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Abstract

We continue the investigation into the computational status of the existence of mod-

uli of regularity (and their use for rates of convergence) in the sense of [21], carried out

w.r.t. classical reverse mathematics and Weihrauch degrees in [17], and determine the

amount of LEM involved. We also show that the existence of a modulus of regularity
always yields an algorithm for the computation of a zero in the case of continuous func-

tions F : K → R on a compact metric space (in F equipped with a modulus of uniform

continuity and K given in standard representation) whenever such a zero exists. If

K ⊂ X is a compact subset of a uniformly convex Banach space X and the zero set of
F is convex one can compute even the zero of minimal norm. A modulus of regularity

can also be used to compute the left-most infinite path of an infinite 0/1-tree. We also

show that there is no proof-theoretically tame nonstandard uniformity principle which
would make it possible to replace in the regularity assumption compactness by metric
boundedness and still guarantee classically correct bounds.

1 Introduction

In this paper, we continue our investigation from [17] into the computational and logical

strength of (the existence of) of the general form of (metric) regularity introduced in [21]
as a unifying concept of many related notions studied in continuous optimization. Roughly
speaking, the assumption of regularity of a solution set allows one to conclude that a suffi-
ciently good approximate solution must be close to an actual solution. If the solution set
is a singleton set this has been studied under the name of strong or uniform uniqueness
(also with moduli) e.g. in [9] (see also [16]). The concept of regularity generalizes this to
the nonunique case. In the context of compact metric spaces X and continuous functions
F : X → R the regularity of the set zer F of zeros of F always holds by a result in [21].

However, as shown in [17], one usually - in contrast to the case of uniqueness where proof-
theoretic techniques can be used to extract an effective modulus of uniqueness - cannot
hope for a computable modulus of regularity. In fact, the existence of the latter is - even
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for Lipschitz continuous functions F : [0, 1]→ R - equivalent to arithmetical comprehension

ACA0 while the ∀∃-form of regularity (without a modulus) only requires WKL0. The rea-

son for this difference is that the ∀∃-form of regularity (while proof-theoretic being weak)

implies intuitionistically (and actually is equivalent to) the Σ0
1-law-of-excluded-middle prin-

ciple Σ0
1-LEM: see Theorem 2.11 below.1 When strengthened into a modulus, this use of

Σ0
1-LEM then becomes even classically visible in the form of Σ0

1-comprehension (and so -

by iteration - as ACA0).

In [21] it is shown that a modulus of regularity yields a rate of convergence whenever we have

a Fejér monotone (w.r.t. the solution set) algorithm for the computation of approximate

solutions together with an approximate solution bound for this algorithm.2 In this paper
we show that in the situation above with a compact metric space X one unconditionally
can construct a primitive recursive functional which computes uniformly in a modulus of
regularity, a standard representation of X and a name for F (given by the restriction of F

to a countable sense subset and a modulus of uniform continuity) a zero of F provided that

zer F 6= ∅ (Theorem 2.3).

As a special case one can subsume the problem of finding an infinite path of an infinite
binary (i.e. 0/1-)tree. Here there is a Kalmar elementary functional which uniformly in

(the characteristic function of) such a tree and a modulus of regularity (w.r.t. the set of

infinite paths as solution set) computes the leftmost branch of the tree (Theorem 2.8).

If K ⊂ X is a compact subset of a uniformly convex Banach space X, F : K → R is contin-
uous and zer F is convex (a situation which frequently occurs in convex optimization) then
one can compute in the above data augmented with a modulus of convexity of X even a
zero of minimal norm (Theorem 2.4).

In proof mining one often can allow the use of nonstandard arguments which replace a com-

pactness assumption by metric boundedness. The uniform boundedness principle ∃-UBX

introduced in [15] (see also [16] and the connected discussion in [5]) systematically makes
this possible and can - though classically being false - be eliminated without any complex-
ity contribution from the verification of the bounds extracted from proofs which make use
of this principle. This raises the question whether some combination of, say, arithmetical
comprehension (which is an admissible principle in the logical metatheorems on proof min-

ing if one allows for bar recursive bounds) with ∃-UBX (or some other ‘tame’ nonstandard

principle) implies regularity even in the absence of compactness. In Proposition 2.5 we show
that this is not the case.

