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Abstract

In this paper we introduce a localized and relativized generalization of the usual concept
of Fejér monotonicity together with uniform and quantitative versions thereof and show that
the main quantitative results obtained by the 1st author together with Nicolae and Leuştean
in 2017 and with López-Acedo and Nicolae in 2019 respectively, extend to this generalization.
Our framework, in particular, covers the sequence generated by the Dykstra algorithm while
the latter is not Fejér-monotone in the ordinary sense. This gives a theoretical explanation why
under a metric regularity assumption one obtains an explicit rate of convergence for Dykstra’s
algorithm which was proved recently by the 2nd author.

1 Introduction

Let X be a real Banach space, C ⊆ X a nonempty subset and (xn) a sequence of points in X.
An important feature enjoyed by many iterative methods in convex optimization is that of Fejér
monotonicity: (xn) is Fejér monotone w.r.t. C if

∀p ∈ C ∀n ∈ N (‖xn+1 − p‖ ≤ ‖xn − p‖) .

Fejér monotone algorithms are frequently favored due to their good asymptotic behavior but, in
general are only weakly convergent to some point in the set C. As most applications are naturally
restricted to a finite dimensional setting, weak convergence gets then upgraded into strong conver-
gence. Nevertheless, the general consensus appears to be that Fejér monotone methods are weakly
convergent, and that strong convergence will prevent Fejér monotonicity since the sequence must
eventually exhibit a preference towards some point in C.

In [2, 3], in a metric setting, the property of Fejér monotonicity was extensively studied through the
lenses of proof mining techniques. In [2], it was shown that under a compactness assumption one
can construct a rate of metastability in the sense of Tao for (xn) if a quantitative version of Fejér
monotonicity holds. In [3], a notion of modulus of regularity was introduced. It was shown that the
availability of a modulus of regularity for a Fejér monotone sequence will entail the construction of a
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rate of convergence without any compactness assumption and using just the usual non-quantitative
form of Fejér monotonicity. This points to the nontriviality of some metric regularity assumptions
in the literature, as it is known that already for fairly simple algorithms no computable rate of
convergence exists. That notwithstanding, the metric regularity assumption pertains to the specifics
of the underlying set C and in instances where the set C enjoys nice geometry properties, a modulus
of regularity (and – correspondingly – a rate of convergence) turns out to be available.

Recently [5], the second author provided a proof-theoretical analysis of the strong convergence of
Dykstra’s algorithm of cyclic projections. Strikingly, even here without the sequence being Fejér
monotone, the existence of a modulus of regularity allowed for rates of convergence. Since the
iteration fails to be Fejér monotone, this result escapes the reach of the general results in [3].
In this paper, we introduce generalized notions of locall relativized Fejér monotonicity and show
that the main results in [2, 3] extend to these notions. In particular, this provides a theoretical
justification for [5, Section 4].

2 Locally S-relativized Fejér monotone sequences

In the following, (X, d) is a metric space and F ⊆ X a nonempty subset. As in [2], whose notations
we follow, we assume that

F =
⋂
k∈N

F̃k,

where F̃k ⊆ X for every k ∈ N and we say that the family (F̃k) is a representation of F . It is clear
that F has a trivial representation, by letting F̃k := F for all k but the intended interpretation is
that

AFk :=
⋂
l≤k

F̃l

is some weakened approximate form of F . A point p ∈ AFk is said to be a k-approximate F -point.

In the following we always view F not just as a set but we suppose it is equipped with a representation
(F̃k) to which we refer implicitly in many of the notations introduced below.
Let (xn) be a sequence in X and S(n, k) be an arbitrary property about (n, k) ∈ N2. We think of k
as an error δ > 0 via δ = 1

k+1 . Throughout this paper we assume that S(n, k) is monotone in δ in
the sense of

∀n, k1, k2 ∈ N (k1 ≤ k2 ∧ S(n, k2)→ S(n, k1)) .

Note that if S does not satisfy this we may replace it by S̃(n, k) :=
∧k
i=0 S(n, i).

Definition 2.1. (xn) has approximate F/S-points if ∀k ∈ N ∃n ∈ N (xn ∈ AFk ∧ S(n, k)).
A function Φ : N→ N is called an approximate F/S-bound if

∀k ∈ N ∃n ≤ Φ(k) (xn ∈ AFk ∧ S(n, k)) .

