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Abstract

In this survey paper we start with a discussion how functionals of finite type can
be used for the proof-theoretic extraction of numerical data (e.g. effective uni-
form bounds and rates of convergence) from non-constructive proofs in numerical
analysis.

We focus on the case where the extractability of polynomial bounds is guaranteed.
This leads to the concept of hereditarily polynomial bounded analysis PBA. We
indicate the mathematical range of PBA which turns out to be surprisingly large.

Finally we discuss the relationship between PBA and so-called feasible analysis
FA. It turns out that both frameworks are incomparable. We argue in favor of
the thesis that PBA offers the more useful approach for the purpose of extracting
mathematically interesting bounds from proofs.

In a sequel of appendices to this paper we indicate the expressive power of PBA..

1 Uniform bounds in analysis

There are (at least) two major challenges in computational analysis:

1) to find algorithms for the computation of basic analytical concepts like

e.g. the Riemann integral fol f(z)dx (as well as more general integrals),

the supremum sup f(z) etc. for functions f € C[0, 1] which are efficient
z€[0,1]

at least under additional assumptions on f which are satisfied in many
practical applications. Sometimes additional assumptions are needed to
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ensure at all the computability of the concept in question, e.g. in the
problem of finding roots etc.

2) to get a-priori bounds on the stopping problems for certain algorithmic
procedures, e.g. the rate of convergence of some iterative algorithm.
Typically such algorithms compute solutions z. of e-weakenings A.(z) of
an equation or a property A(x) (e.g. e-best approximations instead of
best approximations in Chebycheff approximation theory) where

(1) (Ve > 0A.(2)) < A(x)
and
(2) Vo € K,,2 > 0(s < €N A (2) — Az(x)).
In general a solution x. for A.(x) need not to be close to any actual
solution of A(x).

If « varies over some compact metric space (K, d) and A(z) is
‘e-continuous’ in the sense

(3) Vo € KVe > 036 > 0V € K(d(z, %) < 6 N Ac(T) — Ase())
and if (z,)new € K with A1 (z,) for all n € IN, then an easy compact-

ness argument shows that there exists a subsequence of (x,)pen Which
converges to a solution of A(x).

Example: A(x) := (F(z) =g 0), where F' : K — IR is continuous, and
A (z) = (|F(x)] <R 2).

Moreover if there exists exactly one solution zy of A(x) in K, then the
sequence (2, )nen itself converges to this solution

(4) n — oo = d(xy, ) — 0,
but what is the rate of convergence?

Whereas it seems doubtful whether proof theory is able to contribute to 1)
(in a narrow sense) it is a potentially useful tool for 2) as is witnessed e.g.
in the area of (Chebycheff) approximation theory where new mathematical
results on strong unicity and a new quantitative version of the so-called al-
ternation theorem were obtained by proof-theoretic analysis of well-known
(non-constructive) uniqueness proof (see [12],[13],[14]).

Let us discuss this further considering (4) again:
The uniqueness of xg, i.e.

(5) Vary, w9 € K(A(x1) A A(xg) — 1 = x2)
can — using (1), (2) — be written as?

1
(6) Vi, 29 € KVE € NIn € IN( A1 (21) A Ai(x9) — d(x1,22) <gr z ).

N /
-~

B(xlax2ak7n)

2 For simplicity we tacitly assume here that k,n > 1 in order to avoid the need to replace
11 1 i
% n PY BT
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Typically (using a suitable representation of analytical objects like x € K and
y € R) A.(z) can be written as a IT%-formula (as in our example above) and
so BeX).?

The convergence problem is solved quantitatively if we can construct a uniform
witness for 9n which does not depend on x4y, 25 € K, i.e.

1

(7) Vg, w9 € KVE € IN(AL (21) A Aq%k(l'g) — d(r1,39) < %)

%
One then immediately concludes that

(8) Vi € N(d(zak, x0) < %)

and even (using (2) above)

1
(9) Vk € INVm > ®k(d(x,,, ) < %),

where (2,,)new € K such that Ai(x,) for all n > 1 and 2y € K such that
A(Io)

It is an easy observation (using (2) again) that (6) is monotone w.r.t. ‘In’.
Hence any uniform bound (not depending on x1, x5 € K) provides already a
uniform witness. So the whole question comes down to the problem:

How to construct a uniform bound

(10) Va1, 29 € KVE € N3n < &k B(xq, 29, k,n)
if

(11) Va1, 29 € KVE € N3In € N B(xy, 29, k,n)
holds, where B € %97

Using a suitable representation of the compact space K, (11) (when formalized
in a system in the language of arithmetic in all finite types) has the form

(12) Yy, 29 <1 sVE IO B(21, 29, k, n)
where for higher types* p=0(p) ... (p1), <, is defined pointwise, i.e.
xy <, xo =YYyt (e e <o ToYi ... k)

and s is a specific function (given by a closed term of the respective system).

Slightly more general we consider sentences
(13) Va'VkOVy <, szkIn"B(z, k,y,n),

3 In the systems we are considering real numbers are represented as (certain) sequences
of rational numbers with fixed rate of convergence. Hence =, <r€ I1Y and <r€ ¥? (for
details see appendix A1,2).

* For types p, T, 7(p) denotes the type of objects which map objects of type p to objects
of type 7.
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where B(z, k,y,n) € XY and contains only x, k, y, n as free variables.

Remark 1.1 Tn (13) above we may have tuples x of variables 7', ..., z0m

with deg(6;) < 1 for i = 1,...,m. Furthermore n may have a type 7 with
deg(t) < 2 (we may even have a tuple of such variables) and B may be a
formula Jv By, where By is quantifier-free and the variables v are of arbitrary
types. Also we may have tuples y of variables y; <, srk. For notational

simplicity we restrict ourselves to variables n,v of type 0. Note that then
without loss of generality we may assume B to be quantifier-free.

Our goal is now to construct a computable functional %) such that
(14) Va'VEOVy <, szk3n <o @k B(x,y, k,n).

Usually and in particular if (13) has been proved non-constructively (both by
the use of classical logic as well as by using non-constructive function existence
principles like the binary Ko6nig’s lemma WKL) one cannot directly read of a
bound ® from the proof of (13) and it is here where proof theory comes into
the picture. The applicability of proof theory in this area of course depends
on various requirements to be satisfied:

1) The extraction of the bound ® from a proof of (13) must be relatively
simple and should leave the original structure of the proof essentially
unchanged (in particular it should not cause an enormous increase of the
length of the given proof), i.e. it should have a nice behaviour w.r.t.
modus ponens (‘modularity’).

2) The proof-theoretic method should be applicable to systems formulated in
a rich and flexible language which makes it easy to formalize the analytical
concepts used in the proof avoiding complicated coding devices and at
the same time allows to formalize many interesting theorems in analysis
in the form (13) (i.e. the quantifier-free part of the system should already
have a great expressive power).

3) It should be able to treat a variety of genuine analytical principles with-
out increasing the complexity of the extraction procedure or the bound
extracted.

4) Tt should faithfully reflect the numerical content w.r.t. bounds of the
given proof and provide bounds of low growth (relative to the growth of
the terms used in the proof) if no complicated instances of induction are
used in the proof.

Condition 1) rules out methods based on cut-elimination or normalization
of proofs as well as any direct no-counterexample interpretation (see [21]).
Condition 2) makes it desirable to have a method which applies to systems
formulated in a language of all finite types instead of second-order languages.
Condition 3) rules out the usual Gédel functional interpretation (with a neg-
ative translation on top of it). Moreover it provides an additional obstacle
to a combination of negative translation followed by the Friedman/Dragalin
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A-translation and modified realizability interpretation, since the A-translation
does not capture the negative translation of the axiom of quantifier-free choice
(this will be discussed in a paper under preparation).

A method which we believe fulfills these requirements is the monotone func-
tional interpretation which was developed in [14],[16] (the technique used
in [11] can be viewed of as a precursor of this method). Monotone functional
interpretation is a variant of Godel’s functional interpretation [7] and extracts
majorizing functionals (in the sense of Howard [9]) of functionals satisfying
the usual Gdédel functional interpretation. These majorizing functionals keep
control through all finite types of the growth rates involved in a given proof
without any normalization. The method applies to (sub-)systems of classical
arithmetic in all finite types extended by the axiom schema of quantifier-free
choice

ACPT-qf : Vo Iy  Ag(z,y) — YOV Ag(2, V),
AC-of == |J {ACPT-of },

p,TET

where Ag is a quantifier-free formula,® but also to various (mostly non-
constructive) analytical axioms A covering a great deal of classical analysis
(see section 3 below). Furthermore the method can be combined with the
elimination of Skolem function procedure from [17] and this combination is
able to deal also with principles which go beyond WKL and cannot be treated
by the monotone functional interpretation in a direct way (see [19],[20]).

A case of particular mathematical and computational interest is when ® is
guaranteed to be a polynomial in £ and (in some sense also in) x. This leads
to the study of hereditarily polynomial bounded analysis which has to
be carefully distinguished from so-called feasible analysis as we are going to
discuss now.

2 Hereditarily polynomial bounded analysis versus fea-
sible analysis

By hereditarily polynomial bounded analysis we mean subsystems PBA of
analysis 2 whose provably recursive functions (and in some sense explained
below also functionals) can be bounded by polynomials p € IN[k]. More
specifically (restricting ourselves for the moment to the special case of (13)

5 Throughout this paper Ag, By, Cy, . .. denote quantifier-free formulas. We allow bounded
number quantifiers Vo <q t, 3z <g t to occur in Agy, By, Cp, - .. since they can be expressed
in a quantifier-free way using the bounded search-functional u, which is included to all
systems we are considering. T denotes the set of all finite types.

