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Abstract

This paper discusses what kind of quantitative information one can extract under which
circumstances from proofs of convergence statements in analysis. We show that from
proofs using only a limited amount of the law-of-excluded-middle, one can extract func-
tionals (B,L), where L is a learning procedure for a rate of convergence which succeeds
after at most B(a)-many mind changes. This (B,L)-learnability provides quantitative
information strictly in between a full rate of convergence (obtainable in general only from
semi-constructive proofs) and a rate of metastability in the sense of Tao (extractable also
from classical proofs). In fact, it corresponds to rates of metastability of a particular sim-
ple form. Moreover, if a certain gap condition is satisfied, then B and L yield a bound
on the number of possible fluctuations. We explain recent applications of proof mining
to ergodic theory in terms of these results.
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1. Introduction

In this paper we investigate different levels of effective quantitative information on the-
orems stating the Cauchy property of some sequence (xn) in a metric space (X, d)

(1) ∀k ∈ N ∃n ∈ N ∀m, m̃ ≥ n
(
d(xm, xm̃) ≤ 2−k

)
and also more general Π0

3-theorems (also with higher type parameters)

(2) ϕ ≡ ∀k ∈ N ∃n ∈ N∀m ∈ Nϕ0(k, n,m),

where ϕ0 is quantifier-free. Since we refer to real numbers as fast converging Cauchy
sequences of rational numbers we have ≤R ∈ Π0

1 so that (1) has the form (2).
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Cauchy statements (1) are special forms of finiteness statements expressing that there
are only finitely many 2−k-fluctuations (il, jl) with

(3) jl > il ∧ d(xil , xjl) > 2−k.

As with general finiteness statements one can ask for a bound on the height of 2−k-
fluctuations, i.e. an ρ(k) above which no such fluctuation occurs (so ρ is a rate of conver-
gence) or for a weaker bound F (k) on the number l of such fluctuations (i0, j0), . . . , (il, jl)
with in+1 ≥ jn for n < l. As to be expected from standard recursion theoretic facts about
finiteness statements (see [35]), even primitive recursive Cauchy sequences (xn) in R in
general will not admit a computable (in k) bound F on the fluctuations and even in cases
where they do, in general there will be no computable rate of convergence ρ.

A yet weaker information than a bound F on the number of fluctuations is a bound
on the Kreisel no-counterexample interpretation (called ‘metastability’ by Tao) of (xn),
namely a functional Φ(k, g) such that

(4) ∀k ∈ N ∀g : N→ N∃n ≤ Φ(k, g)∀i, j ∈ [n;n+ g(n)]
(
d(xi, xj) ≤ 2−k

)
.

We call Φ a rate of metastability for (xn).
Note that already the underlying reformulation

(5) ∀k ∈ N ∀g : N→ N∃n∀i, j ∈ [n;n+ g(n)]
(
d(xi, xj) ≤ 2−k

)
of the Cauchy property still expresses the full Cauchy property of (xn). However, the
proof of the latter from the former is noneffective, corresponding to the fact that there
is no way to pass (even pointwise let alone uniformly) from an effective Φ in (4) to an
effective bound on fluctuations F or an effective rate of convergence ρ.

Using unbounded search (over the code of the pair of ∃n and the existential quantifier
hidden in <R) one can always obtain a rate of metastability that is computable relative
to (d(xi, xj)i,j∈N, but unless (xn) is a sequence in a metric space X with a computability
structure (e.g. X := Rn with the Euclidean norm as a computable metric), it makes no
sense to talk about the computability of (xn). Moreover, such an unbounded search does
not provide any complexity information and the bound will be highly nonuniform (being
dependent on all the data used to define (xn)). In all the applications to which we refer
to below, X is an abstract (completely general) Hilbert space or CAT(0) space and so
the computability of (xn) is not even defined. So to be able to talk about a computable
in the data used to define (xn) rate of metastability Φ this rate must only depend on
general bounding data in N or NN, i.e. Φ must be highly uniform. While this uniformity
sometimes can be established by going to ultraproducts of X (see [8]) this not even seems
to yield the existence of a computable Φ let alone of some complexity information.

General logical metatheorems for strong systems of analysis based on full classical logic
guarantee that the extractability of (sub-)recursive (and highly uniform) rates of metasta-
bility Φ is always possible for large classes of convergence proofs. This has been applied
extensively in the context of nonlinear analysis, fixed point theory and ergodic theory
during the last 10 years. One of these results is the extraction of a uniform rate of
metastability for the strong convergence in the mean ergodic theorem for uniformly con-
vex Banach spaces X from a proof due to Birkhoff [13] carried out in [29]. This rate only
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depends on a norm bound N 3 b ≥ ‖x‖ of the starting point x, a modulus η ∈ NN of
uniform convexity of X and the error 2−k but, otherwise, is independent of x, the oper-
ator and X. That a computable rate of convergence (even for an effective Hilbert space
and a computable operator) in general is impossible has been shown in [7]. However, as
recently observed by Avigad and Rute [9], the analysis in [29] can be used to obtain a
simple effective (and also highly uniform) bound on the number of fluctuations (for the
case of Hilbert spaces this was already obtained with an even better bound in [22]). This
raises the question whether there are general logical conditions on convergence proofs to
guarantee the extractability of effective bounds on fluctuations. Obviously, any condi-
tion guaranteeing the extractability of a computable rate of convergence is a sufficient
condition for this. Though not satisfied in the particular case just discussed, let us first
consider this in order to see in what sense we might try to liberalize such conditions
towards rates of fluctuations. To do so in somewhat more precise terms we fix a formal
framework such as intuitionistic arithmetic HAω in all finite types (actually we use the
so-called weakly extensional variant called WE-HAω in [26]) or its extension by an ab-
stract (metric or) normed space (X, ‖ · ‖) resulting in HAω[X, ‖ · ‖] possibly with further
axioms stating that X is uniformly convex or even a Hilbert space (see [26] for details).
Let AC be the full schema of choice and LEM¬ be the law-of-excluded-middle schema
restricted to arbitrary negated formulas ¬ψ (which, in particular, includes the case of
existential-free formulas and so, as a very special case, Π0

1-LEM, i.e. LEM restricted to
Π0

1-formulas). Then from a proof of (1) (for some sequence (xn) definable by a term t of
the system having at most number and function parameters a, f) in

HAω+AC+LEM¬

(and in fact even stronger theories augmented with certain noneffective axioms Ω), the
extractability of a rate of convergence ρ that is definable (in the same parameters as t)
in Gödel’s calculus of primitive recursive functionals of finite type is guaranteed.
This follows from the bound extraction theorem for monotone modified realizability from
[24, 26] (and for theories with abstract spaces X in [16]). In the case of HAω[X, ‖ · ‖]
even parameters of types such as X,N→ X,X → X are allowed in the definition of the
sequence (xn) in X where then ρ depends additionally on majorants for these parameters
(which are natural numbers, in the case of the type X, and number-theoretic functions,
in the case of the types N→ X, X → X.)

An important weak principle of classical logic not covered by this is the so-called Markov
principle which, extended to all finite types, reads as follows

Mω : ¬¬∃xσ ϕ0(x)→ ∃xσ ϕ0(x),

where ϕ0 is a quantifier-free formula (with arbitrary further parameters) and σ an ar-
bitrary tuple of types. However, Mω becomes permissible once LEM¬ is weakened to
the so-called lesser-limited-omniscience-principle LLPO (which is the precise amount of
classical logic needed to prove the binary (‘weak’) König’s lemma WKL, which with
AC intuitionistically implies König’s lemma KL; see [26] for details). So instead of
HAω([X, ‖ · ‖])+AC+LEM¬ we may also have

HAω([X, ‖ · ‖])+AC+Mω+LLPO,
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where then the extraction of a rate of convergence uses the so-called monotone functional
interpretation (see [26]).

The in a sense weakest principle covered by neither of these systems (but provable in
their union!) is LEM restricted to Σ0

1-formulas, which we denote by Σ0
1-LEM:

Σ0
1-LEM : ∃n ∈ Nϕ0(n) ∨ ∀m ∈ N¬ϕ0(m),

where ϕ0 is quantifier-free (but may contain parameters of arbitrary type).
While Σ0

1-LEM in the presence of AC (even when restricted to numbers) creates highly
noncomputable functions (in particular when function parameters are allowed to occur
in Σ0

1-LEM which then makes it possible to climb up the entire arithmetical hierarchy) it
remains fairly weak over HAω. Nevertheless, HA+Σ0

1-LEM already allows one to prove
the Cauchyness of the Specker sequence [39], a primitive recursive monotone decreasing
sequence of rational numbers in [0, 1] which does not have a computable rate of conver-
gence. In fact, as shown in [40], the principle that every bounded monotone sequence
of reals is Cauchy can be proven in HAω + Σ0

1-LEM and for sequences defined by terms
of HAω using only number parameters even with Σ0

1-LEM− (where P− denotes the re-
striction of an axiom schema P to number parameters only). This is not obvious and
requires a novel proof as the usual argument uses the (by [1] e.g. over HA) strictly
stronger principle

Σ0
2-DNE : ¬¬∃n ∈ N ∀m ∈ Nϕ0(n,m)→ ∃n ∈ N ∀m ∈ Nϕ0(n,m)

(‘double-negation-elimination principle’ for Σ0
2-formulas). While Σ0

2-DNE is limit com-
putable in the sense of Hayashi and Nakana [20], any single instance of Σ0

1-LEM is even
learnable with a single mind change. Note also that bounded monotone sequences of
real numbers (say in [0, 1]) always have the simple fluctuation bound F (k) := 2k. That
Σ0

1-LEM− has a strictly stronger computational interpretation than Σ0
2-DNE− can be

spelled out in terms of proof interpretations: Σ0
1-LEM− (when added e.g. to HAω) ad-

mits a modified realizability interpretation by terms that are primitive recursive (in the
sense of Gödels T ) relative to a Skolem function fϕ0

for

∀k ∈ N∃n ∈ N∀m ∈ N (ϕ0(k, n) ∨ ¬ϕ0(k,m)),

i.e.
∀k,m ∈ N (ϕ0(k, fϕ0

(k)) ∨ ¬ϕ0(k,m)),

and much work studying this interpretation in terms of learning theory and so-called 1-
backtracking games (in the sense of Coquand’s game semantics [14, 12]) has been carried
out in recent years e.g. by Aschieri and Berardi (see e.g. [6, 4, 5]). By contrast to this,
Σ0

2-DNE− does not allow such an interpretation and not even a (in this context) weaker
monotone modified realizability interpretation (in the sense of the [24], see also [26]) as
shown in [1], where this is used to prove that Σ0

2-DNE− not even follows from Π0
2-LEM−.

Remark 1.1. The various realizability and functional interpretations referred to above
are different ways of giving a precise meaning to the informal so-called Brouwer-Heyting-
Kolmogorov (‘BHK’) interpretation of intuitionistic logic. A rather different way of
formalizing BKH – based on the concept of operations on formal proofs – has been
developed since the mid 90’s by Sergei Artemov, first for the propositional case (see e.g.
[2]) and very recently (together with Tatiana Yavorskaya) for predicate logic (see [3]).
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At a first look, all this might suggest to consider HAω + Σ0
1-LEM(−) as a promising

framework to guarantee computable bounds on the number of fluctuations for provable
Cauchy sequences (while in general not computable rates of convergence). However, this
turns out to be mistaken as Σ0

1-LEM is already the general case: let (xn) be a sequence
of real numbers definable by a term t in HAω (which may have variables of arbitrary
type as parameters). Suppose that for the extension PAω of HAω by full classical logic

PAω ` ∀k ∃n∀m, m̃ ≥ n (|xm − xm̃| ≤R 2−k).

Then by negative translation (see [26])

HAω ` ∀k¬¬∃n∀m, m̃ ≥ n (|xm − xm̃| ≤R 2−k).

Adapting Friedman’s proof for the closure of HAω under the Markov rule one can show
(this is stated for HA without proof in [20] and we include a proof – also for HAω[X, ‖ ·‖]
– below) that HAω + Σ0

1-LEM is closed under the rule version of Σ0
2-DNE so that we get

HAω + Σ0
1-LEM ` ∀k ∃n∀m, m̃ ≥ n (|xm − xm̃| ≤R 2−k).

Moreover, if t contains at most number parameters it also suffices to use the restriction
Σ0

1-LEM− of Σ0
1-LEM to Σ0

1-formulas with number parameters only. All this also holds
for the systems HAω[X, ‖ · ‖] and PAω[X, ‖ · ‖] and sequences (xn) in X defined by terms
of these systems.

So, as far as Π0
3-theorems are concerned (also with parameters in N,NN or – in the case

of theories with an abstract normed space X – also in X,X → X,N → X), there is
no difference in proofs based on full classical logic versus proofs using only Σ0

1-LEM (at
least as long as the proofs can be formalized in systems to which negative translation and
Friedman’s A-translation apply). So in order to have a computational content stronger
than metastability guaranteed, we have to look for more restricted uses of Σ0

1-LEM−.
Looking more carefully into the Σ0

1-LEM-based proof of the Cauchyness of bounded
monotone sequences as given in [40] reveals that one can define a sequence of instances
Σ0

1-LEM(s(n)) of Σ0
1-LEM−

∃m ∈ N (s(n,m) = 0) ∨ ∀m ∈ N (s(n,m) 6= 0)

such that to prove the Cauchy property with error 2−k one only needs the first n =
0, . . . , s(t(k))-many instances of this sequence where t is a simple primitive recursive
function. So a more promising approach would be to look at proofs of Cauchy statements
which can be formalized as follows:

HAω ` ∀k
(
∀l ≤ t(k) Σ0

1-LEM(s(l))→ ∃n∀m, m̃ ≥ n (|xm − xm̃| ≤R 2−k)
)

or

HAω[X, ‖ · ‖] ` ∀k
(
∀l ≤ t(k) Σ0

1-LEM(s(l))→ ∃n ∀m, m̃ ≥ n (‖xm − xm̃‖ ≤R 2−k)
)
,

where t may contain parameters of type N,N → N (and X,N → X,X → X in the
extended system).