We assume w.l.o.g. that Φ is nondecreasing since, otherwise, we may take
ΦM (k) := max{Φ(i) : i ≤ k}.
Definition 2.2 ([2]). We say that F is explicitly closed (w.r.t. the representation (F̃k)) if

∀p ∈ X
(
∀N,M ∈ N

(
AFM ∩B

(
p,

1

N + 1

)
6= ∅
)
→ p ∈ F

)
.
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As in [2, Section 4], let G,H : (0,∞) → (0,∞) be functions which possess moduli αG, βH : N → N
such that

∀k ∈ N ∀a ∈ (0,∞)

(
a ≤ 1

αG(k) + 1
→ G(a) ≤ 1

k + 1

)
and

∀k ∈ N∀a ∈ (0,∞)

(
H(a) ≤ 1

βH(k) + 1
→ a ≤ 1

k + 1

)
.

Let (xn) be a sequence in the metric space (X, d) and ∅ 6= F ⊆ X.
The next definition generalizes the concept of (G,H)-Fejér monotonicity from [2, Definition 4.1]:

Definition 2.3. (xn) is locally S-relativized (G,H)-Fejér monotone w.r.t. F if

(∗)

{
∀p ∈ F ∀r ∈ N ∃m ∈ N ∀n ∈ N(

d(xn, p) <
1

m+1 ∧ S(n,m)→ ∀l ∈ N (H(d(xn+l, p)) ≤ G(d(xn, p)) + 1
r+1 )

)
.

Remark 2.4. If (xn) is (G,H)-Fejér monotone w.r.t. F in the sense of [2, Definition 4.1], then it,
in particular, is locally S-relativized (G,H)-Fejér monotone w.r.t. F for any property S(n,m).

The next theorem generalizes [2, Proposition 4.3] to locally S-relativized (G,H)-Fejér monotone
sequences:

Theorem 2.5. Let X be a compact metric space and F be explicitly closed. Assume that (xn) is
locally S-relativized (G,H)-Fejér monotone with respect to F and that (xn) has approximate F/S-
points. Then (xn) converges to a point x ∈ F .

Proof. For each k ∈ N let nk ∈ N be such that

xnk
∈ AFk ∧ S(nk, k)

and define yk := xnk
. Since X is compact, (yk) has a convergent subsequence (ykl). Let x := lim ykl .

Similarly to [2] one shows that

(i) x is an adherent point of Sk := {xn : n ∈ N ∧ S(n, k)} for all k ∈ N and

(ii) (using that F is explicitly closed) x ∈ F .

Proof of (i): Let k,m ∈ N. We want to show that

∃y ∈ Sk
(
d(x, y) ≤ 1

m+ 1

)
.

Let l ≥ k be so large that d(ykl , x) ≤ 1
m+1 . By construction

ykl = xnkl
∈ AFkl ∧ S(nkl , kl).

Since (ykl) is a subsequence of (yk) we have that kl ≥ l ≥ k and so by the monotonocity properties
of AFK and S(n,K) in K ∈ N

ykl ∈ AFk ∧ S(nkl , k).
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Hence we may take y := ykl . �

Proof of (ii): By the proof of (i), the premise of the property of F being ‘explicitly closed’ is
satisfied for p := x and so x ∈ F . �

We now show using (i) and (ii) that limxn = x: let r ∈ N be arbitrary and define r′ := 2βH(r) + 1.
Let for this r′ and p := x ∈ F be m as in Definition 2.3 and also satisfying that

m ≥ max {αG (2βH(r) + 1) , 2βH(r) + 1}

(this is possible to achieve by the monotonicity of S(n,m) in m). By (i),

∃n ∈ N
(
d(xn, x) <

1

m+ 1
∧ S(n,m)

)
.

Hence by Definition 2.3 applied to this n:

∀l ∈ N

(
H(d(xn+l, x)) ≤ G(d(xn, x)) +

1

2βH(r) + 2

αG-def.
≤ 1

βH(r) + 1

)
and so by βH -definition

∀l ∈ N
(
d(xn+l, x) ≤ 1

r + 1

)
.

Application 2.6. Let C1, . . . , CN ⊆ H be closed and convex subsets of a (real) Hilbert space with

C :=

N⋂
i=1

Ci 6= ∅

and Pi be the metric projection onto Ci for i = 1, . . . , N . Let (xn), (qn) be the sequences in H
generated by Dykstra’s algorithm with x0 as starting point. Let z ∈ C and N 3 b > 0 with
‖z − x0‖ ≤ b. Then, by [5, Lemma 3.4], (xn) ⊂ B(z, b). Define

f(x) := max
i=1,...,N

‖x− Pix‖.