5
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where V2! is not present) the following rule is supposed to hold:

PBA F VE'Wy <, sk32°Ag(k,y, 2)
(15) § = one can extract a polynomial p(k) € IN[£] such that
PBA* - VE'y <, sk3z <o p(k) Ao(k,y, 2),

where PBA* is a system closely related to PBA (here s is a closed term of
PBA and Aq(k,y, z) contains only k,y, z as free variables).

If the statement VE'Vy <, sk3z0Aq(k,y,z) is monotone w.r.t. ‘3z’, as is
typically the case because of the very way in which sentences of this type arise
in analysis (namely as Ve > 036 > O-statements, see section 4 below), then
the uniform bound p(k) realizes the quantifier

(16) PBA* = VE°Vy <, sk Ag(k,y,p(k)).
Feasible analysis — FA for short — in the sense of e.g. [5] in contrast to PBA

refers to subsystems of analysis with feasible (poly-time) Skolem functions for
provable TT3-sentences, i.e.

FA F VE°32044(k, 2)
(17) = df € Polytime
FA* EVEC Ay (K, f(k)).

Ferreira introduced in [5] a system of FA in the language of second-order arith-
metic which includes a suitable version of the binary Koénig’s lemma WKL.
He in particular proved (17) for his system (where FA* := FA minus WKL).

The two approaches are incomparable:

1) The existence of a bound p(k) € IN[k] of course yields a bound in
Polytime®, namely p, but not a poly-time witness function (not even
when Aj is poly-time decidable which typically will not be the case in
PBA) since Polytime is not closed under bounded search (but only un-
der sharply bounded search).

2) The existence of a poly-time Skolem function f in (17) does not imply
the existence of a bound p(k) € IN[k] since not every poly-time function
is bounded by a polynomial, e.g. f(k) := k"9 is poly-time but growths
faster than every polynomial.

So in short: hereditarily polynomial bounded analysis guarantees the ex-

tractability of uniform polynomial bounds whereas feasible analysis guaran-
tees the existence (or when treated proof-theoretically the extractability) of

6 Polytime here denotes the set of all poly-time computable n-ary number-theoretic func-
tions.
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poly-time algorithms. Although the latter approach may yield applications
e.g. in the area of analytical number theory, many existential statement in
analysis are monotone and therefore the restriction to bounds is no restric-
tion at all here but has tremendous benefits: it allows to incorporate many
analytical constructions and principles which are known to be unfeasible (un-
less the polynomial hierarchy collapses). E.g. the work of H. Friedman and
K.-I. Ko (see [10]) shows that almost all basic concepts in analysis, e.g. the

Riemann integral, the supremum sup f(z) and many others are not feasible
z€[0,1]

(in general). So to a great extent one can say that there is no such thing as
feasible analysis. On the other hand hereditarily polynomial bounded analysis
is amazingly rich both w.r.t. to the size of the fragment of analysis which can
be carried out in a suitable system for PBA and w.r.t. to the great variety
of theorems which can be expressed in the form (13) which is due to the fact
that e.g. fol f(z)dz and sup f(z) can be defined explicitly in PBA by certain
z€[0,1]
functionals of type level 2 (see appendix A4 below).

3 The range of hereditarily polynomial analysis

In [15],[16] we proposed a system GoA“+ AC-qf +A for PBA. Here GoAY is
the second system in a hierarchy of subsystems (G,A“),cn of arithmetic in
all finite types. The definable type-1-objects of G,A“ correspond to the well-
known Grzegorczyk hierarchy. Moreover G,A“ contains various functionals
of higher type, a rule of quantifier-free extensionality in higher types where
s =, t is an abbreviation for Vz(sz =, tz), and all true universal axioms
VaAo(x) where Ay is a quantifier-free formula and z is a tuple of variables of
types < 2. Here ‘true’ refers to validity in the full set-theoretic type structure
S¥. In particular these universal axioms capture the schema of quantifier-free
induction (since bounded quantification can be expressed in a quantifier-free
way in G,A“ using a bounded search functional). The reason for including
all true universal axioms of the type above as axioms instead of using only
the schema of quantifier-free induction is that axioms of this form have a
trivial (monotone) functional interpretation and therefore do not contribute
to the extractable bounds by their proofs but only by the terms used in their
formulation. Of course in specific proofs only finitely many of them are used.

In the special case of GoA“ we have the II, ;, ¥; , --combinators for all types

T
(which allow the definition of A-abstraction), constants 0° (zero), S° (suc-

cessor), miny and maxy, (minimum and maximum of pairs of numbers), +

(addition), - (multiplication), bounded predicative recursor constants R,, a
bounded search functional 1, a bounded maximum functional @, fz (=

maxy(f0,..., fz)) and a bounded sum functional ®xfz (= > fi).
i=0

7
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A is a set of axioms having the logical form
(18) Va' 3y <, saVz"Ag(2,y, 2),

where Ag is quantifier-free (containing only x,y, 2z as free variables), s is a
closed term of G,A“ and 6, p, 7 are arbitrary finite types.

It turns out that many non-constructive analytical theorems can be formal-
ized as sentences (18). Nevertheless one of the main features of monotone
functional interpretation is that sentences (18) can be seen not to contribute
to the bound extracted (or to the complexity of the extraction procedure) by
their proofs but only by majorizing functionals (in the sense of [9]) for the
terms s. Hence we can treat them as axioms as well. However we want to
keep track of their use (and therefore do not include them in the definition of
GrAY) since at some places we need to replace them by certain e-weakenings.
The reason for this is that we want to make use also of a certain non-standard
axiom

(19) F~ :=
VA2, 3 O3y, <) yVRY, 20 A (20 <o yhi) — BE(ZT) <o D(yok),

1<on

(where, for 27, (z;m) (k") :=, zk, if k <o n and := 07, otherwise).

In order to motivate this axiom let’s consider its simple case where we only
have single functionals ®2,y' instead of sequences 2, 4" je.

F =982, 4" 3y <o y¥2!, n®( N\ (i <o yi) — ®(F7) <o D).

i<on

F~ trivially implies that every ®2 is bounded on the set {(z;71) : 2 € NN, n €

N,z <; y} (Conversely F~ is implied by this boundedness statement using

the least number principle and classical logic: let my € IN be the least number

such that ®(Z;7m) < mg for all such z; 7. Then there exists a yo < y such that

Dyo = myo).

In particular F- implies that every ® is bounded on all functions 1, n for all
minn(fn =0), if In(fn =0)

n € IN. This however is false for ®f :=
0%, otherwise.

Hence F~ (and a-fortiori F~) is not true in S (that’s why we call it ‘non-
standard’). However to construct a counterexample to F~ one has to use
arithmetical comprehension over functions which is not available in our sys-
tems. In fact we are able to reduce F'~ (which has the logical form of an
axiom Al) in proofs of sentences (13) (relative to G,AY + A+ AC-¢f) to its
e-weakening which is true in S¥ and even provable in G3A“. Combined with

8



KOHLENBACH

ACH_qf, F~ proves a strong principle of uniform %{-boundedness ([16]):
Yy O (VEOVz <) yk320 Az, y, k, 2) — IVE?, 2t n®
(A (@i <oyki) — 3z <o Xk A(T7), 9, F, 2))),

i<on

Y0-UB™ :=

where A = J1°A(]) is a purely existential formula.

This principle allows to give very short proofs of various non-constructive
analytical principles including a strong version of WKL (for details on this
see [16],[18]; in [20] we discuss various more general principles of uniform
boundedness).

Definition 3.1 A term t[2', k°] of type 0 is called a polynomial in x, & if it is
built up from 0°, S, +, -, 2, k only by application.

Definition 3.2 1) For f' we define f := @, f.
2) A= {3V <y, VU, w0 Go(u, Vu, w) - Yu 3v <5 tuVw™Go(u, v, w) € A}.
3) G,AY¥ denotes the intuitionistic variant of G, A%.

4) E-G,AY is the extension of G, A“ obtained by adding the extensionality
implication
k
E,: Naf ylt 20y 2k ( /\(yZ =, %) = XYL ... Yk =0 T2 ... 2k)
i=1
for all types p = 0(px) ... (p1)-

Theorem 3.3 ([15],[16]) Let A;(z', k% y', 2°) be a X0-formula in L(GyA¥)
which contains only x,k,y, z as free variables and let s be a closed term of
G2 AY. Furthermore let A be a set of closed axioms of the form Yu"3u <;
tuVwTGo(u, v, w) with deg(6) < 1, t a closed term and Gy quantifier-free.

Let T := E-GyA“+ AC™-qf + AC™' -q¢f + A + F~. Then the following rule
holds

T EV2VEYy < sok32°Ay (2, k,y, 2)
(20) ¢ = one can extract a polynomial O[x, k] in z, k such that
G3AY + A F Va'VEVy <y sak3z <o ®lzM, k] Ay (z, k, 1, 2).
Remark 3.4 1) Note that in the theorem above we extract a polynomial
bound whereas its verification uses an (exponential) coding functional
Oy fr:=(f0,..., f(xr—1)) (see [16]) which is definable in G3A“ but not
in GQAUJ.
2) For GyAY instead of E-GyA“ and & F~ instead of +F~ one” may have

7 Here @ means that F~ must not be used in the proof of the premise of an application
of the quantifier—free rule of extensionality QF-ER. G,,A“ satisfies the deduction theorem

9
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full quantifier-free choice AC-qf and y” for arbitrary type p in the theorem
above. In this case we also can allow 6 in A to be an arbitrary finite type.
In this form theorem 3.3 is proved in [16]. The present formulation follows
by the well-known extensionality elimination procedure, see [16](proof of
cor.3.1.4).