We show that from such proofs one can always extract effective (and in fact primitive
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recursive in the sense of Gödel’s T ) bounds B,L on the effective learnability of a rate
of convergence of (xn). Here B,L are effective functionals (in the parameters a of the
problem) where L is the learning procedure and B a bound on the number of neces-
sary steps along this procedure. This is, as we will show, a strictly stronger information
than a rate of metastability as the latter can be obtained from (majorants B∗, L∗ of)
the former, even by a uniform primitive recursive procedure (in the ordinary sense of
Kleene). However, there are primitive recursive Cauchy sequences of rational numbers
with a primitive recursive (again in the ordinary sense of Kleene) rate of metastability
which do not admit any computable bound for the learnability of a rate of convergence.
So while (as discussed above) a computable Cauchy sequence in R always has a com-
putable rate of metastability (by unbounded search) it in general will not have com-
putable bounds B,L on the effective learnability of a rate of convergence.
In fact, the additional information provided by B∗, L∗ becomes visible by the particular
simple structure of the rate of metastability obtained from B∗, L∗ which is guaranteed
to be of the form (essentially)

(L∗(a∗) ◦ g̃)B
∗(a∗)(0),

where fx(0) denotes the x-times iteration of the function f starting from 0 and g̃(n) :=
max{g(i) : i ≤ n} + n. The essential point here is that B∗, L∗ do not involve the
counterfunction g. It is precisely this form of a rate of metastability that has been ob-
served many times in concrete unwindings in ergodic theory and fixed point theory (see
e.g.[7, 29, 30, 27, 31, 32]) and which we can explain now for the first time in terms of
the logical structure of the given proof.1 For Cauchy statements, a metastability rate
which has the simple form given above conversely implies that the Cauchy statement is
(B∗, L∗)-learnable. Notable exceptions to this restricted format of metastability are the
rates of metastability for the ergodic theorem for odd (and even more general) operators
in [37] (making a nested use of the iteration procedure) and for the (weak convergence in
the) Baillon nonlinear ergodic theorem in [28] (making even nested use of a bar recursive
functional). However, both underlying proofs violate precisely our criterion of a bounded
use of Σ0

1-LEM.

A bound on the number of fluctuations in general is a still strictly stronger quantitative
information than bounds on the effective learnability: we construct a primitive recur-
sive sequence of rational numbers in [0, 1] which has primitive recursive bounds on the
learnability of its Cauchy rate but does not admit a computable bound on the number
of its fluctuations. Together with the already discussed Specker sequences (which have
trivial fluctuation bounds but no effective rates of convergence) we get the (w.r.t. effec-
tivity) strictly decreasing hierarchy of quantitative data for the convergence of Cauchy
sequences (xn):

1. A rate ρ of convergence of (xn).

2. A bound F on the number of approximate fluctuations of (xn).

1Note that minor modifications of the above format which show up in these bounds, e.g. L∗1 ◦ g̃ ◦L∗2,
can easily be reduced to this format.
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3. Function(al)s B,L (see the next section for a precise definition) of the learnability
of a rate of convergence for (xn) by B-many mind changes by a learning procedure
L.

4. A rate Φ of metastability for (xn).

While – as discussed above – the extractability of effective data for the levels 1, 3 and
4 of this hierarchy is guaranteed by relatively easy to check logical a-priori conditions
on the framework in which a Cauchy statement is proven, this seems to be different for
level 2: we give a kind of gap condition to be satisfied by L in ‘3.’ which suffices to
convert the information provided by B,L into a bound F on the fluctuations. Since
to check this condition requires the inspection of the extracted data B,L this is an a-
postiori condition (which is reminiscent of the growth conditions used in Luckhardt’s
[35] extraction of bounds on the number of solutions in Roth’s theorem).

The above hierarchy apparently fits well to distinguish the computational content that
recently has been obtained from proofs in the context of ergodic theory:

As discussed already, Avigad and Rute [9] observed that the extraction of a rate of
metastability from Birkhoff’s proof of the mean ergodic theorem in uniformly convex
Banach spaces carried out in [29] can in fact been used to even obtain a uniform effective
fluctuation bound. This corresponds to second level of our hierarchy which by [7] cannot
be further improved effectively to the first level. We explain this in terms of our gap
condition satisfied by (B,L).

The logical condition needed to assure the extractability of a primitive recursive (in the
ordinary sense of Kleene) data B,L for the third level is e.g. satisfied in the proofs of the
strong convergence of so-called Halpern iterations in Hilbert spaces (due to Wittmann
[42]) and – more generally – in CAT(0) spaces (due to Saejung in [36]). This follows
from the analysis of Saejung’s proof given in [31] where a primitive recursive (in the
ordinary sense) rate of metastability is extracted (the analysis of Wittmann’s proof in
[27] also shows this in the Hilbert case). A special form of the Halpern iteration (covered
by [42, 36]) is given by

xn+1 :=
1

n+ 2
x0 +

(
1− 1

n+ 2

)
Txn

which can be viewed as a nonlinear generalization of the ergodic average

1

n+ 1

n∑
i=0

T ix0

in the mean ergodic theorem with which it coincides for linear nonexpansive maps T.
As a corollary we obtain the extractability even of primitive recursive learnability data
B,L in this case. However, the aforementioned gap condition does not hold for the data
we extracted from the proofs. So, as it stands, a fluctuation bound does not seem to
follow. Of course, this does not rule out at all that a different proof might yield bet-
ter data which possibly could satisfy the gap condition and that, consequently, effective
fluctuation bounds might result.

While the strong convergence of the ergodic average in general is known to fail for non-
linear nonexpansive maps (whereas weak convergence holds by a deep theorem of Baillon

7



[10]), it does hold e.g. for odd operators as shown again by Baillon [11] and – for a much
more general class of mappings – by Wittmann [41]. Recently, the second author [37]
extracted a (primitive recursive in the sense of Kleene) rate of metastability (i.e. level
4) from Wittmann’s proof. However, Wittmann’s proof does not satisfy the condition
sufficient to guarantee level-3 learnability data and, in fact, the extracted bound has a
structure similar to the one in our example of a primitive recursive sequence of rational
numbers in [0, 1] separating the levels 3 and 4 given in section 4 below.

2. Fluctuations versus effective learnability

To be specific, let us use in the following the language of (intuitionistic) arithmetic in all
finite types HAω (more precisely the system WE-HAω, see [26]) as well as its extension
HAω[X, ‖ · ‖] by an abstract normed space X in the sense of [25, 16, 26] in order to be
able to cover also the aforementioned recent applications of proof mining to ergodic and
fixed point theory which need this enriched language. Everything we say extends mutatis
mutandis also to theories where more conditions on X are prescribed (e.g. X being a
uniformly convex or a Hilbert space) and convex subsets C of X being added as well as
to metric structures X such as metric, W -hyperbolic and CAT(0) spaces (see [26] for all
this). The type of natural numbers N is usually denoted by 0 while 1 denotes the type
of functions N→ N.
Sω,X denotes the full set-theoretic model of these theories over the base types N and X.
Occasionally, we will need the relation ‘x∗ majorizes x’ (short: x∗ maj x) due to W.A.
Howard (for the finite types over N) which is defined in the usual hereditary way by
induction on the type of x starting from

x∗ maj0 x :≡ x∗ ≥ x

for x∗, x of type 0 and
x∗ majX x :≡ x∗ ≥ ‖x‖

for x of type X and x∗ of type 0.

Remark 2.1. Throughout this paper, we will use several encodings. We use j for the
Cantor pairing function and j1 and j2 for the corresponding projections. Moreover, we
use 〈a〉 for both

• a surjective primitive recursive encoding of tuples of a given length l, with the
corresponding projections j1, . . . , jl and

• a surjective sequence encoding (which then includes the length of the encoded
sequence) with primitive recursive functions for length lh, concatenation ∗, and
projection (·)(·) (i.e. (n)k for the k+1-th element of a finite sequence encoded by n
and 0 for k ≥ lh(n),) when there is not danger of confusion we use also the simpler
notation nk). For details see [26].

• For both the tuple and the sequence encoding we assume the coding to be increasing
in each component and that 〈a0, . . . , ak−1〉 ≥ ai for i < k.
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For a specific encoding satisfying these requirements see [26], where the sequence encoding
is denoted by 〈a0, . . . , ak−1〉 while the k-tuple encoding is denoted by νk(a0, . . . , ak−1).

Whether we mean a tuple or a sequence coding should be mostly clear from the context
(roughly, we mean tuple encoding whenever the length is fixed and sequence encoding
otherwise), but whenever this is relevant we say also explicitly which encoding is meant.

Definition 2.2 (the number of fluctuations). For a sequence x(·) in some metric space
(X, d) and an ε > 0 let Fluc(n, i, j) denote that there are n fluctuations whose indexes
are encoded into i and j.

Fluc(n, i, j) :≡ Flucx(·),ε(n, i, j) :≡ lh(i) = lh(j) = n ∧
∀k < n (ik < jk) ∧
∀k < n− 1 (jk ≤ ik+1) ∧
∀k < n (d(xik , xjk) > ε).

We call b a bound on the number of ε-fluctuations of x(·), iff

∀n > b∀i, j¬Fluc(n, i, j).

We call b effective if it is computable in ε ∈ Q∗+ and x(·).

In the Language identification in the limit model for inductive inference, the notion of
learnable with an existence of a mind change bound was introduced in the sixties (see
e.g. [17]). We define a similar concept in the context of general formal theories like PAω.
Since we require both the learning procedure and the bound on mind changes to be
recursive (effective) we call this property effective learnability.

Remark 2.3. The proof-theoretic study of learnability by finitely many (though not
necessarily effectively bounded) mind changes in analysis has been initiated by Hayashi
(see e.g. [18, 19]) who (with Nakata) established the close relation of this concept to
limit computability (see e.g. [20]). The concept of mind change for Cauchy statements is
also implicit in section 5.1 of [44] (Proof of Lemma 31.c). Effective learnability concepts
for functionals F : D → NN (with D ⊆ NN) have recently been investigated in [21].

On the one hand we would like the learning procedure to be as simple as possible and on
the other hand we would like to formalize that it can access as much finite information
as is available (at a given learning step). In the case of monotone formulas (which is a
rather rich class of statements including, in particular, all Cauchy statements), there is
a straightforward answer (see Definition 2.4 and Proposition 2.5) allowing us to simplify
the theory of learnability, if we assume monotonicity. We give a more general definition
(Definition 2.9), which coincides with Definition 2.4 in the monotone case, a few pages
later.

Definition 2.4 ((B,L)-learnable monotone formulas). Consider a Σ0
2 formula ϕ with

the only parameters aσ, i.e.

ϕ ≡ ∃n0∀x0 ϕ0(x, n, a),

which is monotone in n, i.e.

∀n0 ∀n′ ≥ n ∀x0
(
ϕ0 (x, n, a)→ ϕ0(x, n′, a)

)
.
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We call such a formula ϕ (B,L)-learnable, if there are function(al)s B and L such that
the following holds (in the full set-theoretic model Sω,X):

∃i ≤ B(a) ∀x ϕ0(x, ci, a),

where

c0 := 0,

ci+1 :=

{
L(x, a), for the x with ¬ϕ0(x, ci, a) ∧ ∀y < x ϕ0(y, ci, a) if it exists

ci, otherwise.

We call such a ϕ effectively learnable (with effectively bounded many mind changes) if it
is (B,L)-learnable with computable functionals B and L.2

In section 4.2 (Proposition 4.13) we will construct a ϕ which is true for all parameters
a ∈ NN but which is not (B,L)-learnable with computable B,L.

This definition is very intuitive in the sense that it formalizes the concept of an (effective)
learning process L which learns the witness in an effectively bounded number of attempts
in a very straightforward way.
Moreover, this definition allows the learner, i.e. the function L to use the least amount
of non-computable information possible, namely only the smallest counterexample to the
learners last candidate for the witness. Nevertheless, we will show that this amount of
information is, in a sense, already exhaustive. More precisely, we have the following (we
use in the rest of this section a surjective sequence coding denoted by 〈· · · 〉 with primitive
recursive functions lh, ∗, (n)k as discussed in Remark 2.1):

Proposition 2.5. Consider a monotone formula ϕ as above. Suppose there are B and
L′ s.t.

∃i ≤ B(a) ∀x ϕ0(x, c′i, a),

where this time L′ can access all reasonable information, i.e.

c′0 := 0,

c′i+1 :=


L′(〈x0, . . . , xi〉, 〈c′0, . . . , c′i〉, a), for those xj , c

′
j, j ≤ i with

¬ϕ0(xj , c
′
j , a) ∧ ∀y < xj ϕ0(y, c′j , a)

if each exists,

c′i, otherwise.

Then ϕ is (B,L)-learnable in the original sense (as defined in Definition 2.4), where L
is primitive recursively definable in B,L′ and the characteristic function of ϕ0 (and so,
in particular as ξ(B,L′) for a closed term ξ of the system at hand).

Proof. W.l.o.g we can assume that there is a j ≤ B(a) s.t. ∀i < j (c′i+1 > c′i) and
∀i ≥ j (c′i+1 = c′i) (we can actually primitive recursively define a learner which satisfies

2Note that ci is the i-th attempt to produce a candidate for a valid n, while B is a Bound on the
number of such attempts produced before a valid candidate is Learned by the procedure L .
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this property whenever we have B and L′ as above). We set

L(x, a) := L(〈〉, 〈〉, x, a) :=

{
0, if ϕ0(x, 0, a),

L(〈X(x, 0, a)〉, 〈0〉, x, a), otherwise,

L(〈x0, . . . , xi︸ ︷︷ ︸
x

〉, 〈c0, . . . , ci︸ ︷︷ ︸
c

〉, x, a) :=


ci, if

∨
j≤i ϕ0(xj , cj , a) ∨ i ≥ B(a),

l′ := L′(〈x〉, 〈c〉, a), if x = xi ∨ ϕ0(x, l′, a),∧
j≤i ¬ϕ0(xj , cj , a) ∧ i < B(a),

L(〈x,X(x, l′, a)〉, 〈c, l′〉, x, a) otherwise,

where X(x, c, a) := min{x′ ≤ x : ¬ϕ0(x′, c, a)} (or x if there is no such x′).
We show by induction on i that ∀i (c′i = ci). This is obvious for i = 0, moreover
if ∀x ϕ0(x, c′i, a) then also ∀x ϕ0(x, ci, a) and so c′(·) = c(·) (both) by the induction

hypothesis ∀j ≤ i(c′j = cj).
Otherwise, we have the smallest counterexample x′i to c′i, and since by our hypothesis
c′i = ci we have also xi = x′i for the smallest counterexample to ci (note that, by the
(B,L′)-learnability of ϕ, we have i < B(a)). So, by the monotonicity of ϕ, we obtain for
all j < i that x′j ≤ xi, so X(xi, c

′
j , a) = x′j and by definition of L we get in total that

ci+1 = L(xi, a) = L(〈X(xi, 0, a)〉, 〈0〉, xi, a)

= L(〈x′0〉, 〈0〉, xi, a)

= L(〈x′0, X(xi, L
′(〈x′0〉, 〈0〉, a), a)〉, 〈0, L′(〈x′0〉, 〈0〉, a)〉, xi, a)

= L(〈x′0, X(xi, c
′
1, a)〉, 〈0, c′1〉, xi, a)

= L(〈x′0, x′1〉, 〈0, c′1〉, xi, a)

= . . .