Note that C =
⋂∞
k=0AFk(:= {x ∈ X : |f(x)| ≤ 1

k+1 )}) = zer f is explicitly closed.

We also define G(a) := H(a) := a2 and may take as in [2, Lemma 7.10]

αG(k) := d
√
ke, βH(k) := k2.

Now define (where for negative indices k we take xk as arbitrary points in H while qk := 0)

S(n, r) :=

(
n∑

k=n−N+1

〈xk − xn, qk〉 <
1

r + 1

)
.

Since (xn) is locally S-relativized (G,H)-Fejér monotone w.r.t. C and possesses approximate C/S-
points (these facts are proven in stronger form in Application 3.6 below), Theorem 2.5 (applied to
X := C ∩ B(z, b)) gives a simple proof of the convergence of (xn) towards a point in C if H is
finite dimensional (compared to the much more complicated strong convergence proof known in the
general case, see e.g. [1]).
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Application 2.7. Let (X, d) be compact metric space and F be explicitly closed. For each r ∈ N,
consider the subset Fr ⊆ F of points p in F which satisfy

∃m ∈ N ∀n ∈ N
(
d(xn, p) <

1

m+ 1
∧ S(n,m)→ ∀l ∈ N (H(d(xn+l, p)) ≤ G(d(xn, p)) +

1

r + 1
)

)
.

Assume that

∀r ∈ N ∀q ∈ F \ Fr ∃N ∈ N∀n ∈ N
(
S(n,N)→ d(xn, q) ≥

1

N + 1

)
.

If (xn) has approximate F/S-points, then (xn) strongly converges to a point in F : it suffices to show
that (xn) is locally S-relativized (G,H)-Fejér monotone w.r.t. F . Let r ∈ N and p ∈ F . If p ∈ Fr,
then (∗) holds by definition of Fr. If p 6∈ Fr, then (∗) holds for m := N since S(n,m) implies that
d(xn, p) ≥ 1

m+1 .

By Theorem 2.5 a sequence (xn) strongly converges to a point x ∈ F (for explicitly closed F ) if
for some condition S, it is locally S-relativized (G,H)-Fejér monotone and has approximate F/S-
points. We now show that also the converse holds (with G := H := Id) if F satisfies the following
condition (which in most applications is trivially satisfied, e.g. when F := zer f for some continuous
f : X → R and AFk := {x ∈ X : |f(x)| ≤ 1

k+1}).

Definition 2.8. We say that F is properly approximated by (AFk) if

∀x ∈ F ∀k ∈ N ∃m ∈ N∀y ∈ X
(
d(x, y) ≤ 1

m+ 1
→ y ∈ AFk

)
.

Proposition 2.9. If F is properly approximated by (AFk) and (xn) converges to x ∈ F , then for
a suitable condition S, the sequence (xn) is locally S-relativized (Id, Id)-Fejér monotone and has
approximate F/S-points.

Proof. Let x ∈ F and assume that (xn) converges to x. Take

S(n, r) := ∀k ≥ n
(
d(xk, x) <

1

2r + 2

)
.

Then clearly for all p ∈ X,n, r ∈ N

S(n, r)→ ∀l ∈ N
(
d(xn+l, p) ≤ d(xn+l, xn) + d(xn, p) ≤ d(xn, p) +

1

r + 1

)
and so (xn) satisfies (∗) with m := r. Moreover, (xn) has approximate F/S-points: given r ∈ N, let
m be so large that d(x, y) ≤ 1

2m+2 implies y ∈ AFr. Take n ∈ N be so large that S(n,max{m, r}).
Then S(n, r) and xn ∈ AFr.

The relevance of Theorem 2.5, of course, stems from the fact that in applications S will be such that
it is much easier to construct an approximate F/S-point bound than a rate of convergence for (xn)
(which is needed for the specific S used in the proof above).

5



3 Uniform locally S-relativized (G,H)-Fejér monotone sequences
w.r.t. F -points

We now strengthen the Definition 2.3 by demanding that ‘∃m ∈ N’ is uniform w.r.t. p ∈ F .