The extraction of a bound ¥ in the theorem above which is built up only from
I,.,%s, (for certain types 6, p, 7), S, +, - is obtained by monotone functional
interpretation without any normalization involved. It is only if one wants
to write Uxk as a polynomial ®[x, k] that one has to use logical normaliza-
tion (i.e. normalization w.r.t. II,¥-reductions).

Theorem 3.3 remains true if we add new function symbols ¢ (deg(p) < 1)
to G,AY together with certain universal axioms Va” Ay(z) (deg(r) < 2) about
them if this includes an axiom of the form ¢ >, ¢ for some closed term ¢ of
GpAY (see theorem 3.2.8 of [16]). If these axioms are true in S¥ for say the
intended interpretation of ¢, then S“ is a model also for this extension of
G, A“ and since such extensions don’t have any impact on extractable bounds
we are free to use them and will do so in appendix B and still denote the
resulting system by G, A“.

Theorem 3.5 ([15],[16],[18])
For suitable azioms A of the form Vu'3v <, tuVw'Go(u,v,w) € L(GoA4%),
E-Go A+ ACY-qf + ACO -qf +A+F~ contains a substantial part of analysis
including:

1) Basic properties of the operations +,—, -, (-)~",| - |, max, min and the re-
lations =, <, < for rational numbers and real numbers (which are given
by Cauchy sequences of rationals with fized Cauchy rate of convergence).

2) Basic properties of mazrimum and sum for sequences of real numbers of
variable length.

3) Basic properties of uniformly continuous functions f : [a,b]¢ — R,
sup f(x) and faxf(x)dx for f € Cla,b] where a < b and x € [a,].
z€[a,b]

4) The Leibniz criterion, the quotient criterion, the comparison test for se-
ries of real numbers. The convergence of the geometric series together
with its sum formula. The non-convergence of the harmonic series. (But
not: The Cauchy property of bounded monotone sequences in IR or the
Bolzano—-Weierstraf$ property for bounded sequences in R, see [19]).

5) Characteristic properties of the trigonometric functions sin, cos, tan,
arcsin, arccos, arctan and of the restrictions exp, and In, of exp,In to
[—Fk, k] for every fixed number k.

6) Fundamental theorem of calculus.

w.r.t. @ but not w.r.t. +.
10



KOHLENBACH

7) Fejér’s theorem on uniform approzimation of 21 —periodic uniformly con-
tinuous functions f : IR — IR by trigonometric polynomials.

8) Equivalence (local and global) of sequential continuity and =-6-continuity
for f: IR — IR.
9) Mean value theorem of differentiation.
10) Mean value theorem for integrals.
11) Cauchy—Peano existence theorem.
12) Brouwer’s fized point theorem for uniformly continuous functions f :
[a,b]? — [a, b]4.
13) Attainment of the mazimum of f € C([a,b]?,R) on [a,b]¢.
14) Uniform continuity (together with the existence of a modulus of uniform
continuity) of pointwise continuous functions f : [a,b]? — R.

15) Sequential form of the Heine-Borel covering property of [a,b]* C RY.

16) Dini’s theorem: Every sequence (G,) of pointwise continuous functions
G, : la,b]* — TR which increases pointwise to a pointwise continuous

function G : [a,b]Y — R converges uniformly on [a,b]? to G and there
exists a modulus of uniform convergence.

17) Every strictly increasing pointwise continuous function G : [a,b] —IR pos-
sesses a uniformly continuous strictly increasing inverse function G~1 :

(Ga, Gb] —|a,b).
18) A higher type formulation of Konig’s lemma WKIL2,, for sequences of

seq
binary trees.®

Remark 3.6 The reason for assuming f to be uniformly continuous in some
of the principles 1)-13) mentioned in the theorem, although we can weaken
this to pointwise continuity in view of 14), is to make explicit the use of the
non-standard axiom F'~ which is used only for 14)-18).

Let us denote from now on E-GyA“+ ACH0-of + AC%!-qf +A + F~ by PBA
(for a set of axioms A sufficient for theorem 3.5).

Theorem 3.5 is proved in [15]. Various parts of it are published: In [16] we
showed that PBA (even for A = )) proves 18). In [18] it is shown that
PBA proves (again with A = ) 13)-17). 9) easily follows from 13). It is
an easy exercise that 8) is provable in GoA“+ AC%!'_qf. Using a suitable
representation of C'([a,b]¢,IR) which is developed in [15] one can show that
10)-12) can be written directly as axioms A. 6) and 7) follow from suitable
quantitative versions which can be expressed as universal axioms. 1) is carried

8 See [16] for details. The usual formulation of WKL cannot be written down in GyA¥
since it requires the coding functional @ fz := (f0,..., f(z —1)). In G3A*“ one can show
that WKL2_ implies WKL.

seq

11
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out in detail in [19]. In an appendix to this paper we show 2),3) and 5).

Theorems 3.3,3.5 can also be viewed as a vast extension of a result by Parikh
[22]: Parikh considered a fragment PB of Peano arithmetic PA which contains
the schema of induction only for bounded formulas. He shows that if a sentence
Vady A(z,y) (A(x,y) being a bounded formula) is provable in PB then there
exists a polynomial p such that PB proves Vzdy < p(x) A(x,y). So PB can
be considered as a (very weak) system of polynomially bounded arithmetic.

Remark 3.7 In the theorems 3.3 and 3.5 we simply added certain analytical
principles A as axioms to our system, since their proofs don’t contribute to the
extractable bounds. The verification of the conclusion even relied on a stonger
form A of these axioms. However by techniques similar to the one used for the
F~ elimination one can (under some mild restictions on the types) replace the
use of A by the use of much weaker s-versions A, (see [11],[12] for more details
on this). For the axioms A which we used in theorem 3.5 these s-versions are

provable in e.g. the fragment ﬁwh (due to Feferman [4]) of intuitionistic
arithmetic in finite types HAY where induction is restricted to quantifier-free
formulas and recursion is allowed only on the ground type.

4 Mathematical theorems that can be expressed as sen-
tences Vz!'Vk'Vy <; szk3z"A; in G,AY

For the applicability of theorems 3.3,3.5 it is of relevance what kind of ana-
lytical theorems are formalizable in Gy A“ as sentences

(21) Vo' VEOVy <y sek32°Ai (2, k,y, 2),

where A, € 320.

Sentences (21) typically arise as follows: Let X be a complete separable metric
space, K a compact metric space and F,G : X x K — IR constructively
definable (and therefore continuous) functions. Many interesting theorems in
analysis (e.g. a large class of uniqueness theorems, see [12]) can be written in
the form

(22) Vo € XVy € K(F(r,y) =0 — G(z,y) =0)
and thus

1 1
23) Vo € XVy € KVk € INJ IN(|F < — G —).
(23) Vo € XVy € € N3n € N(|F(z,9)] < —— = [Gl@.y9)[ < 1—7)
In order to formalize (23) as a sentence (21) in GyA“ one has to repre-
sent quantification over X (resp. over K) by quantification of the form
Vaol(Ax(z) — ...) (resp. Vy <; s(Ag(y) — ...) for a closed term s of
GyA%) where Ax, Ag € TI? and F,G are definable in GyA“ (and provably

extensional w.r.t. =xyx,=r) by functionals @}S”(”, (1)51)(1) (given by closed

12
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terms of GoA“). Then (23) has the form
ValVy < sVE°3In®
(Ax () ANAr () ANPr(r,9)] <m g — [@a(@9)] <r 57);

where ‘(...)’ can be prenexed into a ¥.9-formula.

In finite type systems of the sort we are considering many spaces X, K can be
represented even in such a way that the predicates Ay, Ax do not occur (see

e.g.[1],[12]). In [15] we have shown that e.g. the spaces R?, C([a,b]%, R) and
the compact space [a,b1] X ... [aq4, bg] can be represented in this way already
in GoAY (for d = 1 we show this in the appendix A2 3 to this paper). Whereas
the fact that one can get rid of Ay, Ax is crucial in recognizing that certain
(non-constructive) analytical tools (e.g. Brouwer’s fixed point theorem) can be
written as axioms A, it is not necessary for the formalization of (23) in the form
(24) which allows very simple representations. E.g. (using the representation
of rational numbers and reals from [19]) continuous functions F' € C10,1]
can be represented simply as pairs (f 1(0),w}) where f represents a function

0,1]N®Q — IR and w; a modulus of uniform continuity of f, i.e.

1 1
2520, 40, k2 (0 < <o IA|z— <p$p —-— — <p—).
(25)Va",y" k(0 <q ,y <q IA|x Q?/|_Qw(k)+1_>|fx mf?/l_mk+1)

Note that (25) € I19.

The expressive power of sentences (22) crucially depends on what functions
F, G are definable in GoA¥. In appendix A4 we show that e.g. F: C[0,1] —
R, F(f):= s?p}f(m) and G : C[0,1] = R, G(f) := fol f(x)dz are definable
z€(0,1

in GoA¥. So in our sentences (22) we are free to use these functions although
they are not feasible and are still able to extract polynomial (and hence poly-
time) bounds from proofs in PBA.

