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Abstract

We give a quantitative analysis of a result due to Borwein, Reich and Shafrir on
the asymptotic behaviour of the general Krasnoselski-Mann iteration for nonexpansive
self-mappings of convex sets in arbitrary normed spaces. Besides providing explicit
bounds we also get new qualitative results concerning the independence of the rate of
asymptotic regularity of that iteration from various input data. In the special case of

bounded convex sets, where by well-known results of Ishikawa, Edelstein/O’Brien and

Goebel/Kirk the norm of the iteration converges to zero, we obtain uniform bounds

which do not depend on the starting point of the iteration and the nonexpansive func-
tion, but only depend on the error ε, an upper bound on the diameter of C and some
very general information on the sequence of scalars λk used in the iteration. Only in
the special situation, where λk := λ is constant, uniform bounds were known in that
bounded case. For the unbounded case, no quantitative information was known before.
Our results were obtained in a case study of analysing non-effective proofs in analysis

by certain logical methods. General logical meta-theorems of the author guarantee (at

least under some additional restrictions) the extractability of such bounds from proofs

of a certain kind and provide an algorithm to extract them. Our results in the present

paper (which we present here without any reference to that logical background) were
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found by applying that method to the original proof of the Borwein/Reich/Shafrir the-

orem. The general logical method which led to these results will be discussed (with

further examples) in [22].

1 Introduction

This paper is the offspring of a case study in the project of analyzing non-effective proofs
in analysis by logical tools with the aim of extracting new numerically relevant information

(e.g. effective uniform bounds or algorithms etc.) hidden in the proofs.1

Let us discuss in more detail what kind of numerical information we are aiming at.
Many problems in numerical (functional) analysis are concerned with the construction of

solutions x of certain equations A(x), where x is element of some Polish space (typically

with additional structure) and A(x) can be written as F (x) = 0 for some continuous

function F : X → IR (usually A, and hence F , will depend on certain parameters a which

again belong to Polish spaces). The construction of a solution for A quite often involves
two distinct steps:

1) Approximate solutions (also called ‘ε-solutions’) xn ∈ X satisfying A 1
n
(xn),

Aε(x) :≡ (|F (x)| < ε),

are constructed (uniformly in the parameters of A).

2) One shows, using e.g. compactness arguments, that either (xn)n∈IN itself or some

subsequence converges to a solution of A(x).

It is the non-effectivity of the second step which in many cases prevents one from being

able to compute a solution x̂ of A effectively within a prescribed error 1
k
, i.e. to compute a

function n(k) such that dX(xn(k), x̂) < 1
k
. Even when X := K is compact and x̂ is uniquely

determined, so that (xn) itself converges to x̂, explicit a-priori bounds (in particular not

depending on x̂ itself) on the rate of convergence of that sequence are often not provided

in numerical analysis (due to the ineffectivity of the proof of the uniqueness of x̂).2

In several papers we have shown how proof theoretic techniques can be applied to extract
certain quantitative information (so-called uniform moduli of uniqueness which generalize

the concept of strong unicity as used e.g. in Chebycheff approximation theory) even from
highly non-constructive uniqueness proofs and how effective rates of convergence can be
obtained using this information (see [20] for an introduction to this and [17],[18],[19],[23]

1For other case studies in analysis in the context of best approximation theory see [17],[18],[23]. For
general information on ‘proof mining’ in analysis see [19],[20].

2See also [25] for an interesting discussion of this and related points.
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for concrete applications to approximation theory).

In this paper we are concerned with applications to the first of the two steps mentioned
above in situations where an effective solution of 2) is not possible (mainly due to the lack

of uniqueness). Again these applications are instances of general logical meta-theorems

(proved in [21]). These meta-theorems provide an algorithm which transforms non-construc-

tive proofs p (of a certain kind) into numerically enriched proofs p∗. The resulting proof

p∗ is again an ordinary mathematical proof which does not rely on any logical tools (it

is only the method used to find it which does). In the present paper we just present the
main result of our case study in ordinary mathematical terms without any reference to the
general logical mechanism which produced it. For the latter see [22] where it is shown that
the general form of the result is an instance of a quite universal logical scheme.

