
Electronic Notes in Theoretical Computer Science 13 (1998)URL: http://www.elsevier.nl/locate/entcs/volume13.html 34 pagesProof theory and computational analysisUlrich KohlenbachBRICS 1Department of Computer ScienceUniversity of AarhusNy MunkegadeDK-8000 Aarhus C, Denmarkkohlenb@brics.dkAbstractIn this survey paper we start with a discussion how functionals of �nite type canbe used for the proof-theoretic extraction of numerical data (e.g. e�ective uni-form bounds and rates of convergence) from non-constructive proofs in numericalanalysis.We focus on the case where the extractability of polynomial bounds is guaranteed.This leads to the concept of hereditarily polynomial bounded analysis PBA. Weindicate the mathematical range of PBA which turns out to be surprisingly large.Finally we discuss the relationship between PBA and so-called feasible analysisFA. It turns out that both frameworks are incomparable. We argue in favor ofthe thesis that PBA o�ers the more useful approach for the purpose of extractingmathematically interesting bounds from proofs.In a sequel of appendices to this paper we indicate the expressive power of PBA.
1 Uniform bounds in analysisThere are (at least) two major challenges in computational analysis:1) to �nd algorithms for the computation of basic analytical concepts likee.g. the Riemann integral R 10 f(x)dx (as well as more general integrals),the supremum supx2[0;1] f(x) etc. for functions f 2 C[0; 1] which are e�cientat least under additional assumptions on f which are satis�ed in manypractical applications. Sometimes additional assumptions are needed to1 Basic Research in Computer Science, Centre of the Danish National Research Foundation.c
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Kohlenbachensure at all the computability of the concept in question, e.g. in theproblem of �nding roots etc.2) to get a-priori bounds on the stopping problems for certain algorithmicprocedures, e.g. the rate of convergence of some iterative algorithm.Typically such algorithms compute solutions x" of "-weakenings A"(x) ofan equation or a property A(x) (e.g. "-best approximations instead ofbest approximations in Chebyche� approximation theory) where(1) (8" > 0A"(x))$ A(x)and (2) 8x 2 K; "; ~" > 0(" < ~" ^ A"(x)! A~"(x)):In general a solution x" for A"(x) need not to be close to any actualsolution of A(x).If x varies over some compact metric space (K; d) and A(x) is`"-continuous' in the sense(3) 8x 2 K8" > 09� > 08~x 2 K(d(x; ~x) < � ^ A"(~x)! A2"(x))and if (xn)n2IN � K with A 1n (xn) for all n 2 IN, then an easy compact-ness argument shows that there exists a subsequence of (xn)n2IN whichconverges to a solution of A(x).Example: A(x) :� (F (x) =IR 0), where F : K ! IR is continuous, andA"(x) :� (jF (x)j �IR ").Moreover if there exists exactly one solution x0 of A(x) in K, then thesequence (xn)n2IN itself converges to this solution(4) n!1) d(xn; x0)! 0;but what is the rate of convergence?Whereas it seems doubtful whether proof theory is able to contribute to 1)(in a narrow sense) it is a potentially useful tool for 2) as is witnessed e.g.in the area of (Chebyche�) approximation theory where new mathematicalresults on strong unicity and a new quantitative version of the so-called al-ternation theorem were obtained by proof-theoretic analysis of well-known(non-constructive) uniqueness proof (see [12],[13],[14]).Let us discuss this further considering (4) again:The uniqueness of x0, i.e.(5) 8x1; x2 2 K(A(x1) ^ A(x2)! x1 = x2)can { using (1); (2) { be written as 2(6) 8x1; x2 2 K8k 2 IN9n 2 IN(A 1n (x1) ^ A 1n (x2)! d(x1; x2) <IR 1k| {z }B(x1;x2;k;n) ):2 For simplicity we tacitly assume here that k; n � 1 in order to avoid the need to replace1k ; 1n by 1k+1 ; 1n+1 . 2



KohlenbachTypically (using a suitable representation of analytical objects like x 2 K andy 2 IR) A"(x) can be written as a �01-formula (as in our example above) andso B 2 �01. 3The convergence problem is solved quantitatively if we can construct a uniformwitness for 9n which does not depend on x1; x2 2 K, i.e.(7) 8x1; x2 2 K8k 2 IN(A 1�k (x1) ^ A 1�k (x2)! d(x1; x2) < 1k ):One then immediately concludes that(8) 8k 2 IN(d(x�k; x0) < 1k )and even (using (2) above)(9) 8k 2 IN8m � �k(d(xm; x0) < 1k );where (xn)n2IN � K such that A 1n (xn) for all n � 1 and x0 2 K such thatA(x0).It is an easy observation (using (2) again) that (6) is monotone w.r.t. `9n'.Hence any uniform bound (not depending on x1; x2 2 K) provides already auniform witness. So the whole question comes down to the problem:How to construct a uniform bound(10) 8x1; x2 2 K8k 2 IN9n � �k B(x1; x2; k; n)if (11) 8x1; x2 2 K8k 2 IN9n 2 INB(x1; x2; k; n)holds, where B 2 �01?Using a suitable representation of the compact space K, (11) (when formalizedin a system in the language of arithmetic in all �nite types) has the form(12) 8x1; x2 �1 s8k09n0B(x1; x2; k; n)where for higher types 4 � = 0(�k) : : : (�1), �� is de�ned pointwise, i.e.x1 �� x2 :� 8y�11 ; : : : ; y�kk (x1y1 : : : yk �0 x2y1 : : : yk)and s is a speci�c function (given by a closed term of the respective system).Slightly more general we consider sentences(13) 8x18k08y �� sxk9n0B(x; k; y; n);3 In the systems we are considering real numbers are represented as (certain) sequencesof rational numbers with �xed rate of convergence. Hence =IR;�IR2 �01 and <IR2 �01 (fordetails see appendix A1,2).4 For types �; � , �(�) denotes the type of objects which map objects of type � to objectsof type � . 3



Kohlenbachwhere B(x; k; y; n) 2 �01 and contains only x; k; y; n as free variables.Remark 1.1 In (13) above we may have tuples x of variables x�11 ; : : : ; x�mmwith deg(�i) � 1 for i = 1; : : : ; m. Furthermore n may have a type � withdeg(�) � 2 (we may even have a tuple of such variables) and B may be aformula 9vB0, where B0 is quanti�er-free and the variables v are of arbitrarytypes. Also we may have tuples y of variables yi �� sxk. For notationalsimplicity we restrict ourselves to variables n; v of type 0. Note that thenwithout loss of generality we may assume B to be quanti�er-free.Our goal is now to construct a computable functional �0(0)(1) such that(14) 8x18k08y �� sxk9n �0 �xk B(x; y; k; n):Usually and in particular if (13) has been proved non-constructively (both bythe use of classical logic as well as by using non-constructive function existenceprinciples like the binary K�onig's lemma WKL) one cannot directly read of abound � from the proof of (13) and it is here where proof theory comes intothe picture. The applicability of proof theory in this area of course dependson various requirements to be satis�ed:1) The extraction of the bound � from a proof of (13) must be relativelysimple and should leave the original structure of the proof essentiallyunchanged (in particular it should not cause an enormous increase of thelength of the given proof), i.e. it should have a nice behaviour w.r.t.modus ponens (`modularity').2) The proof-theoretic method should be applicable to systems formulated ina rich and 
exible language which makes it easy to formalize the analyticalconcepts used in the proof avoiding complicated coding devices and atthe same time allows to formalize many interesting theorems in analysisin the form (13) (i.e. the quanti�er-free part of the system should alreadyhave a great expressive power).3) It should be able to treat a variety of genuine analytical principles with-out increasing the complexity of the extraction procedure or the boundextracted.4) It should faithfully re
ect the numerical content w.r.t. bounds of thegiven proof and provide bounds of low growth (relative to the growth ofthe terms used in the proof) if no complicated instances of induction areused in the proof.Condition 1) rules out methods based on cut-elimination or normalizationof proofs as well as any direct no-counterexample interpretation (see [21]).Condition 2) makes it desirable to have a method which applies to systemsformulated in a language of all �nite types instead of second-order languages.Condition 3) rules out the usual G�odel functional interpretation (with a neg-ative translation on top of it). Moreover it provides an additional obstacleto a combination of negative translation followed by the Friedman/Dragalin4



KohlenbachA-translation and modi�ed realizability interpretation, since the A-translationdoes not capture the negative translation of the axiom of quanti�er-free choice(this will be discussed in a paper under preparation).A method which we believe ful�lls these requirements is themonotone func-tional interpretation which was developed in [14],[16] (the technique usedin [11] can be viewed of as a precursor of this method). Monotone functionalinterpretation is a variant of G�odel's functional interpretation [7] and extractsmajorizing functionals (in the sense of Howard [9]) of functionals satisfyingthe usual G�odel functional interpretation. These majorizing functionals keepcontrol through all �nite types of the growth rates involved in a given proofwithout any normalization. The method applies to (sub-)systems of classicalarithmetic in all �nite types extended by the axiom schema of quanti�er-freechoice AC�;� -qf : 8x�9y�A0(x; y)! 9Y �(�)8x�A0(x; Y x);AC-qf := S�;�2TfAC�;� -qf g;where A0 is a quanti�er-free formula, 5 but also to various (mostly non-constructive) analytical axioms � covering a great deal of classical analysis(see section 3 below). Furthermore the method can be combined with theelimination of Skolem function procedure from [17] and this combination isable to deal also with principles which go beyond WKL and cannot be treatedby the monotone functional interpretation in a direct way (see [19],[20]).A case of particular mathematical and computational interest is when � isguaranteed to be a polynomial in k and (in some sense also in) x. This leadsto the study of hereditarily polynomial bounded analysis which has tobe carefully distinguished from so-called feasible analysis as we are going todiscuss now.2 Hereditarily polynomial bounded analysis versus fea-sible analysisBy hereditarily polynomial bounded analysis we mean subsystems PBA ofanalysis A whose provably recursive functions (and in some sense explainedbelow also functionals) can be bounded by polynomials p 2 IN[k]. Morespeci�cally (restricting ourselves for the moment to the special case of (13)5 Throughout this paper A0; B0; C0; : : : denote quanti�er-free formulas. We allow boundednumber quanti�ers 8x �0 t, 9x �0 t to occur in A0; B0; C0; : : : since they can be expressedin a quanti�er-free way using the bounded search-functional �b which is included to allsystems we are considering. T denotes the set of all �nite types.5