Definition 3.1. A sequence (xn) in X is uniformly locally S-relativized (G,H)-Fejér monotone
w.r.t. F with modulus ρ : N→ N if

∀p ∈ F ∀r, n ∈ N(
d(xn, p) <

1
ρ(r)+1 ∧ S(n, ρ(r))→ ∀l ∈ N (H(d(xn+l, p)) ≤ G(d(xn, p)) + 1

r+1

)
.

Remark 3.2. Even with this strengthened version, any ordinary (G,H)-Fejér monotone sequence
in the sense of [2, Definition 4.1] (and hence by taking G := H := Id any Fejér monotone sequence)
satisfies the above definition for any choice of S(n, r) and any ρ.

Let f : X → R := R∪ {+∞} an arbitrary function with zer f := {x ∈ X : f(x) = 0} 6= ∅. We recall
the following definition from [3] (but written in 1/(k + 1)-form rather than with ε > 0):

Definition 3.3 ([3, Definition 3.1]). Let z ∈ zer f and b > 0. Then µ : N → N is a modulus
of regularity for f w.r.t. zer f and B(z, b) if for all k ∈ N and x ∈ B(b, r) we have the following
implication

|f(x)| < 1

µ(k) + 1
→ dist(x, zer f) <

1

k + 1
.

Let b > 0 and (xn) be a sequence in B(z, b) for some z ∈ zerf := {x ∈ X : f(x) = 0} and µ be a
modulus of regularity w.r.t. zer f and B(z, b).
Let Φ : N → N be an approximate F/S-bound for (xn) with F := zer f =

⋂∞
k=0AFk, where

AFk := {x ∈ X : |f(x)| ≤ 1
k+1 )}, more precisely

∀k ∈ N ∃n ≤ Φ(k)

(
|f(xn)| < 1

k + 1
∧ S(n, k)

)
.

Recall that we assume S(n,m) to be monotone in m.

Theorem 3.4. Let µ be a modulus of regularity w.r.t. F := zer f and B(z, b). If (xn) is a sequence
in B(z, b) which is uniformly locally S-relativized (G,H)-Fejér monotone w.r.t. F with modulus ρ
and if Φ is an approximate F/S-bound for (xn), then (xn) is a Cauchy sequence with rate Ψ(2k+ 1)
for

Ψ(k) := Φ (max {ρ(2βH(k) + 1), µ (max {αG(2βH(k) + 1), ρ(2βH(k) + 1)})}) , i.e.

∀k,m, m̃ ∈ N
(
m, m̃ ≥ Ψ(2k + 1)→

(
‖xm − xm̃‖ ≤

1

k + 1

))
and

∀k ∈ N ∀n ≥ Ψ(k)

(
dist(xn, zer f) ≤ 1

k + 1

)
.

Moreover, if X is complete and zer f is closed, then (xn) converges to a zero of f with rate of
convergence Ψ(2k + 1).
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Proof. Let k ∈ N be given. By the definition of Φ there exists an n ≤ Ψ(k) s.t.

(1) S(n, ρ(2βH(k) + 1)) ∧ |f(xn)| < 1

µ(max{αG(2βH(k) + 1), ρ(2βH(k) + 1)}) + 1
.

Hence by µ-definition

(2) ∃p ∈ zer f

(
d(xn, p) <

1

max {αG(2βH(k) + 1), ρ(2βH(k) + 1)}+ 1

)
.

By the definition of ρ applied to p, (1) and (2) imply that

(3) ∀l ∈ N

(
H(d(xn+l, p)) ≤ G(d(xn, p)) +

1

2βH(k) + 2

(2),αG-def
≤ 1

βH(k) + 1

)
.

Hence by the definition of βH

(4) ∀l ∈ N
(
d(xn+l, p) ≤

1

k + 1

)
and so

(5) ∀m, m̃ ≥ n
(
d(xm, xm̃) ≤ d(xm, p) + d(xm̃, p) ≤

2

k + 1

)
.

(4) and (5) establish the first two claims.
For the remaining claim we argue as in the proof of [3, Theorem 4.1]: let X be complete and zer f
be closed. Then by the above z′ := limxn exists and by the Cauchy rate (5) we get that

(6) ∀m ≥ Ψ(2k + 1)

(
d(xm, z

′) ≤ 1

k + 1

)
.

Together with (4) this yields

(7) dist(z′, zer f) ≤ dist(xm, zer f) + d(z′, xm) ≤ 1

2(k + 1)
+

1

k + 1
<

2

k + 1
.