The proof we are going to treat in this paper is taken from the fixed point theory of non-
expansive mappings f : C → C, for certain sets C in normed spaces X. The well-known
Banach fixed point theorem tells us that contractive mappings f always have a unique
fixed point if X is complete and C is closed and that the sequence xk+1 := f(xk) starting
from any x0 ∈ C effectively converges to that fixed point. For nonexpansive functions f
(i.e. functions which are Lipschitz continuous with Lipschitz constant λ = 1), in general

fixed points only exist if X is uniformly convex, C is closed convex and bounded (by the

famous Browder-Göhde-Kirk fixed point theorem, see [5],[11],[14]).

If X is a uniformly convex Banach space, C ⊂ X is closed convex and bounded and f(C)

is a compact subset of C, then a well-known fixed point theorem due to Krasnoselski ([24])

states that a fixed point of f can be approximated by the following Krasnoselski iteration3

xk+1 :=
1

2
(xk + f(xk)), x0 ∈ C arbitrary.

However, the situation still is quite different from the Banach fixed point theorem since

1) f may have several fixed points,

2) a fact closely related to the non-uniqueness of the fixed point is, that the rate of
convergence of the Krasnoselski iteration to its limit is not computable uniformly in
f and x0 (see [22]).

So the Krasnoselski iteration does not provide an algorithm for the computation of a fixed
point of f (with prescribed precision) but it can be used to find effectively approximate

fixed points. Since (xk) converges to some fixed point of f and f is continuous it is clear

that for a sufficiently large n on, xm (m ≥ n) will be an approximate fixed point:

(∗)∀ε > 0∃n ∈ IN∀m ≥ n(‖xm − f(xm)‖ < ε).
3Due to a much more general result from [13], which we will discuss below, the assumption of X being

uniformly convex actually is superfluous.
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Because of the simple monotonicity property (see lemma 2.4.1) below)

‖xm+1 − f(xm+1)‖ ≤ ‖xm − f(xm)‖

the formula
∀m ≥ n(‖xm − f(xm)‖ < ε)

is equivalent to
‖xn − f(xn)‖ < ε,

which (given a representation of real numbers as Cauchy sequences of rational numbers

with fixed rate of convergence) is purely existential which is crucial for the possibility to

extract an algorithm for n in (∗) uniformly in x0 and f (here it is assumed that X,C have

a computable so-called standard representation, see e.g. [17]).

In [22] we obtained various quantitative forms of Krasnoselski’s theorem. In the present

paper we consider strong generalizations of Krasnoselski’s result due to [13],[6],[8] and

[4]. In [13] it is shown that Krasnoselski’s fixed point theorem even holds without the
assumption of X being uniformly convex. Moreover, very general so-called Krasnoselski-
Mann iterations

xk+1 := (1 − λk)xk + λkf(xk)

are allowed, where λk is a sequence in [0, 1] which is divergent in sum and satisfies
lim sup

k→∞
λk < 1.

In particular, it is proved in [13] that for such iterations

(I) lim
k→∞

‖xk − f(xk)‖ = 0,

where X is an arbitrary normed linear space, C a bounded convex subset of X and f :
C → C is nonexpansive.
This result is further generalized in [4] to the case where C no longer is required to be

bounded.4 Then one has

(II) lim
k→∞

‖xk − f(xk)‖ = rC(f),

where
rC(f) := inf

x∈C
‖x − f(x)‖

will in general be strictly positive.

We give a complete quantitative analysis of (II) (see theorem 2.7) as an instance of our

4Unbounded sets C in connection with Ishikawa’s theorem were apparently first considered in [2]
(tmh.2.1).

4



general results on the extractability of bounds from proofs using non-effective tools like
the convergence of bounded monotone sequences of reals (see [21]) which in the case at

hand is just applied to (‖xk − f(xk)‖)k∈IN. We then specialize the resulting bound to the

case where C is bounded and derive a uniform bound for (I) which only depends on ε, an

upper bound dC for the diameter d(C) of C and some quite weak information on (λk) (see

corollary 2.8).

