of degree 1 and p be of degree 1 or (1, X) and 7 be a type of degree
(1,X,C). s is a closed term of type 0 — p and By, C3 are as in theorem 3.7.
If
VzoVy <, s(z)VzT (Yu’ By(z,y, z,u) — 30°Cs(z,y, 2,v))

is provable in A“[X, || - ||, C], then one can extract a computable functional ® : S, x IN — IN
such that

Yy <, s(x)Vz" [Vu < ®(x,b) By(z,y, z,u) = Jv < &(x,b) C3(z, v, z,v)]

holds in any non-trivial (real) normed linear space (X,| - ||) and any non-empty b-bounded
convex subset C' C X (with ‘bx’ interpreted by ‘b’).

The computational complexity of ® can be estimated in terms of the strength of the A“-principle
instances actually used in the proof (3.8 and 3.26 apply as before).

2) For uniformly convex normed linear spaces (X, || - ||, n) with modulus of convexity n statement
‘1)’ holds with A“[X, |- ]|, C,n) and (X, |||/, C,n) instead of A¥[X, ||-||,C) and (X, ||-||, C). This
time ® is a computable functional in z,b and a modulus n' of uniform convexity for (X, || - )
(which interprets the constant ‘).

Analogously for (real) inner product spaces (X, (-, -)).
The comments about tuples and finite conjunctions of premises hold here as well.

Application 3.31 Let (X,| - ||,n) be a (non-trivial) uniformly convex normed linear space with a
modulus of uniform convexity 7 and C' C X a non-empty bounded convex subset.
In [16] it is proved (extending earlier results from [40] and [6]) that for all (A,)nenw C [0,1] with

3" An(1 = Ap) = oo the following holds!®
n=0

VeeC,f:C — C'( f nonexpansive A Fiz(f) # 0 — ILm d(n, f(xn)) = O).

The proof can easily be formalized in A“[X, || - ||,n, C]. Since we cannot prove in

AY[X, ] - ||,n, C] that xx satisfies the extensionality axiom we have to rely on the weak quantifier-
free extensionality rule to prove by induction on n that x,, € C using that 2o = z and z,41 =
(1=Xp)Zn + An f(z,) provably hold. As an application of theorem 3.30 we get (similarly to corollary
3.11 and application 3.14):

One can extract a computable functional ®(I, 3,b,n) such that for any normed space (X, || - ||) with
modulus of uniform convexity 7, for any b-bounded convex subset C' C X and any sequence (\,) in
[0, 1] such that
B(m)
Vm e IN(m < Y Ai(1—\))
i=0
the following holds:

Vivm > ®(1, 8,b,n)Ve € CVf : C — C( f nonexpansive — d(zp, f(z,) < 27

(i.e. the convergence d(x,, f(x,)) — 0 is uniform in z, f and — modulo the bound b resp. g —is
also uniform w.r.t. to C and (A,)). We also see (as in corollary 3.11) that the assumption of the

19Note that the condition on (\,) is less restrictive than the conditions in application 3.14.
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existence of a fixed point is no longer needed. Although the latter follows from the fundamental
Browder-Gohde-Kirk fixed point theory for uniformly convex Banach spaces X and closed bounded
convex subsets C, this is of significance since we don’t need this deep result in our approach at all. In
[36] we carried out the extraction algorithm behind the proof of theorem 3.30 applied to the proof in
[16] and constructed an explicit uniform rate of convergence together with a completely elementary
proof of its correctness as predicted by this application of theorem 3.30. The bound extracted in [36]
is

(1, 3,b,m) == B( [3([; +1)- Qn(lHlog(bH)]) ] 21,11 ),

where 7 is as in (9*) above and b > diam(C). For the special case of A, := % see also [25] and [34].