The definability of F,G in GyA¥ is due to the fact that we have the func-
tionals ®@p,., Py available. Both functionals are not feasible (and therefore
not allowed in FA) but don’t cause any problems in the framework of PBA
since they can be majorized (in the sense of Howard [9]) by Af,x.f(z) resp.
Myz.(x+1)- f(2).
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In the following two appendices we present some technical details about the repre-
sentability of basic analytical concepts in GoA¥ from [15] which have been unpub-
lished hitherto but which are of relevance for the material presented in this paper.
We assume some familiarity with notions introduced in [16]. G,R“ denotes the set
of all closed terms of G, A“. For the treatment of higher non-constructive analytical
principles (mentioned in this article) see [16],[18],[19].

A (C[0,1], sup f(x) and folf(:c)d:c in G,AY
z€[0,1]

A.1  Real numbers in GyA“¥

A.1We recall the representation of real numbers used in [19] on which the represen-
tation of continuous functions developed in the next section is based. We have to
start with the representation of : Rational numbers are represented as codes
j(n,m) of pairs (n,m) of natural numbers n,m. j(n,m) represents

n

the rational number —2—, if n is even,

m+1?
if n is odd.

n+1

and the negative rational — -z,
Here j € GoRY is the surjective pairing function j(z,y) := 3((z +y)?>+ 3z +y). On
the codes of @, i.e. on IN, we have an equivalence relation by

if j1n1, j1no both are even

— _ 2
Comt 1l gama+1
and analogously in the remaining cases, where § = 7 is defined to hold iff ad =¢ cb
(for bd > 0).
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On IN one easily defines functions | - |g, +q, —q, @ :q,maxqg,ming € GoR“ and
(quantifier—free) relations) <q, <q which represent the corresponding functions and
relations on ). We sometimes omit the index @ if this does not cause any confusion.

Notational convention: For better readability we often write e.g. k%rl instead of

its code j(2,k) in IN. So e.g. we write 79 <g kL—H for z <q j(2,k).

By the coding of rational numbers as natural numbers, sequences of rationals
are just functions f! (and every function f! can be conceived as a sequence of ra-
tional numbers in a unique way). So real numbers can be represented by functions

f! modulo this coding. We now show that every function can be conceived as an
representative of a uniquely determined Cauchy sequence of rationals with mod-
ulus 1/(k + 1) and therefore can be conceived as an representative of a uniquely
determined real number.

Definition A.1 The functional )\fl.fE G2RY is defined such that
( fn, if Vk,m,m <g n(m,m >0 k — |fm —q fm| <q kL—H)
—~ < f(ng — 1) for ng := minl <y n such that

[Bk,m, i <o l(m, 0 >0 kA|fm —q fin] >q 77)],

\ otherwise.

It is clear that (provable in GoAY)

1) if f! represents a Cauchy sequence of rational numbers with modulus 1/(k+1),
then

vln’o(fn =0 fn)a

2) for every f! the function frepresents a Cauchy sequence of rational numbers
with modulus 1/(k + 1).

Hence every function f gives a uniquely determined real number, namely that num-
ber which is represented by f. Quantification Vz € RA(z) (3z € RA(x)) so reduces

to the quantification V flA(f) (3 flA(f)) for properties A which are extensional
w.r.t. =g below (i.e. which are really properties of real numbers). Operations

®: R — R are given by functionals ®'(!) (which are extensional w.r.t.=;). A real

function : R — IR is given by a functional ®'(1) which (in addition) is extensional
w.r.t. = . For convenience we often write (x,) instead of fn and (Z,) instead of

fn.
One easily defines in GoA“ the usual relations and operations of IR on the repre-
sentatives of the reals:

Definition A.2 1) (,) =R (a) = VA°(18% —q 7k <q 77);

2) (zp) <r (Zn) := Elko(/j\k — T >q kiﬂ)’

~

3) (zn) <R (¥n) := =(Tn) <R (Zn);
16
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5) (#n) —R (#n) = @2n41 —Q F20t1);

6) [(zn)Ir = (|Znlq);

7) (zn) w (Tn) = (§2(n+1)k ‘Q EZ(nJrl)k)a where k := [maxq (|zo|q + 1, |Zo|g + 1)1;
8) For (z,) and I° we define

(2,) ! = (maxq (Z(ni1)a41)2, 1) ~)» i Togen) >q 0
n = 1

(ming (Z(n41)41y25 775)1)s otherwise;

I+1

9) maxg ((wn), (Tn)) := (maXQ(i}nagn))a ming ((25), (Tn)) = (minQ (Zv\na/i'\n))

G2AY suffices to prove the usual properties of the relations and operations repre-
sented above (see [19] for details).

Notational convention: For notational simplicity we often omit the embedding
Q = R, eg ' <p y° stands for £ <R An.y’. From the type of the objects it will
be always clear what is meant.

If (fn)new of type 1(0) represents a k%HfCauchy sequence of real numbers, then
(provably in GoAY) f(n) := ﬁ(n+1)(3(n + 1)) represents the limit of this sequence,

A.2  Representation of [0,1] C IR in GoAY

Every element of [0,1] can be represented already by a bounded function f €
{f:f <1 M}, where M is a fixed function from G2R“ and every function from
this set can be conceived as an (representative of an) element in [0,1]: Define a
function ¢ € GoRY by

minl <gnll =g n], if 0 <gn <q 1
q(n) ==
00, otherwise.

Every rational number € [0, 1] N Q has a unique code by a number € ¢(IN) and
vn9(q(q(n)) =o q(n)). Also every such number codes an element of € [0,1]N Q. We
may conceive every number n as a representative of a rational number € [0,1] N Q,
namely of the rational coded by ¢(n).

In contrast to IR we can restrict the set of representing functions for [0,1] to the
compact (in the sense of the Baire space) set {f : f <i M}, where M (n) := j(6(n+
1),3(n+1)—1):

Each fraction r having the form m (with 4 < 3(n + 1)) is represented by a
number k£ < M(n), i.e. k < M(n) A q(k) codes r. Thus {k:k < M(n)} contains
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(modulo this coding) an S(n—lﬂ)fnet for [0,1]. Let Af.f € GoR® be such that

f(k) = q(iy), where
ip = pi <o M(k)¥j <o M(k)(IF(3(k +1)) —q a()| 2q [FB(k +1)) —q a(i)])].

f has (provably in GyA¥) the following properties:

1) VI(f <1 M).

~

2) VI(f =1 f).
3) V(0 <g f <r 1).
4) VIO <r f<r1— f =R f).

5) VI = f)-

Using this construction we can reduce quantification Vz € [0,1] A(z) and Jz €

[0,1] A(z) to quantification of the form Vf <; M A(f) and 3f <; M A(f) for
properties A which are =g—extensional (for fi, fo such that 0 <g fi1, fo <gr 1),
where M € GoRY¥ . Analogously one can define a representation of [a, b] for variable
a',b! such that a <R b by bounded functions {f! : f <; M(a,b)}. However one
can easily reduce the quantification over [a,b] to quantification over [0, 1] using
the convex combination a(1 — z) + bz where z varies over [0,1] so that we do
not need this generalization. But on some occasions it is convenient to have an
explicit representation for [—k, k] for all natural numbers k. This representation
is analogous to the representation of [0, 1] except that we now define My (n) :=
j(6k(n+1),3(n+1)—1) as the bounding function. The construction corresponding

to Af. f is also denoted by f since it will be always clear from the context what
interval we have in mind.

A.3  Representation of continuous functions f : [0,1] — IR by number theo-
retic functions

Functions f : [a,b] = IR (a,b € IR,a < b) are represented in G, A% by functionals
®'(1) which are —Rr-—extensional:

Vol y'(a' <g 2,y <p b' Az =R y — Pz =R Py).

Let f : [a,b] — IR be a pointwise continuous function. Then (classically) f is
uniformly continuous and possesses a modulus w : IN — IN of uniform continuity,
i.e.

Vz,y € [a,b],k € N(jJz —y| < -

(k) +1 )

_ <
= |fx fyl_kJrl

In G, A¥ this reads as follows (+) :=

1

).

Y, (a’ SR T,Y SR |$ IRy| >R u)(k)-l—l

18
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Thus quantification over continuous functions : [a,b] — IR corresponds in G, A% to

quantification over all ®'(V), ! which fulfill (+).

In the following we show how this quantification over objects of type level 2 can
be reduced to type-l1-quantification and how the condition (+) can be eliminated
so that quantification over continuous functions on [a,b] corresponds exactly to
(unrestricted) quantification over f!. We do this first for ¢ = 0,b = 1 and reduce
the general case to this situation. For a generalization of our treatment to functions
on [0,1]% (and [a1,b] X ... X [ag,bg]) see [15].

Let f : [0,1] =& R be a uniformly continuous function with modulus of uniform
continuity wy. f is already uniquely determined by its restriction to [0,1]N Q. Thus
continuous functions f : [0,1] — IR can be conceived as a pair (f,,wy) of functions
fr:00,1]NQ = R, wy: IN = IN which satisfy

(x) VkE e N, z,y € [0, 1] N Q(|z — y| < = |frz — fry| <

)

wf(k)—i-l k+1

(See also [24] and [2]).

Remark A.3 To represent a continuous function f € C[0, 1] as a pair including a
modulus of uniform continuity is a numerical enrichment of the given data which
we use here for reasons which are similar to the endowment of real numbers with
a Cauchy modulus: As we will see below quantification over C10,1] so reduces to
quantification over functions of type 1. Furthermore many functions on C|0, 1] as
e.g. fol f(z)dz or 51[1p]f(x) are given by functionals € G2R“ in these data (see
z€(0,1

below). This has as a consequence that many important theorems on continuous
functions have the logical form of axioms A in theorem 3.3. Also many sentences
Vf € C[0,1]Vz € RVy € [0,1]3z € IN A(f, z,v, z) have the logical form Vf!, z'Vy <,
M3 A(f,x,y,z) with A € »? so that theorem 3.5 applies yielding bounds on 3z
which depend only on f,z (if f is represented with a modulus of continuity).