None of the papers [13],[6],[8],[4] contains any bounds and in fact [6] and [8] use non-trivial

functional theoretic embeddings to show (ineffectively) the existence of a common number

k ∈ IN which satisfies ‖xk − f(xk)‖ < ε uniformly for all starting points x0 ([6])5 and all

nonexpansive functions f ([8]). This uniformity comes for free out of our proof analysis.
Moreover, as already mentioned we also have a new strong uniformity concerning C as the
bounds only depend on dC and to some extent also a uniformity w.r.t. (λk) (corollary 2.10).
Even the non-effective existence of such uniform bounds was considered to be ‘unlikely’
in [9] (p.101). All this shows that the authors of the papers listed were not aware of the

uniform bounds hidden in their proofs (note that the proof in [13] essentially is contained

as a special case in the proof from [4] we are analyzing, so that the logical analysis of the

former is even simpler than our proof analysis for the stronger result (II)).
This clearly indicates the usefulness of analysing non-effective proofs logically even if one
is not particularly interested in the numerical details of the bounds themselves. In many
cases such explicit bounds immediately show the independence of the quantity in question

from certain input data (uniformity of the bound).6

2 Effective uniform bounds on the Krasnoselski-Mann iter-

ation in arbitrary normed spaces

Definition 2.1 Let (X, ‖ · ‖) be a normed linear space and S ⊆ X be a subset of X. A
function f : S → S is called nonexpansive if

(∗) ∀x, y ∈ S(‖f(x) − f(y)‖ ≤ ‖x − y‖).

Definition 2.2 Let (X, ‖ · ‖) be a normed linear space, S a subset of X, f : S → S and

ε > 0. A point x ∈ S is called ε-fixed point of f if ‖x − f(x)‖ ≤ ε.

5This paper only considers the special case where λk := λ is constant.
6Another example for this: the explicit uniform constants of strong unicity for Chebycheff approximation

which we extracted in [17],[18] by analysing classical uniqueness proofs for the best Chebycheff approxima-
tion (known already since about 1905-1917) immediately implied the existence of a common constant of
unicity for compact sets K of functions f ∈ C[a, b], if inff∈K dist(f, H) > 0 (H a Haar space). This fact
was proved in approximation theory only in 1976 (see [12]) without providing any bounds. Yet another
example for this in the context of L1-approximation can be found in [23].
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Lemma 2.3 Let (X, ‖ · ‖) be a normed linear space, ∅ 6= C ⊆ X convex with bounded

diameter d(C) < ∞ and f : C → C nonexpansive. Then f has ε-fixed points in C for
every ε > 0.

Proof: The situation reduces to the Banach fixed point theorem by the following well-
known construction (see e.g. [4] but also [11] and [10](prop.1.4)): ft(x) := (1− t)f(x) + tc

for some c ∈ C and t ∈ (0, 1] since ft : C → C is a contraction and therefore Banach’s
fixed point theorem applies. Since we are only interested in approximate fixed points it is
not necessary to assume that X is complete or that C is closed (see [22] for details). 2

In the following, (X, ‖ · ‖) will be an arbitrary normed linear space, C ⊆ X a non-empty
convex subset of X and f : C → C a nonexpansive mapping.
We consider the so-called Krasnoselski-Mann iteration (which is more general than the

Krasnoselski iteration and due to Mann [26]) generated starting from an arbitrary x ∈ C
by

x0 := x, xk+1 := (1 − λk)xk + λkf(xk),

where (λk)k∈IN is a sequence of real numbers in [0, 1].

Lemma 2.4 ([4]) For all k ∈ IN and x, x∗ ∈ C :

1) ‖xk+1 − f(xk+1)‖ ≤ ‖xk − f(xk)‖,

2) ‖xk+1 − x∗
k+1‖ ≤ ‖xk − x∗

k‖.

We assume (following [4]) that (λk)k∈IN is divergent in sum, which can be expressed (since

λk ≥ 0) as

(A) ∀n, i ∈ IN∃k ∈ IN




i+k∑

j=i

λj ≥ n



 ,

and that
(B) lim sup

k→∞
λk < 1.

Define
rC(f) := inf

x∈C
‖x − f(x)‖.

Theorem 2.5 ([4]) 7 Suppose that (λk)k∈IN satisfies the conditions (A) and (B). Then

for any starting point x ∈ C and the Krasnoselski-Mann iteration (xn) starting from x we
have

‖xn − f(xn)‖ n→∞→ rC(f).