2 Main Results

Definition 2.1 ([21]). Let (X, d) be a metric space and let be F : X → R a mapping. Let

zer F := {x ∈ X : F (x) = 0} 6= ∅ and r > 0. We say that F is regular w.r.t. zer F and

1A particularly striking example of such a situation is given by Ramsey’s theorem for pairs and two colors
which - though proof-theoretically weak - implies (and is equivalent to) even the principle Σ0

3-LLPO (see [3])
which by [1] is strictly stronger than Σ0

2-LEM. See also [4] for a generalization to k-many colors.
2For a recent extension of this result to a generalized form of Fejér monotonicity see [22].
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B(z, r) for z ∈ zer F if

∀n ∈ N ∃k ∈ N ∀x ∈ B(z, r)
(
|F (x)| < 2−k → ∃z′ ∈ zer F (d(x, z′) < 2−n)

)
.

If this holds with ‘∀x ∈ B(z, r)’ replaced by ‘∀x ∈ X’ we say that F is regular w.r.t. zer F.

A function ρ : N → N providing given n a number k = ρ(n) satisfying the above is called

a modulus of regularity of F w.r.t. zer F and B(z, r) resp. w.r.t. zer F (short: ρ mreg

zer F, r)

Proposition 2.2 ([21]). If X is proper and F is continuous, then for any z ∈ zer F and

r > 0, F has a modulus of regularity w.r.t. zer F and B(z, r).

Let (X, d) be compact metric space and (an) be a sequence in X and α : N → N both
together witnessing the total boundedness of X, i.e.

∀x ∈ X ∀k ∈ N ∃ 0 ≤ i ≤ α(k)
(
d(x, ai) < 2−k

)
(compare (TOTI) in [20]).

Let g : N2 → NN be such that for all i, j ∈ N, g(i, j) is a name (in the sense of [16]) of

d(ai, aj).

Let F : X → R be a continuous function with a modulus ω : N→ N of uniform continuity,
i.e.

∀k ∈ N ∀x, y ∈ X
(
d(x, y) < 2−ω(k) → d(F (x), F (y)) < 2−k

)
.

Let h : N→ NN be such that for each i ∈ N, h(i) is a name of F (ai).

Theorem 2.3. Let (X, d), F be as above. One can define a primitive recursive functional

(in the sense of Kleene’s S1-S8 from [8]) Φ such that for all functions ω, α, g, h, ρ, it holds

for β := Φ(ω, α, g, h, ρ) : N → N that (aβ(k))k∈N converges with rate 2−k to a zero of F

provided that zer F 6= ∅, the functions ω, α, g, h satisfy the above requirements and ρ is a
modulus of regularity ρ for zer F.

Proof: We show how to compute primitive recursively in ω, α, g, h, ρ satisfying the above
requirements a function β : N→ N such that for xk := aβ(k)

(∗) ∀k ∈ N
(
|F (xk)| < 2−max{k,ρ(k+2)} ∧ (k > 0→ d(xk, xk−1) ≤ 2−k)

)
.

(∗) clearly implies that (xk) is a Cauchy sequence with rate 2−k since for m ≥ n ≥ k

d(xm, xn) ≤
m−1∑
k=n

d(xk, xk+1) ≤
m−1∑
k=n

2−k−1 ≤
∞∑
k=n

2−k−1 ≤ 2−n.

Since F is continuous, (∗) - moreover - implies that x := limxk is a zero of F.

We prove (∗) by induction on k and simultaneously define β : Let k = 0. Since zer F 6= ∅,
one can search primitive recursively in ω, α, g, h, ρ for an n with

|F (an)| < 2−ρ(2)
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so that (∗) holds with β(0) := n (for definiteness we may stipulate that x−1 := a0). Indeed,

let z ∈ zer F. There there exists an n ≤ α(ω(ρ(2) + 2)) such that

d(an, z) < 2−ω(ρ(2)+2).

Then in turn
|F (an)| < 2−ρ(2)−2

and so for the 2−ρ(2)−2-rational approximation (F (an))(ρ(2) + 2) of F (an) provided by

ĥ(n)(ρ(2) + 2)

(1) |(F (an))(ρ(2) + 2)| < 2−ρ(2)−1.

Since (1) is a primitive recursively decidable property, one can search primitive recursively

for the least n ≤ α(ω(ρ(2) + 2)) such that (1) holds which in turn implies

(2) |F (an)| < 2−ρ(2).

k 7→ k+ 1, k ≥ 0 : By the induction hypothesis we have defined already β(0), . . . , β(k) such
that

(3) k > 0→ d(xk, xk−1) ≤ 2−k

and
(4) |F (xk)| < 2−ρ(k+2).