In the presence of the axiom F~ (and AC"0-qf) it follows that every pointwise
continuous function f : [0, 1] — IR is uniformly continuous and possesses a modulus
of uniform continuity (see [18]). Hence under F'~ the enrichment by such a modulus
does not imply a restriction on the class of functions.

Modulo our representation of @ and IR, f, is an object of type 1(0) (i.e. a sequence
of number theoretic functions). Quantification over continuous functions on [0,1]

reduces to quantification over all pairs (f1(?),w!) (and therefore by suitable coding
to quantification over all functions of type 1) which satisfy (x) by substituting

Azl f(z)R for (f,w) in the matrix where f(z)R := klim f(@(w(k))) MK f(z(w(k)))
—00

is a Cauchy sequence of real numbers with modulus kL—H and so its limit is definable

in GQA“J).

For the applicability of the axioms A in theorem 3.5 it is of importance to be able to

eliminate the implicative premise (*): Let us consider the theorem of the attainment
of the maximum of a continuous function on [0,1]

Vf e C[0,1]3xg € [0,1]Vz € [0,1](f(z0) > fx).
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Without the need of the implicative premise () on (f,w) this theorem would have
(using our representation) the logical form

Vf13my <1 MYz A(f, 0, ),

where A € TIY, i.e. the logical form of an axiom A in theorems 3.5. Similarly many
other important non—constructive theorems would have the logical form of an axiom
A and thus do not contribute to the rate of growth of the uniform bounds extracted
from proofs which use these theorems.

In fact below we will show that the premise (%) can be eliminated by constructing

functionals \ill, \112 € GoRY such that the following holds

1) If (f1O), ') fulfils (%), then f =1(0) U fw and Uy fw is also a modulus of
uniform continuity for f.

2) For every pair (f1(0),w!) the pair (¥ fw, ¥ofw) satisfies ().
By this construction the quantification
V('@ wh)((+) = A(f,w))
reduces to
V(1O Wl ATy fw, Us fw)
(and likewise for 3) for properties A which are extensional in the sense of =¢(g 1.

In the following we write more suggestively f,,w; for Uy fw, Us fw.

The underlying intuition for the following definition is roughly as follows: If f is
uniformly continuous with modulus w, then f,(n) := f(n). In the case that the
continuity property is violated at the first time at a point n, then we define f, as a
simple polygon (i.e. a piecewise linear continuous function) using the f—values on
the previous points:

Definition A.4 For ' o' we define fu,w;y as follows:

( f(n), if Ag(f,w,n) :=Vm,m <o ®,(3n)Vk <o n?

(la(m) —q a(m)| < s+ = [(Flgm))k —g (Flam))k| < £27)

[ Pno,f(n), for ng <p m minimal such that —A(f,w,no), otherwise,
((:)(3”)7 if AU(fa W, n)

ma e { [ £88000 1)+ 11,5 <0 @30, a) # a0+ 1),300)

for ng <¢p m minimal such that —Ag(f,w, ng), otherwise,

\

(here |...|(1) is the value of the sequence |...| at 1) where py,, ¢ is the (restriction
to [0,1] N @ of the) polygon defined by f(q0),..., f(¢(P,(3(ny ~1)))),

20



KOHLENBACH

,1)2 - (max; < w(i) + 1), wy(n) :=ws(5(n + 1)) and
o(n) + 1),0(n) + 1) (Note that 0,1 are coded by 0,5(2,0) <g

Remark A.5 f, and wy are definable in GoR* (as functionals in f,w) since A
can be expressed quantifier—free and py,, r(n) can be written as

flai) —w f(aj)

. — R (g —q q7),
pr— (gn —q q1)

Pno,f(n) =1 f(qi) +r

where 4,5 <o ®,(3(no 1)) are such that ¢i <q gn A (|]¢gi —q ¢n| minimal) A gj >q
qn A (Jgj —q gn| minimal) (If g(n) =q 1, then p,, r(n) =1 f(g(n))).

Lemma A.6 1) k‘l >0 k‘2 — (:)(kl) >0 (:)(kg)
2) w(k) >0 k and &(k) >¢ w(k).
3) @3-k)>03-w(k)+3 fork>1.

Proof: 1) and 2) follow immediately from the definition of @.
k

[y

>
3) @(3k) > 9k*- (m<akxw(i) +1) > 3k?- (m<akxw(i) + 1) + 6k?
1< s

>
> 3k2(m<a]§<w(i) +1)+3=3 w(k)+3.

27
Lemma A.7 If 'O represents a uniformly continuous function F : 0,1 - R
with a modulus w' of uniform continuity, i.e.
vm, 1, k(lgm —q @] <q Sy = 1 (@m) —w flem)] <k 7).
then fu, =10y | and wy is also a modulus of uniform continuity for F'.

Proof: The first part of the lemma follows from the definition of f,, observing that
the case ‘otherwise’ never occurs because of the assumption, since

- 1 l.é.G 1
lom Qe < ZETT S S
implies that

— — 2 3

|(F(gm))k —q (flam)k] < |f(gm) —w flam)| + =7 < 7

1.A.6
Furthermore @¢(n) = @(3n) >¢ w(n). Hence together with w also @y and thus a
fortiori wy is a modulus of uniform continuity.

Lemma A.8 For every pair (f'(0),w') the following holds:
fw represents a uniformly continuous function : [0,1]NQ = R and wy is a modulus
of uniform continuity for this function, i.e.

1

- |fw(qm) R fw(qm” < k—-l-l)

1
5.k g < —
Vm,m, k(lgm —q gm| < oy (6 1

Proof: Let m,m,k € IN be such that |[gm —q ¢gm| < —wif(i)ﬂ-

We may assume that gm >q gm.
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Case 1: Ay(f,w,gm). Then also Ay(f,w,gm) since the monotonicity of ®,(3n) and

n? implies

ni >opna A Ao(f,w,nl) — Ao(f,w,ng).

Hence f(gm) =r fu(gm) and f(gm) =R fu(gm). By @(k) >¢ &(k), k the assump-
tion on m,m, k yields
1

and (++) [gm —q ¢i| < -——

_ T < .
(+) lgm —q gn| < P

1
w(k)+1
(++) implies that k& <o (¢m)? (Because of ja(gm), jo(gm) <o gm, the (distinct)
fractions coded by gm, ¢gm have denominators a,b <y gm. Thus |é — %| > ﬁ >

W). Furthermore gm,qm <o ®,(3(¢gm)). Hence (+) and Ap(f,w,qm) yield

(using Vz°(q(qz) =0 qz))

(Flam)k —q (Flam)bl < 1
and therefore
3 5 5
|fulgm) —r fu(gm)| =r |f(gm) —r f(gm)| < PR

Case 2: _'AO(fawa qm)'

2.1 k >0 ng := minn <o gm-Ay(f,w,n):

In this case we have f,(gm) =R Pn,,f(gm) and f,(gm) =R Pny,r(¢m) (In the case

Ao(f,w,gm) we have gm < ng < ®,(3(no — 1)) and so f,(¢gm) = f(gm) is one of
the f-values used in defining py,, ). Since @y is a modulus of uniform continuity
for py,, s for k > ng, the assumption on m,m implies

1

|fulgm) —r fu(gm)| < [

2.2 1 <o k <o no: Then Ag(f,w, k) and therefore wr(k) = @(3k). Since all fractions

BT With i <o @(3(nop — 1)) + 1 have a code <y ®,(3(no — 1)), the maximal

distance between two adjacent breaking points of p,, ¢ is < m Hence
there are m*,m* <o ®,(3(no — 1)) (i.e. ‘breaking points’ of the polygon py,, s next
to m,m satisfying (2) below) such that

o gt < — A 1 ) l.é.G 5 z.A<.6
(1) q Q9 =GR+ T eBMmo—1))+ T = GBRFL =

1
S Zm

3
30 (k)+3+1

and

(2) [Pro,(4772") =R Pro,f (qm") | ZR [ Pno,(977) =R Pro,f(gm) |-

~~ ~~

=rf(g*) =rf(gm*) =R fu(qm) =R fu(qm)
Since Ag(f,w,ng— 1) and k <g (ng — 1)%, (1) and (2) imply

(2)

|fulgm) —r fu(gm)| < [f(gm*) —r f(gm™)]
— — (1
<|(flgm* )k —q (flg* )kl + 25 < 25 + 57 = 57

22
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Put together we have shown that in both cases (for & > 1)

5

= |fulgm) —r fu(gm)| < —.

1
_ Hl< — —
lgm —q qm| < @, (k) k+1

+1

Hence wy is a modulus of uniform continuity for f,.

Since every pair (f 1(0),w1) can be conceived now as a representation of a uniformly
continuous function [0,1] N @ — IR, namely that function which is represented by
(U fw, Uy fw) (where Uy fw = f,o0q, Uyfw:= wy).? Furthermore, every function
g' can be conceived as a pair (f,w) by g — (A, n°.(519)(j(k,n)),j2g9) (where
4ig = Ax%.5;(gz)), so g' represents the continuous function (¥;g, ¥ag), where
Tg = T (A2, n0.(j19) (i (k,n)), j2g) and Wog := Wo(AE®,n0.(j19)(j(k,n)), j2g).
Since every pair (f,w) can be coded into a function g, every uniformly continuous
function [0,1] N @ — IR is represented by some function g. Together with ¥; also
the W; are in GoR¥.