7With the additional assumption that λk is bounded away from zero, this result is also proved in [27].
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Corollary 2.6 ([13],[8],[4]) 8 Under the assumptions of theorem 2.5 plus the additional

assumption that C has bounded diameter d(C) < ∞ the following holds:

∀x ∈ C∀ε > 0∃nIN∀m ≥ n(‖xm − f(xm)‖ ≤ ε).

Proof: Follows from theorem 2.5 and lemma 2.3. 2

Theorem 2.7 Let (X, ‖ · ‖) be a normed linear space, C ⊆ X a non-empty convex subset

and f : C → C a nonexpansive mapping. Let (λk)k∈IN be a sequence in [0, 1] which is
divergent in sum and satisfies

∀k ∈ IN(λk ≤ 1 − 1

K
)

for some K ∈ IN.9

Let α : IN × IN → IN be such that10

∀i, n ∈ IN(α(i, n) ≤ α(i + 1, n)) and

∀i, n ∈ IN(n ≤
i+α(i,n)−1∑

s=i

λs).

Let (xn)n∈IN be the Krasnoselski-Mann iteration

xn+1 := (1 − λn)xn + λnf(xn), x0 := x

starting from x ∈ C. Then the following holds

∀x, x∗ ∈ C∀ε > 0∀n ≥ h(ε, x, x∗, f,K, α)(‖xn − f(xn)‖ < ‖x∗ − f(x∗)‖ + ε),

where11

h(ε, x, x∗, f,K, α) := α̂(⌈2‖x − f(x)‖ · exp(K(M + 1))⌉−· 1,M),

with M :=
⌈

1+2‖x−x∗‖
ε

⌉
and

α̂(0,M) := α̃(0,M), α̂(m + 1,M) := α̃(α̂(m,M),M) with

α̃(m,M) := m + α(m,M) (m ∈ IN)

8See the discussion at the end of our paper for historical information on this result.
9The condition lim sup

n→∞

< 1 in the Borwein-Reich-Shafrir theorem is sightly less restrictive as it only

implies the existence of such a K from some index k0 on. However, our result can easily be extended to
this situation just by letting the iteration start from xk0

instead of x0.
10Using the reasoning from the proof of corollary 2.10 below, we can easily use any function β : IN → IN

satisfying n ≤

β(n)∑
s=0

λs and then define α(i, n) := max
j≤i

(β(n+j)−j+1) to get an α satisfying these conditions.

11n −· 1 = max(0, n − 1).
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(Instead of M we may use any upper bound IN ∋ M̃ ≥ 1+2‖x−x∗‖
ε

). Likewise, ‖x − f(x)‖
may be replaced by any upper bound.)

Proof:
(1) γ := ‖x∗ − f(x∗)‖.

Let furthermore ε > 0 and x ∈ C be arbitrary and let M ∈ IN be such that

(2) M ≥ 1 + 2‖x − x∗‖
ε

.

Let δ > 0 be so small that
(3) δ exp(K(M + 1)) < 1,

where K ∈ IN satisfies

(4) ∀k ∈ IN(λk ≤ 1 − 1

K
).

Let α : IN × IN → IN be such that12

(5) ∀i, n ∈ IN(n ≤ Si,α(i,n) ≤ n + 1),

where

(6) Si,n :=
i+n−1∑

s=i

λs.

Consider the Krasnoselski-Mann iteration (xn)n∈IN starting from x. By lemma 2.4.1), the

sequence (‖xn−f(xn)‖)n∈IN ⊂ [0, ‖x−f(x)‖] is monotone decreasing and hence convergent.
Thus there exists an i such that

(7) ‖xi − f(xi)‖ − ‖xi+α(i,M) − f(xi+α(i,M))‖ ≤ δ.

Suppose that
(8) ‖xi − f(xi)‖ ≥ γ + ε.

The proof in [4] uses the following inequality which is derived from a fundamental inequality

due to [8] and which holds for all i, n ∈ IN

(9) Si,n · ‖xi − f(xi)‖ ≤ ‖xi − xi+n‖ + Pi,n · (‖xi − f(xi)‖ − ‖xi+n − f(xi+n)‖),

where

(10) Pi,n :=
i+n−1∏

s=i

1

1 − λs
.

12Since λk ∈ [0, 1) this can always be achieved. Below we show how this requirement on α can be replaced
by the more handy one stated in the theorem.
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As in [13] one shows that

(11) ∀i, n ∈ IN(Pi,n ≤ exp(K · Si,n)).