Kohlenbachwhere 8x1 is not present) the following rule is supposed to hold:(15) 8>>><>>>:PBA ` 8k08y �� sk9z0A0(k; y; z)) one can extract a polynomial p(k) 2 IN[k] such thatPBA� ` 8k08y �� sk9z �0 p(k)A0(k; y; z);where PBA� is a system closely related to PBA (here s is a closed term ofPBA and A0(k; y; z) contains only k; y; z as free variables).If the statement 8k08y �� sk9z0A0(k; y; z) is monotone w.r.t. `9z', as istypically the case because of the very way in which sentences of this type arisein analysis (namely as 8" > 09� > 0-statements, see section 4 below), thenthe uniform bound p(k) realizes the quanti�er(16) PBA� ` 8k08y �� sk A0(k; y; p(k)):Feasible analysis { FA for short { in the sense of e.g. [5] in contrast to PBArefers to subsystems of analysis with feasible (poly-time) Skolem functions forprovable �02-sentences, i.e.(17) 8>>><>>>:FA ` 8k09z0A0(k; z)) 9f 2 PolytimeFA� ` 8k0A0(k; f(k)):Ferreira introduced in [5] a system of FA in the language of second-order arith-metic which includes a suitable version of the binary K�onig's lemma WKL.He in particular proved (17) for his system (where FA� := FA minus WKL).The two approaches are incomparable:1) The existence of a bound p(k) 2 IN[k] of course yields a bound inPolytime 6 , namely p, but not a poly-time witness function (not evenwhen A0 is poly-time decidable which typically will not be the case inPBA) since Polytime is not closed under bounded search (but only un-der sharply bounded search).2) The existence of a poly-time Skolem function f in (17) does not implythe existence of a bound p(k) 2 IN[k] since not every poly-time functionis bounded by a polynomial, e.g. f(k) := klogk is poly-time but growthsfaster than every polynomial.So in short: hereditarily polynomial bounded analysis guarantees the ex-tractability of uniform polynomial bounds whereas feasible analysis guaran-tees the existence (or when treated proof-theoretically the extractability) of6 Polytime here denotes the set of all poly-time computable n-ary number-theoretic func-tions. 6



Kohlenbachpoly-time algorithms. Although the latter approach may yield applicationse.g. in the area of analytical number theory, many existential statement inanalysis are monotone and therefore the restriction to bounds is no restric-tion at all here but has tremendous bene�ts: it allows to incorporate manyanalytical constructions and principles which are known to be unfeasible (un-less the polynomial hierarchy collapses). E.g. the work of H. Friedman andK.-I. Ko (see [10]) shows that almost all basic concepts in analysis, e.g. theRiemann integral, the supremum supx2[0;1] f(x) and many others are not feasible(in general). So to a great extent one can say that there is no such thing asfeasible analysis. On the other hand hereditarily polynomial bounded analysisis amazingly rich both w.r.t. to the size of the fragment of analysis which canbe carried out in a suitable system for PBA and w.r.t. to the great varietyof theorems which can be expressed in the form (13) which is due to the factthat e.g. R 10 f(x)dx and supx2[0;1] f(x) can be de�ned explicitly in PBA by certainfunctionals of type level 2 (see appendix A4 below).3 The range of hereditarily polynomial analysisIn [15],[16] we proposed a system G2A!+ AC-qf +� for PBA. Here G2A! isthe second system in a hierarchy of subsystems (GnA!)n2IN of arithmetic inall �nite types. The de�nable type-1-objects of GnA! correspond to the well-known Grzegorczyk hierarchy. Moreover GnA! contains various functionalsof higher type, a rule of quanti�er-free extensionality in higher types wheres =� t is an abbreviation for 8x(sx =0 tx), and all true universal axioms8xA0(x) where A0 is a quanti�er-free formula and x is a tuple of variables oftypes � 2. Here `true' refers to validity in the full set-theoretic type structureS!. In particular these universal axioms capture the schema of quanti�er-freeinduction (since bounded quanti�cation can be expressed in a quanti�er-freeway in GnA! using a bounded search functional). The reason for includingall true universal axioms of the type above as axioms instead of using onlythe schema of quanti�er-free induction is that axioms of this form have atrivial (monotone) functional interpretation and therefore do not contributeto the extractable bounds by their proofs but only by the terms used in theirformulation. Of course in speci�c proofs only �nitely many of them are used.In the special case of G2A! we have the ��;� ;��;�;� -combinators for all types(which allow the de�nition of �-abstraction), constants 00 (zero), S00 (suc-cessor), min0 and max0 (minimum and maximum of pairs of numbers), +(addition), � (multiplication), bounded predicative recursor constants ~R�, abounded search functional �b, a bounded maximum functional �maxfx (=max0(f0; : : : ; fx)) and a bounded sum functional ��fx (= xPi=0 fi).7



Kohlenbach� is a set of axioms having the logical form(18) 8x�9y �� sx8z�A0(x; y; z);where A0 is quanti�er-free (containing only x; y; z as free variables), s is aclosed term of GnA! and �; �; � are arbitrary �nite types.It turns out that many non-constructive analytical theorems can be formal-ized as sentences (18). Nevertheless one of the main features of monotonefunctional interpretation is that sentences (18) can be seen not to contributeto the bound extracted (or to the complexity of the extraction procedure) bytheir proofs but only by majorizing functionals (in the sense of [9]) for theterms s. Hence we can treat them as axioms as well. However we want tokeep track of their use (and therefore do not include them in the de�nition ofGnA!) since at some places we need to replace them by certain "-weakenings.The reason for this is that we want to make use also of a certain non-standardaxiom(19)F� :�8�2(0); y1(0)9y0 �1(0) y8k0; z1; n0( Vi<0n(zi �0 yki)! �k(z; n) �0 �k(y0k));(where, for z�0, (z; n)(k0) :=� zk, if k <0 n and := 0�, otherwise).In order to motivate this axiom let's consider its simple case where we onlyhave single functionals �2; y1 instead of sequences �2(0); y1(0), i.e.bF� :� 8�2; y19y0 �1 y8z1; n0( ^i<0n(zi �0 yi)! �(z; n) �0 �(y0)):bF� trivially implies that every �2 is bounded on the set f(z; n) : z 2 ININ; n 2IN; z �1 yg (Conversely bF� is implied by this boundedness statement usingthe least number principle and classical logic: let m0 2 IN be the least numbersuch that �(z; n) � m0 for all such z; n. Then there exists a y0 � y such that�y0 = m0).In particular bF� implies that every � is bounded on all functions 1; n for alln 2 IN. This however is false for �f := 8<:minn(fn = 0); if 9n(fn = 0)00; otherwise:Hence bF� (and a-fortiori F�) is not true in S! (that's why we call it `non-standard'). However to construct a counterexample to F� one has to usearithmetical comprehension over functions which is not available in our sys-tems. In fact we are able to reduce F� (which has the logical form of anaxiom �!) in proofs of sentences (13) (relative to GnA! + �+ AC-qf) to its"-weakening which is true in S! and even provable in G3A!. Combined with8



KohlenbachAC1;0-qf, F� proves a strong principle of uniform �01-boundedness ([16]):�01{UB� :� 8><>:8y1(0)(8k08x �1 yk9z0 A(x; y; k; z)! 9�18k0; x1; n0( Vi<0n(xi �0 yki)! 9z �0 �k A((x; n); y; k; z)));where A � 9l0A0(l) is a purely existential formula.This principle allows to give very short proofs of various non-constructiveanalytical principles including a strong version of WKL (for details on thissee [16],[18]; in [20] we discuss various more general principles of uniformboundedness).De�nition 3.1 A term t[x1; k0] of type 0 is called a polynomial in x; k if it isbuilt up from 00; S;+; �; x; k only by application.De�nition 3.2 1) For f 1 we de�ne fM := �maxf .2) ~� := f9V ��
 t8u
; w�G0(u; V u; w) : 8u
9v �� tu8w�G0(u; v; w) 2 �g:3) GnA!i denotes the intuitionistic variant of GnA!.4) E-GnA! is the extension of GnA! obtained by adding the extensionalityimplicationE� : 8x�; y�11 ; z�11 ; : : : ; y�kk ; z�kk ( k̂i=1(yi =�i zi)! xy1 : : : yk =0 xz1 : : : zk)for all types � = 0(�k) : : : (�1):Theorem 3.3 ([15],[16]) Let A1(x1; k0; y1; z0) be a �01-formula in L(G2A!)which contains only x; k; y; z as free variables and let s be a closed term ofG2A!. Furthermore let � be a set of closed axioms of the form 8u
9u ��tu8w�G0(u; v; w) with deg(�) � 1, t a closed term and G0 quanti�er-free.Let T := E-G2A!+ AC1;0-qf + AC0;1-qf + � + F�. Then the following ruleholds (20) 8>>><>>>:T ` 8x18k08y �1 sxk9z0A1(x; k; y; z)) one can extract a polynomial �[x; k] in x; k such thatG3A!i + ~� ` 8x18k08y �1 sxk9z �0 �[xM ; k]A1(x; k; y; z):Remark 3.4 1) Note that in the theorem above we extract a polynomialbound whereas its veri�cation uses an (exponential) coding functional�hifx := hf0; : : : ; f(x� 1)i (see [16]) which is de�nable in G3A! but notin G2A!.2) For G2A! instead of E-G2A! and �F� instead of +F� one 7 may have7 Here � means that F� must not be used in the proof of the premise of an applicationof the quanti�er{free rule of extensionality QF{ER. GnA! satis�es the deduction theorem9