Now we define the continuation from [0,1] N @ to [0, 1]:

Definition A.9 The functional \g!, z'.g(z)r € G2R¥ is defined by

—

(g9(2)R)(K%) :=0 U19(2(T29(3(k + 1))))(3(k + 1)), Z is the construction used in our
representation of [0, 1].

Remark A.10 g(z)r represents the value of the function € C[0, 1], which is rep-
resented by g, applied to the real € [0, 1], which is represented by z.

Notation: If a function € C[0, 1] is given as a pair (f'(?), w") we also use the notation
f(z)Rr in order to avoid the need of spelling out the coding (f,w) +— g'.

Remark A.11 Quantification over C[a,b] (where a < b) reduces to quantification
over C|0,1] by

f €Cla,bl— g:=Xz.f(a(l —z) 4+ bz) € C[0,1] and

g€ C0,1] = f:= Az.g(F=2) € Cla,b].

In [12] we used a different representation of the space C[0, 1] (following [3]) based
on the Weierstrafl approximation theorem: A function f € C]0,1] was represented
as a Cauchy sequence w.r.t. || - ||o (with modulus 1/(k + 1)) of polynomials with

rational coefficients. Then we applied a construction, similarly to f used in our
representation of IR above, to ensure that every function f!' could be conceived as
such a Cauchy sequence.

However this representation is not convenient for our theory GoA“ since the cod-
ing of an arbitrary sequence of polynomials requires the coding of finite sequences
of natural numbers (the codes of the coefficients) of variable length which can be
carried out in G3A“ but not in GoA¥. Furthermore in practice the computation of
an approximating sequence of polynomials to a given function is quite complicated
(and even more when one deals with functions in several variables) whereas for most
functions occurring in mathematics a modulus of continuity can be written down

9 By switching from f, to f., o ¢ we can formulate the continuity of ¥ fw now as
Vi, (0 <q m. 1 <q LA|m —q | < 5bier = (81 fw)(m) —w (81 fo) ()] < £h), ie.
without mentioning ¢ anymore.
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directly. Hence it is much more useful to extract bounds which require as a function
input only the function endowed with a modulus of uniform continuity rather than
an approximating sequence of polynomials. In our applications to approximation
theory we always obtained bounds in functions with a modulus of continuity. Be-
cause of this we conjectured in [12] that this will always hold for extractions of
bounds from concrete proofs. By our new representation of C[0, 1] this conjecture
is theoretically justified: From a proof of a sentence

Vf e C[0,1]3y° A(f,y), where A € X°

we obtain a bound on y in a representative of f in our sense, i.e. in f endowed with
a modulus of uniform continuity.

The construction of f,,ws looks quite complicated. However if f is already given
with a modulus w (as in concrete applications) then f,, does not change anything
and wy(n) is just a slight modification of w and the proof of this (A.7) is almost
trivial. The complicated clause in the definition of f,,,w; is needed only to ensure
that an arbitrary given pair (f,w) is transformed into a continuous function. The
quite complicated proof of lemma A.8 is not relevant for the extraction process since

the statement of this lemma is a purely universal sentence and therefore an axiom
of GoAY.

A.J  The functionals maxy, +r for sequences of variable length and sup fzx,

x€[a,b]
b
[ f(x)dz in GyA¥
b
For the computation of sup fz and [ f(z)dz for f € Cla,b] we need the maximum
z€a,b] a

and the sum of a sequence of real numbers of variable length, i.e.

maxg {f(r;) : 4 <k} and f(rg) +®r ... +r f(rk) for a sequence of rational numbers
r;. For the construction of such operations in GoR¥ we need a special form of our
representation of real numbers:

The computation of the addition of a sequence of x real numbers ag,...,a, re-
quires the addition of corresponding sequences of the n—th rational approximations
ag(n),...,a,(n) of these real numbers (for all n). For this we need the computation
of a common divisor of ag(n),...,a;(n). However the size of such a common divisor
will (in general) have an exponential growth in z and therefore is not definable in
GoR¥ but only in GgR“. This difficulty is avoided by modifying representatives f
of real numbers to representatives f’ such that f =g f’ and the n—th rational ap-
proximation f'n of f'is a (code of a) fraction with a fixed denominator. We choose
3(n 4+ 1) + 1 as this denominator in order to ensure the right rate of convergence

such that f’ =y f’. For the computation of maxg(ay,...,a,;) this modification is
(although not necessary) very convenient.
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Definition A.12

f” =0
mink <o j1 (F3(n + 1)) - 3 + 1) + gy <o J8(n +1) <o gy

~

Ak even], if it exists and 71 (f(3(n + 1))) is even

Ma'

mink <o (1 (F(3(n+ 1)) +1) - (3(n+1) +1)
ety <o FB(n + 1) <q sup Ak odd],

if it exists and jl(f(3(n +1))) is odd

0%, otherwise.
\

f'(n) = j(fn,3(n+1)).

Remark A.13 Together with A ff also Af.f and therefore Af.f’ are definable in
GoRY.

Lemma A.14 GoA“ FVfY(f' =R f).

Definition A.15 ', ') € GyR¥ are defined such that (provably in GyA%)

0 1, if Im <y n(n =g 2m)
X1 =o

0, otherwise.

and

max (g() - x(g7)), if Ji <o k(x(gi) =0 1)
hgtk® =o { =F
ngn g(i), otherwise.

Definition A.16 @, € G2R" is defined by

Bmaxg = MO EO 005 (p(Ni0.51 ((fi)'n), k), 3(n + 1)).

Lemma A.17

Go A =V, F1O (o fO =R FOAPmaxy f(h+1) =R maxm (Pmaxy [F, f(E+1))).
Lemma A.18

1) GyAY Vfl ,m0 mo(m >0 M = Praxg [T >R Pmaxg f7, 7).

2) GuAY+ACYY—gf E V1O mOTk <o m(fk =R Pmaxg f1).

Remark A.19 1) The elementary but tedious proofs for the two lemmas above
(which we don’t carry out here) have no impact on the extraction of bounds:
Lemma A.17 and A.18 1) are purely universal sentences. Since one can verify
their truth they are treated as axioms. Lemma A.18 2) (although not being
universal) has the logical form Vz3y < szVzA( of an axiom € A and therefore
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can be treated as an axiom as well by our monotone (but not by the usual)
functional interpretation. The same is true for the next lemma.

2) Pming fm can be defined from ®paxy, f by := =R Pmaxy (Ak.(—wfk), m).

Using ®paxy We are able to define sup f(z) for f € C[0,1]:
z€[0,1]

Definition A.20 @;1(1?[0,1] € GoRY is defined as follows

Bl = M0 Prna (U1 f, B(T2f (3(n + 1)) (3(n + 1)),

SuPfo,1] *

where hn := j(2n,n) and Uy, Uy € GoR¥ are the functionals used in the represen-
tation of C[0, 1].

Lemma A.21
GoAY -
VfeC[0,1](Va € [0,1](Psupy,,, f >r f2) AVEOTz € [0,1)(Psupy, 1 f —r [2 < 517))-

From now on we make liberal use of the usual mathematical expressions ¢ sup fz’
z€[0,1]

and ‘f € C[0,1]" and go back to the details of the actual representation of these
notions in GoA¥ only when this is needed to determine the logical form of a sentence
which involves these notions.

For a function f € C[a,b] we can express sup fz as sup fx, where
x€[a,b] z€[0,1]

fr:=f((1 —z)a+zb).

For the definition of the sum of a sequence of real numbers of length z we need the
following constructions.

Definition A.22 The functionals ¢, (,¢ € GoR® are defined such that

0 n, if Im < n(n = 2m)
(n” =g
0, otherwise.

nt n+1, if Im < n(n =2m+1)
n- =y
0, otherwise.

0 0 n+-m, ifn>m
En"m” =g

(m +n) =1, otherwise.

Using these functions we are now able to define a variable summation:

Definition A.23 ®y, € GoRY is defined as &y :=

AT RO n0 (& é((ﬁ[(fi)’(a(k,n))]), é CLl(fD) (alk,n))]), 3(alk, n) + 1)),
where a(k,n) :=2(k+ 1)(n + 1).
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Lemma A.24
GoAY FY YO K (B fO =k fONA By f(k + 1) =R (Psy fE) +r f(E+1)).

Using @5 we now define the Riemann integral fol f(z)dz for f € C[0,1]:
wy(n) .
Let S, := m . l; f(m) denote the n-th Riemann sum (where wy is the

modulus of uniform continuity from the representation of f). One easily follows
from the usual proof of the convergence of the sequence of Riemann sums that
(Sh )nE]N is a Cauchy sequence with Cauchy modulus 2/(n + 1) (which converges to

f 0 . Therefore we define:

Definition A.25 1) &g € GoRY is defined as
(I)S = )‘fla no'j(27 \Ij2fn) ‘R (I)E]R(Al(qjlf)(](27’a \IIan))v \IIan)

2) ®; € GoRY is defined as
= AfLn0 [@sf(2(3(n + 1)) + 1)](3(n + 1)).

Proposition A.26 ®;f! represents the real number fo x)dx, where F is the
function € C[0,1] which is represented by f.