In [4] (p.23), the following inequality is established ((x∗
k) is the Krasnoselski-Mann iteration

starting from x∗)

(12) ‖x∗
i − x∗

i+n‖ ≤ Si,n · ‖x∗
i − f(x∗

i )‖
l.2.4.1)
≤ Si,n · ‖x∗ − f(x∗)‖.

Together with lemma 2.4.2) we obtain

(13)






Si,α(i,M) · (γ + ε)
(8)

≤ Si,α(i,M) · ‖xi − f(xi)‖
(9,7)

≤ ‖xi − xi+α(i,M)‖ + δPi,α(i,M)

≤ ‖xi − x∗
i ‖ + ‖x∗

i − x∗
i+α(i,M)‖ + ‖x∗

i+α(i,M) − xi+α(i,M)‖ + δPi,α(i,M)

2.4.2)

≤ 2‖x − x∗‖ + ‖x∗
i − x∗

i+α(i,M)‖ + δPi,α(i,M)

(12)
≤ 2‖x − x∗‖ + Si,α(i,M) · ‖x∗ − f(x∗)‖ + δPi,α(i,M).

Hence

(14)






1 + 2‖x − x∗‖
(2)

≤ M · ε
(5)

≤ εSi,α(i,M)

(1)
≤ Si,α(i,M)(γ + ε − ‖x∗ − f(x∗)‖)

(13)
≤ 2‖x − x∗‖ + δPi,α(i,M)

(11)

≤ 2‖x − x∗‖ + δ exp(K · Si,α(i,M))
(5)
≤ 2‖x − x∗‖ + δ exp(K(M + 1))

(3)
< 2‖x − x∗‖ + 1,

which is a contradiction. Therefore ‖xi − f(xi)‖ < γ + ε.

It remains to construct a function h(x, f,K,α,M) which is a bound

i ≤ h(x, f,K,α,M) for i in (7):
Define

α̃(i,M) := i + α(i,M)

and the m-times iteration α̂ of λi.α̃(i,M)

α̂(0,M) := α̃(0,M) and α̂(m + 1,M) := α̃(α̂(m,M),M).

It is clear that
(15) ∀i(α̂(i,M) ≤ α̂(i + 1,M)).

Claim:

∃i ≤
⌈‖x − f(x)‖

δ

⌉
−· 1(‖xα̂(i,M) − f(xα̂(i,M))‖ − ‖xα̂(i+1,M) − f(xα̂(i+1,M)‖ ≤ δ).
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Proof of Claim: Let j :=
⌈‖x−f(x)‖

δ

⌉
−· 1 and suppose the claim is false. Then

∀i ≤ j(‖xα̂(i,M) − f(xα̂(i,M))‖ − ‖xα̂(i+1,M) − f(xα̂(i+1,M)‖ > δ).

Since by lemma 2.4.1) the sequence (‖xi − f(xi)‖)i∈IN is decreasing and – by (15) –

λi.α̂(i,M) is monotone, we obtain

‖xα̂(0,M) − f(xα̂(0,M))‖ − ‖xα̂(j+1,M) − f(xα̂(j+1,M))‖
> δ · (j + 1) ≥ ‖x − f(x)‖,

which is a contradiction to the fact that ∀n ∈ IN(‖xn−f(xn)‖ ∈ [0, ‖x−f(x)‖]) and finishes
the proof of the claim.
Using that

(16) ∀i(α̂(i + 1,M) = α̂(i,M) + α(α̂(i,M),M),

the claim yields

(17)






∃i ≤
⌈
‖x−f(x)‖

δ

⌉
−· 1

(‖xα̂(i,M) − f(xα̂(i,M))‖ − ‖xα̂(i,M)+α(α̂(i,M),M) − f(xα̂(i,M)+α(α̂(i,M),M)‖ ≤ δ).

Hence – using again the monotonicity of λi.α̂(i,M) – a bound for i in (∗) is given by

α̂(⌈(‖x − f(x)‖/δ)⌉−· 1,M). Since we can put δ := 1
2 exp(K(M+1)) we obtain

h(x, f,K,α,M) := α̂(⌈2‖x − f(x)‖ exp(K(M + 1))⌉−· 1,M)

with M ∈ IN such that

M ≥ 1 + 2‖x − x∗‖
ε

as bound for an i such that
‖xi − f(xi)‖ < γ + ε

and therefore (using again lemma 2.4.1)

∀i ≥ h(x, f,K,α,M)(‖xi − f(xi)‖ < γ + ε).