By (4) we get

(5) ∃z ∈ X
(
F (z) = 0 ∧ d(z, xk) < 2−k−2

)
.

Similarly to the above argument we can search primitive recursively in ω, α, g, h, ρ, k and
β(k) for an nk such that

d(ank
, xk) ≤ 2−k−1 ∧ |F (ank

)| < 2−max{k+1,ρ(k+3)}.

Indeed: let N := max{k + 1, ρ(k + 3)}. Let z be as in (5). There exists an

nk ≤ α (max{k + 4, ω(N + 2)}) such that

d(ank
, z) < 2−max{k+4,ω(N+2)}

and so
d(ank

, xk) < 2−k−4 + 2−k−2 ∧ |F (ank
)| < 2−N−2.

Hence

(6) (d(ank
, xk))(k + 4) < 2−k−3 + 2−k−2 ∧ (|F (ank

)|)(N + 2) < 2−N−1,

where (d(ank
, xk))(k + 4) and (F (ank

))(N + 2) are the 2−k−4- and 2−N−2- rational ap-

proximations of d(ank
, xk) and F (ank

) provided by ̂g(nk, β(k))(k + 4) and ĥ(nk)(N + 2)
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respectively. As (6) is a primitive recursively decidable property we can search for the least

nk ≤ α (max{k + 4, ω(N + 2)}) such that (6) holds which implies that

(7) d(ank
, xk) < 2−k−1 ∧ |F (ank

)| < 2−N .

Now take β(k + 1) := nk. �

Let (X, ‖ · ‖) be a uniformly convex Banach space with modulus of convexity η : N→ N as

in (10∗) in [16] (p. 4.12). Let K ⊂ X be a compact subset and F : K → R be continuous

with modulus ω of uniform continuity. Let (an) be a dense sequence in K and α : N → N
be a modulus of total boundedness for K as above, h : N → NN be a sequence of names

for (F (an))n∈N and g : N → NN be such that for each n ∈ N, g(n) is a name for ‖an‖. We
now assume that C := zer F is nonempty closed and convex and that ρ is a modulus of
regularity for F w.r.t. zer F.
It is well-known that the metric projection of X onto C is well-defined and single-valued.
Let D ∈ N be an upper bound on the norm of some zero of F.

Theorem 2.4. There exists a primitive recursive functional in the sense of Kleene Ψ which
uniformly in functions η, α, ω, g, h, ρ and D satisfying the above requirements computes the
unique zero Ψ(η, α, ω, g, h, ρ,D) ∈ zer F of F which has minimal norm among all zeros, i.e.
the metric projection of 0 onto zer F.

Proof: In η and D one can easily compute primitive recursively a modulus of uniqueness
Φ(k) := Φ(η,D, k) ∈ N for the metric projection of 0 onto C, see e.g. [16, Proposition 17.4],

where we here write this modulus with ε/δ of the form 2−k, i.e.

∀k ∈ N ∀y1, y2 ∈ C

(
2∧
i=1

(‖yi‖ ≤ inf
y∈C
‖y‖+ 2−Φ(k))→ ‖y1 − y2‖ ≤ 2−k

)
.

Let k ∈ N be given and define

L := α (max {Φ(k + 1) + 2, ω(K)}) ,

where
K := ρ (Φ(k + 1) + 2) + 2.

We consider the set

Sk :=
{
n ≤ L : |(F (an))(K)| ≤ 2−ρ(Φ(k+1)+2)−1

}
,

where here again, (F (an))(K) is the 2−K-rational approximation of F (an) provided by

ĥ(an)(K).