Kohlenbachfull quanti�er-free choice AC-qf and y� for arbitrary type � in the theoremabove. In this case we also can allow � in � to be an arbitrary �nite type.In this form theorem 3.3 is proved in [16]. The present formulation followsby the well-known extensionality elimination procedure, see [16](proof ofcor.3.1.4).The extraction of a bound 	 in the theorem above which is built up only from��;� ;��;�;� (for certain types �; �; �); S;+; � is obtained by monotone functionalinterpretation without any normalization involved. It is only if one wantsto write 	xk as a polynomial �[x; k] that one has to use logical normaliza-tion (i.e. normalization w.r.t. �,�-reductions).Theorem 3.3 remains true if we add new function symbols '� (deg(�) � 1)to GnA! together with certain universal axioms 8x�A0(x) (deg(�) � 2) aboutthem if this includes an axiom of the form t �� ' for some closed term t ofGnA! (see theorem 3.2.8 of [16]). If these axioms are true in S! for say theintended interpretation of ', then S! is a model also for this extension ofGnA! and since such extensions don't have any impact on extractable boundswe are free to use them and will do so in appendix B and still denote theresulting system by GnA!.Theorem 3.5 ([15],[16],[18])For suitable axioms � of the form 8u19v �1 tu8w1G0(u; v; w) 2 L(G2A!),E-G2A!+ AC1;0-qf + AC0;1-qf +�+F� contains a substantial part of analysisincluding:1) Basic properties of the operations +;�; �; (�)�1; j � j;max;min and the re-lations =;�; < for rational numbers and real numbers (which are givenby Cauchy sequences of rationals with �xed Cauchy rate of convergence).2) Basic properties of maximum and sum for sequences of real numbers ofvariable length.3) Basic properties of uniformly continuous functions f : [a; b]d ! IR;supx2[a;b] f(x) and R xa f(x)dx for f 2 C[a; b] where a < b and x 2 [a; b].4) The Leibniz criterion, the quotient criterion, the comparison test for se-ries of real numbers. The convergence of the geometric series togetherwith its sum formula. The non-convergence of the harmonic series. (Butnot: The Cauchy property of bounded monotone sequences in IR or theBolzano{Weierstra� property for bounded sequences in IR, see [19]).5) Characteristic properties of the trigonometric functions sin; cos; tan;arcsin; arccos; arctan and of the restrictions expk and lnk of exp; ln to[�k; k] for every �xed number k.6) Fundamental theorem of calculus.w.r.t. � but not w.r.t. +. 10



Kohlenbach7) Fej�er's theorem on uniform approximation of 2�{periodic uniformly con-tinuous functions f : IR! IR by trigonometric polynomials.8) Equivalence (local and global) of sequential continuity and "{�{continuityfor f : IR! IR.9) Mean value theorem of di�erentiation.10) Mean value theorem for integrals.11) Cauchy{Peano existence theorem.12) Brouwer's �xed point theorem for uniformly continuous functions f :[a; b]d ! [a; b]d.13) Attainment of the maximum of f 2 C([a; b]d; IR) on [a; b]d.14) Uniform continuity (together with the existence of a modulus of uniformcontinuity) of pointwise continuous functions f : [a; b]d ! IR.15) Sequential form of the Heine{Borel covering property of [a; b]d � IRd.16) Dini's theorem: Every sequence (Gn) of pointwise continuous functionsGn : [a; b]d ! IR which increases pointwise to a pointwise continuousfunction G : [a; b]d ! IR converges uniformly on [a; b]d to G and thereexists a modulus of uniform convergence.17) Every strictly increasing pointwise continuous function G : [a; b]!IR pos-sesses a uniformly continuous strictly increasing inverse function G�1 :[Ga;Gb]![a; b].18) A higher type formulation of K�onig's lemma WKL2seq for sequences ofbinary trees. 8Remark 3.6 The reason for assuming f to be uniformly continuous in someof the principles 1)-13) mentioned in the theorem, although we can weakenthis to pointwise continuity in view of 14), is to make explicit the use of thenon-standard axiom F� which is used only for 14)-18).Let us denote from now on E-G2A!+ AC1;0-qf + AC0;1-qf +�+F� by PBA(for a set of axioms � su�cient for theorem 3.5).Theorem 3.5 is proved in [15]. Various parts of it are published: In [16] weshowed that PBA (even for � = ;) proves 18). In [18] it is shown thatPBA proves (again with � = ;) 13){17). 9) easily follows from 13). It isan easy exercise that 8) is provable in G2A!+ AC0;1-qf. Using a suitablerepresentation of C([a; b]d; IR) which is developed in [15] one can show that10)-12) can be written directly as axioms �. 6) and 7) follow from suitablequantitative versions which can be expressed as universal axioms. 1) is carried8 See [16] for details. The usual formulation of WKL cannot be written down in G2A!since it requires the coding functional �hifx := hf0; : : : ; f(x� 1)i. In G3A! one can showthat WKL2seq implies WKL. 11



Kohlenbachout in detail in [19]. In an appendix to this paper we show 2),3) and 5).Theorems 3.3,3.5 can also be viewed as a vast extension of a result by Parikh[22]: Parikh considered a fragment PB of Peano arithmetic PA which containsthe schema of induction only for bounded formulas. He shows that if a sentence8x9y A(x; y) (A(x; y) being a bounded formula) is provable in PB then thereexists a polynomial p such that PB proves 8x9y � p(x)A(x; y). So PB canbe considered as a (very weak) system of polynomially bounded arithmetic.Remark 3.7 In the theorems 3.3 and 3.5 we simply added certain analyticalprinciples � as axioms to our system, since their proofs don't contribute to theextractable bounds. The veri�cation of the conclusion even relied on a stongerform ~� of these axioms. However by techniques similar to the one used for theF� elimination one can (under some mild restictions on the types) replace theuse of ~� by the use of much weaker "-versions ~�" (see [11],[12] for more detailson this). For the axioms � which we used in theorem 3.5 these "-versions areprovable in e.g. the fragment dHA!jn (due to Feferman [4]) of intuitionisticarithmetic in �nite types HA! where induction is restricted to quanti�er-freeformulas and recursion is allowed only on the ground type.4 Mathematical theorems that can be expressed as sen-tences 8x18k08y �1 sxk9z0A1 in G2A!For the applicability of theorems 3.3,3.5 it is of relevance what kind of ana-lytical theorems are formalizable in G2A! as sentences(21) 8x18k08y �1 sxk9z0A1(x; k; y; z);where A1 2 �01.Sentences (21) typically arise as follows: Let X be a complete separable metricspace, K a compact metric space and F;G : X � K ! IR constructivelyde�nable (and therefore continuous) functions. Many interesting theorems inanalysis (e.g. a large class of uniqueness theorems, see [12]) can be written inthe form (22) 8x 2 X8y 2 K(F (x; y) = 0! G(x; y) = 0)and thus(23) 8x 2 X8y 2 K8k 2 IN9n 2 IN(jF (x; y)j � 1n+ 1 ! jG(x; y)j < 1k + 1):In order to formalize (23) as a sentence (21) in G2A! one has to repre-sent quanti�cation over X (resp. over K) by quanti�cation of the form`8x1(AX(x) ! : : : )' (resp. `8y �1 s(AK(y) ! : : : )' for a closed term s ofG2A!) where AX ; AK 2 �01 and F;G are de�nable in G2A! (and provablyextensional w.r.t. =X�K;=IR) by functionals �1(1)(1)F ;�1(1)(1)G (given by closed12



Kohlenbachterms of G2A!). Then (23) has the form(24)8<:8x18y �1 s8k09n0(AX(x) ^ AK(y) ^ j�F (x; y)j �IR 1n+1 ! j�G(x; y)j <IR 1k+1);where `( : : : )' can be prenexed into a �01-formula.In �nite type systems of the sort we are considering many spaces X;K can berepresented even in such a way that the predicates AX ; AK do not occur (seee.g.[1],[12]). In [15] we have shown that e.g. the spaces IRd, C([a; b]d; IR) andthe compact space [a1; b1]� : : : [ad; bd] can be represented in this way alreadyin G2A! (for d = 1 we show this in the appendix A2,3 to this paper). Whereasthe fact that one can get rid of AX ; AK is crucial in recognizing that certain(non-constructive) analytical tools (e.g. Brouwer's �xed point theorem) can bewritten as axioms �, it is not necessary for the formalization of (23) in the form(24) which allows very simple representations. E.g. (using the representationof rational numbers and reals from [19]) continuous functions F 2 C[0; 1]can be represented simply as pairs (f 1(0); !1f) where f represents a function[0; 1] \ Q ! IR and !f a modulus of uniform continuity of f , i.e.(25)8x0; y0; k0(0 �Q x; y �Q 1^jx�Qyj �Q 1!(k) + 1 ! jfx�IRfyj �IR 1k + 1):Note that (25) 2 �01.The expressive power of sentences (22) crucially depends on what functionsF;G are de�nable in G2A!. In appendix A4 we show that e.g. F : C[0; 1] !IR, F (f) := supx2[0;1] f(x) and G : C[0; 1]! IR, G(f) := R 10 f(x)dx are de�nablein G2A!. So in our sentences (22) we are free to use these functions althoughthey are not feasible and are still able to extract polynomial (and hence poly-time) bounds from proofs in PBA.The de�nability of F;G in G2A! is due to the fact that we have the func-tionals �max;�� available. Both functionals are not feasible (and thereforenot allowed in FA) but don't cause any problems in the framework of PBAsince they can be majorized (in the sense of Howard [9]) by �f; x:f(x) resp.�f; x:(x + 1) � f(x).References[1] Beeson, M., Foundations of Constructive Mathematics. Springer Ergebnisseder Mathematik und ihrer Grenzgebiete 3. Folge, Band 6. Springer BerlinHeidelberg New York Tokyo 1985. 13
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Kohlenbach[18] Kohlenbach, U., The use of a logical principle of uniform boundedness inanalysis. To appear in: Proc. `Logic in Florence 1995'. Synthese Library, KluwerAcademic Publisher.[19] Kohlenbach, U., Arithmetizing proofs in analysis. To appear in: Proc. LogicColloquium 96 (San Sebastian). Springer Lecture Notes in Logic.[20] Kohlenbach, U., On the arithmetical content of restricted forms ofcomprehension, choice and general uniform boundedness. To appear in: Ann.Pure Applied Logic.[21] Kohlenbach, U., On the no-counterexample interpretation. To appear in: J.Symbolic Logic.[22] Parikh, R.J. Existence and feasibility in arithmetic. J. Symbolic Logic 36,pp.494{508 (1971).[23] Troelstra, A.S. (ed.) Metamathematical investigation of intuitionistic arithmeticand analysis. Springer Lecture Notes in Mathematics 344 (1973).[24] Troelstra, A.S. { van Dalen, D., Constructivism in mathematics: Anintroduction. Vol. I,II. North{Holland, Amsterdam (1988).In the following two appendices we present some technical details about the repre-sentability of basic analytical concepts in G2A! from [15] which have been unpub-lished hitherto but which are of relevance for the material presented in this paper.We assume some familiarity with notions introduced in [16]. GnR! denotes the setof all closed terms of GnA!. For the treatment of higher non-constructive analyticalprinciples (mentioned in this article) see [16],[18],[19].A C[0; 1], supx2[0;1] f(x) and R 10 f(x)dx in G2A!A.1 Real numbers in G2A!A.1We recall the representation of real numbers used in [19] on which the represen-tation of continuous functions developed in the next section is based. We have tostart with the representation of Q: Rational numbers are represented as codesj(n;m) of pairs (n;m) of natural numbers n;m. j(n;m) representsthe rational number n2m+1 ; if n is even,and the negative rational � n+12m+1 ; if n is odd:Here j 2 G2R! is the surjective pairing function j(x; y) := 12((x+ y)2+3x+ y). Onthe codes of Q, i.e. on IN, we have an equivalence relation byn1 =Q n2 :� j1n12j2n1 + 1 = j1n22j2n2 + 1 if j1n1; j1n2 both are evenand analogously in the remaining cases, where ab = cd is de�ned to hold i� ad =0 cb(for bd > 0). 15