= L′(〈x′〉, 〈c′〉, a) = c′i+1.

2

So from now on we will simply use L in the form which suits us best.

Speaking of a Cauchy sequence a(·), we would say that it has an effectively learnable rate
of convergence, if there is a recursive computation for a bound b from the sequence a(·)
(resp. the parameters used in defining a(·)) and an ε > 0, such that there is a procedure
to learn an ε-Cauchy point with at most b computable corrections (computable in a
counterexample x, which in turn may not be computable itself!).

Remark 2.6. In Definition 2.4, even the condition that x is the smallest counterexample,
i.e. ∀y < x ϕ0(y, ci, a), is not really necessary. Of course, in such case, for a given learner,
the sequence c(·) is not unique and we need to specify what actually is bounded by B.
Fortunately, there are only two natural options. Either we say that B is a bound on
any sequence c(·) (i.e. B is independent on the choice of the counterexamples) or we
say that B is a bound for some sequence c(·) (i.e. for at least one suitable choice of
counterexamples). It seems rather obvious that the second option makes little sense,
since if there was any bound and learner at all, then B(a) = 1 would be a correct bound
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for the same learner as well (simply by choosing the right counterexample as the first
input). Moreover, a definition in the new sense that B is a bound on any sequence c(·)
(any choice of x(·)) would be equivalent to Definition 2.4.

• Any given bound B for all such sequences is obviously, in particular, a bound for
the one we used in the original definition. Therefore any formula (B,L)-learnable
in the new sense is, in particular, (B,L)-learnable in the old sense.

• On the other hand, given B and L satisfying our original definition, we could
modify L to L′ in such a way, that it actually looks for the smallest counterexample
and uses that for its computation, assuring that we in fact generate the same
sequence c(·) after all (e.g. set L′(x, c, a) := L(min{x′ ≤ x : ¬ϕ0(x′, c, a) ∧ ∀y <
x′ ϕ0(y, c, a)}, c, a) if such an x′ exists and L′(x, c, a) := L(x, c, a) otherwise). In
other words, any formula (B,L)-learnable in the old sense, is (B,L′)-learnable in
the new sense.

As far as monotone formulas are concerned, we have yet another nice property.

Proposition 2.7. A monotone Σ0
2-formula ϕ (see also Definition 2.4) that is (B,L)-

learnable (uniformly in the parameters a) is also (B∗, L∗)-learnable (uniformly in majo-
rants a∗ of a) for any majorants B∗,L∗ of B,L, i.e. (in Sω,X)

∀a∗, a
(
a∗ maj a→ ∃i ≤ B∗(a∗) ∀x0 ϕ0(x, c∗i , a)

)
,

where

c∗0 := 0,

c∗i+1 :=

{
L∗(x, a∗), for the x with ¬ϕ0(x, c∗i , a) ∧ ∀y < x ϕ0(y, c∗i , a) if it exists

c∗i , otherwise.

Proof. Note that B∗, L∗, a∗ maj B,L, a implies that

B∗(a∗) ≥ B(a) ∧ ∀x0, y0(x ≥ y → L∗(x, a∗) ≥ L(y, a))).

Now assume that c∗i ≥ ci. Then by the monotonicity of ϕ we have for all x

¬ϕ0(x, c∗i , a)→ ¬ϕ0(x, ci, a)

and so the smallest counterexample xi to ci is smaller (or equal) than the smallest
counterexample x∗i to c∗i and so c∗i+1 = L∗(x∗i , a

∗) ≥ L(xi, a) = ci+1. Inductively, we get
c∗i ≥ ci for all i ≤ B(a). 2

Remark 2.8. If the parameters a have all types of degree ≤ 1, then ϕ in the above
proposition is learnable in B∗, L∗ uniformly in a since aM maj a1, where aM (n) :=
max{a(i) : i ≤ n.}.
In this sense, we can extend the term effectively learnable as follows. A monotone
Σ0

2-formula ϕ(a) is effectively learnable with finitely many mind changes uniformly in
majorants a∗ of the parameters a if it is (B∗, L∗)-learnable (uniformly in majorants a∗

of the parameters a by computable functionals B∗, L∗ and all elements of a∗ are of type
level at most one). Note that this means that in the System HAω[X, ‖·‖], a could include
parameters of types like X,N→ X,X → X.
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There are several ways to generalize our learnability definition. Of course one can drop
the monotonicity condition, but we can also allow higher or abstract types for n and x (for
x we would need to consider all sequences c(·) since we can provide only a counterexample
x, not the smallest counterexample x – see also Remark 2.6). The question here is, what
kind of information we do allow the learning function(al) L to access. At the moment,
it seems that there is not such a nice and definitive answer as in the monotone case.
However, we will stick with a (not necessarily unique) definition (see Definition 2.9),
which

1. generalizes Definition 2.4, i.e. if a monotone formula (assuming the bound variables
to be of type 0) is learnable according to our new definition, it is also learnable in
the sense of Definition 2.4 and vice-versa,

2. while keeping the arguments of the learner L simple, still is equivalent to the
case where the learner has access to the full finitary information in the sense of
Proposition 2.5 (see Remark 2.10)

3. fits very nicely into the hierarchy of different concepts for computational informa-
tion (see Proposition 2.16),

4. makes effective learnability guaranteed by very clear logical conditions on the prov-
ability of the learned formula (see Theorem 2.11).

The second point seems a very natural requirement and is the cause for the main dif-
ference to the monotone case, which is that in Definition 2.9 the learning process may
depend on a whole tuple of all counterexamples used so far, rather than only on the last
one (last in the sense of number of guesses/candidates, not the index of the counterex-
ample).

Although we do not treat the case of learnability for higher type objects in this paper,
the following definition easily applies to this case as well and, therefore, is written in this
generality:

Definition 2.9 ((B,L)-learnability for general (not necessarily monotone) formulas).
Consider an ∃∀ formula ϕ with the only parameters aσ, i.e.

ϕ ≡ ∃nρ∀x0 ϕ0(x, n, a).

We call such a formula ϕ (B,L)-learnable, if there are function(al)s B and L such that
the following holds:

∃i ≤ B(a) ∀x ϕ0(x, ci, a),

where

c0 := 0ρ,

ci+1 :=


L(〈x0, . . . , xi〉, a), for those xj , j ≤ i with

¬ϕ0(xj , cj , a) ∧ ∀y < xj ϕ0(y, cj , a)

if each exists,

ci, otherwise.

We call such a ϕ effectively learnable, if it is (B,L)-learnable, σi and ρ have type level
at most one, and B and L are computable.
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Remark 2.10. Again, this definition already captures (so to say in a primitive recursive
way) the case where the learner could access the previous values of c(·) as well. Simply
consider

L(

x:=︷ ︸︸ ︷
〈x0, . . . , xi〉, a) :=

L′
(
〈x〉,

〈
L′(〈x0〉, 〈0〉, a)︸ ︷︷ ︸

c′1:=

, L′(〈x0, x1〉, 〈0, c′1〉, a)︸ ︷︷ ︸
c′2:=

, . . . , L′(〈x〉, 〈0, c′1, . . . , c′i〉, a)
〉
, a
)
.

Of course, one could consider weaker concepts, like a learner which can access only the
last counterexample (as in the monotone case). We considered also a learner of the kind
L′(x, c, a) (i.e. a learner who is allowed to use in addition only the lastly learned solution
candidate), which doesn’t seem to be equivalent to any of the other two concepts.

Let us make the properties of our learnability definition discussed above more transparent
by proving the following results which we first briefly motivate: as mentioned already
in the introduction (and proved further below in section 3), any classical proof (in a
suitable formal system) of a Cauchy statement ϕ(k) := ∃n∀i, j ≥ n (d(xi, xj) < 2−k) can
be reformulated to use classical logic only up to ∀l0(Σ0

1-LEM(s(l, k))) (for some closed
term s), i.e.

(a) ∀k0
(
∀l0 (Σ0

1-LEM(s(l, k)))→ ϕ(k))

follows intuitionistically. This, in particular, applies to the example from section 4.2 of
a computable Cauchy sequence in R which does not possess any computable learnability
bounds B,L. So in order to be able to extract such computable data B,L, the Cauchy
proof has to be further restricted, namely, to the situation where the proof implicitly
contains a bound t(k) on ∀l0, i.e. on the instances of Σ0

1-LEM(s(l, k)) used. This is guar-
anteed (as we will see) when (a) is strengthened to the (only noneffectively equivalent)
form

(b) ∀k0 ∃l0
(
∀m ≤0 l (Σ

0
1-LEM(s(m, k)))→ ϕ(k)).

Then from a (semi-intuitionistic) proof of (b) one can extract a term B(k) computing
l and two further terms which allow one to build a learning procedure L so that ϕ is
(B,L)-learnable.
In the following IPω∀ denotes the independence-of-premise principle for universal premises
in all finite types:

IPω∀ : (∀xA0(x)→ ∃y B(y))→ ∃y (∀xA0(x)→ B(y)),

where A0 is a quantifier-free formula and x, y are variables of arbitrary types.

Theorem 2.11. Given that

HAω[X, ‖ · ‖] + AC+Mω+IPω∀ `
∀a ∃l0

(
∀m ≤0 l∃u0∀v0

(
ψ0(u,m, a) ∨ ¬ψ0(v,m, a)

)
→ ∃n0∀x0ϕ0(x, n, a)

)
,

where ϕ0, ψ0 are quantifier-free formulas (containing at most the parameters a free), then
∃n∀xϕ0(x, n, a) is (valid in Sω,X) (B,L)-learnable (in the sense of Definition 2.9 and,
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for monotone formulas, in the sense of Definition 2.4) by functionals given by closed
terms of HAω[X, ‖ · ‖].
To B,L one can construct majorants B∗, L∗ given by closed terms of HAω such that if
∃n∀xϕ0(x, n, a) is monotone (as in Definition 2.4), then it is even learnable in B∗, L∗

uniformly in majorants a∗ of the parameters a.

Proof. Suppose that

HAω[X, ‖ · ‖] + AC+Mω+IPω∀ `
∀a∃l0

(
∀m ≤ l∃u∀v

(
ψ0(u,m, a) ∨ ¬ψ0(v,m, a)

)
→ ∃n∀xϕ0(x, n, a)

)
.

Then by the soundness of the Gödel functional (‘Dialectica’) interpretation for HAω[X, ‖·
‖]+AC+Mω+IPω∀ (see [26]) we obtain that (note that since we do not need bar recursion
to interpret HAω[X, ‖ ·‖] we do not have to go through the model of strongly majorizable
functionals and so do not need to assume any smallness condition on the types of a to
pass to Sω,X)

Sω,X � ∃l, V,N∀U, x
(
∀m ≤ l

(
ψ0(Um,m, a) ∨ ¬ψ0(V xU,m, a)

)
→ ϕ0(x,N(U), a)

)
.

where ‘∃l, V,N ’ is witnessed (uniformly in a) by closed terms t, sV , sN of HAω[X, ‖ · ‖].
The result when the terms sV , sN are applied to a, we conveniently name V and N .
To show the learnability, let Uv (where v is a t(a)-tuple) denote the function

Uv(i) :=

{
vi if i < t(a),

0 otherwise,

set B(a) := t(a) and define L in N and V via a sequence of t(a)-tuples v(·). More precisely
to compute L(〈x0, x1, . . . , xi︸ ︷︷ ︸

x:=

〉, a) for some i we need to define the tuples v(0), . . . , v(i) as

follows.

v0 Set v0 := 0, . . . , 0 and c1 := L(〈x0〉, a) := N(Uv0).

v1 If ∀xϕ0(x, c1, a) holds, then there is nothing to be done3. Otherwise, we have in
particular (provided that x1 is the minimal counterexample)

∃m ≤ t(a)
(
¬ψ0(Uv0m,m, a) ∧ ψ0(V x1(Uv0),m, a)

)
and so we can denote the least such an m by m0 (put m0 := 0 in case such an m does
not exist) and define v1 as v0 except that we set v1

m0
:= V x1(Uv0). Furthermore,

we set c2 = L(〈x0, x1〉, a) := N(Uv1). Note that we have

¬ψ0(Uv0m0,m0, a) ∧ ψ0(v1
m0
,m0, a). (v0)

3Of course this is undecidable, however the conclusion discussed next is. In this sense if the conclusion
is wrong for the x1 given as input to L, we can simply set v1 = v0 and L(〈x0, x1〉, a) := c1 (or even 0
for all that it matters).
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v2 Now, if ∀xϕ0(x, c2, a) then we are finished. Otherwise, similarly as before we have

∃m ≤ t(a)
(
¬ψ0(Uv1m,m, a) ∧ ψ0(V x2(Uv1),m, a)

)
and we can denote the least such an m by m1 and define v2 as v1 except that we
set v2

m1
:= V x2(Uv1). As before this means that

¬ψ0(Uv1m1,m1, a) ∧ ψ0(v2
m1
,m1, a), (v1)

so in particular we obtain that m1 6= m0 by (v0) as Uv1m1 = v1
m1

. We set c3 =
L(〈x0, x1, x2〉, a) := N(Uv2) and continue.

v3 Again, if ∀xϕ0(x, c3, a) then we are finished. Otherwise, as before, we have that

∃m ≤ t(a)
(
¬ψ0(Uv2m,m, a) ∧ ψ0(V x3(Uv2),m, a)

)
and we can denote the least such an m by m2 and define v3 as v2 except that we
set v3

m2
:= V x3(Uv2). As before this means that

¬ψ0(Uv2m2,m2, a) ∧ ψ0(v3
m2
,m2, a), (v2)

so in particular we obtain that m2 6= m1 by (v1). Moreover, by (v0) and (v2)
we have m2 6= m0, since from m1 6= m0 follows that v2

m0
= v1

m0
. We set

c4 = L(〈x0, x1, x2, x3〉, a) := N(Uv3) and continue.

vn+1 Finally, in general assume that for some n we have that ∀i < n∀j < i mi 6= mj and
∀i ≤ n+ 1¬∀xϕ0(x, ci, a). Then we have also that

∀i < n
(
¬ψ0(Uvimi,mi, a) ∧ ψ0(V xi+2(Uvi+1),mi, a)

)
. (vi)

As usual we have in particular that

∃m ≤ t(a)
(
¬ψ0(Uvnm,m, a) ∧ ψ0(V xn+1(Uvn),m, a)

)
and we can denote the least such an m by mn and define vn+1 as vn except that
we set vn+1

mn
:= V xn+1(Uvn). As before this means that

¬ψ0(Uvnmn,mn, a) ∧ ψ0(vn+1
mn

,mn, a). (vn)

From ∀0 < i < n (m0 6= mi) it follows that ∀0 < i < n (vnm0
= vim0

). Assume that
mn = m0, then

Uvnmn = vnmn
= vnm0

= v1
m0

and we obtain a contradiction as ¬ψ0(v1
m0
,m0, a) follows from (vi) and ψ0(v1

m0
,m0, a)

follows from (vn). This shows that mn 6= m0, similarly one shows that

∀i < n (mn 6= mi).