As k was arbitrary, we obtain that dist(z′, zer f) = 0 which implies that z′ ∈ zer f as zer f is
closed.

Remark 3.5. Note that in Theorem 3.4, X is not required to be compact.

Application 3.6. We now show that the rate of convergence for the Dykstra cyclic projection
algorithm, recently obtained in [5] under a metric regularity assumption in the case of an arbitrary
real Hilbert space H, is covered by Theorem 3.4 (but not by Theorem 4.1 in [2] as this algorithm
is not (G,H)-Fejér monotone but only uniformly locally S-relativized so for a suitable S): we use
the notations from Application 2.6. In [5, Section 4] it is assumed that C1, . . . , CN are metrically
regular with a modulus µ : N2 → N in the sense of [3, Definition 4.6] (we switch here from the
ε/δ-formulation used in [3] to 1

k+1 instead of ε etc. to fit the notations used in [2] and above), i.e.

∀k, r ∈ N ∀x ∈ B(z, b)

(
N∧
i=1

‖x− Pix‖ <
1

µr(k) + 1
→ ∃p ∈ C

(
‖x− p‖ < 1

k + 1

))
.
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As shown in the proof of [3, Corollary 4.8] (and the sentence after that proof), such a µr is a modulus
of regularity for zer f and B(z, b), where

f(x) := max
i=1,...,N

‖x− Pix‖.

Note that C = zer f .
We also define G(a) := H(a) := a2 and may take as in [2, Lemma 7.10]

αG(k) := d
√
ke, βH(k) := k2.

Now define

A(n, r) :=

(
n∑

k=n−N+1

〈xk − xn, qk〉 <
1

r + 1

)
.

Implicitly in the proof of [5, Theorem 4.2], an C/S-bound Φ for (xn) is constructed.1

Define ρ(r) := 8b(r + 1) − 1. It remains to show that (xn) is locally S-relativized (G,H)-Fejér
monotone (with G,H, S as above) w.r.t. C with modulus ρ: let p ∈ C, r ∈ N and n ∈ N be such that

‖xn − p‖ <
1

ρ(r) + 1
∧ S(n, ρ(r)).

By (7) in [5] one has for all l ≥ n

‖xl − p‖2 ≤ ‖xn − p‖2 + 2

n∑
k=n−N+1

〈xk − p, qk〉︸ ︷︷ ︸
!
≤1/(2r+2)

−2

l∑
k=l−N+1

〈xk − p, qk〉︸ ︷︷ ︸
≥0, by [5, L.3.1(iii)]

≤ ‖xn − p‖2 +
1

r + 1
.

Here ‘!’ follows from ‖xn − p‖ < 1
8b(r+1) and

n∑
k=n−N+1

〈xk − xn, qk〉 < 1
4(r+1) by reasoning as in [5,

p.17]:

n∑
k=n−N+1

〈xk − p, qk〉 =

n∑
k=n−N+1

〈xk − xn, qk〉+ 〈xn − p,
n∑

k=n−N+1

qk〉︸ ︷︷ ︸
=〈xn−p,x0−xn〉, by [5, L.3.1(ii)]

≤
n∑

k=n−N+1

〈xk − xn, qk〉+ ‖xn − p‖ · ‖x0 − xn‖

≤ 1

4(r + 1)
+ 2b · 1

8b(r + 1)
=

1

2(r + 1)
.

1In the notation of [5] this bound can be taken as α(b,N, ε,Φ(b,N, ε, ·)) + Φ(b,N, ε, α(. . .)) with ε := 1/(r + 1).
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We now discuss a simple argument which in some sense gives a reversal to Theorem 3.4. Fix a
function I : N × X → X standing for some iterative process employed to approximate zeros of f .
Consider the following natural condition on I (see remark 3.8 below):

∀n ∈ N ∀p ∈ zer f (I(n, p) = p) , (+)

stating that the iterative process leaves the points in zer f unchanged (such iterations are called
rectractive in [4]). Consider a sequence (xn) recursively defined by the function I, i.e. x0 ∈ X and
xn+1 := I(n, xn). Therefore, the assumption (+) on I entails,

∀x0 ∈ X (x0 ∈ zer f → ∀n ∈ N (xn = x0)) . (++)

Definition 3.7. We say that a function τ : N2 → N is a modulus of coincidence for I if it satisfies

∀n ∈ N ∀k ∈ N∀x0 ∈ X
(
|f(x0)| < 1

τ(k, n) + 1
→ d(xn, x0) <

1

k + 1

)
,

where (xn) is initiated at x0 and recursively defined by I.