KohlenbachOn IN one easily de�nes functions j � jQ;+Q ;�Q; �Q :Q;maxQ;minQ 2 G2R! and(quanti�er{free) relations) <Q;�Q which represent the corresponding functions andrelations on Q. We sometimes omit the index Q if this does not cause any confusion.Notational convention: For better readability we often write e.g. 1k+1 instead ofits code j(2; k) in IN. So e.g. we write x0 �Q 1k+1 for x �Q j(2; k).By the coding of rational numbers as natural numbers, sequences of rationalsare just functions f1 (and every function f1 can be conceived as a sequence of ra-tional numbers in a unique way). So real numbers can be represented by functionsf1 modulo this coding. We now show that every function can be conceived as anrepresentative of a uniquely determined Cauchy sequence of rationals with mod-ulus 1=(k + 1) and therefore can be conceived as an representative of a uniquelydetermined real number.De�nition A.1 The functional �f1: bf 2 G2R! is de�ned such thatbfn = 8>>>>>><>>>>>>: fn; if 8k;m; ~m �0 n(m; ~m �0 k ! jfm�Q f ~mj �Q 1k+1)f(n0 � 1) for n0 := min l �0 n such that[9k;m; ~m �0 l(m; ~m �0 k ^ jfm�Q f ~mj >Q 1k+1)];otherwise:It is clear that (provable in G2A!)1) if f1 represents a Cauchy sequence of rational numbers with modulus 1=(k+1),then8n0(fn =0 bfn),2) for every f1 the function bf represents a Cauchy sequence of rational numberswith modulus 1=(k + 1).Hence every function f gives a uniquely determined real number, namely that num-ber which is represented by bf . Quanti�cation 8x 2 IRA(x) (9x 2 IRA(x)) so reducesto the quanti�cation 8f1A( bf) (9f1A( bf)) for properties A which are extensionalw.r.t. =IR below (i.e. which are really properties of real numbers). Operations� : IR! IR are given by functionals �1(1) (which are extensional w.r.t.=1). A realfunction : IR! IR is given by a functional �1(1) which (in addition) is extensionalw.r.t. =IR . For convenience we often write (xn) instead of fn and (bxn) instead ofbfn.One easily de�nes in G2A! the usual relations and operations of IR on the repre-sentatives of the reals:De�nition A.2 1) (xn) =IR (~xn) :� 8k0(jbxk �Q b~xkj �Q 3k+1);2) (xn) <IR (~xn) :� 9k0(b~xk � bxk >Q 3k+1);3) (xn) �IR (~xn) :� :(b~xn) <IR (bxn); 16



Kohlenbach4) (xn) +IR (~xn) := (bx2n+1 +Q b~x2n+1);5) (xn)�IR (~xn) := (bx2n+1 �Q b~x2n+1);6) j(xn)jIR := (jbxnjQ);7) (xn) �IR (~xn) := (bx2(n+1)k �Q b~x2(n+1)k), where k := dmaxQ(jx0jQ+1; j ~x0jQ+1)e;8) For (xn) and l0 we de�ne(xn)�1 := 8<: (maxQ(bx(n+1)(l+1)2 ; 1l+1)�1); if bx2(l+1) >Q 0(minQ(bx(n+1)(l+1)2 ; �1l+1)�1); otherwise;9) maxIR ((xn); (~xn)) := (maxQ(bxn; b~xn)); minIR ((xn); (~xn)) := (minQ(bxn; b~xn)).G2A! su�ces to prove the usual properties of the relations and operations repre-sented above (see [19] for details).Notational convention: For notational simplicity we often omit the embeddingQ ,! IR, e.g. x1 �IR y0 stands for x �IR �n:y0. From the type of the objects it willbe always clear what is meant.If (fn)n2IN of type 1(0) represents a 1k+1{Cauchy sequence of real numbers, then(provably in G2A!) f(n) := bf3(n+1)(3(n+ 1)) represents the limit of this sequence,i.e. 8k(jfk �IR f j �IR 1k+1).A.2 Representation of [0; 1] � IR in G2A!Every element of [0; 1] can be represented already by a bounded function f 2ff : f �1 Mg, where M is a �xed function from G2R! and every function fromthis set can be conceived as an (representative of an) element in [0,1]: De�ne afunction q 2 G2R! byq(n) := 8<:min l �0 n[l =Q n]; if 0 �Q n �Q 100; otherwise:Every rational number 2 [0; 1] \Q has a unique code by a number 2 q(IN) and8n0(q(q(n)) =0 q(n)). Also every such number codes an element of 2 [0; 1]\Q. Wemay conceive every number n as a representative of a rational number 2 [0; 1] \Q,namely of the rational coded by q(n).In contrast to IR we can restrict the set of representing functions for [0,1] to thecompact (in the sense of the Baire space) set ff : f �1 Mg, whereM(n) := j(6(n+1); 3(n+ 1)� 1):Each fraction r having the form i3(n+1) (with i � 3(n + 1)) is represented by anumber k � M(n), i.e. k � M(n) ^ q(k) codes r. Thus fk : k �M(n)g contains17



Kohlenbach(modulo this coding) an 13(n+1){net for [0,1]. Let �f: ~f 2 G2R! be such that~f(k) = q(i0); wherei0 = �i �0 M(k)[8j �0 M(k)(j bf (3(k + 1)) �Q q(j)j �Q j bf(3(k + 1))�Q q(i)j)]:~f has (provably in G2A!) the following properties:1) 8f1( ~f �1 M).2) 8f1(b~f =1 ~f).3) 8f1(0 �IR ~f �IR 1).4) 8f1(0 �IR f �IR 1! f =IR ~f).5) 8f1(~~f =IR ~f).Using this construction we can reduce quanti�cation 8x 2 [0; 1] A(x) and 9x 2[0; 1] A(x) to quanti�cation of the form 8f �1 M A( ~f) and 9f �1 M A( ~f) forproperties A which are =IR{extensional (for f1; f2 such that 0 �IR f1; f2 �IR 1),whereM 2 G2R! . Analogously one can de�ne a representation of [a; b] for variablea1; b1 such that a <IR b by bounded functions ff1 : f �1 M(a; b)g. However onecan easily reduce the quanti�cation over [a; b] to quanti�cation over [0; 1] usingthe convex combination a(1 � x) + bx where x varies over [0; 1] so that we donot need this generalization. But on some occasions it is convenient to have anexplicit representation for [�k; k] for all natural numbers k. This representationis analogous to the representation of [0; 1] except that we now de�ne Mk(n) :=j(6k(n+1); 3(n+1)�1) as the bounding function. The construction correspondingto �f: ~f is also denoted by ~f since it will be always clear from the context whatinterval we have in mind.A.3 Representation of continuous functions f : [0; 1] ! IR by number theo-retic functionsFunctions f : [a; b] ! IR (a; b 2 IR; a < b) are represented in GnA! by functionals�1(1) which are =IR{extensional:8x1; y1(a1 �IR x; y �IR b1 ^ x =IR y ! �x =IR �y):Let f : [a; b] ! IR be a pointwise continuous function. Then (classically) f isuniformly continuous and possesses a modulus ! : IN ! IN of uniform continuity,i.e. 8x; y 2 [a; b]; k 2 IN(jx� yj � 1!(k) + 1 ! jfx� fyj � 1k + 1):In GnA! this reads as follows (+) :�8x1; y1; k0(a1 �IR x; y �IR b ^ jx�IR yj �IR 1!(k) + 1 ! j�x�IR �yj �IR 1k + 1):18