We now show that we can replace (5) by the more flexible requirement13

(5)′ ∀i, n ∈ IN(α(i, n) ≤ α(i + 1, n) ∧ n ≤ Si,α(i,n)).

13Note that the first conjunct can always be achieved without violating the second one by using α+(i, n) :=
max
j≤i

(α(j, n)).
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Assume that α satisfies (5)′. Define

α∗(i, n) := min m ∈ IN[n ≤
i+m−1∑

s=i

λs].

Then
∀i, n ∈ IN(n ≤ Si,α∗(i,n) ≤ n + 1),

since λs ≤ 1. Hence by the logical analysis carried out so far we obtain the bound
h(ε, x, x∗, f,K, α∗). In this bound, α∗ can be replaced by α since

h(ε, x, x∗, f,K, α∗) ≤ h(ε, x, x∗, f,K, α),

which is a consequence of

∀i, n ∈ IN(α̂∗(i, n) ≤ α̂(i, n)),

which can be proved by an easy induction on i. 2

Corollary 2.8
Let (X, ‖ · ‖) be a normed linear space, C ⊆ X a non-empty convex subset with bounded

(positive) diameter d(C) < ∞ and f : C → C a nonexpansive mapping. Let (λk)k∈IN be a

sequence in [0, 1] which is divergent in sum and satisfies

∀k ∈ IN(λk ≤ 1 − 1

K
)

for some K ∈ IN.
Let α : IN × IN → IN be such that

∀i, n ∈ IN(α(i, n) ≤ α(i + 1, n)) and

∀i, n ∈ IN(n ≤
i+α(i,n)−1∑

s=i

λs).

Let (xn)n∈IN be the Krasnoselski-Mann iteration

xn+1 := (1 − λn)xn + λnf(xn), x0 := x

starting from x ∈ C. Then the following holds

∀x ∈ C∀ε > 0∀n ≥ h(ε, d(C),K, α)(‖xn − f(xn)‖ ≤ ε),

11



where

h(ε, d(C),K, α) := α̂(⌈2d(C) · exp(K(M + 1))⌉ − 1,M), with M :=
⌈

1+2d(C)
ε

⌉
and

α̂(0,M) := α̃(0,M), α̂(m + 1,M) := α̃(α̂(m,M),M) with

α̃(m,M) := m + α(m,M) (m ∈ IN)

(Instead of M,d(C) we may use any upper bounds Q∗
+ ∋ dC ≥ d(C) and

IN ∋ M̃ ≥ 1+2dC

ε
).

Proof: The corollary follows from theorem 2.7 and lemma 2.3 by noticing that ‖x −
f(x)‖, ‖x − x∗‖ ≤ d(C). 2

Remark 2.9 By renorming the space with the factor 1/d(C) one can improve the d(C)-

dependency of the bound above to h(ε/d(C), 1,K, α).

Corollary 2.10 Let d, ε > 0, K ∈ IN and β : IN → IN an arbitrary function. Then
there exists an n ∈ IN such that for any normed space X, any convex set C ⊆ X such

that d(C) ≤ d, any nonexpansive function f : C → C, any sequence λk ∈ [0, 1 − 1
K

]

satisfying n ≤
β(n)∑
s=0

λs (for all n ∈ IN) and any starting point x0 ∈ C of the corresponding

Krasnoselski-Mann iteration the following holds

∀m ≥ n(‖xm − f(xm)‖ < ε).

Proof: Follows immediately from corollary 2.8 noticing that if n ≤
β(n)∑
s=0

λs, then also

n ≤
i+α(i,n)−1∑

s=i

λs, where α(i, n) := β(n + i) − i + 1. But this implies n ≤
i+α+(i,n)−1∑

s=i

λs,

where α+(i, n) := max
j≤i

(α(j, n)) satisfies α+(i, n) ≤ α+(i + 1, n). 2

Corollary 2.11 Let (X, ‖ ·‖), C, f be as in corollary 2.8, k ∈ IN, k ≥ 2 and λn ∈ [ 1
k
, 1− 1

k
]

for all n ∈ IN. Consider the Krasnoselski-Mann iteration
xn+1 := (1 − λn)xn + λnf(xn) starting from x0 := x ∈ C. Then the following holds:

∀x ∈ C∀ε > 0∀n ≥ g(ε, d(C))(‖xn − f(xn)‖ ≤ ε),

where

g(ε, d(C)) := kM · ⌈2d(C) exp(k(M + 1))⌉ with M :=

⌈
1 + 2d(C)

ε

⌉
.