Final discussion on extensionality: As we emphasized several times, our systems must be based
on weak extensionality (in the sense of QF-ER) only, whereas full extensionality has to be derived
from the mathematical axioms of our theories if needed. We saw already in application 3.16 that we
otherwise would get false consequences. In fact, suppose we could prove e.g. in A“[X,d] that

VXXX g X (2 =x y = f(2) =x f(y))

which can be written as
VX7 XveX y¥vk € NIn € N(dx(z,y) <r 27" = dx (f(2), f(y) <m 27"),

where dx (z,y) <g 27" (resp. dx(f(z), f(y)) <r 27F) is a V-formula (resp. an 3-formula), then
theorem 3.7 would imply the existence of a computable function g : IN x IN — IN such that

VXX e Xy Xk € N(dx(z,y) <m 279%Y — dx(f(2), f(y) <m 27")

holds for any b-bounded metric space (X,d), i.e. we would get that all functions f : X — X are
equicontinuous with a common modulus of uniform continuity which, of course, is false for general
b-bounded spaces (X, d).

Similarly, if we add a new constant KX—~% to the system together with the axiom stating that K is
extensional: if the resulting system still satisfies theorem 3.7 then we can use theorem 3.7 to infer
that K is uniformly continuous on X. Hence theorem 3.7 can only hold if in fact K is assumed
already to be uniformly continuous (which implies the extensionality of K). That is why we had to
prove full extensionality of e.g. dx, Wx and fX7X from the dx, Wx-axioms and the assumption
on f being nonexpansive implying the uniform continuity of dx, Wx and f. For the case of normed
spaces, theorem 3.24 implies uniform continuity on the unit ball for all provably fully extensional
functions f : X — X or f: X — IR. Again full extensionality of || - ||x, -x was derived from their
axioms implying in fact the uniform continuity. This is related to the notion of ‘uniform families of L-
structures’ which plays in important role in the model theory of Banach spaces (see e.g. [17]). In our
proof theoretic approach based on weak extensionality, however, we do not have to make such strong
uniform continuity assumptions if the only use of extensionality we make is that provided by QF-ER.
E.g. in application 3.16 we did not assume the continuity of our directionally nonexpansive mappings
but could, nevertheless, apply theorem 3.7 since QF-ER was enough to formalize the proof. In addition
to the effective nature of our results, this is yet another benefit of the proof theoretic approach to
functional analysis and there does not seem to be any natural model theoretic counterpart to the
weak form of extensionality formalized by QF-ER.

In theorem 3.30 and application 3.31 we have a further instance of the need to distinguish between
full extensionality and weak extensionality: if we would have full extensionality of y ¢, then we could
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use theorem 3.30 to infer results of the kind that points x € X close to C' would ‘behave’ similar to
points in C. However, unless C' is topologically very simple (e.g. a closed ball, where we indeed could
express C directly without any use of x¢), this will certainly not be correct in general. Nevertheless,
this did not prevent us from making application 3.31 since only QF-ER was used in connection with

Xc-

4 Proofs of theorems 3.7,3.24 and 3.30

The proof of theorem 3.7 is based on an extension of Spector’s [52] interpretation of classical analysis
A¥ by bar recursive functionals (T+BR) to A“[X,d, W] and a subsequent interpretation of these
functionals in an extension of the Howard-Bezem strongly majorizable functionals to TX.2° Spec-
tor’s work (presented in full detail in [44]) generalizes Godel’s well-known functional (‘Dialectica’)
interpretation for intuitionistic and — via Gédel’s negative translation as intermediate step — classical
arithmetic by the primitive recursive functionals R, to A“ by showing that the functional interpreta-
tion of the negative translation of DC can be realized by his so-called bar recursive functionals defined
— in a version of simultaneous bar recursion — as follows:

Definition 4.1 Let p = p1,...,pm and 7 = 71,..., 7% be tuples of types in T.
A¥ 4+ (BR) is the extension of A“ obtained by adding constants B2T for simultaneous bar recursion
with the axioms

(BR2T)
{ i(y.n0) <o n — BY(z, z,u,m,y) =r, 2:(n,y)

2 (g,m) >0 n — BY (2, z,u,m,y) =, wi(ADL. BLZ (2, z,u,n', ;7 % D, n, y)

fori=1,...,k,
1.0\ __ yj(k), ifk<n
&) (k) =, { 0P3, otherwise
and
yj(k), f k<n
(7im*D);(k°) =,, { Dj, ifk=n
077, otherwise
forj=1,...,m.

AY[X,d, W]+ (BR) results if we add to A“[X, d, W] the constants B2 together with (BR27T) for all
tuples of types p, T of the extended set of types TX.