KohlenbachThus quanti�cation over continuous functions : [a; b]! IR corresponds in GnA! toquanti�cation over all �1(1); !1 which ful�ll (+).In the following we show how this quanti�cation over objects of type level 2 canbe reduced to type{1{quanti�cation and how the condition (+) can be eliminatedso that quanti�cation over continuous functions on [a; b] corresponds exactly to(unrestricted) quanti�cation over f1. We do this �rst for a = 0; b = 1 and reducethe general case to this situation. For a generalization of our treatment to functionson [0; 1]d (and [a1; b1]� : : :� [ad; bd]) see [15].Let f : [0; 1] ! IR be a uniformly continuous function with modulus of uniformcontinuity !f . f is already uniquely determined by its restriction to [0; 1]\Q. Thuscontinuous functions f : [0; 1] ! IR can be conceived as a pair (fr; !f ) of functionsfr : [0; 1] \Q ! IR; !f : IN! IN which satisfy(�) 8k 2 IN; x; y 2 [0; 1] \Q(jx� yj � 1!f (k) + 1 ! jfrx� fryj � 1k + 1)(See also [24] and [2]).Remark A.3 To represent a continuous function f 2 C[0; 1] as a pair including amodulus of uniform continuity is a numerical enrichment of the given data whichwe use here for reasons which are similar to the endowment of real numbers witha Cauchy modulus: As we will see below quanti�cation over C[0; 1] so reduces toquanti�cation over functions of type 1. Furthermore many functions on C[0; 1] ase.g. R 10 f(x)dx or supx2[0;1] f(x) are given by functionals 2 G2R! in these data (seebelow). This has as a consequence that many important theorems on continuousfunctions have the logical form of axioms � in theorem 3.3. Also many sentences8f 2 C[0; 1]8x 2 IR8y 2 [0; 1]9z 2 IN A(f; x; y; z) have the logical form 8f1; x18y �1M9z0 ~A(f; x; y; z) with ~A 2 �01 so that theorem 3.5 applies yielding bounds on 9zwhich depend only on f; x (if f is represented with a modulus of continuity).In the presence of the axiom F� (and AC1;0-qf) it follows that every pointwisecontinuous function f : [0; 1]! IR is uniformly continuous and possesses a modulusof uniform continuity (see [18]). Hence under F� the enrichment by such a modulusdoes not imply a restriction on the class of functions.Modulo our representation of Q and IR, fr is an object of type 1(0) (i.e. a sequenceof number theoretic functions). Quanti�cation over continuous functions on [0,1]reduces to quanti�cation over all pairs (f1(0); !1) (and therefore by suitable codingto quanti�cation over all functions of type 1) which satisfy (�) by substituting�x1:f(x)IR for (f; !) in the matrix where f(x)IR := limk!1 f(~x(!(k))) (�k0:f(~x(!(k)))is a Cauchy sequence of real numbers with modulus 1k+1 and so its limit is de�nablein G2A!).For the applicability of the axioms � in theorem 3.5 it is of importance to be able toeliminate the implicative premise (�): Let us consider the theorem of the attainmentof the maximum of a continuous function on [0,1]8f 2 C[0; 1]9x0 2 [0; 1]8x 2 [0; 1](f(x0) � fx):19



KohlenbachWithout the need of the implicative premise (�) on (f; !) this theorem would have(using our representation) the logical form8f19x0 �1 M8x1 A(f; x0; x);where A 2 �01, i.e. the logical form of an axiom � in theorems 3.5. Similarly manyother important non{constructive theorems would have the logical form of an axiom� and thus do not contribute to the rate of growth of the uniform bounds extractedfrom proofs which use these theorems.In fact below we will show that the premise (�) can be eliminated by constructingfunctionals ~	1; ~	2 2 G2R! such that the following holds1) If (f1(0); !1) ful�ls (�), then f =1(0) ~	1f! and ~	2f! is also a modulus ofuniform continuity for f .2) For every pair (f1(0); !1) the pair ( ~	1f!; ~	2f!) satis�es (�).By this construction the quanti�cation8(f1(0); !1)((�)! A(f; !))reduces to 8(f1(0); !1) A( ~	1f!; ~	2f!)(and likewise for 9) for properties A which are extensional in the sense of =C[0;1].In the following we write more suggestively f!; !f for ~	1f!; ~	2f!.The underlying intuition for the following de�nition is roughly as follows: If f isuniformly continuous with modulus !, then f!(n) := f(n). In the case that thecontinuity property is violated at the �rst time at a point n, then we de�ne f! as asimple polygon (i.e. a piecewise linear continuous function) using the f{values onthe previous points:De�nition A.4 For f1(0); !1 we de�ne f!; !f as follows:f!(n) :=1 8>>>>>><>>>>>>: f(n); if A0(f; !; n) :� 8m; ~m �0 �!(3n)8k �0 n2(jq(m)�Q q( ~m)j � 1~!(k)+1 ! j\(f(qm))k �Q \(f(q ~m))kj � 3k+1)pn0;f (n); for n0 �0 n minimal such that :A0(f; !; n0); otherwise;!f (n) :=08>>>>>>><>>>>>>>:
~!(3n); if A0(f; !; n)max0��max0�� \��� f(qi)�IRf(qj)qi�Qqj ���(1)�+ 1: i; j �0 �!(3n0); q(i) 6= q(j)���(n+ 1); ~!(n)�for n0 �0 n minimal such that :A0(f; !; n0); otherwise;(here j : : : j(1) is the value of the sequence j : : : j at 1) where pn0;f is the (restrictionto [0; 1] \Q of the) polygon de�ned by f(q0); : : : ; f(q(�!(3(n0 �� 1)))),20



Kohlenbach~!(k) :=0 max0(k; 1)2 � (maxi�k !(i) + 1), !f (n) := !f (5(n+ 1)) and�!(n) :=0 j(2(~!(n) + 1); ~!(n) + 1) (Note that 0; 1 are coded by 0; j(2; 0) �0�!(3(n0 �� 1))).Remark A.5 f! and !f are de�nable in G2R! (as functionals in f; !) since A0can be expressed quanti�er{free and pn0;f (n) can be written aspn0;f (n) =1 f(qi) +IR f(qi)�IR f(qj)qi�Q qj �IR (qn�Q qi);where i; j �0 �!(3(n0 �� 1)) are such that qi �Q qn ^ (jqi �Q qnj minimal) ^ qj >Qqn ^ (jqj �Q qnj minimal) (If q(n) =Q 1, then pn0;f (n) =1 f(q(n))).Lemma A.6 1) k1 �0 k2 ! ~!(k1) �0 ~!(k2).2) ~!(k) �0 k and ~!(k) �0 !(k).3) ~!(3 � k) �0 3 � ~!(k) + 3 for k � 1.Proof: 1) and 2) follow immediately from the de�nition of ~!.3) ~!(3k) k�1� 9k2 � (maxi�k !(i) + 1) � 3k2 � (maxi�k !(i) + 1) + 6k2k�1� 3k2(maxi�k !(i) + 1) + 3 = 3 � ~!(k) + 3.Lemma A.7 If f1(0) represents a uniformly continuous function F : [0; 1] ! IRwith a modulus !1 of uniform continuity, i.e.8m; ~m; k(jqm�Q q ~mj �Q 1!(k)+1 ! jf(qm)�IR f(q ~m)j �IR 1k+1),then f! =1(0) f and !f is also a modulus of uniform continuity for F .Proof: The �rst part of the lemma follows from the de�nition of f! observing thatthe case `otherwise' never occurs because of the assumption, sincejqm�Q q ~mj � 1~!(k) + 1 l:A:6� 1!(k) + 1implies thatj\(f(qm))k �Q \(f(q ~m))kj � jf(qm)�IR f(q ~m)j+ 2k + 1 � 3k + 1 :Furthermore !f (n) = ~!(3n) l:A:6�0 !(n). Hence together with ! also !f and thus afortiori !f is a modulus of uniform continuity.Lemma A.8 For every pair (f1(0); !1) the following holds:f! represents a uniformly continuous function : [0; 1]\Q ! IR and !f is a modulusof uniform continuity for this function, i.e.8m; ~m; k(jqm�Q q ~mj � 1!f (k) + 1 ! jf!(qm)�IR f!(q ~m)j � 1k + 1):Proof: Let m; ~m; k 2 IN be such that jqm�Q q ~mj � 1!f (k)+1 .We may assume that qm >0 q ~m. 21



KohlenbachCase 1: A0(f; !; qm). Then also A0(f; !; q ~m) since the monotonicity of �!(3n) andn2 implies n1 �0 n2 ^A0(f; !; n1)! A0(f; !; n2):Hence f(qm) =IR f!(qm) and f(q ~m) =IR f!(q ~m). By !f (k) �0 ~!(k); k the assump-tion on m; ~m; k yields(+) jqm�Q q ~mj � 1~!(k) + 1 and (++) jqm�Q q ~mj � 1k + 1 :(++) implies that k �0 (qm)2 (Because of j2(qm); j2(q ~m) <0 qm, the (distinct)fractions coded by qm; q ~m have denominators a; b �0 qm. Thus j ia � jb j � 1ab �1(qm)2 ). Furthermore qm; q ~m �0 �!(3(qm)). Hence (+) and A0(f; !; qm) yield(using 8x0(q(qx) =0 qx)) j(\f(qm))k �Q (\f(q ~m))kj � 3k + 1and therefore jf!(qm)�IR f!(q ~m)j =IR jf(qm)�IR f(q ~m)j � 5k + 1 :Case 2: :A0(f; !; qm).2.1 k �0 n0 := minn �0 qm:A0(f; !; n):In this case we have f!(qm) =IR pn0;f (qm) and f!(q ~m) =IR pn0;f (q ~m) (In the caseA0(f; !; q ~m) we have q ~m < n0 � �!(3(n0 � 1)) and so f!(q ~m) = f(q ~m) is one ofthe f{values used in de�ning pn0;f ). Since !f is a modulus of uniform continuityfor pn0;f for k � n0, the assumption on m; ~m impliesjf!(qm)�IR f!(q ~m)j � 1k + 1 :2.2 1 �0 k <0 n0: Then A0(f; !; k) and therefore !f (k) = ~!(3k). Since all fractionsi~!(3(n0�1))+1 with i �0 ~!(3(n0 � 1)) + 1 have a code �0 �!(3(n0 � 1)), the maximaldistance between two adjacent breaking points of pn0;f is � 1~!(3(n0�1))+1 . Hencethere are m�; ~m� �0 �!(3(n0 � 1)) (i.e. `breaking points' of the polygon pn0;f nextto m; ~m satisfying (2) below) such that(1) 8<: jqm� �Q q ~m�j � 1!f (k)+1 + 2~!(3(n0�1))+1 l:A:6� 3~!(3k)+1 l:A:6� 33~!(k)+3+1� 1~!(k)+1and (2) j pn0;f (q ~m�)| {z }=IRf(q ~m�) �IR pn0;f (qm�)| {z }=IRf(qm�) j �IR j pn0;f (q ~m)| {z }=IRf!(q ~m) �IR pn0;f (qm)| {z }=IRf!(qm) j:Since A0(f; !; n0 � 1) and k �0 (n0 � 1)2, (1) and (2) implyjf!(qm)�IR f!(q ~m)j (2)� jf(qm�)�IR f(q ~m�)j� j(\f(qm�))k �Q (\f(q ~m�))kj+ 2k+1 (1)� 3k+1 + 2k+1 = 5k+1 :22