(i) : Sk 6= ∅. Let z ∈ zer F. Then by the definition of α, there exists an n ≤ L such that

‖an − z‖ < 2−ω(K).
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By the definition of ω and using that F (z) = 0, we get |F (an)| < 2−K and so

|(F (an))(K)| < 2−ρ(Φ(k+1)+2)−1,

i.e. n ∈ Sk.
(ii) : The following implications holds for all n ∈ N

n ∈ Sk → ∃z ∈ zer F
(
‖z − an‖ < 2−Φ(k+1)−2

)
,

since by the assumption

|(F (an))(K)| ≤ 2−ρ(Φ(k+1)+2)−1

and so
|F (an)| < 2−ρ(Φ(k+1)+2)

so that we can apply the definition of ρ.
Now compute (primitive recursively in k and the other data mentioned in the theorem) an
nk ∈ Sk such that for all m ∈ Sk

(+) (‖an‖)(Φ(k + 1) + 2) ≤ (‖am‖)(Φ(k + 1) + 2),

where (‖ai‖)(Φ(k + 1) + 2) is the 2−Φ(k+1)−2-rational approximation to ‖ai‖ provided by

ĝ(i)(Φ(k + 1) + 2).

By (ii), ∃z ∈ zer F such that

‖ank
− z‖ < 2−Φ(k+1)−2.

Let z0 be the unique zero of F with minimal norm.

Claim: ‖z‖ ≤ ‖z0‖+ 2−Φ(k+1).

Proof of Claim: Suppose that ‖z‖ > ‖z0‖ + 2−Φ(k+1). Then ‖ank
‖ > ‖z0‖ + 2−Φ(k+1) −

2−Φ(k+1)−2 and so

(1) (‖ank
‖))(Φ(k + 1) + 2) > ‖z0‖+ 2−Φ(k+1) − 2−Φ(k+1)−1 = ‖z0‖+ 2−Φ(k+1)−1.

By the definition of L there exists an l ≤ L with

‖al − z0‖ < 2−Φ(k+1)−2 ∧ ‖al − z0‖ < 2−ω(K).

By the second conjunct we get - reasoning as in (i) - that l ∈ Sk.
The first conjunct implies that

(2) (‖al‖)(Φ(k + 1) + 2) < ‖z0‖+ 2−Φ(k+1)−1.

(1) and (2) together yield that

(‖ank
‖)(Φ(k + 1) + 2) > (‖al‖)(Φ(k + 1) + 2)
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which contradicts (+) and so finishes the proof of the claim.

Since Φ is a modulus of uniqueness, the claim implies that ‖z − z0‖ ≤ 2−k−1 and so (since

Φ(k) ≥ k which holds by the construction of Φ and which we, anyhow, may assume w.l.o.g.

by taking max{Φ(k), k}, otherwise) ‖ank
− z0‖ < 2−k. This implies that (nk)k is a name for

z0 in the sense of [16]. �

The following axiom (formulated in the language of the system Aω[X, d,W ] of classical anal-
ysis in all finite types augmented with an abstract type X for a bounded hyperbolic space
defined in [14]) states that for an abstract bounded metric space (X, d) any nonexpansive
function F : X → R which has a zero possesses a modulus of regularity

(NE-Reg) : ∀F : X → R, r > 0 (F n.e. ∧ ∃z ∈ zer F → ∃ρ : N→ N(ρ mreg zer F, r)).

We will show that this classically false axiom can - differently from the also classically

false principle ∃-UBX from [15] (see also [16]) which is admissible in logical metatheorems

of proof mining - not be added to Aω[X, d,W ] to obtain a formal system which admits

the extraction of classically correct uniform bounds for (essentially) ∀∃-theorems.3 The

argument is already implicit in the proof of [18][Theorem 3] but we include it here for
completeness.

Proposition 2.5. In Aω[X, d,W ] + (NE-Reg) one can prove a sentence of the form

A :≡ ∀g ∈ NN, k ∈ N, xX , pX , TX→X (T nonexpansive → ∃n ∈ NA∃(g, k, x, p, T )),

where A∃(g, k, x, p, T ) is a provably extensional Σ0
1-formula, such that A is not true in all

bounded hyperbolic spaces (X, d,W ) (in fact not even in all closed bounded convex subsets

of l2).

Proof: Consider the sentence (abbreviating ‘nonexpansive’ by ‘n.e.’)

A :≡ ∀g ∈ NN, k ∈ N, xX , pX , TX→X
(
T n.e. ∧ p =X Tp→ ∃n ∈ N dX(xn, xg(n)) <R 2−k

)
,

where (xn) is defined as x0 := x, xn+1 := WX(xn, Txn, 1/2), which is equivalent to a sen-

tence of the required logical form noticing that =X∈ Π0
1 and <R∈ Σ0

1.