Remark 4.2 As already discussed in connection with recursion, also simultaneous bar recursion
can be reduced to ordinary bar recursion in our weakly extensional setting by contracting tuples of
functionals into single functionals using appropriate coding functionals. The absence of a pairing
function jx : X x X — X makes this technically somewhat involved as we would have to use the
second of the options presented in [54](1.6.17) and used in [44]. This is the reason why we prefer to
take simultaneous bar recursion (as we did in the case of primitive recursion) as a primitive concept.

20We will treat the case of A¥[X,d, W] in detail. For A“[X,d] the proof then simply is obtained by disregarding all
issues involving W. For A“[X,d, WCAT(0)] one only has to observe that the additional axiom CN* is purely universal
as we did in section 2.
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In [52],[44] the following rule is proved for sentences A:*!

A A
= one can construct a tuple of closed terms t of A“+(BR) s.t.
A+ (BR) FVy (A)p(t, y),

where A’ is the negative translation of A and (A")P = 3aVy (A")p(z,y) is the Godel functional
interpretation ([14]) of A’.

Remark 4.3 Spector actually verified the functional interpretation (A’)p(t,y) of A" in a quantifier-
free fragment of A“+(BR) (without the use of DC) but this is not needed for our purpose.

We now indicate how Spector’s result can be extended to A“[X,d, W].

Lemma 4.4 Let A be a sentence in the language of A¥[X,d, W]. Then the following rule holds:

AY[X,d, W] A
= one can construct a tuple of closed terms t of A[X,d, W]|+(BR) s.t.
A“[X,d, W]+ (BR) - Vy (A")p(t,y).

Proof: Spector’s proof extends to A“[X,d, W] by observing the following points:

1) As in A“ all prime formulas of A“[X,d, W] are of the form s =¢ ¢ and hence decidable. As a
consequence of this, one can construct for any quantifier-free formula Ag(a) (having only the
free variables a) a closed term ¢4, such that

AY[X, d, W] F Va(ta,(a) =0 0 <> Ag(a)).

2) Using 1) the soundness of negative translation and subsequent functional interpretation for the
logical axioms and rules, the defining equations for I, 3, R, QF-ER and QF-AC extend to the
new set of types T without any changes (using our extended closed terms 0” at a few places).
Here we use that =x is purely universal and hence =, is purely universal for all types p € TX.

3) The functional interpretation of the negative translation of the axiom schema of induction easily
extends to all instances over the extended language and types TX using R, for all p € TX.
As for the types T, the verification becomes particularly perspicuous if one treats IA in the
equivalent form of an induction rule IR (see [54](3.5.5(iii))).

4) The functional interpretation of the negative translation of the axiom schema of dependent
choice DC easily extends to all instances over the extended language and types TX using B2~
for all type tuples p, T € TX.

5) The functional interpretations of the negative translations of the axioms (1)-(8) are trivially
equivalent to these axioms themselves as they are all purely universal and don’t contain V.

_|

We now extend Bezem’s [3] type structure of hereditarily strongly majorizable functionals (which
relies on a variant of Howard’s [18] notion of majorizability) to all types of TX:

21The constructive w-rule used in [44] for the conclusion is actually superfluous, see footnote 3 in [11].
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Definition 4.5 The extensional type structure M*X := <M/’>peTX of all hereditarily strongly ma-
jorizable set-theoretical functionals of type p € TX over IN and a set X is defined as
My := IN, ns-majom :=n >m A n,méeIN,
Mx =X, z¥*smajy r := 2%, € Mx,
¥ smaj,_,, r =
2,3 € MM Ay y € M, (y* smaj, y — o*(y°) smaj, 2 (y), 2(y))
M., = {xEMéWT ’ Jz* e MM ¢ s—majT_,px} (p,7€ T) .

Here M ;VIT denotes the set of all total set-theoretical mappings from M, to M,.

Lemma 4.6 1) z*,x € Méwf Az* s-maj x — x* s-maj ¥ Ax*,x € M,_,,.

2) Let p=p1 — ... = pr — 7. Then
¥ s-maj, T <>

o

Vyi,yn, -y ue (AN (UF ssmaj,, yi) — ¥yt ...y smaj, ' yn . Yk, 2YL - k).