Proof: We can put in corollary 2.8 α(i,M) := kM . One easily proves that α̂(i,M) :=

k(i + 1)M. The corollary now follows from corollary 2.8. 2
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3 Summary of the results

For the first time we obtain explicit bounds for Ishikawa’s result on the asymptotic be-
haviour of the general Krasnoselski-Mann iteration in arbitrary normed spaces X and for
bounded sets C (corollary 2.8). Moreover, our bounds are uniform in the sense that they

only depend on the error ε and an upper bound dC of the diameter of C (and some data

from the sequence of scalars λk used in defining the iteration) but not on the nonexpan-
sive function f , the starting point x0 ∈ C of the iteration or other C-data. Only the
non-effective existence of a bound independent of f and x0 was known before (see [8]
where a non-trivial functional theoretic embedding is used to obtain this uniformity after

‖xk − f(xk)‖ → 0 has been established by the proof we are analysing)14. In fact, [16]
explicitly mentions the non-effectivity of all these results and states that ‘it seems unlikely
that such estimates would be easy to obtain in general setting’ (p.191) and therefore only

studies the special ‘tractable’ (p.191) case of uniformly convex spaces due to Krasnoselski.

Not even the ineffective existence of bounds which (like our result in 2.10) depend on C

only via dC was known so far (for general Krasnoselski-Mann iterations) and in fact still

in [9] (p.101) conjectured as ‘unlikely’ to be true (not that the proof of ‖xk − f(xk)‖ → 0

given in [8] by the same authors does yield such a bound by logical analysis!). Only in the

special case of λk := λ ∈ (0, 1) being constant, a uniform (and in fact optimal quadratic)

bound was recently discovered using computer aided proofs (see [1], where again the non-

effectivity of all known proofs of the full Ishikawa result is stressed) and only for λk := 1
2 a

classically proved result of that type has been obtained subsequently (see [3]). This result,
of course, is numerically better than our exponential bound in corollary 2.11 when spe-

cialised to λ = 1
2 . However, as the authors concede, their extremely complicated method

does not extend to the case of non-constant sequences (λk). Our result in theorem 2.7 on

the general case of unbounded C (as treated in [4]) is apparently all new.

4 Final comments and open problems

1) Recently, Kirk ([15]) obtained a new proof of the uniform (w.r.t. x0 and f) Ishikawa

result for the special case λk = λ (again using a functional theoretic embedding) even
in the more general setting of so-called directionally nonexansive mappings. It would be
interesting to see what quantitative results a logical analysis of that proof would provide.

2) The results of Ishikawa and Borwein-Reich-Shafrir even hold in the more general setting

of hyperbolic spaces in the sense of [10] (see e.g. [4],[27]). We expect that the quantitative
analysis carried out in the present paper extends to this setting in a suitable form.

3) In [22] we have shown that the rate of convergence of the Krasnoselski iteration towards

14See [7] for a recent interesting application of this uniformity.

13



a fixed point (in the compact case) cannot be computed uniformly in the nonexpansive
function f . This phenomenon, which already appears in most trivial cases and for the
unit interval, is due to the non-uniqueness of the fixed point. In [17] we showed that by
contrast one can compute unique solutions of functional equations in rather general settings
by extracting certain effective data (‘strong uniqueness’) from the uniqueness proof. In

this connection the recent results in [28] on cases where the existence of a unique fixed
point of certain nonexpansive operators is guaranteed are of interest to apply this logical
methodology to in order to possibly get computable bounds on the rate of convergence of
the iteration and not just on the asymptotic regularity.

Acknowledgement: We are grateful to Professor Kirk for bringing the work of Baillon
and Bruck to our attention and for communicating to us his recent papers [7],[15] as well

as to an anonymous referee who indicated the questions discussed in 2) and 3) above to us
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