Aω[X, d,W ] proves that the Krasnoselski iteration of T is asymptotically regular, i.e.

that d(xn, Txn) → 0 (see [19, 16]). Since (xn) is Fejér monotone w.r.t. zer F where

F (x) := d(x, T (x)), the assumption F (p) =R 0 by (NE-Reg) yields a modulus of regularity

w.r.t. zer F and B(p, b) where bN is the constant witnessing the (b-)boundedness of X in

Aω[X, d,W ]. Hence by [21, Theorem 4.1], (xn) is - reasoning in Aω[X, d,W ] + (NE-Reg) -
a Cauchy sequence and so for all k ∈ N, g : N→ N

∃n ∈ N dX(xn, xg(n)) < 2−k.

3So, in particular, (NE-Reg) cannot be derived from a combination of ∃-UBX with comprehension over
natural numbers, e.g. by an adaptation to the abstract type X of how the generalized uniform boundedness
principles Π0

k-UB−|\ studied in [11] are formed.
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Thus in total we get the provability of A. However, by [6], there exists a bounded closed
and convex subset C ⊂ l2 and a nonexpansive selfmapping T : C → C possessing a fixed
point in C and a point x0 ∈ C such that (xn) does not strongly converge. Hence (xn) is

not a Cauchy sequence and so ∀k ∈ N ∀g ∈ NN ∃n ∈ N (dX(xn, xg(n)) < 2−k) does not hold

in this example, where X := C and W (x, y, λ) := (1− λ)x+ λy. �

In the following we use the formal definition of the binary (‘weak’) Kőnig’s lemma (in a

language with function variables) as given in [27] (see also [28]; here ∗, bx, lth(n) refer to

the primitive recursive coding of finite sequences from [26]):

Definition 2.6 ([27]).

Tf :≡ ∀n0,m0(f(n ∗m) =0 0→ fn =0 0) ∧ ∀n0, x0(f(n ∗ 〈x〉) =0 0→ x ≤0 1)

(i.e. T (f) asserts that f represents (the characteristic function of) a binary tree)

T∞(f) :≡ T (f) ∧ ∀x0∃n0(lth(n) = x ∧ fn = 0),

(i.e. T∞(f) expresses that f represents an infinite binary tree),

WKL :≡ ∀f1
(
T∞(f)→ ∃b1∀x0(f(bx) = 0)

)
.

Definition 2.7. We say that ρ : N → N is a modulus of regularity for an infinite binary
tree (represented by) f w.r.t. infinite paths through f if

∀h ≤1 1 ∀k0
(
f(h(ρ(k))) = 0→ ∃b ≤1 1 (∀x0(f(bx) = 0) ∧ hk = bk)

)
.

Definition 2.7 can be seen as a special case of Definition 2.1 for X := 2N with the Baire
space metric

d(f, g) :=

{
2−min k[f(k)6=g(k)]−1, if f 6= g
0, otherwise

and

F : 2N → R, h 7→
∞∑
i=0

χ(h, i) · 2−i,

where

χ(h, i) =

{
0, if f(hi) = 0,
1, otherwise.

Here we use that d(f, g) < 2−k iff f(k) = g(k) and that

|F (h)| < 2−n → f(hn) = 0→ |F (h)| ≤ 2−n.

More precisely, if ρ satisfies Definition 2.7, then it also is a modulus of regularity in the
sense of 2.1 for zerF and - conversely - if ρ is modulus in the sense of Definition 2.1, then
ρ̃(k) := ρ(k) + 1 satisfies Definition 2.7.

As shown in [17], the existence of a modulus of regularity for continuous functions on

compact spaces is equivalent to arithmetical comprehension ACA0 (whereas the existence

of the ∀ε∃δ-version is equivalent to WKL). The reason for this difference in strength is
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that already the ∀ε∃δ-regularity implies Σ0
1-LEM (see Theorem 2.11.2) below) which then,

when strengthened into a modulus, becomes Σ0
1-comprehension and so - by interation -

arithmetical comprehension.
Using arithmetical comprehension, one can construct the leftmost infinite path in an infinite
binary tree. The next result gives an explicit transformation of a modulus of regularity in
the sense of Definition 2.7 into the leftmost branch:

Proposition 2.8. There exists a Kalmar elementary functional ϕ of type 2 (more precisely

ϕ is given by a closed term of G3Aω as defined in [10]) such that for any given infinite

binary tree f with modulus of regularity ρ, ϕ(f, ρ) is the leftmost infinite path in f.