=1
Proof: ‘1)’ is trivial, and ‘2)’ follows by induction on k using heavily ‘1)’. =

There is an obvious syntactic counterpart of s-maj formulated in £(A“[X,d, W]) which we denote by
‘s-maj’ as well: for z*,y” we define s-maj, as follows

r* s-majyx =" > x,
r* ssmajy x :=0=¢ 0,
r* s-maj,_,, v :=VYy*,y(y* smaj, y — r*y* s-maj, z*y, vy).

Lemma 4.7 Let (X,d, W) be a non-empty bounded hyperbolic space. Then M“X is a model of
A®[X,d, W]+(BR) (for a suitable interpretation of the constants of A“[X,d, W]+(BR) in M“X).
Moreover, for any closed term ¢ of A“[X,d, W]+(BR) one can construct a closed term ¢t* which does
not contain Wx and dx such that

MY = t* smaj t.

Proof: The constants of A“+(BR) — which are characterized by their defining axioms — are interpreted
as in [3] except that they are now taken over the extended set of types T where Mx := X. For the
new constants we take (writing simply M for M«X)

bx)m :=b € IN for some bound b on d,

dX}M = )‘x,y € X.(d(l’,y))o,

[

[0x]am = c for some ¢ € X,

[

[Wx|m o= Az,y € Xda € NN W(z,y,rs),

where (), is the construction from definition 2.9 and r5 € [0, 1] is the unique real number represented
by & (see lemma 2.8).

In order to show that all these functionals are in M“*X we have to construct majorants. For the
constants of A“+(BR) this is done (using lemma 4.6) as in [3] (see also [26])?2, but we have — in order

22Begzem uses a variant of (BR) based on types for finite sequences y(n) for y°# n® (and uses in z(y;n) instead
of our version of Z,7 the variant where (y0,...,y(n — 1)) is continued constantly with y(n — 1)). In the presence
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to deal with the new types — to extend the functional max, to the new types so that we still have the
crucial property??

Va*, z,y*, y(r* s-maj, x A y* s-maj,y — max,(z*,y*)s-maj, max,(z,y), z,y).
Because of the trivial definition of s-maj for the type X we can simply define
maxy (2%, y%) = 0x.
For complex types p — 7 we define

max,-(z,y) := Av’. max, (v, yv).

For types 0 — p with p = p; — ... — pp — 7, where 7 = 0 or 7 = X, we define functionals (-)™ of
types (0 — p) = 0 — p by :

M (y0) == M2 max, {x(i,v) |i=1,...,y}
One easily shows that the following facts hold in M“X

(M) { ()M S_ma.j (_)JVI,

Vi, y € Moy, (Vn € N(z(n) ssmaj,y(n)) — 2 s-maj, ,, 2,y).

Using the extended max, and ™ the construction of majorants for R, B easily extends to the new
set of types TX. For B one needs that M“¥X satisfies the axiom of dependent choice which follows
from Mo = My_,, (for all p € T*) which in turn is a consequence of (M), where we use DC on the
meta-level.

For the new constants k := bx,0x, dx, Wx we construct closed terms k* of A¥[X,d, W] as follows:
by == bx, 0% :=0x, d% =A™,y . M(bx), W* := XX, y*, al.0x,

where M is defined in definition 2.9.
One easily shows (using lemma 2.10.3 and 2.10.5 for dx) that?*

MY = kB s-maj k.

Since t* s-maj,—, t and s* s-maj, s implies that ¢*s* s-maj, ts the lemma follows. —

of sequence codings, sequence types can be defined. However, we don’t have a pairing function for the type X and
therefore want to avoid sequence types altogether. This is achieved by our formulation (following e.g. [44]) for which
Bezem’s majorizability construction can easily be adapted (see [26]). The proof becomes particularly perspicuous if one
proves (as done in [26]) majorizability first for the variant of s-maj which at sequence types 0 — p is defined pointwise
and then shows how to transform (hereditarily) pointwise majorants into majorants (using the construction 2™ below
for = of type 0 — p), see [26, 27].

231t is only this property of the functional max, which is used. Instead of max, one could have also used e.g. -+, or
similar functionals.