As usual, we set cn+2 = L(〈x0, . . . , xn+1〉, a) := N(Uvn+1).
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This leads to the following definition of L:

L(x, a) := L(〈x0, x1, . . . , xi︸ ︷︷ ︸
x:=

〉, a) := N(Uvi).

Note that since N and U are total, so is L. Moreover, if the values of i, x, and ci satisfy
the conditions from Proposition 2.5, then L behaves as described above.
Finally, since there can be only t(a) many different mi’s, it can happen at most t(a)
many times that ∀xϕ0(x, ci, a) does not hold, where ci is defined as in Definition 2.9
with L as above. Hence ϕ is (B,L)-learnable in the sense of Definition 2.9 and hence
- for monotone formulas - also (B, L̃)-learnable for some L̃ primitive recursive in B,L
(and ϕ0) by Proposition 2.5.
The second claim follows from the fact that t, sV , sv have majorants t∗, s∗V , s

∗
N given by

closed terms of HAω (see [26]) which then yield majorants B∗, L∗ of B,L. Now apply
Proposition 2.7. 2

Remark 2.12. Assume that ϕ0 in the theorem comes from a Cauchy statement

j1(x), j2(x) ≥ n→ ̂‖aj1(x) − aj2(x)‖(k + 1) ≤Q 2−k,

where – referring to the representation of real numbers by number theoretic functions f
representing fast Cauchy sequences of rationals – f̂(k + 1) is a 2−k−1-rational approx-
imation to f (see [26] for details). Then ϕ is monotone and a counterexample x to n
satisfies x ≥ n (using that for the Cantor pairing function x ≥ ji(x)). Assume also
that ψ0 is monotone in u (which always can be arranged by taking ψ′0(u,m, a) :≡ ∃ũ ≤
uψ0(u,m, a)).
Then the complicated iteration used in defining L can be avoided by taking simply

L∗(〈x0, . . . , xi〉, a∗) := N∗a∗(λk.V
∗
a∗(xi, λn.xi)),

where λa∗.N∗a∗ , λa
∗.V ∗a∗ are majorants of

Ña(f) := max
{

max
{
N(v0 ∗ 0) : lh(v) = ta ∧ ∀l ≤ ta(vl ≤ f(l))

}
, f(l) : l ≤ ta

}
and

Ṽa(x, f) := max
{

max
{
V (x, v0 ∗ 0) : lh(v) = ta ∧ ∀l ≤ ta(vl ≤ f(l))

}
, f(l) : l ≤ ta

}
with N,V, t as in Theorem 2.11. Note that with N,V also Ñ , Ṽ satisfy the claim in
the proof and that L∗ (for counterexamples x0, . . . , xi) is an upper bound for the L
defined in terms of Ñ , Ṽ as an elementary calculation shows (using that – by the form
of ϕ0 – a counterexample x to n has to satisfy x ≥ n). By monotonicity, ϕ is then also
(L∗, B∗)-learnable (uniformly in majorants a∗ of a) where B∗ is some majorant of B.

Remark 2.13. The theorem remains valid if arbitrary Sω,X -true purely universal sen-
tences are added as axioms to HAω[X, ‖ ·‖]. The part about the majorizing terms B∗, L∗

even remains valid – using monotone functional interpretation – if one adds sentences of
the form ∆ :≡ ∀aδ∃b ≤ρ sa∀cτF0(a, b, c) with quantifier-free F0 and closed s as axioms
which covers the case of the binary (‘weak’) König’s lemma WKL (which together with
AC even implies König’s lemma KL); see [26] for extensive details on all this.
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Using the representation of real numbers from [26], each sequence of type 0→ 1 can be
viewed as a name of a sequence (an) of reals. Now define ãn := maxR

(
0,mini≤n ai

)
. Let

PCMar(an) denote the statement that the monotone decreasing sequence (ãn) in [0, 1] is
Cauchy (see [26] for details)

PCMar(an) : ∀k ∈ N ∃n ∈ N ∀m ≥ n (|ãm − ãn| ≤ 2−k)︸ ︷︷ ︸
PCMar((an),k):≡

(if (an) is already a decreasing sequence in [0, 1], then (ãn) = (an)). The usual classical
proof of PCM(an) uses Σ0

2-DNE, but it can be converted into a proof that only needs the
weaker Σ0

1-LEM (see Proposition 3.3 below). In [40], an explicit such proof is constructed
exhibiting a concrete sequence of instances of Σ0

1-LEM sufficient for this. From this proof
one can read off the following even more detailed fact:

Proposition 2.14. There is a primitive recursive functional (in the ordinary sense) Φ
such that (using the Cantor pairing function)

HAω ` ∀a0→1
(·) , k0

(
∀m ≤ j(2k − 1, 2k) Σ0

1-LEM(Φ(a(·),m)→ PCMar(a(·), k)
)
.

Proof. The crucial step in Toftdal’s proof in [40] is to show by induction on k that

∀k∃i ∈ {1, . . . , 2k}∃n∀m
(
i− 1

2k
≤ ãn+m ≤

i

2k

)
,

where in the induction step Σ0
1-LEM is used in the form (note that, based on our repre-

sentation of real numbers, <R∈ Σ0
1)

∃n
(
ãn <

2i− 1

2k+1

)
∨ ¬∃n

(
ãn <

2i− 1

2k+1

)
.

So to establish PCMar(a(·), k) one needs only the instances

∃n
(
ãn <

i

2l

)
∨ ¬∃n

(
ãn <

i

2l

)
for i ≤ l − 1 and l ≤ 2k, i.e. the codes j(i, l) of the instances used can be bounded by
t(k) := j(2k − 1, 2k). The construction of Φ is clear. 2

While the usual classical proof of PCMar only needs Σ0
1-induction (but Σ0

2-DNE), the
above proof due to Toftdal needs an instance of the Σ0

2-induction rule (Σ0
2-IR) which, ap-

parently, is the price to be paid for using only Σ0
1-LEM (instead of Σ0

2-DNE). Classically,
Σ0

2-IR is quite strong and proves (relative to PRA) the same Π0
3-sentences as Π0

2-IA (see
e.g. [38][Theorem 3.11]) and so, in particular, the totality of the Ackermann function.
In our intuitionistic context, however, it is weak and the functional interpretation used
(without negative translation!) in the proof of Theorem 2.11 (and the corollary below)
to extract B,L solves Σ0

2-IR using only ordinary primitive recursion in the form of R0.
One can also modify Toftdal’s proof so that only the Π0

1-FAC principle (‘Π0
1-finite-axiom-

of-choice’) is used (which classical is equivalent to Π0
1-CP which is relative to PRA Π0

3-
conservative of Σ0

1-IA): w.l.o.g. we may assume that (an) is a sequence of rational
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numbers (for, otherwise, replace it by rn := mini≤n(âi + 2−i) using the representation of
reals from [26]): by Σ0

1-LEM we have

∀i ≤ 2k∃n∀m
(
an <

i

2k
∨ am ≥

i

2k
)
.

Hence by Π0
1-FAC

∃n∀i ≤ 2k
(
a(n)i <

i

2k
∨ ∀m(am ≥

i

2k
)
)
.

Now let i0 ≤ 2k be least s.t. a(n)i0
< i0

2k (if existent; otherwise ∀m(am = 1) and we are
done). Then for l := (n)i0

∀m ≥ l (|am − al| < 2−k).

As a corollary we obtain that Theorem 2.11 also holds with the original assumption
being replaced by PCMar(s(a, l), t(a)), where s(a, l)0→1 represents for each l ∈ N some
sequence of reals defined by a closed term s in a :

Corollary 2.15. Given that

HAω[X, ‖ · ‖]+AC+Mω+IP
ω
∀ `

∀a ∃k0, l0
(
∀m ≤ l PCMar(s(a,m), k)→ ∃n0∀x0 ϕ0(x, n, a)

)
,

where s is a closed term and ϕ0 as in Theorem 2.11, then ∃n0∀xϕ0(x, n, a) is (valid
in Sω,X) (B,L)-learnable (uniformly in a) by functionals given by closed terms of the
system HAω[X, ‖ · ‖].
To B,L one can construct majorants B∗, L∗ given by closed terms of HAω such that
if ∃n∀xϕ0(x, n, a) is monotone (see Definition 2.4) then it is even learnable in B∗, L∗

uniformly in majorants a∗ of the parameters a.

Remark. Of course, instead of sequences in [0, 1] one can also consider sequences in any
compact interval [−C,C], where then the functionals B,L will additionally depend on
C.

Likewise, instead of decreasing sequences we may also have increasing ones or, if the
Cauchy property is changed into the existence of an approximate infimum

∃n∀m(an ≤ am + 2−k),

also arbitrary sequences in [−C,C].

The next proposition shows how to convert any majorants (B∗, L∗) for a (B,L)-learnable
formula into a rate of metastability. This not only guarantees a highly uniform (and for
computable (B∗, L∗)) computable rate of metastability but, moreover, such a rate which
has a particularly simple form (see the remark and discussion after the proposition): 4

4Note that in our examples, a will be data related to an abstract normed of Hilbert space for which
(in contrast to a∗) computability is not even defined.
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Proposition 2.16. Let ∃m0∀k0 ϕ0(n,m, k, a) be a formula in the language of HAω (or
HAω[X, ‖ · ‖]) with ϕ0 being quantifier-free that is (B,L)-learnable in the sense of Defi-
nition 2.9 (uniformly in n and a) and let B∗, L∗ be majorants of B,L.
Then a rate of metastability Ω (valid in Sω,X)

∀n0 ∀g1 ∃m ≤0 Ω(g, n) ϕ0(n,m, g(m), a) (metastable)

for5

∀n0∃m0∀k0 ϕ0(n,m, k, a) (ϕ)

is given by Ω(B∗, L∗, a∗) (uniformly in majorants a∗ of the parameters a), where g̃(c) :=
max

(
c,maxc′≤c(g(c′))

)
and

Ω := λB∗, L∗, a∗, g, n . C(L∗, g, n,B∗(n, a∗), a∗),

C(i) := C(L∗, g, n, i, a∗) :=


0, if i = 0,

L+(〈
i×︷ ︸︸ ︷

g̃(C(i− 1) + 1), . . . , g̃(C(i− 1) + 1)〉, n, a∗), otherwise,

with L+(x) := max{L∗(x), x}.
Note that Ω is defined using only recursion R0 of type 0 and hence is primitive recursive
in the usual sense of Kleene.

Proof. We reason in Sω,X . Since ϕ0 is quantifier-free, there is a closed term f with
f(n,m, k, a) = 0↔ ϕ0(n,m, k, a). Hence, we have that (for a∗ majorizing a) and for the
succession ci from Definition 2.9

∀n ∃i ≤ B∗(n, a∗) ∀k
(
f(n, ci, k, a) = 0

)
,

by the assumptions of the proposition, and we need to show that

∀g, n ∃m ≤ Ω(B∗, L∗, a∗, g, n)
(
f(n,m, g(m), a) = 0

)
.

Now, fix any g, n and assume towards contradiction that Ω(B∗, L∗, a∗, g, n) is not a rate
of metastability, i.e. that

∀m ≤ Ω(B∗, L∗, a∗, g, n)
(
f(n,m, g(m), a) 6= 0

)
. (1)

By induction on i we obtain that

∀i ≤ B∗(n, a∗)
(
ci ≤ C(L∗, g, n, i, a∗)

)
. (2)

The case i = 0 is trivial as c0 = C(L∗, g, n, 0, a∗) = 0. Next, suppose that for some
1 ≤ i ≤ B∗(n, a∗) the following holds

∀j < i
(
cj ≤ C(L∗, g, n, j, a∗)

)
. (3)

5Note that in order to talk about metastability, we need one of the parameters to have type 0 and
we treat it separately.
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Denoting the smallest k s.t. f(n,m, k, a) 6= 0 by xm (if this does not exist, we have
ci = ci−1 and are done), we obtain by (3) that6

ci ≤ L∗(〈xc0 , . . . , xci−1〉, n, a∗) ≤ L∗(〈g̃(c0), . . . , g̃(ci−1)〉, n, a∗) ≤ C(L∗, g, n, i, a∗),

since by (1) we have (using that C(i) is nondecreasing in i) that

∀i ≤ B∗(n, a∗)
(
m ≤ C(L∗, g, n, i, a∗)→ f(n,m, g(m), a) 6= 0

)
and so, in particular, that

∀i ≤ B∗(n, a∗)
(
m ≤ C(L∗, g, n, i, a∗)→ xm ≤ g(m) ≤ g̃(m)

)
.