Proof: Define ϕ(f, ρ)(k) := k-th component (σ)k of the leftmost finite branch σ of length

ρ(k + 1) in f which can be searched for by exponentially bounded search. We may assume

that k ≤ ρ(k) for all k. Let k be fixed and consider the leftmost finite branch σ of length

ρ(k + 1) in f. Then the infinite sequence σ ∗ 01 (defined as continuing σ by 0’s) satisfies

f((σ ∗ 0)(ρ(k + 1)) = f(σ) = 0. By the definition of ρ we get the existence of an infinite
path b ≤ 1 with

b(k + 1) = (σ ∗ 0)(k + 1).

Let b̃ ≤ 1 be the leftmost infinite path in f.

We show that ∀i ≤ k (b̃(i) = b(i)) (and so, in particular, b̃(k) = b(k) = (σ)k): suppose that

∃i ≤ k
(
b̃(i) 6= b(i)

)
and let i0 be the smallest such i.

Case 1: b̃(i0) < b(i0) = (σ)i0 . Then b̃(ρ(k + 1)) would be a finite branch in f of length

ρ(k + 1) which is more to the left than σ (since b̃(i) = b(i) = (σ)i for all i < i0) which
contradicts the definition of σ.
Case 2: b(i0) < b̃(i0). Then b would be a more to the left infinite path in f than b̃ contra-

dicting the definition of b̃. �

As shown in [21, Theorem 4.1], a modulus of regularity always yields (given an approximate

solution bound) a rate of convergence for Fejér monotone algorithms computing approxi-
mate solutions. The algorithm in the proof of Proposition 2.8, in fact, is an instance of
this:

Proposition 2.9. Let for a given infinite binary tree f, (xk) be defined as follows: xk :=

σk ∗ 01, where σk is the lefmost finite branch of length k in f. Then (xk) is Fejér monotone
w.r.t. the set S of infinite paths through f.

Proof: Let b ∈ S. We have to show that

∀k ∈ N (d(xk+1, b) ≤ d(xk, b)).

This in turn follows from

Claim: ∀k,m ∈ N (xkm = bm→ xk+1m = bm).

Proof of Claim: let k,m ∈ N be fixed and assume that xkm = bm. Suppose that for
some i < m we would have that xk+1(i) 6= b(i) and let i0 be the least such i. Note that
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∀j < i0 (xk(j) = b(j) = xk+1(j)).
Case 1: i0 ≤ k. Since σk+1 is the leftmost branch of length k + 1 while σk is leftmost of

length k, it follows (using that xk(k) = 0) that xk is to the left of xk+1 so that b(i0) =

xk(i0) ≤ xk+1(i0). Since b(k+ 1) is some finite branch of length k+ 1, σk+1 is left of it and

so xk+1(i0) ≤ b(i0). Hence in total xk+1(i0) = b(i0) which is a contradiction to the definition
of i0.
Case 2: i0 > k. Then by definition xk+1(i0) = 0 = xk(i0) = b(i0) which again contradicts
the definition of i0. �

Definition 2.10. 1. The Σ0
1-law-of-excluded-middle principle (with function parameters)

is defined as4

Σ0
1-LEM : ∀f

(
∀n0 (f(n) = 0) ∨ ∃n0 (f(n) 6= 0)

)
.

2. The principle of binary choice for Π0
1-formulas is defined as

Π0
1-AC≤1 : ∀f

(
∀n0 ∃m ≤0 1 ∀k0 (f(n,m, k) = 0)→ ∃g ≤1 λx.1∀n, k (f(n, g(n), k) = 0)

)
.

In the following, EL denotes the system of elementary intuitionistic analysis from [26].

Theorem 2.11. 1. EL+Σ0
1-LEM+Π0

1-AC≤1 proves that for every compact metric space

X = Â any continuous mapping F : X → R having a zero is regular w.r.t. zer F.

2. Already for Lipschitz continuous functions F : [0, 1]→ R with zer F 6= 0, the regularity

of F w.r.t. zer F implies Σ0
1-LEM over EL.