24Since the use of lemma 2.10 to show that [d%]as s-maj [dx]as relies on the special choice of the representation of
the real number d(z,y) provided by the construction (-)o used in [dx]as, we can not prove that

AY[X,d, W] F d% s-maj dx.
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Lemma 4.8 Let A be a sentence in the language of A¥[X,d, W]. Then the following rule holds:

A°[X,d, W]+ A
= one can construct a tuple of closed terms ¢ of A“[X,d, W]+(BR) s.t.
MK =y (A)p(ty)-

Proof: Follows from lemmas 4.7 and 4.4. -
Proof of theorem 3.7:

A X, d, W] FVaoVy <, s(x)Vz" (VuOBv(x,y, z,u) — WC5(x, vy, z,v))
implies

AYX,d, W] FVzVy <, s(x)Vszlu,v(Bv(x,y,z,u) — C’g(z,y,z,v))

Since the formula
BV(xv Y, z, u) — CH (‘T7 Y, z, U)

prenexes into a I-formula, (partial) functional interpretation of (the negative translation of)
VaoVy <, s(x)Vz" Ju, ’U(Bv(l‘,y, z,u) = C3(z,y, z,v))
yields
U, VVaVy <, s(2)V2" (By(@,y,2,U(2,y,2)) = Cs(x,y, 2,V (2,y, 2)))

Hence by lemmas 4.7,4.8 there exist closed terms t};,t},, tr, tv (where tj;, t{, do not contain Wx, dx)
such that
MEX { tf s-majty Aty s-majty AVzVy <, s(x)Vz"
(Bv(l‘, Y, %, tU(z7 Y, Z)) —C3 (I‘, Y, z, tv(l‘, Y, Z))) .

o is a type of degree 1. Define a functional M?7¢ by?®

M(z) := 2™ := M\’ maxo{z(wy, ..., wy) : /\ (w; <ovi)}.

<.

i=1

Then
MK =V (2™ s-maj ).

Moreover, for a closed s* such that s* s-maj s, we get using that for p € T
(+) z* ssmaj,x Ax >,y — =" s-maj,y,

the following
MN EV2TVy <, s(z)(s*(2™) s-maj y).

Since 27 has a type 7 of degree (1, X) we have (due to the trivial definition of s-majx):
MK =707 s-maj, 2).
So in total we obtain:

X u { VaoVy <, s(x)VzT (t*U(xm7s*(a?m),OT) >0 tu(z,y, 2)
AL (@™, s*(2™),07) >0 ty (2,y,2)).

25For ¢ = 1, this coincides with the previously defined z .
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Hence, taking ¥(x) := max(tf,(z™, s*(z™),07), t}, (2™, s*(z™),07)),

MK = VaoYy <, s(x)V2" Vu < U (x) By(x,y, z,u) = Jv < ¥(z) C3(z,y, 2,v)].
Since ¢}, t}, do not contain Wy, dx, the functional [¥]r depends on (X, d, W) only via the interpre-
tation of the constant bx by some upper bound of d and the constant 0x by some arbitrary element of
X. We can treat by in ¥ as a variable (also called b) and define a functional ¥/ (b°, 27) := (¥[b])(z).
Then for any hyperbolic space (X, d, W) whose metric is bounded by b, (*) holds with ¥/ (b, z) where
Ox in ¥’ is interpreted by an arbitrary element of X. We now show that also the latter dependency

can be eliminated:
For p € TX we define p inductively as follows

0:=0,X:=0,p7:=p— 7,
i.e. pis a result of replacing all occurrences of X in p by 0. In particular, p € T.
For p € TX we define a relation z# ~ » y” between functionals =, y* of types p, p by induction on p :

ONX ?JX = T)

o~ o~ ~

20~y ==y, =
P77~y YPTT = VUL 0P (U vy v = T~ YY),
One easily shows that the following holds in M%“:¥
1) 00 ~0 007 00 ~X OX; Sl ~1 Sla

A~

PO e U o~ 0T RPT
2) Hpﬂ- Hpﬂ'? Zé,p,‘l’ 2:(5,,1),7'7 EB Ega E E .
Let t” be a closed term which does not contain W, dx and P the result of replacing all occurrences
s 0 ,
of OX7 Hl)vTv E(S,P:T?Ega BB Tint by 0 ) H/p\’;—\v Ea;,?’ EE, BBI

Then i\; is a closed term of A“ and

MPX =t~ t.
Since W' is of type 0 — (o0 — 0) € T this yields for ® := Ab?, 27V (b, z)
MOX =0, 27 (D(b, ) = (b, z)).
Hence
MO =Ty <, s(2)V2" [Vu < @(2) By(z,y, 2,u) — Jv < ®(z) C3(z, y, 2,v)].