Remark 3.8. Most iterative methods in optimization satisfy the condition (+). For example, in a
normed linear space with f(x) = ‖x− T (x)‖ for a nonexpansive map T , if I(n, x) is defined as

(i) T (x) – Picard iteration,

(ii) αnx+ (1− αn)T (x), for (αn) ⊆ [0, 1] – Krasnoselski-Mann iteration,

(iii) αnx+ (1− αn)T (βnx+ (1− βn)T (x)), for (αn), (βn) ⊆ [0, 1] – Ishikawa iteration,

then the condition (+) is satisfied. Another well-known iterative method is the Halpern iteration,
I(n, x) = αnu+(1−αn)T (x). Despite not satisfying (+), it still satisfies (++) whenever u = x0. One
easily checks that for the Ishikawa iteration τ(k, n) := 2n(k+ 1) gives a modulus of coincidence, and
for all the other cases (including the Halpern iteration) one can take τ(k, n) := n(k+ 1). Naturally,
if one imposes further conditions on the parameter sequences (αn), (βn), then the definition of the
function τ may be improved.

We have the following easy result.

Proposition 3.9. Consider a function I as above, and let τ be a modulus of coincidence for I. Given
z ∈ zer f and b > 0, assume that for any x0 ∈ B(z, b) the sequence initiated at x0 and recursively
defined by I converges to a point `I(x0) ∈ zer f with a common rate of convergence Ψ : N→ N, i.e.

d(x0, z) ≤ b→ ∀k ∈ N ∀n ≥ Ψ(k)

(
d(xn, `I(x0)) ≤ 1

k + 1

)
.

Then, the function µ(k) := τ(2k + 1,Ψ(2k + 1)) is a modulus of regularity for f w.r.t. zer f and
B(z, b).

Proof. Let k ∈ N and x ∈ B(z, b) be given, and assume that |f(x)| < 1
µ(k)+1 . Consider (xn) to be

the sequence recursively defined by I with initial point x0 = x. By the hypothesis of Ψ, we have
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d(xΨ(2k+1), `I(x)) ≤ 1
2(k+1) . On the other hand, the assumption on τ entails d(xΨ(2k+1), x) < 1

2(k+1) .

We conclude that

dist(x, zer f) ≤ d(x, `I(x)) ≤ d(x, xΨ(2k+1)) + d(xΨ(2k+1), `I(x)) <
1

k + 1
,

and hence µ is a modulus of regularity for f w.r.t. zer f and B(z, b).

Remark 3.10. Theorem 3.4 states that the assumption of a modulus of regularity in the case of a
sequence which is uniformly locally S-relativized (G,H)-Fejér monotone w.r.t. F = zer f , and has
approximate F/S-points, will converge (when X is complete and zer f is closed) to a point in zer f
with a uniform rate of convergence. Proposition 3.9 above states that, in most iterative methods,
if such uniform rate of convergence is to exist, then the assumption of metric regularity is indeed
necessary. This argument was used in [3, Proposition 4.4] in the context of the Picard iteration. It
was also used recently in [5, Proposition 4.7], in the context of Dykstra’s method for solving the
convex feasibility problem. In this iterative method, the computation of the function τ is more
convoluted and was given in [5, Propositions 4.5 and 4.6].

4 Uniform locally S-relativized (G,H)-Fejér monotone
sequences w.r.t. approximate F -points

We now generalize the concept of ‘uniform (G,H)-Fejér monotonicity’ introduced in [2, Defini-
tion 4.6]:

Definition 4.1. We say that (xn) is uniformly locally S-relativized (G,H)-Fejér monotone w.r.t.
approximate F -points if for all r, n,m ∈ N with moduli χ : N3 → N, ρ : N→ N if

∀r, n,m ∈ N∀p ∈ X(
p ∈ AFχ(n,m,r) ∧ d(xn, p) <

1
ρ(r)+1 ∧ S(n, ρ(r))→ ∀l ≤ m

(
H(d(xn+l, p)) ≤ G(d(xn, p)) + 1

r+1

))
.