Proof: Since j(2i, ¥y fn) codes W and ¥y is a modulus of uniform continuity
for the function : [0,1] N @ — IR which is represented by ¥y, ®g is just the n—th
Riemann sum for the function represented by f. As we have mentioned already
above, these Riemann sums S, form a Cauchy sequence with modulus 2/(n + 1).
Hence (S2p41)new is a Cauchy sequence with modulus 1/(n 4+ 1). ®f represents
the limit of this sequence.

In the following we use the usual notation fol f(z)dx instead of ®;.

Proposition A.27 The following properties of fol are provable in GoAY
(f, fn,g € C[0,1],A € R):

1) [y (f +9)(@)ds = [ f(z)dz+ [; g(
2) [ Oh- P)(@)dz =X [} f(z)de
3)f<g—>f0 dgg<f0

4 |fy F@da| < 3 1£1@)dz < [ 1o

5) fo L5 f o [V fo(@)ds — [ f(z)ds.

Proof: It is clear from the usual proofs in analysis that 1)-5) are true. Since 1),2)
and 4) are purely universal, they are axioms of GeA“. 3) can be transformed into

27



KOHLENBACH

a purely universal sentence
1 1
9 [ f@)is < [ wax(f.g)(z)d.
0 0

The proof of the equivalence of 3) and 3)’ uses the extensionality of fol, which follows

immediately from 4) together with 1) and 2) and thus is also provable in GoA¥.
5) follows from 1),2) and 4).

Our definition of fol easily generalizes to f: F(z)dz for F € Cla,b] (a < b). Let
F be given as a pair (U!(1),w), where U represents a function : [a,b] — IR which

has the modulus of uniform continuity w. Then a representative of f: F(z)dx can
be computed in ¥, w,a,b by a functional in GoR¥. For this one has to replace the
partition

of [0,1] by the partition

1
k(w(n) + 1)
and IN 5 k£ > b — a, of [a,b] which also has mesh < 1/(w(n) +1).

ap, ... ,ak(w(n)+1), where a; :=a—+R Z(b - a) ‘R

We can define also a functional 7= € GoR* such that @z (z',a', ') w') repre-
sents the integral [ Wzdz if ¥ represents a function [a,b] — IR (a < b), which is
uniformly continuous with modulus w, and z € [a, b]:

(', a!, 0D WY = lim Sy (z,a, T, w),
e n—00

where

T—RGa . . 1
Sn(= Sn(z,a,¥,w)) := - —II—RI ‘R Px(M.¥(a +Rri(r —R a) ‘R n——l—l)’n +1).

From our reasoning above it is clear that (S,) is a Cauchy sequence which converges

to ff Wxdz. In order to be able to define lim,,_,, S;,, in GoR“ we have to construct
a Cauchy modulus for this sequence in GoR“. This however is possible since

iy

k
|Sk(wmn)+1) — /\P$d$| < n 1

a

where k € IN such that £ > z — a.

The formula
c b b
/f($)d$+/f($)d$=/f(az)dazfora<c<b

is purely universal and hence an axiom of GoA¥.
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B Trigonometric functions in GyA“: Moduli and uni-
versal properties

B.1 The functions sin, cos and tan in GyA¥

In the following we introduce the functions sin, cos axiomatically by adding to
G2AY new function constants @iy, Peos of type 1(0) which represent the restric-
tions of sin and cos to Q. Then the Lipschitz continuity of sin,cos is used to
continue these functions to IR (If we would introduce sin, cos directly as functions
on IR, this would require new constants for functionals of type 1(1). In order to
express their extensionality by universal axioms we also would have to make use
of the Lipschitz continuity, since uniform continuity is just a uniform quantitative
version of extensionality).

The following purely universal assertions on the function constants ®@gy,, Pcos €Xpress
true propositions on sin, cos and are therefore taken as axioms in GoA“U{ Py, Pcos }5
which we also denote by GoA“ (because of the part ®gin, Peos <1 M in 1) below,
the comments made after remark 3.4 above apply):

1) VQJ"O((q)sinl") =1 Pginzr <4 M/\((I)cost) =1 Peos® <1 MA—-1 < q)sinxa Deost <R
1), where M! € GoR¥ is the boundedness function from the representation of
[~1,1] (one may take M := An°.j(6(n + 1),3(n + 1) — 1); see [0, 1]).

2) V$0ay0a q0(|$ —Q y| SQ q— |<I)sinx —R (I)siny| <R gA |(I>cosx —R CI)cosy| <R q)-
2), together with 1), asserts that ®g, and ®..g represent functions : @ —
[—1, 1] which are Lipschitz continuous on Q with Lipschitz constant A = 1).

3) Vqf'o((I)sin(_(Qm) =R —RPsinT A (Dcos(_Qx) =R (Dcosx)a D0 =R 1.

4) on, yo(q)sm(x +Q y) —R (CI)Sinx) ‘R (CI)COSy) TR (CI)cosx) ‘R (Cbsiny) A
CI)COS(x +q y) ~R ((I)COSx) ‘R ((Dcosy) —R ((Dsinq;) ‘R (@siny))'
\v/xO’ yo(q)sinl" —R @siny =2 (I)cos(x+2Qy) ‘IR (I)sin(x_2Qy) A

@) ‘R %m(%))-

Peos? —R Peosy = —2 - Psin(

5) Va®(0 <q lo| = |22 g 1| < BL).
This proposition on sin (see e.g. [6]) provides a quantitative version of the
si% :z::;o

proposition 1. Only by this quantitative strengthening the proposi-

tion becomes purely universal (and therefore an axiom of GoA¥).
Because of axiom 2) there are unique continuous extensions of the functions : Q —

IR, which are represented by @4, Pcog, to the whole space IR. These extensions are
represented by

SV = A By (R(3(k + 1)) B(k + 1)),
B! = A" Beos (B(3(k + 1)) (3(k + 1)).
Remark B.1 1) Tt is well-known that 2)-5) already characterize sin,cos (see
e.g. [8]).
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2) By the axiom 1) ®g;, and ®..s are majorizable by Az®,n°.j(6(n+1),3(n+1) —
1) € GoR¥. Hence theorem 3.2.8 from [16] applies.

3) In G3A“ we can define constants ®. P/

sin?

which satisfy (provable in G3A¥)

-1 < @, 2,® x < 1 and 2)-5) above using the usual definition via the
Taylor expansion of sin and cos. If we now define &g,z := (P z) and

Peost 1= (PLogr) (where Ayl.j € GoRY is the construction corresponding to
our representation of [—1,1] such that § <y M,y =g 7 if -1 <g y <g 1, and
—1 <R ¢ <r 1 for all y'), then these functionals satisfy 1)-5).

In the following we will write ®g,, Do also for ‘1>sm, @COS since from the type of the

argument it will always be clear whether ®4,,P.g or their extensions <I>sm, Do are
meant. Sometimes we even write sin, cos.

In the following we will introduce 7 (and thus m) as the uniquely determined zero

of the function cos on [0,2]. This is possible since @50 = 1, Peos2 <R —% and

(z —qy)?
18 )

are true purely universal assertions on cos (see below for the verification of (x)) and
hence axioms of GoA¥.

(%) is a uniform quantitative version of the strict monotonicity of cos on [0, 2]. This
strict monotonicity implies the uniqueness and hence (by a general meta—theorem
from [12]) the effectivity of the uniquely determined zero of cos [0,2]. This can be
seen also directly as follows: The quantitative monotonicity (*) immediately yields

(*) Va:o,yo(() <@y <@ <q 2 = Peos —R Peosy <R —

a modulus of uniqueness (in the sense of [12]) w € GyR¥, namely w(n) := m
and thus the computability of the zero of cos in GoR¥ U ®(ps:
Let Zy,, T € [0,2] be such that
| COS T, | €05 ] < s d therefore | P
COS Ty |, | €08 5| < =————— and therefore |cos z,;, — cos | < ——.
mo " 3Mn+n2 " T 8(n +1)2
Then by (%)= |zm — 2| < TL+1’ i.e. w is a modulus of uniqueness. We define a
partition of [0, 2] by
1
= ———————fori=0,...,636(n+ 1)
T 3 3601 1 1)? ori=0,..., (n+1)

and compute for each i a rational 1/(6 - 36(n + 1)2)-approximation y; of | cos z;|.
Next we compute an 7, such that

lyi,| = min{|y;| :i =0,...,6-36(n +1)*}.
It follows

1

|cos(z;, )| < min |cosz;| + TR

i<6-36(n+1)2
< inf |cosz|+

2 . 1
= 2e0.2] 3-36(n+1)> > 36(n+1)2"

Hence (z;,) is a Cauchy sequence in [0,2] with Cauchy modulus 1/(n + 1). (z;,)
can be computed by a term ¢' in GoR¥ U ®¢os. Therefore we may define 7 :=; 2 R t.
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The following propositions on 7, @4, Peog are purely universal and therefore axioms
of GoA¥:

1) 2<gr 7 <Rgr4, (Dcos(%) =r 0.

2) Va! (Peos(7 +R 27) =R Peos® A Psin(z +R 27T) =R Psinz A
Do (:E +r 71') =R —Pcos® N Psin (ZL‘ +Rr 77) =R —Pginz A
DeosT =R q)sin(% —R 517) A PsinT =R q)cos(% —R 517))

3) Uniform quantitative strict monotonicity:

~ ~ A ~\2
Va0, y0((0 <q y <q = <q 4 = Beos(#) —R Peos(§) <m —TBI) A
2

( —2 SQ Y SQ z SQ 2— CI)Sin(:ﬁ) — R CI)sin(g) ZIR %)),
where Z := ming(z,7), Z := ming (2, 7/2) and 2 := maxg (2, —7/2).