One easily verifies that for types v of degree 1, (0, X) or (1, X)

M,=S5,,
where S¥X is the full set theoretic type structure over IN, X.
Thus
() SU% = VaoVy <, s(2)V2" [Vu < @(2) By(z,y, z,u) — Jv < &(z) C(z,y, 2,0)],
where ® is treated in S“** as a new constant ¢ together with the interpretation [c]gw,x = [®] e, x.

126

This finished the proof as [®]r4w.x defines a computable functional®® in Sy_,(,—0) which does not

26Note that ® is a closed term of A“.
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depend on (X, d, W). -

Proof of theorem 3.30 (the proof of theorem 3.24 follows just by disregarding all issues involving
C' in the proof of theorem 3.30): We now sketch the changes one has to make in the proof of theorem
3.7 in order to deal with the situation in theorem 3.30. The main difference is that we no longer can
treat s-majx as trivial as before since the norm is unbounded on X. Instead we define

¥ smajy z:=z",x € Mx Allz*|| > ||z.

M@ XI0.C g then defined just as M@ but based on this new definition of s-majx.

Again we have a syntactic version of s-maj in L(A“[X, || - ||,C]) (which we denote by ‘s-maj’ too)
based on z* s-majx z := ||z*||x >r ||z]x-

One easily verifies that lemma 4.6 also holds for this new type structure and the new definition of
S-maj.

In order to prove that M« SI¢ is a model of A¥[X, | - ||, C]+(BR) we show that for any closed
term ¢ of AY[X, | - ||, C]+(BR) one can construct a closed term ¢* such that

vaXa‘l‘ch |: t* s-maj t,

where the constants of A“[X, || - ||, C]4+(BR) are interpreted in M«-X:I-1.C¢ as follows:

The constants of A“+(BR) (extended to T) are interpreted as in M“X above.
For the new constants we take (writing simply M for M« I 1CY:.

bx]am := b € IN for some bound b for C, i.e. b > ||z| for all z € C,

]
0x]a := 0%, where 0% is the zero vector of the linear space X,
1x]m := a for some a € X with |ja]| = 1,27

Jm = ¢ for some c € C,

+x|m := addition in X,
Jm = inverse of x w.r.t. + in X,

x|m = Aa € NY 2 € X.r, -z, where r, is the unique real number represented by «
and ‘-’ refers to the scalar multiplication of the IR-linear space X,

Il - Ix]m := Az € X.(||z|)o, where (1), for r € Ry is the construction from 2.9,

0% ifzeC
xela = MGX'{ 1°, ifx ¢ C.

In order to show that all these functionals are in M“-XIIl:C we have to construct majorants. For
the constants of A“+(BR) (extended to TX) this is done as in [3], where we — in order to deal with
the new types — again have to extend the functionals max, (and (-)) to the new types so that

Va*, z,y*, y(o* s-maj, z A y* s-maj,y — max,(z*, y*)s-maj, max,(r,y),z,y).

This is achieved as before except that - due to the new and non-trivial definition of s-majx - we now
take for the base type X a new max x-functional:

maxx (2, y~) := maxr (2] x, [yl x) -x 1x.

27Since X is assumed to be non-trivial there exists a v € X with ||v|| > 0 and hence an a := ﬁ with |la|]| = 1.
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For complex types p — 7 we still define
max,_-(z,y) := A’ max,(zv, yv).

The construction z* for types 0 — p with p = p1 — (p2 — ... (pr = X)...) is then as before but
with the new maxy .
One easily verifies, that (M) (from the proof above) still holds for this new definition of z.