KohlenbachPut together we have shown that in both cases (for k � 1)jqm�Q q ~mj � 1!f (k) + 1 ! jf!(qm)�IR f!(q ~m)j � 5k + 1 :Hence !f is a modulus of uniform continuity for f!.Since every pair (f1(0); !1) can be conceived now as a representation of a uniformlycontinuous function [0; 1] \ Q ! IR, namely that function which is represented by( ~	1f!; ~	2f!) (where ~	1f! := f! � q; ~	2f! := !f ). 9 Furthermore, every functiong1 can be conceived as a pair (f; !) by g 7! (�k0; n0:(j1g)(j(k; n)); j2g) (wherejig := �x0:ji(gx)), so g1 represents the continuous function (	1g;	2g), where	1g := ~	1(�k0; n0:(j1g)(j(k; n)); j2g) and 	2g := ~	2(�k0; n0:(j1g)(j(k; n)); j2g).Since every pair (f; !) can be coded into a function g, every uniformly continuousfunction [0; 1] \Q ! IR is represented by some function g. Together with ~	i alsothe 	i are in G2R!.Now we de�ne the continuation from [0; 1] \Q to [0; 1]:De�nition A.9 The functional �g1; x1:g(x)IR 2 G2R! is de�ned by(g(x)IR)(k0) :=0 \	1g(~x(	2g(3(k + 1))))(3(k +1)), ~x is the construction used in ourrepresentation of [0; 1].Remark A.10 g(x)IR represents the value of the function 2 C[0; 1], which is rep-resented by g, applied to the real 2 [0; 1], which is represented by x.Notation: If a function 2 C[0; 1] is given as a pair (f1(0); !1) we also use the notationf(x)IR in order to avoid the need of spelling out the coding (f; !) 7! g1.Remark A.11 Quanti�cation over C[a; b] (where a < b) reduces to quanti�cationover C[0; 1] byf 2 C[a; b] 7! g := �x:f(a(1� x) + bx) 2 C[0; 1] andg 2 C[0; 1] 7! f := �x:g(x�ab�a ) 2 C[a; b].In [12] we used a di�erent representation of the space C[0; 1] (following [3]) basedon the Weierstra� approximation theorem: A function f 2 C[0; 1] was representedas a Cauchy sequence w.r.t. k � k1 (with modulus 1=(k + 1)) of polynomials withrational coe�cients. Then we applied a construction, similarly to bf used in ourrepresentation of IR above, to ensure that every function f1 could be conceived assuch a Cauchy sequence.However this representation is not convenient for our theory G2A! since the cod-ing of an arbitrary sequence of polynomials requires the coding of �nite sequencesof natural numbers (the codes of the coe�cients) of variable length which can becarried out in G3A! but not in G2A!. Furthermore in practice the computation ofan approximating sequence of polynomials to a given function is quite complicated(and even more when one deals with functions in several variables) whereas for mostfunctions occurring in mathematics a modulus of continuity can be written down9 By switching from f! to f! � q we can formulate the continuity of ~	1f! now as8m; ~m�0 �Q m; ~m �Q 1^ jm�Q ~mj � 1!f (k)+1 ! j( ~	1f!)(m)�IR j( ~	1f!)( ~m)j � 1k+1�, i.e.without mentioning q anymore. 23



Kohlenbachdirectly. Hence it is much more useful to extract bounds which require as a functioninput only the function endowed with a modulus of uniform continuity rather thanan approximating sequence of polynomials. In our applications to approximationtheory we always obtained bounds in functions with a modulus of continuity. Be-cause of this we conjectured in [12] that this will always hold for extractions ofbounds from concrete proofs. By our new representation of C[0; 1] this conjectureis theoretically justi�ed: From a proof of a sentence8f 2 C[0; 1]9y0 A(f; y); where A 2 �01we obtain a bound on y in a representative of f in our sense, i.e. in f endowed witha modulus of uniform continuity.The construction of f!; !f looks quite complicated. However if f is already givenwith a modulus ! (as in concrete applications) then f! does not change anythingand !f (n) is just a slight modi�cation of ! and the proof of this (A.7) is almosttrivial. The complicated clause in the de�nition of f!; !f is needed only to ensurethat an arbitrary given pair (f; !) is transformed into a continuous function. Thequite complicated proof of lemma A.8 is not relevant for the extraction process sincethe statement of this lemma is a purely universal sentence and therefore an axiomof G2A!.A.4 The functionals maxIR;+IR for sequences of variable length and supx2[a;b] fx;bRa f(x)dx in G2A!For the computation of supx2[a;b] fx and bRa f(x)dx for f 2 C[a; b] we need the maximumand the sum of a sequence of real numbers of variable length, i.e.maxIR ff(ri) : i � kg and f(r0) +IR : : :+IR f(rk) for a sequence of rational numbersri. For the construction of such operations in G2R! we need a special form of ourrepresentation of real numbers:The computation of the addition of a sequence of x real numbers a0; : : : ; ax re-quires the addition of corresponding sequences of the n{th rational approximationsba0(n); : : : ;bax(n) of these real numbers (for all n). For this we need the computationof a common divisor of ba0(n); : : : ;bax(n). However the size of such a common divisorwill (in general) have an exponential growth in x and therefore is not de�nable inG2R! but only in G3R!. This di�culty is avoided by modifying representatives fof real numbers to representatives f 0 such that f =IR f 0 and the n{th rational ap-proximation f 0n of f 0 is a (code of a) fraction with a �xed denominator. We choose3(n + 1) + 1 as this denominator in order to ensure the right rate of convergencesuch that bf 0 =1 f 0. For the computation of maxIR(a0; : : : ; ax) this modi�cation is(although not necessary) very convenient.
24



KohlenbachDe�nition A.12�fn :=08>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
mink �0 j1( bf(3(n+ 1))) � (3(n+ 1) + 1)[ k23(n+1)+1 �Q bf(3(n+ 1)) <Q k2+13(n+1)+1^k even ]; if it exists and j1( bf(3(n+ 1))) is evenmink �0 (j1( bf(3(n+ 1))) + 1) � (3(n+ 1) + 1)[ � k+123(n+1)+1 �Q bf(3(n+ 1)) <Q � k+12 +13(n+1)+1 ^ k odd ];if it exists and j1( bf(3(n+ 1))) is odd00; otherwise:f 0(n) := j( �fn; 3(n+ 1)).Remark A.13 Together with �f: bf also �f: �f and therefore �f:f 0 are de�nable inG2R!.Lemma A.14 G2A! ` 8f1(f 0 =IR f).De�nition A.15 �1;  1(1) 2 G2R! are de�ned such that (provably in G2A!)�n0 =0 8<: 1; if 9m �0 n(n =0 2m)0; otherwise:and  g1k0 =0 8><>:maxi�k (g(i) � �(gi)); if 9i �0 k(�(gi) =0 1)mini�k g(i); otherwise:De�nition A.16 �maxIR 2 G2R! is de�ned by�maxIR := �f1(0); k0; n0:j( (�i0:j1((fi)0n); k); 3(n + 1)).Lemma A.17G2A! ` 8k0; f1(0)(�maxIRf0 =IR f0^�maxIRf(k+1) =IR maxIR(�maxIRfk; f(k+1))).Lemma A.181) G2A! ` 8f1(0);m0; ~m0(m �0 ~m! �maxIRfm �IR �maxIRf ~m; f ~m).2) G2A!+AC0;0{qf ` 8f1(0);m09k �0 m(fk =IR �maxIRfm).Remark A.19 1) The elementary but tedious proofs for the two lemmas above(which we don't carry out here) have no impact on the extraction of bounds:Lemma A.17 and A.18 1) are purely universal sentences. Since one can verifytheir truth they are treated as axioms. Lemma A.18 2) (although not beinguniversal) has the logical form 8x9y � sx8zA0 of an axiom 2 � and therefore25



Kohlenbachcan be treated as an axiom as well by our monotone (but not by the usual)functional interpretation. The same is true for the next lemma.2) �minIRfm can be de�ned from �maxIRfm by := �IR�maxIR(�k:(�IRfk);m).Using �maxIR we are able to de�ne supx2[0;1] f(x) for f 2 C[0; 1]:De�nition A.20 �1(1)sup[0;1] 2 G2R! is de�ned as follows�1(1)sup[0;1] := �f1; n0:�maxIR(	1f; h(	2f(3(n+ 1))))(3(n+ 1));where hn := j(2n; n) and 	1;	2 2 G2R! are the functionals used in the represen-tation of C[0; 1].Lemma A.21G2A! `8f2C[0; 1](8x 2 [0; 1](�sup[0;1]f �IR fx) ^ 8k09x 2 [0; 1](�sup[0;1]f �IR fx � 1k+1)):From now on we make liberal use of the usual mathematical expressions ` supx2[0;1] fx'and `f 2 C[0; 1]' and go back to the details of the actual representation of thesenotions in G2A! only when this is needed to determine the logical form of a sentencewhich involves these notions.For a function f 2 C[a; b] we can express supx2[a;b] fx as supx2[0;1] ~fx, where~fx := f((1� x)a+ xb).For the de�nition of the sum of a sequence of real numbers of length x we need thefollowing constructions.De�nition A.22 The functionals �; �; � 2 G2R! are de�ned such that�n0 =0 8<: n; if 9m � n(n = 2m)0; otherwise:�n0 =0 8<:n+ 1; if 9m � n(n = 2m+ 1)0; otherwise:�n0m0 =0 8<: n�� m; if n � m(m��n)�� 1; otherwise:Using these functions we are now able to de�ne a variable summation:De�nition A.23 ��IR 2 G2R! is de�ned as ��IR :=�f1(0); k0; n0:j(�( kPi=0 �(j1[(fi)0(�(k; n))]); kPi=0 �(j1[(fi)0(�(k; n))])); 3(�(k; n) + 1));where �(k; n) := 2(k + 1)(n+ 1). 26