3) implies, together with 1), and the continuity of cos, sin):

_ 2
3 Vzl, y' (0 <r y <r 7 <R T = Peos(7) —R Peos(y) <m _%)A

N2
(=3 <RY<R® <R 5 = Psin(z) —R Psin(y) >R %))'

The reason for our somewhat complicated formulation 3) instead of 3)’ is that 3) is
in I1Y (in contrast to 3)’).
Proof of 3)’ (and hence of 3) and (x) above):
Since sinz > £ for all z € [0, 2] (see e.g.[6]), we obtain for all ,y such that 0 <y <
r < 5
Tty Ty Tty Ty (z —y)?
— = -2 < -2 .
COS T — COS Y sin( 5 ) sin( 5 ) < —2( 5 ) 5 0

Because of cos z = — cos(m — x), the claim follows for z,y € [0, §] and z,y € [F,7].
Now assume that 0 <y < § <z < m: Then

(z—y)?
18

) < —

cosz —cosy < cos(z —y) —cos0 < — (for z —y < 7 one has to use the result
above and for  —y > ¥ the statement follows from cos(z — y) — cos0 < —1). Put
together this yields the claim for [0, 7].

By sinz = — cos(§ + z), the corresponding claim for sin follows.

Remark B.2 The proof of 3)" above can be conceived as an instance of theorem
3.3 (of course a very simple one): When formalized within GoA“, the strict mono-
tonicity of cos has (modulo a suitable prenexation) the logical form

).

1 1
(+) Ve,y <4 MWVkOHnO(iL' CR Y+ k—-l-l = PeosT — Peosy <R _n T 1/

=:Aex?(modulo prenexation)

Since (+) is provable in GoA“, theorem 3.3 implies the extractability of a polynomial
pk providing a bound on n which does not depend on z,y. Since A is monotone
w.r.t. n, this bound in fact realizes ‘dn’, i.e.

1
CoA¥ FVz,y € [0,7], k(2 >R y + i Bros — Peosy <R T
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Our proof of 3)’ yields pk := 18(k + 1)2. The majorization used in this proof to
eliminate the dependence on z,y is simply the inequality

1
z+y)lz—y) 2 (= - 2>7f0r3v .
(z+y)(z—y) > (z—y) > G >yt
. . .
The tangent function tanz := S == is represented by a term @ta(m)( ) € GR¥ U
{q)sina q)cos} such that
1 m 1 O 1
Va' (- z < <p — — S P _ sin® \
z,n( 2+n+1_mx_m2 1 tanTT Rq)cosl‘)

B.2  The functions arcsin, arccos and arctan in Gy A¥

As we have seen above, sinz is strictly monotone on [—%, 7] with the ‘modulus

of uniform strict monotonicity’ w(e) := 5—8 Since sinz has the Lipschitz constant
A=1,
Vy € [-1,1]3x € [-F, §](sinz = y) implies

(x) Yy € [-1,1],n € N3r, € {q1,-..,q, }(|sinT, —y| < — 1),

where {q1,...,q,} C [-5,5]NQ is a 1/(n 4+ 1)-net for [-F, T]. Similarly to the
function M used in our representation of [0, 1] one constructs a function M, € GoR¥
such that {i : i <o M;n} contains (modulo our coding of Q) such a 1/(n + 1)-net
(e.g. Mzn :=j(8(n+1),n)). (x) implies

Yy <1 MVYn > 13¢ <o Man((—5)(n) + 715 <q 0 <q (5)(n) — 711

AN ®sing —R 7] <m 727)
and therefore
Yy <q MVn > 13q <9 Mn
((i\g)(n)—l-nﬂ <@ 7 =q (?)( n) = i1 AM(@sing)(n) —q 3(n)| <a 537)-
Bounded j-search provides a functional U'(") € GoRY U {®g;,} such that
Vy <; MVn >1
((—/%\)(n) + 747 <q Tyn <q (/%\)(n) — g A |Bsin (Tyn)) (n) —q §(n)| < @ 771)

and therefore

e~

Wy <1 M¥n > 1((=5)(n) + 715 <q Tyn <q (3)(n) — 73

/\|(I)sin(\ijn) R y| <r n—j—l)

Hence for Uyn := Uy (7 - 36(n + 1))
1

—-1,1 IN* (| ®gipn (T “RY anl 12
Vy € [-1,1],n € (|Psin(Tyn) Ry|<36(n+1)2

)-

10 Here again Ay'.j € G,RY is the construction corresponding to our representation of
[—1,1] such that § <; M,y =R § if -1 <py <gr 1, and —1 <R 7 <R 1 for all y'.
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From the fact that w(e) is a modulus of strict monotonicity for sin we obtain that
(Uyn)pen+ is a Cauchy sequence in [-7, §] with Cauchy modulus 1/(n+1): Suppose
that m,m > n, then

- - - - 1
|(I)sin(\1lym) - q)sin(lllym” < |(I)sin(\ijm) - y| + |y - q)sin(lllym” < W
and therefore [Tym —q Yym| < n%rl
Hence ®,pcsiny := W4 represents the inverse function of sin on [~7, 7] and is uni-

formly continuous on [—1, 1] with w as a modulus of uniform continuity.
The inverse arccos of cos on [0, 7] is defined analogously.
Similarly to arcsin, arccos one can finally define arctan in GoA“.

B.3 The exponential functions exp, and exp in Gy AY and G3A®

Since all terms ¢! € GyR¥ are bounded by a polynomial (see [16],prop.2.2.29) it
is clear that exp can neither be defined in GoA“ nor can exp be represented by a
new function constant which is majorized by a term from GoR“. However for every
fixed number n > 1 we can introduce the restriction of exp to [—n,n](C R) by
such a constant. This means that we can deal locally with exp in GoA¥ and e.g.
may use exp for the solution of ordinary differential equations etc.

We add to GoA¥ a function constant @é,((%)n which is intended to represent the
restriction of exp on [—n,n] N Q. Since exp is Lipschitz continuous on [—n, n] with
a Lipschitz constant e.g. A := 3", we have the following universal axioms on {)é)((%)n

in GQAUJ 1
(1) V22 (Boxp, 7 =1 Bexp, 7 <1 M AD < Bep & < 3"),

where M,, is the boundedness function used in the representation of [0,3"] (e.g.
M, (k) :== 5(6-3"(k+1),3(k + 1) — 1)). 12

q
(2) V$07y07q0( —n<qzy<qgnA |$ -Q y| <q 3_n — |(I)expn$ R q)expny| <r Q)-
As in the case of O, by (2) we can extend ®eyp, to a constant Cfé,((%))n € GoRY which
represents the continuation of the function represented by ®y, to [-n,n]. As for
iy, we will denote this extension also by ®exp, . The most important properties of

exp (restricted on [—n,n]) can be expressed by purely universal sentences and thus
are axioms of GoAY:

vz?, 0 —n <gy<gz<gn-— f;(@expnt)dt =R Pexp, T —R Pexp, ¥),
(I)expno =r 1,

(3)

1 As in the case of @4, and @05 we denote (according to the discussion in connection with
theorem 3.2.8 in [16]) G2A“ U {@i,(&} also by GyA¥

12 For notational simplicity we identify in the following the natural number n with its code
j(2n,0) as a rational number, e.g. we write 2° <q n instead of z° < 5(2n,0) in order to
express that the rational number which is coded by z is < the natural number n.
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(4) vwo’y()( -n SQ T,Y, T +qQy SQ n — q)expn (517 +q y) =R q)expn (ZE) ‘R q)expn (y))

By the continuity of ®eyp , (3) and (4) immediately generalize to real arguments.
Furthermore by the theorem that the derivative of [’ f(z)dz is f (which can be
expressed as a universal axiom in GoAY), (3) implies

(3) V:I:l(—n <Rz <RN— @gxpnx =R Pexp, ),

where / denotes the derivative.

In contrast to GoA” we can define the unrestricted exponential function in GgAY
as usual via the exponential series: '3 one easily defines the sequence of partial
sums of this series for rational arguments. From the quotient criterion one gets
the convergence of this series together with a modulus of convergence. By the
continuity of this series in z € R with the modulus w(z,n) := 3[FOHT . (5 4 1)
we can continue it on R.

Analogously to the definition of arcsin we can define the inverse function In,, of exp,,
using the fact that e.g. w(e) :=¢-37" is a modulus of strict monotonicity for exp,,
on [—n,n].

In this appendix we have seen that sin,cos can be introduced relatively to GoAY

;i(r? ), '1)22(()2) and purely universal axioms which express the usual

(characterizing) properties of sin, cos. tan and the inverse functions arcsin, arccos,
arctan of sin,cos,tan as well as m can be defined in G3A“ using Pgjp, Peos. Fur-
thermore for each fixed n € IN the restriction exp,, of the exponential function exp

(0)

to [—n,n| can be introduced relatively to GoA“ via a new constant @éxpn and its
characterizing properties can be expressed as universal axioms. Thus by theorem
3.2.8 from [16] the use of sin, cos, tan, arcsin, arccos, arctan, 7 and the local use of
exp only contributes to the growth of provably functionals by majorants € GoRY¥
for the constants @;i(r?), @%gg), @é,((%)n and the terms used in the formulation of their
universal axioms and in the definition of ,arcsin, arccos, arctan. Hence theorem

3.5 applies as well in the presence of ®@gj,, Peos, Pexp,, -

via new constants ®

'3 In particular we can define a term @y, in GzA“ which satisfies (provably) (1)—(4).
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