Finally, we can infer from (2) that

∀i ≤ B∗(n, a∗)
(
ci ≤ Ω(B∗, L∗, a∗, g, n)

)
,

and therefore and by (1) also

∀i ≤ B∗(n, a∗) ¬∀k0
(
f(n, ci, k, a) = 0

)
which is a contradiction.

2

Remark 2.17. Note that Ω has essentially the following form7

(Ln,a∗ ◦ g̃)B
∗(n,a∗)(0),

Ln,a∗ := λx . L∗(x, n, a∗).

Moreover, if we have such a rate of metastability for some Cauchy statement ϕ as con-
sidered in Remark 2.12 so that ϕ is monotone and a counterexample x is always greater
than the witness candidate, and given any n, a∗ we have an f1 and a b0 such that for all
a that are majorized by a∗

∀g∃m ≤ (f ◦ g̃)b(0)ϕ0(n,m, g(m), a), (4)

then ϕ is B,L-learnable (uniformly in n and majorants a∗ for a) with

B(n, a∗) := b, L(x, n, a∗) := f(x).

To prove this fact, we argue as follows. Fix arbitrary n, a∗ and consider corresponding f
and b. Let

g(m) = min{x : ¬ϕ0(n,m, x, a)},

6Here we simply assume that our encoding is monotone in its components. If for some reason it was
not, we could use a L′ which returns the maximal value among all codes coordinatewise bounded by the
elements of the encoded input of L∗.

7Note that the additional dependency on the number i of iterates in Proposition 2.16 via the length
of the sequence 〈. . .〉 can also be covered by this normal form, since – by g̃(C(i − 1) + 1) ≥ g̃(i) ≥ i –
the length of the sequence 〈. . .〉 can be majorized by g̃(C(i− 1) + 1) itself.
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if such an x exists and 0 otherwise. Note that due to the monotonicity of ϕ we have
g(m) 6= 0 → g̃(m) = g(m). This implies that as long as there is a (the smallest)
counterexample xi to ci, it holds that

ci+1 = L(xi, n, a
∗) = f(xi) = (f ◦ g̃)ci = (f ◦ g̃)i+1(0). (5)

Given all this, assume towards contradiction that

∀i ≤ B(n, a∗)∃x¬ϕ0(n, ci, x, a), (6)

and consider any m ≤ (f ◦ g̃)b(0). Due to (5) and (6), we get that m ≤ cb and due to the
monotonicity of ϕ this means that there is a counterexample to m (since there is one for
cb by (6), as B(n, a∗) = b), which means that ¬ϕ0(n,m, g(m), a) by definition of g. This
is a contradiction to (4).

Discussion: What the main results in this section (Theorem 2.11 and Proposition
2.16), taken together, show is that if the proof of a (monotone) Π0

3-statement (e.g. a
Cauchy statement) uses only a bounded (in the parameters) number of unnested Σ0

1-
LEM−-instances but may use induction of unrestricted complexity, then we get a rate of
metastability which – as a functional in the counterfunction g – has a very simple struc-
ture (namely only a single use of iteration of g). This is remarkable as e.g. HAω does,
of course, prove ∀g∃xψ0(g, x)-sentences which need much more complicated functionals
in g (namely every type-2 functional definable in Gödel’s calculus T arrives in this way).
What we have shown, however, is that this cannot happen if ∀g∃xψ0(g, x) results as
the Herbrand normal form of a Π0

3-statement ϕ ≡ ∀n0∃m0∀k0 ϕ0(n,m, k) (with g being
the function variable playing the role of the Herbrand index function) that is provable
in HAω from the aforementioned restricted uses of Σ0

1-LEM−. To see the difference, let
us consider the simple but already illuminating case where the proof of ϕ does not use
classical logic at all. Then one can use modified realizability or functional interpretation
to extract a (definable in T ) witnessing term t for ϕ (and hence a bound t∗ which is
uniform in majorants of the parameters) which then a fortiori is also a rate of metasta-
bility for ϕ which does not use the argument g at all. The ‘g-involvement’ displayed
by a rate of metastability reflects the amount of Σ0

1-LEM− used in the proof and the
former is simple if the latter is low. Moreover, the extraction of the rate of metastability
via the extraction of the learning procedure L∗ proceeds without any use of negative
translation but with direct functional interpretation (while modified realizability would
not be sufficient as we need the functional witnessing V in the proof of Theorem 2.11).

A sort of complementary scenario would be to allow full classical logic in a proof but to
restrict the use of induction to a bounded number of unnested instances of Σ0

1-IA, the
latter being used e.g. in the form of PCMar. Let G3Aω be the finite type extension of
Kalmar-elementary arithmetic (based on quantifier-free induction only but with classical
logic) from [23] (see also [26]). Now consider a proof

G3Aω[X, ‖ · ‖] ` ∀a
(

PCMar(t1(a), t2(a))→ ∃n0∀x0 ϕ0(x, n, a)
)
.

Then by negative translation and functional interpretation one can extract a rate of
metastability for the conclusion making a single use of the rate of metastability of PCMar

given by a single application of the iteration g̃k(0) (see [26] prop.2.26) and terms t[g] of
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G3Aω which can be majorized by terms using only a fixed number of g-nestings (reasoning
as in the proof of Proposition 4.13 below). This again leads to a rate of metastability
which can be put into the form in Remark 2.17.

So to get a more complicated rate of metastability (e.g. of the form g̃(g̃x(0))(0)) requires
a nested use of a combination of Σ0

1-LEM− and (at least) Σ0
1-IA− as provided in our

example of a sentence ϕ in Proposition 4.13 that is not effectively learnable (where Σ0
1-

LEM− together with Π0
1-CP− is used).

3. Cauchy statements and unrestricted use of Σ0
1-LEM

In the following, we refer to Friedman’s so-called A-translation from [15] (see e.g. [26]).
Since we work in the context of weakly extensional systems and the quantifier-free rule
of extensionality QF-ER is not sound under the A-translation we simply add for the
reminder of this section all Sω-true (resp. Sω,X -true) purely universal sentences P in
the language of the respective system as axioms (making the use of QF-ER in proofs
superfluous as it only proves universal consequences). This, anyhow, is a common device
in proof mining as universal axioms do not contribute to the computational content of a
proof (this has been stressed by G. Kreisel since the 50’s). We denote the extension of
the theory T by the axioms P by T∗.

Lemma 3.1. Friedman’s A-translation is sound also for HAω∗ + Σ0
1-LEM.

Similarly for HAω
∗ [X, ‖ · ‖] (and related extensions) instead of HAω∗ .

Proof. Consider the following instance of Σ0
1-LEM

∀yϕ0(a, y) ∨ ∃y¬ϕ0(a, y).

W.l.o.g assume ϕ0 is atomic. It suffices to extend Friedman’s proof by showing that

HAω∗ + Σ0
1-LEM ` (Σ0

1-LEM)A.

This means we need to prove

∀y
(
ϕ0(a, y) ∨A

)
∨ ∃y

(
(ϕ0(a, y) ∨A)→ A

)
, (1)

in HAω∗ + Σ0
1-LEM.

Suppose that

1. ∀yϕ0(a, y) holds. Then also ∀y
(
ϕ0(a, y) ∨A

)
holds and therefore also (1).

2. ∃y¬ϕ0(a, y) holds. Then fix such a y. For this y we get

(ϕ0(a, y) ∨A)→ A

and so ∃y
(
(ϕ0(a, y) ∨A)→ A

)
holds and therefore also (1).

For HAω
∗ [X, ‖ · ‖] one just has to observe that still every quantifier-free formula can be

written as an atomic formula of the form ta =0 0 and that the additional axioms are all
purely universal and so easily imply their own A-translation. 2

For HA instead of HAω∗ and HAω
∗ [X, ‖ · ‖] (also for Σ0

n+1-LEM and Σ0
n+2-DNE), the next

proposition is stated (without proof) in [20].
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Proposition 3.2. The theory HAω∗ + Σ0
1-LEM is closed under the Σ0

2-DNE rule.
Similarly for HAω

∗ [X, ‖ · ‖].

Proof. Suppose
HAω∗ + Σ0

1-LEM ` ¬¬∃x∀y ϕ0(a, x, y),

where ϕ0 is quantifier free and contains only a as free variables (in addition to x, y).
Moreover, w.l.o.g we assume that ϕ0 is atomic.
Rewriting the negations in terms of “→” and “⊥” we obtain that

HAω∗ + Σ0
1-LEM `

(
∃x∀y ϕ0(a, x, y)→⊥

)
→⊥,

and using Friedman’s A-translation (with Lemma 3.1) that

HAω∗ + Σ0
1-LEM `

(
∃x∀y

(
ϕ0(a, x, y) ∨A

)
→ A

)
→ A,

for any formula A (not containing x, y free). By setting

A :≡ ∃x′∀y′ϕ0(a, x′, y′),

(we consider only this A throughout the remainder of the proof) we obtain that HAω∗ +
Σ0

1-LEM proves(
∃x∀y (ϕ0(a, x, y)∨∃x′∀y′ϕ0(a, x′, y′))→ ∃x′∀y′ϕ0(a, x′, y′)

)
→ ∃x′∀y′ϕ0(a, x′, y′). (1)

Now the claim follows from

Σ0
1-LEM ` ∀y

(
ϕ0(a, x, y) ∨ ∃x′∀y′ϕ0(a, x′, y′)

)
→
(
∀y ϕ0(a, x, y) ∨ ∃x′∀y′ϕ0(a, x′, y′)

)
,

(2)
since using (2) the statement (1) is equivalent to(

(∃x∀yϕ0(a, x, y) ∨ ∃x′∀y′ϕ0(a, x′, y′))→ ∃x′∀y′ϕ0(a, x′, y′)
)
→ ∃x′∀y′ϕ0(a, x′, y′),

which is equivalent to ∃x∀yϕ0(a, x, y).
To show (2) consider the following instance of Σ0

1-LEM

∀y ϕ0(a, x, y) ∨ ∃y ¬ϕ0(a, x, y).

Now suppose that

1. ∀y ϕ0(a, x, y) holds, then (2) is trivially true.

2. ∃y ¬ϕ0(a, x, y) holds, then for such a y we have(
ϕ0(a, x, y) ∨ ∃x′∀y′ϕ0(a, x′, y′)

)
→ ∃x′∀y′ϕ0(a, x′, y′)

and so certainly we have also that

∀y
(
ϕ0(a, x, y) ∨ ∃x′∀y′ϕ0(a, x′, y′)

)
→ ∃x′∀y′ϕ0(a, x′, y′).

Finally
(
∀y ϕ0(a, x, y) ∨ ∃x′∀y′ϕ0(a, x′, y′)

)
follows from ∃x′∀y′ϕ0(a, x′, y′) so (2)

holds as well.
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2

It is known, that a Cauchy rate is limit computable (which corresponds to Σ0
2-DNE

which – as mentioned in the introduction – is strictly stronger than Σ0
1-LEM). However,

for every provable Cauchy sequence we have that Σ0
1-LEM is sufficient:

Proposition 3.3. If a sequence of real numbers (an) (or in some PAω∗ -definable Polish
space) defined by a term of PAω∗ , can be proved to be Cauchy in PAω, then the proof can
be carried out already in HAω∗ + Σ0

1-LEM. Similarly for PAω∗ [X, ‖ · ‖] and sequences in X.

Proof. Consider a sequence x(·) and suppose

PAω∗ ` ∀k∃n∀i, j > n
(
|xi − xj | ≤ 2−k

)
.

Then by the Kuroda negative translation (see e.g. [26]) we obtain that

HAω∗ ` ∀k¬¬∃n∀i, j > n
(
|xi − xj | ≤ 2−k

)
.

By Proposition 3.2 this implies that

HAω∗ + Σ0
1-LEM ` ∀k∃n∀i, j > n

(
|xi − xj | ≤ 2−k

)
(recall that ≤R∈ Π0

1). 2

4. Which Cauchy statements are effectively learnable and which are not

Proposition 4.1 (Implications between different bounding information for Cauchy state-
ments). Let (xn) be a Cauchy sequence in a metric space (X, d).

1. A rate of convergence is a bound on the number of fluctuations.

2. A bound for the number of fluctuations is a bound B on the number of mind changes
to learn a rate of convergence (with a simple projection function as learning proce-
dure L).

3. Primitive recursively (in the ordinary sense of Kleene) in majorants B∗, L∗ of func-
tionals B,L such that the Cauchy rate is (B,L)-learnable one can obtain a rate of
metastability.

Proof. Consider a Cauchy sequence x(·).

1. Let b be a rate of convergence, i.e.

∀k∀n,m ≥ b(k)
(
d(xn, xm) ≤ 2−k

)
.

Then b(k) is also a bound on the number of 2−k fluctuations, since any fluctuation
has to occur before b(k) (i.e. that one of the indexes of the fluctuation has to be
smaller than b(k)) and there can be at most b(k) many fluctuations indexed within
[0; b(k)].
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2. Let b be a bound on the number of 2−k fluctuations, i.e.

∀k∀n > b(k)∀i, j¬Fluc2−k(n, i, j).

Then b(k) is also a bound on the number of mind changes to learn a rate of con-
vergence, since for L(n) := n we have that

∀k ∃l ≤ b(k) ∀n,m > cl
(
d(xn, xm) ≤ 2−k

)
. (BE)

Formally, L(i, x(·), k) := i, and (where – again – to have ϕ0 quantifier-free we offi-

cially have to use the 2−k−1-rational approximation ̂d(xn, xm)(k+ 1) of d(xn, xm))

ϕ0(j(n,m), ci, x(·), k) :≡
(
(n > ci ∧m > ci)→ d(xn, xm) ≤ 2−k

)
,

where j(n,m) is the Cantor pairing function. The statement (BE) can be inferred
from the fact that each mind change (ci) corresponds to a (different) fluctuation
(as it is based on a counterexample for d(xn, xm) ≤ 2−k, whose both indexes are
greater than the last ci).