Remark 4.2. If is uniformly (G,H)-Fejér monotone w.r.t. F with modulus χ in the sense of [2,
Definition 4.6], then (xn) is uniformly locally S-relativized (G,H)-Fejér monotone w.r.t. approximate
F -points with moduli χ and an arbitrary ρ : N→ N for any property S.

Example 4.3. In the setting of Application 2.6 for the case of Dykstra’s algorithm, we can obtain
moduli χ, ρ in the sense of Definition 4.1. Indeed, for each r, n,m ∈ N define

ρ(r) := 4(2b+ 1)(r + 1)− 1 and χ(n,m, r) := 8b(n+m)(r + 1)−· 1,

where N 3 b ≥ ‖z − x0‖ for some z ∈ C, as before. Assume that ‖xn − p‖ ≤ 1
ρ(r)+1 ,

p ∈ AFχ(n,m,r), i.e. max
i=1,...,N

‖p− Pi(p)‖ ≤
1

χ(n,m, r) + 1
, and

n∑
k=n−N+1

〈xk − xn, qk〉 ≤
1

ρ(r) + 1
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for given r,m, n ∈ N and p ∈ X.2 Then, similarly to the proof of [5, Theorem 3.11], we have for
G(a) = H(a) = a2 and any ` ≤ m,

H(‖xn+` − p‖) ≤ G(‖xn − p‖) + 2

( n∑
k=n−N+1

〈xk − p, qk〉︸ ︷︷ ︸
=:t1

+

n+∑̀
k=n+`−N+1

〈p− xk, qk〉︸ ︷︷ ︸
=:t2

)
.

Then,

t1 =

n∑
k=n−N+1

〈xk − xn, qk〉+

n∑
k=n−N+1

〈xn − p, qk〉

[5, L.3.1(ii),L.3.4]

≤ 1

ρ(r) + 1
+ 2b‖xn − p‖ ≤

2b+ 1

ρ(r) + 1
=

1

4(r + 1)

and (with Pk(p) being an arbitrary point for negative k)

t2 =

n+∑̀
k=n+`−N+1

〈p− Pk(p), qk〉+

n+∑̀
k=n+`−N+1

〈Pk(p)− xk, qk〉︸ ︷︷ ︸
≤0, by [5, L.3.1(iii)]

≤
n+∑̀

k=n+`−N+1

‖p− Pk(p)‖ · ‖qk‖
[5, L.3.2]

≤ 1

χ(n,m, r) + 1

n+`−1∑
k=0

‖xk − xk+1‖

≤ 2b(n+ `)

χ(n,m, r) + 1
≤ 1

4(`+ 1)
.

Therefore 2(t1 + t2) ≤ 1
r+1 , which concludes the proof.

The next theorem generalizes [2, Theorem 5.1] to sequences which are uniformly locally S-relativized
(G,H)-Fejér monotone w.r.t. approximate F -points:

Theorem 4.4. Let (X, d) be a totally bounded metric space and γ be a modulus of total boundedness
for X in the sense of [2, Definition 2.2]. Assume that

(i) (xn) is uniformly locally S-relativized (G,H)-Fejér monotone w.r.t. approximate F -points,
with moduli χ, ρ;

(ii) (xn) has approximate F/S-points, with Φ being a nondecreasing approximate F/S-point bound.

Then (xn) is Cauchy and, moreover, for all k ∈ N and all g : N→ N

∃N ≤ Ψ(k, g,Φ, χ, ρ, αG, βH , γ)∀i, j ∈ [N,N + g(N)]

(
d(xi, xj) ≤

1

k + 1

)
,

where Ψ(k, g,Φ, χ, ρ, αG, βH , γ) := Ψ0(P − 1) := Ψ0(P − 1, k, g,Φ, χ, ρ, βH), with

2Recall that the last conjunct stands for the property S(n, ρ(r)).
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P := γ (max{αG (2βH(2k + 1) + 1) , ρ(2βH(2k + 1) + 1)}) and

Ψ0(0) := Φ(ρ(2βH(2k + 1) + 1)),

Ψ0(n+ 1) := Φ
(
max{χMg (Ψ0(n), 2βH(2k + 1) + 1) , ρ(2βH(2k + 1) + 1)}

)
with

χg(n, k) := χ(n, g(n), k), χMg (n, k) := max{χg(i, k) | i ≤ n}.

Proof. We follow closely the proof of [2, Theorem 5.1] with some decisive changes though. Let k ∈ N
and g : N→ N. Define

ϕ(k) := minm (xm ∈ AFk ∧ S(m, k)) .