KohlenbachLemma A.24G2A! ` 8f1(0); k0(��IRf0 =IR f0 ^ ��IRf(k + 1) =IR (��IRfk) +IR f(k + 1)).Using ��IR we now de�ne the Riemann integral R 10 f(x)dx for f 2 C[0; 1]:Let Sn := 1!f (n)+1 � !f (n)Pi=0 f( i!f (n)+1 ) denote the n{th Riemann sum (where !f is themodulus of uniform continuity from the representation of f). One easily followsfrom the usual proof of the convergence of the sequence of Riemann sums that(Sn)n2IN is a Cauchy sequence with Cauchy modulus 2=(n+1) (which converges toR 10 f(x)dx). Therefore we de�ne:De�nition A.25 1) �S 2 G2R! is de�ned as�S := �f1; n0:j(2;	2fn) �IR ��IR(�i:(	1f)(j(2i;	2fn));	2fn).2) �I 2 G2R! is de�ned as�I := �f1; n0:[�Sf(2(3(n+ 1)) + 1)](3(n + 1)).Proposition A.26 �If1 represents the real number R 10 F (x)dx, where F is thefunction 2 C[0; 1] which is represented by f .Proof: Since j(2i;	2fn) codes i	2fn+1 and 	2 is a modulus of uniform continuityfor the function : [0; 1] \ Q ! IR which is represented by 	1, �S is just the n{thRiemann sum for the function represented by f . As we have mentioned alreadyabove, these Riemann sums Sn form a Cauchy sequence with modulus 2=(n + 1).Hence (S2n+1)n2IN is a Cauchy sequence with modulus 1=(n + 1). �If representsthe limit of this sequence.In the following we use the usual notation R 10 f(x)dx instead of �I .Proposition A.27 The following properties of R 10 are provable in G2A!(f; fn; g 2 C[0; 1]; � 2 IR):1) R 10 (f + g)(x)dx = R 10 f(x)dx+ R 10 g(x)dx.2) R 10 (� � f)(x)dx = � R 10 f(x)dx.3) f � g ! R 10 f(x)dx � R 10 g(x)dx.4) ���R 10 f(x)dx��� � R 10 jf j(x)dx � kfk1.5) fn k�k1! f ) R 10 fn(x)dx! R 10 f(x)dx.Proof: It is clear from the usual proofs in analysis that 1){5) are true. Since 1),2)and 4) are purely universal, they are axioms of G2A!. 3) can be transformed into27



Kohlenbacha purely universal sentence3)0 1Z0 f(x)dx � 1Z0 max(f; g)(x)dx:The proof of the equivalence of 3) and 3)' uses the extensionality of R 10 , which followsimmediately from 4) together with 1) and 2) and thus is also provable in G2A!.5) follows from 1),2) and 4).Our de�nition of R 10 easily generalizes to R ba F (x)dx for F 2 C[a; b] (a < b). LetF be given as a pair (	1(1); !), where 	 represents a function : [a; b] ! IR whichhas the modulus of uniform continuity !. Then a representative of R ba F (x)dx canbe computed in 	; !; a; b by a functional in G2R!. For this one has to replace thepartition 0!(n) + 1 ; : : : ; !(n) + 1!(n) + 1of [0,1] by the partitiona0; : : : ; ak(!(n)+1); where ai := a+IR i(b� a) �IR 1k(!(n) + 1)and IN 3 k � b� a; of [a; b] which also has mesh � 1=(!(n) + 1).We can de�ne also a functional �Ixa 2 G2R! such that �Ixa (x1; a1;	1(1); !1) repre-sents the integral R xa 	xdx if 	 represents a function [a; b] ! IR (a < b), which isuniformly continuous with modulus !, and x 2 [a; b]:�Ixa (x1; a1;	1(1); !1) := limn!1Sn(x; a;	; !);whereSn(= Sn(x; a;	; !)) := x�IR an+ 1 �IR ��(�i:	(a+IR i(x�IR a) �IR 1n+ 1); n+ 1):From our reasoning above it is clear that (Sn) is a Cauchy sequence which convergesto R xa 	xdx. In order to be able to de�ne limn!1 Sn in G2R! we have to constructa Cauchy modulus for this sequence in G2R!. This however is possible sincejSk(!(n)+1) � xZa 	xdxj � kn+ 1 ;where k 2 IN such that k � x� a.The formula cZa f(x)dx+ bZc f(x)dx = bZa f(x)dx for a < c < bis purely universal and hence an axiom of G2A!.28



KohlenbachB Trigonometric functions in G2A!: Moduli and uni-versal propertiesB.1 The functions sin, cos and tan in G2A!In the following we introduce the functions sin, cos axiomatically by adding toG2A! new function constants �sin;�cos of type 1(0) which represent the restric-tions of sin and cos to Q. Then the Lipschitz continuity of sin; cos is used tocontinue these functions to IR (If we would introduce sin; cos directly as functionson IR, this would require new constants for functionals of type 1(1). In order toexpress their extensionality by universal axioms we also would have to make useof the Lipschitz continuity, since uniform continuity is just a uniform quantitativeversion of extensionality).The following purely universal assertions on the function constants �sin;�cos expresstrue propositions on sin; cos and are therefore taken as axioms in G2A![f�sin;�cosg,which we also denote by G2A! (because of the part �sin;�cos �1 M in 1) below,the comments made after remark 3.4 above apply):1) 8x0(\(�sinx) =1 �sinx �1 M^\(�cosx) =1 �cosx �1 M^�1 �IR �sinx;�cosx �IR1), where M1 2 G2R! is the boundedness function from the representation of[�1; 1] (one may take M := �n0:j(6(n + 1); 3(n+ 1)� 1); see [0; 1]).2) 8x0; y0; q0(jx�Q yj �Q q ! j�sinx�IR �sinyj �IR q ^ j�cosx�IR �cosyj �IR q).2), together with 1), asserts that �sin and �cos represent functions : Q ![�1; 1] which are Lipschitz continuous on Q with Lipschitz constant � = 1).3) 8x0(�sin(�Qx) =IR �IR�sinx ^ �cos(�Qx) =IR �cosx), �cos0 =IR 1.4) 8x0; y0(�sin(x+Q y) =IR (�sinx) �IR (�cosy) +IR (�cosx) �IR (�siny) ^�cos(x+Q y) =IR (�cosx) �IR (�cosy)�IR (�sinx) �IR (�siny)).8x0; y0(�sinx�IR �siny = 2 � �cos(x+Qy2 ) �IR �sin(x�Qy2 ) ^�cosx�IR �cosy = �2 � �sin(x+Qy2 ) �IR �sin(x�Qy2 )).5) 8x0(0 <Q jxj ! ����sinxx �IR 1��� �IR jxj26 ).This proposition on sin (see e.g. [6]) provides a quantitative version of theproposition sin xx x!0! 1. Only by this quantitative strengthening the proposi-tion becomes purely universal (and therefore an axiom of G2A!).Because of axiom 2) there are unique continuous extensions of the functions : Q !IR, which are represented by �sin;�cos, to the whole space IR. These extensions arerepresented by ~�1(1)sin x1 := �k0:�sin(bx(3(k + 1)))(3(k + 1));~�1(1)cos x1 := �k0:�cos(bx(3(k + 1)))(3(k + 1)):Remark B.1 1) It is well{known that 2){5) already characterize sin; cos (seee.g. [8]). 29



Kohlenbach2) By the axiom 1) �sin and �cos are majorizable by �x0; n0:j(6(n+1); 3(n+1)�1) 2 G2R!�. Hence theorem 3.2.8 from [16] applies.3) In G3A! we can de�ne constants �0sin;�0cos which satisfy (provable in G3A!)�1 � �0sinx;�0cosx � 1 and 2){5) above using the usual de�nition via theTaylor expansion of sin and cos. If we now de�ne �sinx := ^(�0sinx) and�cosx := ^(�0cosx) (where �y1:~y 2 G2R! is the construction corresponding toour representation of [�1; 1] such that ~y �1 M , y =IR ~y if �1 �IR y �IR 1, and�1 �IR ~y �IR 1 for all y1), then these functionals satisfy 1){5).In the following we will write �sin,�cos also for ~�sin; ~�cos since from the type of theargument it will always be clear whether �sin,�cos or their extensions ~�sin; ~�cos aremeant. Sometimes we even write sin; cos.In the following we will introduce �2 (and thus �) as the uniquely determined zeroof the function cos on [0; 2]. This is possible since �cos0 =IR 1, �cos2 �IR �13 and(�) 8x0; y0(0 �Q y �Q x �Q 2! �cosx�IR �cosy �IR �(x�Q y)218 )are true purely universal assertions on cos (see below for the veri�cation of (�)) andhence axioms of G2A!.(�) is a uniform quantitative version of the strict monotonicity of cos on [0; 2]. Thisstrict monotonicity implies the uniqueness and hence (by a general meta{theoremfrom [12]) the e�ectivity of the uniquely determined zero of cos [0; 2]. This can beseen also directly as follows: The quantitative monotonicity (�) immediately yieldsa modulus of uniqueness (in the sense of [12]) ! 2 G2R!, namely !(n) := 136(n+1)2and thus the computability of the zero of cos in G2R! [ �cos:Let xm; x ~m 2 [0; 2] be such thatj cos xmj; j cos x ~mj < 136(n+ 1)2 and therefore j cos xm � cos x ~mj < 118(n+ 1)2 :Then {by (�){ jxm � x ~mj < 1n+1 , i.e. ! is a modulus of uniqueness. We de�ne apartition of [0; 2] by xi := i3 � 36(n+ 1)2 for i = 0; : : : ; 6 � 36(n+ 1)2and compute for each i a rational 1=(6 � 36(n + 1)2){approximation yi of j cos xij.Next we compute an in such thatjyin j = min�jyij : i = 0; : : : ; 6 � 36(n+ 1)2	 :It follows j cos(xin)j � mini�6�36(n+1)2 j cos xij+ 13�36(n+1)2� infx2[0;2] j cos xj+ 23�36(n+1)2 < 136(n+1)2 :Hence (xin) is a Cauchy sequence in [0; 2] with Cauchy modulus 1=(n + 1). (xin)can be computed by a term t1 in G2R![�cos. Therefore we may de�ne � :=1 2 �IR t.30