3. Follows directly from Proposition 2.16.

2

In the rest of this section we show that the hierarchy in Proposition 4.1 between the
four different quantitative notations for Cauchy sequences discussed in the introduction
is strict. That an effective bound on the number of fluctuations does not imply an
effective rate of convergence, follows already from the existence of Specker sequences
[39]. We can also use the following very simple example with a 2−k-fluctuation bound
k and no effective rate of convergence, since such a rate would decide the halting problem:

Proposition 4.2 (α(·)). We take the Cantor pairing function j and set

αj(k,n) :=

{
2−k, if T (k, 0, n),

0, otherwise,

where T is the primitive recursive Kleene T -predicate. Then (αn) is a convergent (towards
0) primitive recursive sequence of rationals in [0, 1] with 2−k-fluctuation bound k which
has no computable rate of convergence.

We next construct primitive recursive sequence β(·) of rational numbers in [0, 1] with
an effectively (even primitive recursively) learnable Cauchy rate (so in particular with a
primitive recursive rate of metastability), which has no computable bound on fluctuations
(this example is not captured by the rough sketch of Avigad and Rute as here the
number of the oscillations is determined by the length of the computation, not by the
index of the machine as suggested in [9]). Furthermore, we also give an example of
a primitive recursive (in the ordinary sense) sequence γ(·) of rational numbers in [0, 1]
which (provably in the fragment of PA based on Σ0

1-IA only) converges to 0 (and so
has a primitive recursive in the sense of Kleene rate of metastability for the convergence
towards 0) which does not have an effectively learnable Cauchy rate.
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4.1. A primitive recursive sequence of rationals with a primitive recursively learnable
Cauchy rate but with no computable bound on fluctuations

Definition 4.3 (β(·)). We fix a primitive recursive surjective encoding of triples which
is monotone in the third component satisfying 〈k, n,m〉 ≥ k, n,m and set

β〈k,n,l〉 :=

{
2−k, if T (k, 0, n) ∧ l ≤ n ∧ l is even,

0, otherwise.

In the next propositions we will show that the sequence β(·)

• is Cauchy (in fact, it converges to zero) – Proposition 4.4,

• its Cauchy rate is effectively learnable – Proposition 4.7,

• there is no computable (in ε and β) bound on the number of ε-fluctuations –
Proposition 4.11.

Proposition 4.4. The sequence β(·) is convergent towards 0, provably in HAω + Σ0
1-

LEM−. More precisely we show that

HAω ` ∀k
(
∀m ≤ k

(
∃uT (m, 0, u) ∨ ∀v ¬T (m, 0, v)

)
→ ∃n∀x ≥ n

(
βx ≤ 2−k

))
.

Proof. Consider the terminating computations on input 0 of the Turing machines
encoded by 0, . . . , k. Then for every k there is an n corresponding to the code of the
longest such computation. W.l.o.g. we can assume that n ≥ k (otherwise set n := k).
This means we have that

n ≥ k ∧ ∀n′∀k′ ≤ k
(
T (k′, 0, n′)→ n′ ≤ n

)
. (7)

Now, set
c(k) := max{〈k′, n′, l′〉 : n′ ≤ n, k′ ≤ k, l′ ≤ n′}.

Then c is even a rate of convergence, since

〈k′, n′, l′〉 > c(k) → k′ > k ∨ (k′ ≤ k ∧ n′ > n) ∨ (k′ ≤ k ∧ n′ ≤ n ∧ l′ > n′)
→ k′ > k ∨ β〈k′,n′,l′〉 = 0 → β〈k′,n′,l′〉 < 2−k.

These arguments are constructive, except for the existence of the longest computation n.
This existence is a consequence of Σ0

1-LEM
− and Π0

1-CP
−, where Π0

1-CP is the bounded
collection principle for Π0

1-formulas (also called BΣ0
2 in the literature) which is easily

provable by induction in HAω. Consider the following k + 1 instances of Σ0
1-LEM

−:

∀j ≤ k
(
∃nT (j, 0, n) ∨ ∀m¬T (j, 0,m)

)
which over HAω implies

∀j ≤ k∃nj ∀m
(
T (j, 0, nj) ∨ ¬T (j, 0,m)

)
.

By an application of Π0
1-CP−, this in turn implies

∃n∀j ≤ k(∃n′ ≤ nT (j, 0, n′) ∨ ∀m¬T (j, 0,m)),

(consider n = max{nj : j ≤ k}).
This shows that the convergence is provable in HAω+Σ0

1-LEM
− and the convergence up

to an error 2−k in HAω uses only k + 1 instances of Σ0
1-LEM

−. 2
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Lemma 4.5. For a quantifier-free formula ϕ0 with parameters only of type 0, we have
that

G3Aω + Σ0
1-IA

− ` ∀x0 ∃u0∀x̃ ≤ x
(
∀y0ϕ0(x̃, y) ∨ ∃ũ ≤ u¬ϕ0(x̃, ũ)

)
.

Proof. See [26] Lemma 3.18. 2

Remark 4.6. Σ0
1-IA− is (over G3Aω) strictly weaker than Π0

1-CP− but the proof in
Lemma 4.5 needs Σ0

2-DNE and so more of classical logic than necessary in the proof
based on Π0

1-CP−. In general, it seems that considering the extraction of computational
content from proofs, often some amount of classical logic can be reduced on the cost of
more recursion.
If one is interested (only) in a classical proof, we obtain due to Lemma 4.5 (simply
consider ϕ0(x, y) :≡ ¬T (x, 0, y)) a proof of the convergence of β(·) without the use of

Π0
1-CP, which can be formalized in G3Aω + Σ0

1-IA
−.

Proposition 4.7. The rate of convergence is effectively learnable in k, i.e. there are
total (elementary) recursive functions B and L, s.t. for any k we have that

∀k ∃n ≤ B(k) ∀m > cn
(
βm ≤ 2−k

)
,

where c(·) is defined as in Definition 2.4 with

ϕ0(x, n, k) :≡ x > n→ βx ≤ 2−k.

Proof. Obviously, this follows already from Proposition 4.4. Also, it is easy to see that
the rate is (B,L)-learnable with the following B and L:

B(k) := k + 1

L(n, k) := 〈k, n, n〉+ 1.

Let x ≥ L(n, k) > 〈k, n, n〉 be a counterexample. Then (using the definition of β(·))

j1(x) ≤ k ∧ (j2(x) > n ∨ j3(x) > n) ∧ j3(x) ≤ j2(x)

and so
j1(x) ≤ k ∧ j2(x) > n ∧ j3(x) ≤ j2(x).

The 2nd conjunct implies j2(x) > j2(n) and hence j1(x) 6= j1(n) if n is a preceding
counterexample. However, for numbers ≤ k this can happen at most k-many times.
Hence B(k) := k + 1 and L do the job. 2

Corollary 4.8. β(·) has a primitive recursive (in the ordinary sense of Kleene) rate of
metastability for the convergence towards 0.

Proof. One can apply Proposition 2.16 to convert the bounds (B,L) from Proposition
4.7 (which are trivially self-majorizing using standard monotonicity properties of the
triple coding) into a primitive recursive rate of metastability. Alternatively, one can use
that by Lemma 4.5 the convergence of β(·) towards 0 is provably in G3Aω + Σ0

1-IA−

and so a fortiori in P̂A
ω
|\+QF-AC (see [26], Prop.3.31). Then proposition 10.54 in [26]
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implies the extractability of a primitive recursive rate of metastability for the convergence
towards 0 (the latter being essentially the rate of metastability for the statement in
Lemma 4.5 which is computed in [26][Prop.3.19]). 2

Remark 4.9. One can obtain such a rate of metastability for β(·) directly, using previous
results of the first author.
By [26] (Prop.13.19) we have that

∀x, f∀x̃ ≤ x
(
∃y ≤ Φxf T (x̃, 0, y) ∨ ∀z ≤ f(Φxf)¬T (x̃, 0, z)

)
, (8)

where Φxf ≤ max{f i(0) : i ≤ x + 1} =: Φ∗xf (here f i(0) again denotes the i-times
iteration of f). (8) implies

∀z
(
Φxf < z ≤ f(Φxf)→ ∀x̃ ≤ x¬T (x̃, 0, z)

)
. (9)

Define f̃(n) := max{f(n), n} and fk(n) := f̃(〈k, n, n〉+ 1) and let

Ψ(k, f) := 〈k,Φ∗kfk,Φ∗kfk〉+ 1.

Then Ψ is a rate of metastability for the convergence of β(·) towards 0, i.e.:

∀k, f ∃n ≤ Ψ(k, f) ∀z ∈ [n, f̃(n)] (|βz| < 2−k). (10)

To prove (10), define n := 〈k,Φkfk,Φkfk〉 + 1 ≤ Ψ(k, f) and let z ∈ [n, f̃(n)]. Then
z ≥ n > 〈k,Φkfk,Φkfk〉 and so one of the following cases holds:

1. j1(z) > k. Then |βz| ≤ 2−j1(z) < 2−k.

2. j2(z) > Φkfk ∧ j1(z) ≤ k. Then Φkfk < j2(z) ≤ z ≤ f̃(n) = fk(Φkfk). Hence,
by (9) (applied to k, j1(z), fk, j2(z) for x, x̃, f, z), we get ¬T (j1(z), 0, j2(z)) and so
βz = 0.

3. j3(z) > Φkfk ∧ j2(z) ≤ Φkfk ∧ j1(z) ≤ k. Then j3(z) > j2(z) and so βz = 0.

Lemma 4.10 (Termination causes at least n fluctuations). Suppose the kth-machine
terminates on 0 with computation encoded by n (i.e. T (k, 0, n) holds). Then the sequence
β(·) contains at least n many 2−k-fluctuations.

Proof. Consider the tuples of indexes i, j, s.t. il := 〈k, n, l〉, jl := 〈k, n, l + 1〉 and
l+ 1 ≤ n. Then we have by definition of β(·) (using the monotonicity of the encoding in
l) that Flucβ(·),2−k(n, 〈i〉, 〈j〉). 2

Proposition 4.11. There is no computable bound on the fluctuations of β(·).

Proof. Suppose bk is a bound on the number of fluctuations by 2−k, then bk can be used
to effectively compute whether the kth Turing machine terminates on input 0 as follows.
Let the machine run until the code of the computation reaches bk (or until it stops). If
it terminated, we are done.
Now suppose it terminates with a computation encoded by some n > bk. Then β(·) would

have at least n many 2−k-fluctuations by Lemma 4.10, which is a contradiction.
Therefore if the machine does not terminate with a code of computation at most bk it
does not terminate at all. 2
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4.2. Metastability of Cauchy sequences does not imply effective learnability

In the next propositions we define a primitive recursive sequence γ(·) of rational numbers
in [0, 1] (defined in Corollary 4.20 using Definition 4.16) that

• is Cauchy (in fact, it converges to zero) – by Proposition 4.17,

• has a primitive recursive rate of metastability of its convergence towards 0 – by
Proposition 4.17,

• has no effectively learnable Cauchy rate – by Corollary 4.20.

We use the upper index as a name extension (like kK , meaning a tuple k corresponding to
a particular K) and as iteration of functions (like fn(x), meaning we iterate the function
f n-many times with the starting point x). When unclear, we use the notation (f)n to
make explicit, that we mean the iteration.

Definition 4.12.

1. For any function f : N2 → N we define

f̂(k, n) := 0, if f(k, n) = 0 ∧ ∀m < n (f(k,m) 6= 0) and f̂(k, n) := 1, otherwise.

Note that f̂(k, ·) has a root iff f(k, ·) has one but also that it has at most one root.

2. For any f as above and x, y ∈ N define

yf,x :=

{
max

{
y′ ≤ y : ∃x′ ≤ x (y′ = min{y′′ ≤ y : f(x′, y′′) = 0 })

}
, if such y′ exists

x, otherwise.

Then for p = j(y, u) define

ϕ1(f, x, p, z) :≡ ∀x̃ ≤ x∃ỹ ≤ y∀z̃ ≤ z
(
f(x̃, ỹ) = 0 ∨ f(x̃, z̃) 6= 0

)
and

ϕ2(f, x, p, z) :≡ ∀ỹ ≤ yf,x∃ũ ≤ u∀z̃ ≤ z
(
f(ỹ, ũ) = 0 ∨ f(ỹ, z̃) 6= 0

)
and, finally,8

ϕ0 :≡ ϕ1 ∧ ϕ2, ϕ :≡ ∀f ≤1 ∀x0∃p∀zϕ0(f̂ , x, p, z)

Note that the ϕ1-part of ϕ combines a sequence of instances of Σ0
1-LEM with induction (in

the form of Π0
1-CP) and that the ϕ2-part repeats this construction but taking (essentially)

the result ‘y’ from ϕ1 as input thereby making it no longer possible to give a computable
bound on the number of instances of Σ0

1-LEM used in total. We will show in the next
proposition that ϕ is not (B,L)-learnable by showing that it implies over a system as
weak as G3Aω (which does not allow for the iteration of a function variable g)

∀g1∃y0 (y = gg
x(0)(0))

8In connection with f we write the type 1 even though it officially is the type 0→ (0→ 0).
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which grows too fast as a functional in g to be derivable from a rate of metastability
for ϕ having the simple form from Remark 2.17 whose existence would follow from the
(B,L)-learnability of ϕ. Here it is crucially used that computable functionals B,L in the
function parameter f which can be taken to be bounded by 1 can be effectively majorized
by bounds which no longer depend on f.

Proposition 4.13. ϕ is provable using Σ0
1-LEM− combined with Π0

1-CP− (uniformly in
f treated as parameter) but is not effectively learnable.

Proof. We first show that ϕ is provable: by a suitable instance Σ0
1-LEM(t(f)) of Σ0

1-
LEM− one obtains

∀x∀x̃ ≤ x∃y∀z
(
∃ỹ ≤ y f̂(x̃, ỹ) = 0 ∨ ∀z̃ ≤ z f̂(x̃, z̃) 6= 0

)
and so by a suitable instance Π0

1-CP(s(f))

∀x∃y∀x̃ ≤ x∀z
(
∃ỹ ≤ y f̂(x̃, ỹ) = 0 ∨ ∀z̃ ≤ z f̂(x̃, z̃) 6= 0

)
which implies

∀x∃y∀z∀x̃ ≤ x∃ỹ ≤ y∀z̃ ≤ z
(
f̂(x̃, ỹ) = 0 ∨ f̂(x̃, z̃) 6= 0

)
.