Both ϕ and Φ are nondecreasing and Φ is a pointwise bound on ϕ. By induction we readily
prove that Ψ0(n, k, g, ϕ, χ, ρ, βH) ≤ Ψ0(n + 1, k, g, ϕ, χ, ρ, βH), Ψ0(n, k, g,Φ, χ, ρ, βH) ≤ Ψ0(n +
1, k, g,Φ, χ, ρ, βH) and Ψ0(n, k, g, ϕ, χ, ρ, βH) ≤ Ψ0(n, k, g,Φ, χ, ρ, βH) for all n ∈ N.
Define for every i ∈ N

ni := Ψ0(i, k, g, ϕ, χ, ρ, βH).

Claim 1: For all j ≥ 1 and all 0 ≤ i < j, xnj
is a χg(ni, 2βH(2k + 1) + 1)-approximate F -point.

Proof of claim: As j ≥ 1 and

nj = Ψ0(j, k, g, ϕ, χ, ρ, βH) ≥ ϕ
(
χMg (Ψ0(j − 1, k, g, ϕ, χ, ρ, βH), 2βH(2k + 1) + 1)

)
= ϕ

(
χMg (nj−1, 2βH(2k + 1) + 1)

)
,

xnj
is a χMg (nj−1, 2βH(2k+1)+1)-approximate F -point. Since 0 ≤ i ≤ j−1, we have that ni ≤ nj−1.

Apply now the fact that χMg is nondecreasing in the first argument to get that

χg(ni, 2βH(2k + 1) + 1) ≤ χMg (ni, 2βH(2k + 1) + 1)

≤ χMg (nj−1, 2βH(2k + 1) + 1)

which establishes Claim 1. �

Claim 2: There exist 0 ≤ I < J ≤ P satisfying

∀l ∈ [nI , nI + g(nI)]

(
d(xl, xnJ

) ≤ 1

2k + 2

)
.

Proof of claim: Utilizing that γ is modulus of total boundedness for X we get that there exist
0 ≤ I < J ≤ P with

(1) d(xnI
, xnJ

) ≤ min

{
1

αG(2βH(2k + 1) + 1) + 1
,

1

ρ(2βH(2k + 1) + 1) + 1

}
.

Since αG is a G-modulus this, in particular, implies

(2) G(d(xnI
, xnJ

)) ≤ 1

2βH(2k + 1) + 2
.
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By the first claim, we have that xnJ
is a χg(nI , 2βH(2k+1)+1)-approximate F -point. By construc-

tion, nI satisfies S(nI , ρ(2βH(2k+ 1) + 1)). Applying now the uniform locally S-relativized (G,H)-
Féjer monotonicity of (xn) w.r.t. approximate F -points with r := 2βH(2k+1)+1, n := nI ,m := g(nI)
and p := xnJ

, we get – using (1) again – that for all l ≤ g(nI),

H(d(xnI+l, xnJ
)) ≤ G(d(xnI

, xnJ
)) +

1

2βH(2k + 1) + 2

(2)

≤ 1

βH(2k + 1) + 1
.

Since βH is an H-modulus,

∀l ≤ g(nI)

(
d(xnI+l, xnJ

) ≤ 1

2k + 2

)
.

which establishes Claim 2. �

From Claim 2 it is immediate that

∀k, l ∈ [nI , nI + g(nI)]

(
d(xk, xl) ≤

1

k + 1

)
.

As nI = Ψ0(I, k, g, ϕ, χ, ρ, βH) ≤ Ψ0(I, k, g,Φ, χ, ρ, βH) and I ≤ P − 1, we get that

nI ≤ Ψ0(P − 1, k, g,Φ, χ, ρ, βH) = Ψ(k, g,Φ, χ, ρ, αG, βH , γ).

The theorem holds with N := nI .

Corollary to the proof: One of the numbers n0, . . . , nP−1 is a point of metastability.

Application 4.5. As discussed already at the end of Application 2.6, this relativized notion of Fejér
monotonicity allows for a simple convergence proof of Dykstra’s algorithm in the finite dimensional
case. In light of the moduli χ and ρ in Example 4.3 (and also the C/S-bound Φ implicit in [5,
Theorem 4.2], cf. footnote 1), by Theorem 4.4 we moreover obtain rates of metastability for Dykstra’s
iteration.
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