KohlenbachThe following propositions on �;�sin;�cos are purely universal and therefore axiomsof G2A!:1) 2 �IR � �IR 4; �cos(�2 ) =IR 0.2) 8x1(�cos(x+IR 2�) =IR �cosx ^�sin(x+IR 2�) =IR �sinx ^�cos(x+IR �) =IR ��cosx ^ �sin(x+IR �) =IR ��sinx ^�cosx =IR �sin(�2 �IR x) ^�sinx =IR �cos(�2 �IR x)).3) Uniform quantitative strict monotonicity:8x0; y0((0 �Q y �Q x �Q 4! �cos(~x)�IR �cos(~y) �IR � (~x�IR~y)218 ) ^(� 2 �Q y �Q x �Q 2! �sin(x̂)�IR �sin(ŷ) �IR (x̂�IRŷ)218 )),where ~z := minIR(z; �), �z := minIR(z; �=2) and bz := maxIR(�z;��=2).3) implies, together with 1), and the continuity of cos; sin):3)' 8x1; y1((0 �IR y �IR x �IR � ! �cos(x)�IR �cos(y) �IR � (x�IRy)218 )^(� �2 �IR y �IR x �IR �2 ! �sin(x)�IR �sin(y) �IR (x�IRy)218 )):The reason for our somewhat complicated formulation 3) instead of 3)' is that 3) isin �01 (in contrast to 3)').Proof of 3)' (and hence of 3) and (�) above):Since sin z � z3 for all z 2 [0; 2] (see e.g.[6]), we obtain for all x; y such that 0 � y �x � �2 :cos x� cos y = �2 sin(x+ y2 ) sin(x� y2 ) � �2(x+ y6 )(x� y6 ) � �(x� y)218 :Because of cos x = � cos(� � x), the claim follows for x; y 2 [0; �2 ] and x; y 2 [�2 ; �].Now assume that 0 � y � �2 � x � �: Thencosx� cos y � cos(x� y)� cos 0 � � (x�y)218 (for x� y � �2 one has to use the resultabove and for x� y > �2 the statement follows from cos(x� y)� cos 0 � �1). Puttogether this yields the claim for [0; �].By sinx = � cos(�2 + x), the corresponding claim for sin follows.Remark B.2 The proof of 3)' above can be conceived as an instance of theorem3.3 (of course a very simple one): When formalized within G2A!, the strict mono-tonicity of cos has (modulo a suitable prenexation) the logical form(+) 8x; y �1 M�8k09n0(x �IR y + 1k + 1 ! �cosx� �cosy <IR � 1n+ 1| {z }�:A2�01(modulo prenexation) ):Since (+) is provable in G2A!, theorem 3.3 implies the extractability of a polynomialpk providing a bound on n which does not depend on x; y. Since A is monotonew.r.t. n, this bound in fact realizes `9n', i.e.G2A! ` 8x; y 2 [0; �]; k0(x �IR y + 1k + 1 ! �cosx� �cosy <IR � 1pk + 1):31



KohlenbachOur proof of 3)' yields pk := 18(k + 1)2. The majorization used in this proof toeliminate the dependence on x; y is simply the inequality(x+ y)(x� y) � (x� y)2 � 1(k + 1)2 for x � y + 1k + 1 :The tangent function tanx := sinxcosx is represented by a term �1(0)(1)tan 2 G2R! [f�sin;�cosg such that8x1; n0(� �2 + 1n+ 1 �IR x �IR �2 � 1n+ 1 ! �tanxn =IR �sinx�cosx):B.2 The functions arcsin, arccos and arctan in G2A!As we have seen above, sinx is strictly monotone on [��2 ; �2 ] with the `modulusof uniform strict monotonicity' !(") := "218 . Since sinx has the Lipschitz constant� = 1,8y 2 [�1; 1]9x 2 [��2 ; �2 ](sinx = y) implies(�) 8y 2 [�1; 1]; n 2 IN9rn 2 fq1; : : : ; qlng(j sin rn � yj � 1n+ 1);where fq1; : : : ; qlng � [��2 ; �2 ] \ Q is a 1=(n + 1){net for [��2 ; �2 ]. Similarly to thefunctionM used in our representation of [0; 1] one constructs a functionM� 2 G2R!such that fi : i �0 M�ng contains (modulo our coding of Q) such a 1=(n + 1){net(e.g. M�n := j(8(n + 1); n)). (�) implies8y �1 M8n � 19q �0 M�n([(��2 )(n) + 1n+1 �Q q �Q (b�2 )(n)� 1n+1^j�sinq �IR ~yj �IR 3n+1) 10and therefore8y �1 M8n � 19q �0 M�n([(��2 )(n) + 1n+1 �Q q �Q (b�2 )(n)� 1n+1 ^ j(�sinq)(n)�Q ~y(n)j �Q 5n+1):Bounded �{search provides a functional ~	1(1) 2 G2R! [ f�sing such that8y �1 M8n � 1([(��2 )(n) + 1n+1 �Q ~	yn �Q (b�2 )(n)� 1n+1 ^ j�sin( ~	yn))(n)�Q ~y(n)j �Q 5n+1)and therefore 8y �1 M8n � 1([(��2 )(n) + 1n+1 �Q ~	yn �Q (b�2 )(n)� 1n+1^j�sin( ~	yn)�IR ~yj �IR 7n+1)Hence for 	yn := ~	y(7 � 36(n + 1)2)8y 2 [�1; 1]; n 2 IN�(j�sin(	yn)�IR ~yj < 136(n+ 1)2 ):10Here again �y1:~y 2 G2R! is the construction corresponding to our representation of[�1; 1] such that ~y �1 M , y =IR ~y if �1 �IR y �IR 1, and �1 �IR ~y �IR 1 for all y1.32



KohlenbachFrom the fact that !(") is a modulus of strict monotonicity for sin we obtain that(	yn)n2IN� is a Cauchy sequence in [��2 ; �2 ] with Cauchy modulus 1=(n+1): Supposethat m; ~m �0 n, thenj�sin(	ym)� �sin(	y ~m)j � j�sin(	ym)� ~yj+ j~y � �sin(	y ~m)j < 118(n+ 1)2and therefore j	ym�Q 	y ~mj < 1n+1 .Hence �arcsiny := 	~y represents the inverse function of sin on [��2 ; �2 ] and is uni-formly continuous on [�1; 1] with ! as a modulus of uniform continuity.The inverse arccos of cos on [0; �] is de�ned analogously.Similarly to arcsin; arccos one can �nally de�ne arctan in G2A!.B.3 The exponential functions expn and exp in G2A! and G3A!Since all terms t1 2 G2R! are bounded by a polynomial (see [16],prop.2.2.29) itis clear that exp can neither be de�ned in G2A! nor can exp be represented by anew function constant which is majorized by a term from G2R!. However for every�xed number n �0 1 we can introduce the restriction of exp to [�n; n](� IR) bysuch a constant. This means that we can deal locally with exp in G2A! and e.g.may use exp for the solution of ordinary di�erential equations etc.We add to G2A! a function constant �1(0)expn which is intended to represent therestriction of exp on [�n; n] \Q. Since exp is Lipschitz continuous on [�n; n] witha Lipschitz constant e.g. � := 3n, we have the following universal axioms on �1(0)expnin G2A! 11 (1) 8x0(\�expnx =1 �expnx �1 Mn ^ 0 �IR �expnx �IR 3n);where Mn is the boundedness function used in the representation of [0; 3n] (e.g.Mn(k) := j(6 � 3n(k + 1); 3(k + 1)� 1)). 12(2) 8x0; y0; q0(� n �Q x; y �Q n ^ jx�Q yj �Q q3n ! j�expnx�IR �expnyj �IR q):As in the case of �sin, by (2) we can extend �expn to a constant ~�1(1)expn 2 G2R! whichrepresents the continuation of the function represented by �expn to [�n; n]. As for�sin we will denote this extension also by �expn . The most important properties ofexp (restricted on [�n; n]) can be expressed by purely universal sentences and thusare axioms of G2A!:(3)8<: 8x0; y0(� n �Q y �Q x �Q n! R xy (�expnt)dt =IR �expnx�IR �expny);�expn0 =IR 1;11As in the case of �sin and �cos we denote (according to the discussion in connection withtheorem 3.2.8 in [16]) G2A! [ f�1(0)expng also by G2A!12 For notational simplicity we identify in the following the natural number n with its codej(2n; 0) as a rational number, e.g. we write x0 �Q n instead of x0 �Q j(2n; 0) in order toexpress that the rational number which is coded by x is � the natural number n.33



Kohlenbach(4) 8x0; y0(� n �Q x; y; x+Q y �Q n! �expn(x+Q y) =IR �expn(x) �IR �expn(y)):By the continuity of �expn , (3) and (4) immediately generalize to real arguments.Furthermore by the theorem that the derivative of R x0 f(x)dx is f (which can beexpressed as a universal axiom in G2A!), (3) implies(3)' 8x1(�n �IR x �IR n! �0expnx =IR �expnx);where 0 denotes the derivative.In contrast to G2A! we can de�ne the unrestricted exponential function in G3A!as usual via the exponential series: 13 one easily de�nes the sequence of partialsums of this series for rational arguments. From the quotient criterion one getsthe convergence of this series together with a modulus of convergence. By thecontinuity of this series in x 2 IR with the modulus !(x; n) := 3djbx(0)j+1e � (n + 1)we can continue it on IR.Analogously to the de�nition of arcsin we can de�ne the inverse function lnn of expnusing the fact that e.g. !(") := " � 3�n is a modulus of strict monotonicity for expnon [�n; n].In this appendix we have seen that sin; cos can be introduced relatively to G2A!via new constants �1(0)sin ;�1(0)cos and purely universal axioms which express the usual(characterizing) properties of sin; cos. tan and the inverse functions arcsin; arccos;arctan of sin; cos; tan as well as � can be de�ned in G2A! using �sin;�cos. Fur-thermore for each �xed n 2 IN the restriction expn of the exponential function expto [�n; n] can be introduced relatively to G2A! via a new constant �1(0)expn and itscharacterizing properties can be expressed as universal axioms. Thus by theorem3.2.8 from [16] the use of sin; cos; tan; arcsin; arccos; arctan; � and the local use ofexp only contributes to the growth of provably functionals by majorants 2 G2R!for the constants �1(0)sin ;�1(0)cos ;�1(0)expn and the terms used in the formulation of theiruniversal axioms and in the de�nition of �; arcsin; arccos; arctan. Hence theorem3.5 applies as well in the presence of �sin;�cos;�expn .

13 In particular we can de�ne a term �expn in G3A! which satis�es (provably) (1){(4).34