Now we repeat the same argument with yf,x instead of x.

To show that ϕ is not learnable we proceed in three steps.

Step 1. We will show that (informally speaking, since formally we cannot express function
iteration and the conclusion would have to use ψ0 and ψy0 defined below)

G3Aω ` ∀g∀x
(
∃p∀zϕ0(fg, x, p, z)→ ∃y′(y′ = gg

x(0)(0))
)
, (GA)

for

fg(b, d) :=

{
0, if lh(d) = b+ 1 ∧ d0 = 0 ∧ ∀i < b (di+1 = g(di),

1, otherwise.

Formally, ∃y′(y′ = gg
x(0)(0)) is to be read as

∃y, u (fg(x, y) = 0 ∧ fg(yx, u) = 0), (GA∗)

where then y′ := uyx . Note that we have fg =1 f̂g. To show (GA) fix arbitrary g1 and
x0. Now assume ∃p∀zϕ0(fg, x, p, z) and let us fix such a p = j(y, u) to obtain:

∀z∀x̃ ≤ x∃ỹ ≤ y∀z̃ ≤ z
(
fg(x̃, ỹ) = 0 ∨ fg(x̃, z̃) 6= 0

)
∧ (11)

∀z∀ỹ ≤ yfg,x∃ũ ≤ u∀z̃ ≤ z
(
fg(ỹ, ũ) = 0 ∨ fg(ỹ, z̃) 6= 0

)
. (12)

We now show by quantifier-free induction that

∀x′ ≤ x∃y′ ≤ y fg(x′, y′) = 0. (13)

Note that ∃y′ fg(x′, y′) = 0 implies that y′x′ = gx
′
(0). The case x′ = 0 is trivially

satisfied by y′ = 〈0〉. Then y′ ≤ y by (11). So suppose for some x′ < x we have
∃y′ ≤ y fg(x′, y′) = 0. Then we can set

z := y′ ∗ 〈g(y′x′)〉 = 〈y′0, y′1, . . . , g(y′x′)〉
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to get fg(x
′ + 1, z) = 0 which concludes the proof of (13) since – again by (11) – z ≤ y.

Note, furthermore, that for y′ ≤ y (and x′ ≤ x),

fg(x
′, y′) = 0 → y′ ≤ yf,x.

So we have even that

∀x′ ≤ x∃y′ ≤ yfg,x fg(x′, y′) = 0. (14)

Now, let y∗ denote the y′ which satisfies (14) for x′ = x and note that y∗x ≤ y∗ ≤ yfg,x.
By quantifier-free induction we show that

∀x′ ≤ yfg,x∃u′ ≤ u fg(x′, u′) = 0. (15)

The case x′ = 0 is again trivially satisfied by u′ = 〈0〉 ≤ u (using (12)). So suppose for
some x′ < yfg,x that ∃u′ ≤ u fg(x′, u′) = 0. Then we can set

z := u′ ∗ 〈g(u′x′)〉 = 〈u′0, u′1, . . . , g(u′x′)

to get fg(x
′ + 1, z) = 0, which by (12) implies

∃ũ ≤ u fg(x′ + 1, ũ) = 0

and so concludes the proof of (15). Applying (15) we obtain (for x′ = y∗x)

∃u′ ≤ u (fg(x, y
∗) = 0 ∧ fg(y∗x, u′) = 0),

which concludes the proof of (GA∗) and, therefore, also the proof of (GA).

Step 2. We investigate the terms witnessing the implication (GA). By prenexation we
obtain

G3Aω ` ∀g, x, p∃y′, z
(
ϕ0(fg, x, p, z)→ y′ = gg

x(0)(0)
)
,

and, therefore, by program extraction theorems (see Corollary 3.1.3 in [23]), we get closed
terms s and t in G3Aω, s.t.

∀g, x, p
(
ϕ0(fg, x, p, sgxp)→ tgxp = gg

x(0)(0)
)
. (16)

Step 3. Finally, we show that with sufficiently large (in the sense of growth) g, this
contradicts the effective learnability of ϕ. Suppose namely that ϕ were learnable by
computable functionals B(f, x), L(y, f, x). Then also

B∗(x) := sup{B(f, x̃) : f ≤1 1, x̃ ≤ x} and
L∗x(y) := max{y, sup{L(ỹ, f, x̃) : f ≤1 1, ỹ ≤ y, x̃ ≤ x}}

are computable (in x resp. in x, y) and majorize B,L. Now by Proposition 2.16 and the
fact that fg is trivially majorized by 1 we get, in particular, that

∃p ≤ Ω(B∗, L∗x, hx, x) ϕ0(fg, x, p, sgxp),
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for any g and x, by setting
h1
x := λp . sgxp.

So, we obtain together with (16) that

∀g, x∃px ≤ Ω(B∗, L∗x, hx, x)
(
tgxpx = gg

x(0)(0)
)
.

Since s and t are closed terms of G3Aω and the variables g, x, px have types ≤ 1 by
normalization arguments (see Corollary 2.2.24 and Remark 2.2.25 in [23]) we know that
there is a constant D, s.t. (for any g that majorizes λn.2n)

∀x, v
(
g̃D(x+ v) ≥ sgxv, tgxv

)
.

Since we may assume that g̃(n) > n and, therefore, g̃x(v) ≥ x+ v, this yields

∀x, v
(
g̃D+x(v) ≥ sgxv, tgxv

)
.

As a consequence, we get (using the Ω-definition and that that B∗, L∗x are selfmajorizing
and that L∗x(y) ≥ y) that for all x

g̃D+x
(
Ω(B∗, L∗x, g̃

D+x, x)
)
≥ g̃D+x (Ω(B∗, L∗x, hx, x)) ≥ tgxpx = gg

x(0)(0).

By the definition of Ω (see also Remark 2.17)

g̃D+x
(
Ω(B∗, L∗x, g̃

D+x, x
)
≤ g̃D+x

(
(L∗x ◦ g̃D+x)B

∗(x)(0)
)
≤

g̃D+x
(
(L∗x ◦ g̃)(D+x)B∗(x)(0)

)
≤ (L∗x ◦ g̃)B̂

∗(x)(0)

and so (for all x)

gg
x(0)(0) ≤ (L∗x ◦ g̃)B̂

∗(x)(0)

where λx, y.L∗x(y) and B̂∗(x) := (D + x)(B∗(x) + 1) are fixed total recursive functions
that do not depend on g which is not possible for sufficiently fast growing g. 2

Corollary 4.14. Let ϕ0 be as in the previous Proposition. If for a quantifier free formula
ψ0 (with no hidden parameters)

G3Aω + QF-AC ` ∀f ≤ 1∀x0
(
∃y0∀z0ψ0(ξ(f), χ(x), y, z)→ ∃p0∀z0ϕ0(f̂ , x, p, z)

)
,

where ξ and χ are closed terms of G3Aω, then ∀f ≤ 1∀x0∃y0∀z0ψ0(f, x, y, z) is also not
effectively learnable. Here

QF-AC : ∀x∃y F0(x, y)→ ∃f ∀xF0(x, f(x)),

with quantifier-free F0 and x, y of arbitrary types.

Proof. This follows analogously from [23] (Corollary 3.1.3.) and our Proposition 2.16
as in the proof of Proposition 4.13. 2
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Remark 4.15. We can prove in G3Aω + Σ0
1-CP (which is included in G3Aω +QF-AC0,0)

that ϕ in Proposition 4.13 is actually equivalent to its monotone version,

ϕ̃ ≡ ∀f1 ≤ 1∀x0∃q∀z∃p ≤ q∀z̃ ≤ zϕ0(f̂ , x, p, z).

Since this equivalence holds also pointwise (in f, x), we can use Corollary 4.14 to infer
that there is actually a monotone formula, which is not effectively learnable.

Definition 4.16. Define (using a surjective quadruple coding) a primitive recursive
sequence of rational numbers in [0, 1] by

γ(f)〈k,n,i,m〉 :=

{
2−k, if f̂(k, n) = 0 ∧ i ≤ n ∧ f̂(i,m) = 0,

0, otherwise.

Proposition 4.17. The sequence (γ(f)z)z∈N converges to 0 but the formula stating the
existence of a Cauchy point for any f

ψ := ∀f1 ≤1 1, x0∃z∀k ≥ z
(
γ(f)k < 2−x

)
.

is not effectively learnable. However, there is a primitive recursive (in the ordinary sense
of Kleene) rate of metastability for the convergence of γ(f)(·) towards 0, which does not
depend on f .

Proof. The existence of a metastability rate follows from the fact that γ(f)(·) converges
to 0 for any f ≤1 1. Moreover, since the proof can be formalized in G3Aω + Σ0

1-IA there
is a primitive recursive rate and since f is trivially majorizable it is also clear that there
is even a primitive recursive rate which does not depend on f . (In Remark 4.18 below,
we actually give such a rate explicitly.)
To show the unlearnability, due to Corollary 4.14 it suffices to show that

G3Aω + QF-AC0,0 ` ∀f ≤ 1∀x0
(
∃z∀k ≥ z

(
γ(f)k < 2−x

)
→ ∃p∀z′ϕ0(f̂ , x, p, z′)

)
.

To prove ϕ, fix arbitrary f1 and x0 and suppose that

∃z∀k ≥ z
(
γ(f)k < 2−x

)
.

Moreover, assume towards contradiction

∃x̃ ≤ x∃a ≥ max(z, x)f̂(x̃, a) = 0. (17)

Since a ≥ x̃, z, this implies that k := 〈x̃, a, x̃, a〉 ≥ z and γ(f)k = 2−x̃, which is a
contradiction.
Hence we can conclude that

∀x̃ ≤ x
(
∃ỹ < max(x, z)f̂(x̃, ỹ) = 0 ∨ ∀af̂(x̃, a) 6= 0

)
,

which is equivalent to

∀x̃ ≤ x∀a∃ỹ < max(x, z)
(
f̂(x̃, ỹ) = 0 ∨ ∀ã ≤ a f̂(x̃, ã) 6= 0

)
. (18)
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Next, set y := max(x, z) and assume towards contradiction that

∃ỹ ≤ yf̂ ,x∃a ≥ zf̂(ỹ, a) = 0. (19)

Recall that

yf̂ ,x :=

{
max

{
y′ ≤ y : ∃x′ ≤ x (y′ = min{y′′ ≤ y : f̂(x′, y′′) = 0 })

}
, if such y′ exists

x, otherwise.

(20)
Note that if yf̂ ,x = x, then ϕ follows already from (18). Otherwise, denote the smallest

x′ ≤ x for which f̂(x′, yf̂ ,x) = 0 by x̃. Then k := 〈x̃, yf̂ ,x, ỹ, a〉 ≥ z and γ(f)k = 2−x̃,
which is a contradiction.
Finally, ∃p∀z′ϕ0(f̂ , x, p, z′) follows from not-(19) and (18) (with y := max(x, z), p :=
〈y, z〉).

2

Remark 4.18. Similarly as before, we can give an explicit such rate of metastability
for the convergence of (γ(f)z) toward 0. As in Remark 4.9, there is a Φfxg ≤ Φ∗xg :=
max{gi(0) : i ≤ x+ 1} such that

∀x, f, g∀x̃ ≤ x
(
∃y ≤ Φfxg (f̂(x̃, y) = 0) ∨ ∀z ≤ g(Φfxg) (f̂(x̃, z) 6= 0)

)
.

Define

Φ1xg := Φf

(
x, λy.gy

(
Φf (y, gx)

))
,

Φ2xg := Φf
(
Φ1xg, gΦ1xg

)
,

where gy(n) := g(y, n). Then

∀x, f, g ∀x̃ ≤ x∀ỹ ≤ Φ1xg
(

(∃y ≤ Φ1xg
(
f̂(x̃, y) = 0

)
∨ ∀z ≤ g(Φ1xg,Φ2xg)

(
f̂(x̃, z) 6= 0)) ∧

(∃u ≤ Φ2xg (f̂(ỹ, u) = 0) ∨ ∀z ≤ g(Φ1xg,Φ2xg) (f̂(ỹ, z) 6= 0)
))
.

This implies

∀z
(
Φ1xg < z ≤ g(Φ1xg,Φ2xg)→ ∀x̃ ≤ x (f̂(x̃, z) 6= 0)

)
(21)

and
∀z
(
Φ2xg < z ≤ g(Φ1xg,Φ2xg)→ ∀x̃ ≤ Φ1xg (f̂(x̃, z) 6= 0)

)
. (22)

Define g̃(n) := max{g(n), n} and gk(n,m) := g̃(〈k, n, n,m〉+ 1) and

Ψ(k, g) := 〈k,Φ∗1kgk,Φ∗1kgk,Φ∗2kgk〉+ 1,

where Φ∗i is defined as Φi but with Φ∗ and (gk)M instead of Φf and gk. To show

∀k, g, f ∃n ≤ Ψ(k, g) ∀z ∈ [n, g̃(n)] (|γ(f)z| < 2−k),

define n := 〈k,Φ1kgk,Φ1kgk,Φ2kgk〉 + 1 ≤ Ψ(k, g) and let z ∈ [n, g̃(n)]. Then z ≥ n >
〈k,Φ1kgk,Φ1kgk,Φ2kgk〉. Hence one of the following holds:

35



1. j1(z) > k. Then |γ(f)z| ≤ 2−j1(z) < 2−k.

2. j2(z) > Φ1kgk ∧ j1(z) ≤ k. Then Φ1kgk < j2(z) ≤ z ≤ g̃(n) = gk(Φ1kgk,Φ2kgk).
Hence, by (21) (applied to j1(z), k, gk, j2(z) for x̃, x, g, z), γ(f)z = 0.

3. j3(z) > Φ1kgk ∧ j2(z) ≤ Φ1kgk ∧ j1(z) ≤ k. Then j3(z) > j2(z) and so γ(f)z = 0.

4. j4(z) > Φ2kgk ∧ j3(z) ≤ Φ1kgk ∧ j2(z) ≤ Φ1kgk ∧ j1(z) ≤ k. Then Φ2kgk <
j4(z) ≤ z ≤ g̃(n) = gk(Φ1kgk,Φ2kgk). Hence, by (22) (applied to j3(z), k, gk, j4(z)
for ỹ, x, g, z), γ(f)z = 0.