Proof: 1) Inspection of the proof of [17, Theorem 4.2(1)] (see also [17, Remark 4.3]) shows

that the claim can be established with induction, Σ0
1-LEM and WKL. WKL in turn is

provable in EL+LLPO+Π0
1−AC0,0

≤1 as follows from the proof of [13, Theorem 3]. LLPO

trivially follows from Π0
1-LEM and hence - a fortiori - from Σ0

1-LEM. In total the claim of
the theorem follows.
2) We refine the proof of [17, Theorem 4.4(2)], which classically shows that the existence of a
modulus of regularity implies the convergence of bounded monotone sequences of rationals
in [0, 1] (and hence arithmetical comprehension ACA0 by [24, Theorem III.2.2]), to get

that intuitionistically the ε/δ-form of regularity implies the Cauchy property of bounded

monotone sequences which is known to imply Σ0
1-LEM over EL (see [25, Theorem 2.(ii)],

which in turn refers to [29, 5.4.4], and the more recent [7]). Let (an) be a nondecreasing

sequence of rational numbers in [0, 1] and f, T : [0, 1]→ [0, 1] be nonexpansive as defined in

the proof of [17, Theorem 4.4(2)] and xn := Tn0. Now suppose that the Lipschitz-2 function

F : [0, 1] → R, F (x) := |x − Tx| is ∀ε∃δ-regular and note that 1 ∈ zer F 6= ∅. Since (xn)

is Fejér monotone w.r.t. zer F = Fix(T ) and asymptotically regular, i.e. |xn − Txn| → 0,

and, in fact, with rate of convergence n+ 3 (see the proof of [17, Theorem 4.4(2)]) it follows

4For a proof-theoretic study of this principle (as a first-order principle without function variables) and
its computational interpretation see [1] and [2] respectively.
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that (xn) is a Cauchy sequence: let k ∈ N be fixed and n ∈ N by the ∀ε∃δ-regularity be
such that for all

∀x ∈ [0, 1]
(
|x− Tx| < 2−n → ∃p ∈ Fix(T ) (|p− x| < 2−k−1)

)
.

Then |xn+3 − p| < 2−k−1 for some p ∈ Fix(T ) and so by the Fejér monotonicity of (xn)

∀m ≥ n+ 3 (|xm − p| < 2−k−1)

which implies - as k was arbitrary - that

(∗) ∀k ∈ N ∃n ∀m, m̃ ≥ n (|xm − xm̃| < 2−k).

Let k ∈ N be fixed again and nk be such that (∗) holds for k. For C ∈ N, define nC :=

max{nk, k + C + 3}. Then

|xnC − TxnC | < 2−k−C

and so - by T (x) = 1
2(x+ f(x)) -

|xnC − f(xnC )| < 2−k−C+1

which in turn - by the fn-definition used to define f - implies that

∀l ≤ C (al < xnC + 2−k)

and so - since nC ≥ nk -

∀l ≤ C (al < xnk
+ 2−k+1).

Since C ∈ N was arbitrary, we get

(∗∗) ∀l ∈ N (al < xnk
+ 2−k+1).

Let lk ∈ N be so large that 2−lk · nk < 2−k. Then - reasoning as in [17], p.383, lines 3-7 -

(∗ ∗ ∗) alk ≥ xnk
− 2−k.

Indeed, assume that alk < xnk
− 2−k and so - since (an) is nondecreasing

∀l ≤ lk (al < xnk
− 2−k).

By induction on n we show that

(+) ∀n ∈ N (xn ≤ xnk
− 2−k + n · 2−lk) :

x0 = 0 ≤ a0 ≤ xnk
− 2−k. For the induction step (using that xn, al ≤ 1):

xn+1 = 1
2

(
xn +

∞∑
l=0

2−l−1 max{xn, al}
)

I.H., assumption
≤ 1

2

(
xnk
− 2−k + n · 2−lk + (xnk

− 2−k + n · 2−lk)
∞∑
l=0

2−l−1 +
∞∑

l=lk+1

2−l−1

)
= xnk

− 2−k + n · 2−lk + 1
22−lk−1 < xnk

− 2−k + (n+ 1) · 2−lk .
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(+) applied to n := nk yields that

xnk
≤ xnk

− 2−k + nk · 2−lk < xnk

which is a contradiction and, therefore, establishes (∗ ∗ ∗).
So by (∗∗) and (∗∗∗) together (using again that (an) is nondecreasing) we have shown that

∀l ≥ lk
(
al ∈ [xnk

− 2−k, xnk
+ 2−k+1]