For the new constants bx,0x,1x,cx,+x,—x, x,| - |lx, xc we construct majorants defined by the
following closed terms:

b% = bx,0§( = OX7 13( = 1X70§( = (bx)m X 1)(,
+5 =Xy (2l x +r yllx) x 1x,

% = At .z,

A= dal, 2% (a(0) + DR -x 2%,

- 11% =1 llx.

X& = AzX .10,

One easily shows that for all constants k”
MXIE = b smaj, k

For bx,0x,1x and x¢ this is trivial. ¢ s-majxcx follows from the axiom that ||z|x <gr (bx)r for
all x € C. For +%,—% one uses the basic axioms for +x,—x and -x.
% s-maj -x : Let a* s-maj; o, * s-majx x. Then a*(0) >¢ «(0) and thus
(*(0) + )r >r (2(0) + 1)r >R |a|r by the comment after lemma 2.5.
Hence
=r[l(x(0)+1)r x =l x
[(@*(0) + Dk -x 2" x =r ("(0) + Dk 'r 2" x Zr (@(0) + Dk 'R [|z[lx
>R |or R [2]x =R [ax z]x.

| - |x s-maj || - ||x : Let #* s-majx x. Then ||z*|| > ||«|| and hence by lemma 2.10.228

lz* | xIm =1 [zl x)m-

Thus, by lemma 2.10.4,
(2"l x]m s-majy [llz]lx]at
ie.

M- llx s-maj || - || x-

Hence replacing in a closed term ¢ of A“[X, || - ||, C]+(BR) every constant by its majorizing term we
get a closed term t* such that
ML s-maj, t.

Note that t* does not contain +x, —x,cx and xc.
For types o of degree 1 we define 2™ as before. (+) extends to all types p € TX. Hence as before we
get also for the more general types p permitted in theorem 3.30

M@XLCT = oy, <, s(z)(s*(z™) s-maj y),

28Here we write again M for M@5IH1LC
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where s* is a closed term such that s* s-maj s.

The rest of the proof of theorem 3.30 is now similar to the proof of theorem 3.7 observing the following
points: we can take c% as universal majorant for all C-elements. Hence functionals having a type of
degree (1, X, C) are majorized by the constant-c%-functional of the same type. Again it is crucial for
the functional interpretation argument that all the axioms (0)-(8) and (11)-(13) are purely universal.
By remark 3.28 permitting quantification over variables 27 of degree (1, X,C) — instead of (1,X) —
in theorem 3.30 only causes an additional implicative premise which is an V-formula and, therefore,
doesn’t change the logical form of the statements treated in theorem 3.30 compared to those treated
in theorem 3.7.

The argument used in theorem 3.7 to infer validity of the conclusion in S¥X from validity in M%X
now requires somewhat more care: we still have M, = S, for p of degree 1 or of degree (0, X), where
for the latter we now need the extended construction x — x™ to infer that = € S, implies x € M, for
p of degree (0, X) (and also for degree 1). For types p of degree (1, X) we only get the inclusion

M, C S,

which, however is enough for our purpose: the only quantifiers over functionals of degree (1, X) in our
conclusion are the ones hidden in the definition of V/3-formulas and in Vy <, sz. Since V-formulas
occur negatively only and J-formulas positively only, we just need the inclusion stated above. For
y < s(x), we can infer from y € S, and the fact that s*(2™) s-maj y that y € M,.

This finishes the proof of the fact that we can extract a functional ®(b,z) which uniformly in 2 and
an upper bound b for C produces the ‘n’ in the theorem (the independence from C'is due to the fact
that t* does not contain y¢ and cx. Hence we don’t need here the construction t — t from the end
of the proof of theorem 3.7). However, ® is not computable and depends on (X, | - ||) as it involves
Ox,1x,||lx, x and (-)o. We now show (using that the type o of = is of degree 1) how to modify ®
into a computable functional which does not depend on (X, | - ||) at all.

To achieve all this we need a more involved version of the argument used at the end of the proof of
theorem 3.7 in order to eliminate -y, || - || x and the ineffective construction (-), from ®:

For p € TX we define p € T (different from p used in the proof of theorem 3.7) inductively as follows:

~

0:=0, X:=1, pS7:=p—>7.