Note that the 2-nested use of primitive recursive iteration hidden in the 2-nested appli-
cation of Φf in the definition of Φi very much resembles the basic structure of the rate of
metastability extracted from a concrete proof in ergodic theory in [37] (see the discussion
in the introduction).

Corollary 4.19. Let γ(e)(·) be defined as γ(f)(·) but with f̂(x, y) = 0 being replaced by

P (e, x, y) :≡ lh(y) = x+ 1 ∧ y0 = 0 ∧ ∀i < x(T (e, yi, yi+1)).

Then (γ(e)n) is a sequence of rational numbers in [0, 1] that converges to 0 but the formula
stating the existence of a Cauchy point of γ(e)(·) for any number e

ψ := ∀e0, x0∃z∀k ≥ z
(
γ(e)k < 2−x

)
.

is not effectively learnable.

Proof. First note that the convergence (towards 0) of γ(e)n follows from this property of
γ(f)n since taking f(x, y) := 0, if P (e, x, y), and f(x, y) := 1, otherwise, both sequences

coincide (note that f = f̂).
Let e by a code of a total recursive function and define g(x) := µy . T (e, x, y). The
arguments of both Proposition 4.13 and Proposition 4.17 then remain valid, except the
fact that the set of Gödel numbers e – in contrast to fg – is not majorizable. We
also need the additional assumption ∀x (T (e, x, g(x))) in (GA), which expresses that
g(x) := µy . T (e, x, y)] defines a total function. This assumption, however, does not
contribute in the course of the functional interpretation argument applied to (GA) (‘Step
2’ in the proof of Proposition 4.13) as it is purely universal. So as before, the learnability
would lead to a constant D and total recursive functions λe, x, y.L∗e,x(y), B∗ such that

∀e∀g
(
∀x0 T (e, x, g(x))→ ∀x0 (L∗e,x ◦ g̃)B̂

∗(e,x)(0) ≥ gg
x(0)(0))

)
where B̂∗(e, x) := (D + x+ e)(B∗(x) + 1).
We can argue similarly as in the proof of Proposition 4.13, since for any fixed g given by
some e as above, eventually we have x > e, so we can simply choose a total recursive g
which grows much faster than L∗x,x(x) and B∗(x, x). 2

Corollary 4.20. Define the primitive recursive sequence of rational numbers in [0, 1]
(using the Cantor pairing function)

γj(e,n) := γ(e)n · 2−e.
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This sequence converges to 0 (provably in G3Aω + Σ0
1-IA− and hence with a primitive

recursive – in the sense of Kleene – rate of metastability) but the formula stating the
existence of a Cauchy point of γ(·)

ψ := ∀x0∃z∀k ≥ z
(
γk < 2−x

)
.

is not effectively learnable.

Proof. Let ρe(x) be a rate of convergence for (γ(e)n)n and define ρ(x) := max{ρx̃(x) :
x̃ ≤ x}. Then

ρ̂(x) := j(x, ρ(x))

is a rate of convergence for (γn) towards 0.
Conversely, for any rate ρ of convergence for (γn) we have that ρe(x) := ρ(e+x) is a rate
of convergence of (γ(e)n)n. In particular, the 2−e−x-Cauchy property for (γn) implies
the 2−x-Cauchy property of (γ(e)n)n. Hence by Corollary 4.19, (γn) does not have an
effectively learnable Cauchy rate. 2

5. When learnability implies fluctuation bounds

In some cases, the effective (B,L)-learnability of a convergence rate (meaning that the
convergence rate can be learned by L with B(a)-many mind changes) gives a bound
on the number of fluctuations. This, for instance, is the case for bounded monotone
sequences. In general, we can say that effective learnability implies the existence of
an effective bound of fluctuations, if the learner and the sequence satisfy certain gap
conditions. Informally, if

• any two exceptions i, ı̃ to the Cauchy property for 2−k have distance at least
∆∗(max(i, ı̃), k), and

• the learning map jumps at most by J∗(i, k) from i, and

• (for any k) J∗(·, k) is asymptotically at most equivalent to ∆∗(·, k),

then the number of fluctuations is asymptotically bounded by B∗. Below, we discuss an
example from ergodic theory, where these conditions are met.

Proposition 5.1 (Gap conditions on the learner). Let a(·) be some sequence in a metric
space (X, d) and let

ϕ :≡ ∀k∃n∀i

ϕ0(i,n,k):≡︷ ︸︸ ︷
∀ı̃ < i

(
n ≤ ı̃→ d(aı̃, ai) ≤ 2−k

)
.

be a (B,L)-learnable formula (which states simply the Cauchy property of the sequence,
we use ı̃ simply because the natural choice j already denotes the pairing function) and let
B∗, L∗ be majorants of B,L.
Moreover, suppose that there are functions ∆∗ > 0, J∗, s.t.9

∀n, i, i′
((
¬ϕ0(i, n, k) ∧ ¬ϕ0(i′, n, k))→ |i′ − i| ≥ ∆∗(i, k)

)
,

9Correction September 2022: add i 6= i′ to the assumptions in the formula below.
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∀n, i
(
¬ϕ0(i, n, k)→ L∗(i, k)− i ≤ J∗(i, k)

)
,

and (
J∗ ∈ O

(
∆∗
))
≡ ∀k∃Nk,Kk ∀x ≥ Nk

(
Kk∆∗(x, k) ≥ J∗(x, k)

)
. (23)

Then there is a bound on the number of 2−k-fluctuations, which is primitive recursive in
B∗,∆∗, J

∗ and Nk,Kk (which witness (23)) given by

b(k) := B∗(k)

(
2 +Kk + max

n<Nk

( J∗(n, k)

∆∗(n, k)

))
.

Note that in the case where Nk = 0, we get

b(k) = (2 +Kk)B∗(k).

Proof. For simplicity, assume Nk = 0 (otherwise we could just replace every occurrence

of Kk by (Kk + maxn<Nk
( J
∗(n,k)

∆∗(n,k) ))).

Firstly, note that any 2−k-fluctuation between two indexes ı̃ and i corresponds to a
counterexample i. So, by definition there is at most one fluctuation in the interval [cl, il],
where il is the smallest counterexample to the solution candidate cl. Moreover, if there
is such a fluctuation, its greater index is il.
Secondly, from our assumption on ∆∗ we get that there are at most⌈

cl+1 − il
∆∗(il, k)

⌉
≤
⌈
J∗(il, k)

∆∗(il, k)

⌉
≤ Kk

many fluctuations within an interval [il, cl+1].
There are at most B∗(k) such pairs of intervals, before a 2−k-Cauchy point is reached,
but there might be fluctuations, which arise only when we unite two such intervals.
By incrementing Kk by 1, we already account for any additional fluctuation due to
combining the intervals [cl, il] and [il, cl+1]. This is because if there was a fluctuation
within [cl, il], then there cannot be an additional one which results from combining such
a pair of intervals, as its greater index would be il. There can, however, be an additional
fluctuation, when we combine the intervals [il, cl+1] and [cl+1, il+1].

2

We now consider the general form of the structure of Birkhoff’s proof of the mean er-
godic theorem as analyzed in [29] and the argument used in [9] to convert the rate of
metastability obtained in [29] into a bound on the number of fluctuations:

Let x(·) be a sequence in some normed space X (in the case at hand X is a uniformly
convex Banach space) and y(·) be a sequence in R+ definable by terms in HAω[X, ‖·‖, . . .].
Suppose the Cauchyness of x(·) is proved using that y(·) has arbitrarily good approximate
infima, i.e.

∀δ > 0∃n∀k∀k̃ ≤ k (yk̃ ≥ yn − δ) (24)

→ ∀ε > 0∃m∀u∀i, j ∈ [m,u] (‖xi − xj‖ ≤ ε). (25)

This implication is classically equivalent to

∀ε > 0∃δ > 0
(
∃n∀k∀k̃ ≤ k (yk̃ ≥ yn − δ)→

∃m∀u∀i, j ∈ [m,u] (‖xi − xj‖ ≤ ε)
)
. (+)
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Suppose now that we are in the situation of Corollary 2.15, i.e.

HAω[X, ‖ · ‖, . . .] + AC+Mω+IPω∀ ` (+)

then

HAω[X, ‖ · ‖, . . .] + AC + Mω + IPω∀ `
∀ε > 0∃δ > 0∀n∃m ≥ n∀u∃k(∀k̃ ≤ k(yk̃ ≥R yn − δ)→ ∀i, j ∈ [m,u](‖xi − xj‖ <R ε).

Hence by monotone functional interpretation one extracts terms δε > 0, mε and kε
(depending additionally only on majorants of the parameters a used in the definition of
our sequences) s.t. (valid in Sω,X) for all majorants a∗ of a

∀ε > 0 ∀n, u(
mε(n) ≥ n ∧

(
∀k̃ ≤ kε(n, u) (yk̃ ≥ yn − δε)→ ∀i, j ∈ [mε(n), u] (‖xi − xj‖ ≤ ε)

))
.

(∗)

Now define k∗ε(u) := max{kε(i, u) : i ≤ u} and consider

∀ε > 0 ∀n, u
(
∀k̃ ≤ k∗ε(u) (yk̃ ≥ yn − δε)→ ∀i, j ∈ [mε(n), u] (‖xi − xj‖ ≤ ε)

)
. (∗∗)

We can infer (∗∗) from (∗) by the following case distinction:10 Fix ε > 0 and n.

Case 1: u < mε(n). Then the conclusion and hence the whole implication is trivially
true.

Case 2: u ≥ mε(n) ≥ n.Then k∗ε(u) ≥ kε(n, u) and so ∀k̃ ≤ k∗ε(u) (yk̃ ≥ yn − δε) implies

∀k̃ ≤ kε(n, u) (yk̃ ≥ yn − δε) and so the claim follows as well.

Now suppose w.l.o.g. that k∗ε : N→ N is injective and for any given u define

lu := (k∗ε)−1(u).

Then (∗∗) applied to u := lu yields

∀ε > 0 ∀n, u
(
∀k̃ ≤ u (yk̃ ≥ yn − δε)→ ∀i, j ∈ [mε(n), (k∗ε)−1(u)] (‖xi − xj‖ ≤ ε)

)
. (-)

Now let N0, N1, ..., NSε be integers s.t. N0 = 0 and Ni+1 is the least m > Ni s.t.
ym < yNi

− δε as long as such an m exists. Assume that b ≥ y0 (for some b) and so
Sε ≤ b

δε
.

By (-) there are no ε-fluctuations of x(·) on the Sε many intervals [mε(Ni), (k
∗
ε)−1(Ni+1)]

for i = 0, . . . , Sε − 1.
In the intervals [(k∗ε)−1(Ni),mε(Ni)] for i = 1, . . . , Sε and [0,mε(N0)] we have to show
that if we have for any N ∈ N s many fluctuations indexed within [(k∗ε)−1(N),mε(N)]
(or in [0,mε(N0)]) each indexed by a pair of indexes (i, j) then the highest index of such
fluctuation (js) has to be greater than (or equal to) some ϕε(s,N), where ϕε is such that

∃s̃∀n
(
ϕε(s̃, n) > mε(n)

)
.

10We are grateful to P. Oliva for pointing this out to us.
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Then, given such an s̃, we have at most

b

δε
+ s̃

(
b

δε
+ 1

)
many fluctuations.

In the case of Birkhoff’s proof, the analysis in [29] and the discussion in [9] gives the
following data used in [9]:

δε :=
ε2

512b
, mε(n) :=

⌈
16b

ε

⌉
n,

(k∗ε)−1(n) :=
⌊n

2

⌋
, ϕε(s, n) :=

(
1 +

ε

2b

)s
n,

and so (for ε < 2b)

s̃ ≤
4b log

⌈
16b
ε

⌉
ε

.

The function ϕε results (see [9] for the calculation) from the fact that

‖xn+k − xk‖ ≤ 2n‖x‖/(n+ k)

which is established already in Birkhoff’s proof and which – for n = 1 – shows that (xk)
has a linear rate of asymptotic regularity.

Remark 5.2. Naturally, we could use the data, which led to the bound of s̃ above, also
simply with Proposition 5.1 to obtain a similar fluctuation bound (which has the same
structure in ε).

For the case of Halpern iterations (with scalar 1/(n+ 1)) mentioned in the introduction,
the analysis given in [31] yields (roughly) the following data for Hilbert spaces X (see
[31, 33] for the detailed definition of Θn):

δε :=
ε4

576(b+ 1)4
, mε(n) ≈ Θn(

ε2

4
) ≈ n2,

(k∗ε)−1(n) :=
⌊n · ε

3b2

⌋
.

Similar data are also obtained in the recent [34] which is based on the analysis of a
different proof for the strong convergence of the Halpern iteration from [43].
However, now the rate of asymptotic regularity roughly is of order (see corollary 6.3 in
[31])

‖xk+1 − xk‖ ≤
b√
k
,

which does not lead to a linear (in n) ϕε(s, n) and even if it would, this would not suffice
to dominate mε(n). So as it stands, the analysis does not seem to yield any fluctuation
bound for the Halpern iteration (xk).
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Proposition 5.3. Given a bound Bε on the number of fluctuations, there is an in Bε
(and the given data (k∗ε)−1 and mε and the majorants a∗ of their parameters including
ε)) primitive recursive ϕε satisfying the conditions in the proof:

∀ε > 0∀s,N, i, j
(
i, j ∈ [(k∗ε)−1(N),mε(N)] ∧ Flucε(s, i, j) → js ≥ ϕε(s,N)

)
, (26)

∃s̃∀n
(
ϕε(s̃, n) > mε(n)

)
. (27)

Proof. Set

ϕε(s, n) :=

{
(k∗ε)−1(n) if s ≤ Bε,
mε(n) + 1 otherwise.

2

Remark 5.4. In particular, this means that if we know there is for computable (in the
majorants a∗ of the parameters including ε) (k∗ε)−1 and mε no computable ϕε (in a∗)
satisfying these conditions, then there cannot be a bound on the number of fluctuations,
which is computable (in a∗).
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