)
which yields that (an) is a Cauchy sequence. �

As shown in [17], with classical logic (and WKL), Σ0
1-IA suffices to prove the ε/δ-regularity

in the compact case. However, then Σ0
2-DNE

∀f (¬¬∃n∀k (f(n, k) = 0)→ ∃n∀k (f(n, k) = 0))

seems to be needed for the proof. To weaken the latter principle to Σ0
1-LEM, one apparently

needs a somewhat stronger induction in order to establish the principle of bounded Σ0
1-

comprehension

Σ0
1-BCA : ∀f, k ∃σ (lth(σ) = k ∧ ∀i < k ((σ)i = 0↔ ∃n (f(i, n) = 0)))

which was introduced under the name of ASΣ
1 in [23] and studied with the name above

in [7]. The situation is, therefore, analogous to that of the Cauchy property of bounded

monotone sequences in [0, 1] studied under the name of PCMar in [12] and [25] and - under

the name of MCT− in [7]: Σ0
1-BCA, which implies both Σ0

1-LEM and Σ0
1-IA over EL re-

stricted to quantifier-free induction (and even weaker systems; see [7]), and which is implied

by Σ0
1-LEM and IA, suffices for the proof Theorem 2.11.1) but it is open whether here IA

can be weakened to Σ0
1-IA. This, of course, does not come as a surprise since - as the proof

of Theorem 2.11.2) shows - metric regularity intuitionistically implies PCMar (the case of
sequences of reals can easily be reduced to the one for rationals using rational approxima-
tions as in the proof of [12, Proposition 5.2(1)]).

Acknowledgment: The author is grateful to Pedro Pinto and Nicholas Pischke for com-
ments which improved the presentation in this paper.
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[5] F. Ferreira, L. Leuştean and P. Pinto. On the removal of weak compactness arguments

in proof mining. Adv. Math. 354, 106728, 55 pp. (2019).

[6] A. Genel and J. Lindenstrauss. An example concerning fixed points. Israel Journal of

Mathematics 22, pp. 81-86 (1975).

[7] H. Ishihara and T. Nemoto. The monotone completeness theorem in constructive re-

verse mathematics. In: S. Centrone et al. (eds.), Mathesis Universalis, Computability
and Proof. Synthese Library 412, Chapter 8, pp. 101-112. Springer Nature Switzerland
AG, 2019.

[8] S.C. Kleene. Recursive functionals and quantifiers of finite types, I. Trans. Amer. Math.

Soc. 91, pp. 1-52 (1959).

[9] U. Kohlenbach. Effective moduli from ineffective uniqueness proofs. An unwinding of
de La Vallée Poussin’s proof for Chebycheff approximation. Ann. Pure Appl. Logic 64,
pp. 27-94 (1993).

[10] U. Kohlenbach. Mathematically strong subsystems of analysis with low rate of growth

of provably recursive functionals. Arch. Math. Logic 36, pp. 31-71 (1996).

[11] U. Kohlenbach. On the arithmetical content of restricted forms of comprehension,

choice and general uniform boundedness. Ann. Pure Appl. Logic 95, pp. 257-285 (1998).

[12] U. Kohlenbach. Things that can and things that cannot be done in PRA. Ann. Pure

Applied Logic 102, pp. 223-245 (2000).

[13] U. Kohlenbach. Intuitionistic choice and restricted classical logic. Math. Log. Quart.

47, pp. 455-460 (2001).

[14] U. Kohlenbach. Some logical metatheorems with applications in functional analysis.

Trans. Amer. Math. Soc. 357, no. 1, pp. 89-128 (2005).

[15] U. Kohlenbach. A logical uniform boundedness principle for abstract metric and hy-

perbolic spaces. Electronic Notes in Theoretical Computer Science (Proceedings of

WoLLIC 2006) 165, pp. 81-93 (2006).

[16] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathe-
matics. Springer Monographs in Mathematics. xx+536pp., Springer Heidelberg-Berlin,
2008.

13



[17] U. Kohlenbach. On the reverse mathematics and Weihrauch complexity of moduli of

regularity and uniqueness. Computability 8, pp. 377-387 (2019).

[18] U. Kohlenbach. Proof-theoretic uniform boundedness and bounded collection principles

and countable Heine-Borel compactness. Arch. Math. Log. 60, pp. 995-1003 (2021).

[19] U. Kohlenbach and L. Leu̧stean. Mann iterates of directionally nonexpansive map-
pings in hyperbolic spaces. Abstract and Applied Analysis, vol. 2003, no.8, pp. 449-477
(2003).
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