We define a new relation «” ~, y” between functionals z”,y” of types p, p by induction on p € TX,
where we use (a!), to denote (|ry|)o with r, being the unique real number represented by a:2°

o~ o~

2’ ~oy’ =2 =0y, xlANX y* ==y,
TP e YPTT = VUP 0P (U vy v = U~ YU).

One easily shows that the following holds in M« XI,C
1) 09~ 09 St~y St

2) (Or)o ~x O0x, (IR)o ~x 1x,

HPT ,T 30
8) Tom~ Ty, Soonn S, ,, Ry~ Ry, B~ BT,

Py

DLe., (al)o(n) = j(2ko, 271 — 1), where ko = maxk [(27) <m lalg] -

30Here Bﬁ’l is as B2T except that for types p; of the form o1 — ... — o — X we use in the definition of 7,7 and
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4) xxtar o ~xoa |- IFT
5 dal,zt(la|r ‘rZ), ~oxox KT

Let %270 be the term which results from ®°—7—0 by replacing all occurrences of Ox, 1x,1I, -,
Z&p,‘r,ﬂpvﬁg’za || : HXa ‘X int by (OlR)ov (1IR)O, H;}\, 2:5\7;7;_\7 E’B\v EB717 )‘xl-xa )‘ala xl'(|a|]R ‘R x)o-
Then

XHLC = B
MA@ vy @

and hence (since o is assumed to be of degree 1)
MK =G = @,

In contrast to ®, the functional ® no longer depends on the normed space (X,] - |I)- However, it
involves the noncomputable functional Az'.(z),. We now show that we can construct a functional
®* which provides an upper bound for d (and therefore satisfies the theorem as well) and does not
involve Axl.(x)o:

One can easily construct primitive recursive strong majorants of (ORr)o, (1Rr)o and Aat, zt.(Ja|r ‘R 7)o
using a primitive recursive majorant for Az'.(z), (e.g. Axl,n%.j((z(0) + 1) g 272 27+ — 1), All the
other constants 0, S,II, ¥, R, B occurring in ® have bar recursive majorants as discussed in connection
with the proof of theorem 3.7. Hence we can construct a majorant ®* of & which does not involve

(\)o any longer and satisfies
MEFEIE g0 27 (% (b, 2™) > B(b, x)).

For uniformly convex spaces we recall that (9) is logically equivalent to a purely universal axiom and
interpret 7 in M by a modulus of uniform convexity function. Finally, we observe that trivially n*
s-maj; n so that we can take n* := n™, and — for inner product spaces — we only have to note that
(10) is purely universal. -

Remark 4.9 In [11] a Godel functional interpretation of an extension of A“ by analytical compre-
hension for objects of arbitrary types is given via the intermediate step of a game quantifier translation
([10]). The interpretation is carried out in an extension of the bar recursive functionals to infinite
types. In [26] we have extended the type structure of all strongly majorizable functionals to these
infinite types and shown that this yields a model for Friedrich’s calculus. In view of this it seems
likely that the results of this paper can be extended to this even stronger setting.

Acknowledgment: I am grateful to Philipp Gerhardy, Laurentiu Leugtean and Paulo Oliva for their
comments on an earlier version of this paper which helped to improve the presentation.

Corrections to published version in TAMS 357, pp.89-128 (2005):

1) P. 96, line -7: ‘kg = max k[...]’ must be ‘kg = maxk < 20+ [ ]

2) P.116: in the def. of B, z should be a single functional = rather than a tuple.

3) P. 117 (line 7 and last line of 4.4) add: ‘the verification of the functional interpretation does not
need QF-AC (which is trivially interpreted)’.

4) P.118 (4.7), p.122 (line 6):replace A“[...]+(BR) by A“[...]+(BR)\{QF-AC}.

5) P.121, line 20 and footnote 26: ‘closed terms of A“+(BR)’.

A~

7,7 * D for p; instead of 07 the functional Mft, ., vR ((0)R)o- One easily shows that Big’l € MY as well (with a
bar recursive majorant). The reason for our modification is that we need that y; ~o—,, y2 implies Vn(yin ~,, y2n)
which relies on (OR)o ~x Ox whereas =(0! ~x 0x).
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